Merge remote-tracking branch 'upstream/debug'
This commit is contained in:
@@ -52,6 +52,7 @@ async def start_background_tasks():
|
||||
"""启动后台任务"""
|
||||
# 只启动表情包管理任务
|
||||
asyncio.create_task(emoji_manager.start_periodic_check(interval_MINS=global_config.EMOJI_CHECK_INTERVAL))
|
||||
await bot_schedule.initialize()
|
||||
bot_schedule.print_schedule()
|
||||
|
||||
@driver.on_startup
|
||||
@@ -90,7 +91,7 @@ async def monitor_relationships():
|
||||
async def build_memory_task():
|
||||
"""每30秒执行一次记忆构建"""
|
||||
print("\033[1;32m[记忆构建]\033[0m 开始构建记忆...")
|
||||
await hippocampus.build_memory(chat_size=12)
|
||||
await hippocampus.build_memory(chat_size=30)
|
||||
print("\033[1;32m[记忆构建]\033[0m 记忆构建完成")
|
||||
|
||||
|
||||
|
||||
@@ -2,7 +2,7 @@ from nonebot.adapters.onebot.v11 import GroupMessageEvent, Message as EventMessa
|
||||
from .message import Message,MessageSet
|
||||
from .config import BotConfig, global_config
|
||||
from .storage import MessageStorage
|
||||
from .llm_generator import LLMResponseGenerator
|
||||
from .llm_generator import ResponseGenerator
|
||||
from .message_stream import MessageStream, MessageStreamContainer
|
||||
from .topic_identifier import topic_identifier
|
||||
from random import random, choice
|
||||
@@ -20,7 +20,7 @@ from ..memory_system.memory import memory_graph
|
||||
class ChatBot:
|
||||
def __init__(self):
|
||||
self.storage = MessageStorage()
|
||||
self.gpt = LLMResponseGenerator()
|
||||
self.gpt = ResponseGenerator()
|
||||
self.bot = None # bot 实例引用
|
||||
self._started = False
|
||||
|
||||
|
||||
@@ -1,4 +1,4 @@
|
||||
from dataclasses import dataclass
|
||||
from dataclasses import dataclass, field
|
||||
from typing import Dict, Any, Optional, Set
|
||||
import os
|
||||
from nonebot.log import logger, default_format
|
||||
@@ -32,7 +32,15 @@ class BotConfig:
|
||||
EMOJI_CHECK_INTERVAL: int = 120 # 表情包检查间隔(分钟)
|
||||
EMOJI_REGISTER_INTERVAL: int = 10 # 表情包注册间隔(分钟)
|
||||
|
||||
# 模型配置
|
||||
llm_reasoning: Dict[str, str] = field(default_factory=lambda: {})
|
||||
llm_reasoning_minor: Dict[str, str] = field(default_factory=lambda: {})
|
||||
llm_normal: Dict[str, str] = field(default_factory=lambda: {})
|
||||
llm_normal_minor: Dict[str, str] = field(default_factory=lambda: {})
|
||||
vlm: Dict[str, str] = field(default_factory=lambda: {})
|
||||
|
||||
API_USING: str = "siliconflow" # 使用的API
|
||||
API_PAID: bool = False # 是否使用付费API
|
||||
MODEL_R1_PROBABILITY: float = 0.8 # R1模型概率
|
||||
MODEL_V3_PROBABILITY: float = 0.1 # V3模型概率
|
||||
MODEL_R1_DISTILL_PROBABILITY: float = 0.1 # R1蒸馏模型概率
|
||||
@@ -48,20 +56,19 @@ class BotConfig:
|
||||
PROMPT_SCHEDULE_GEN="一个曾经学习地质,现在学习心理学和脑科学的女大学生,喜欢刷qq,贴吧,知乎和小红书"
|
||||
|
||||
@staticmethod
|
||||
def get_default_config_path() -> str:
|
||||
"""获取默认配置文件路径"""
|
||||
def get_config_dir() -> str:
|
||||
"""获取配置文件目录"""
|
||||
current_dir = os.path.dirname(os.path.abspath(__file__))
|
||||
root_dir = os.path.abspath(os.path.join(current_dir, '..', '..', '..'))
|
||||
config_dir = os.path.join(root_dir, 'config')
|
||||
return os.path.join(config_dir, 'bot_config.toml')
|
||||
if not os.path.exists(config_dir):
|
||||
os.makedirs(config_dir)
|
||||
return config_dir
|
||||
|
||||
|
||||
@classmethod
|
||||
def load_config(cls, config_path: str = None) -> "BotConfig":
|
||||
"""从TOML配置文件加载配置"""
|
||||
if config_path is None:
|
||||
config_path = cls.get_default_config_path()
|
||||
logger.info(f"使用默认配置文件路径: {config_path}")
|
||||
|
||||
config = cls()
|
||||
if os.path.exists(config_path):
|
||||
with open(config_path, "rb") as f:
|
||||
@@ -89,6 +96,26 @@ class BotConfig:
|
||||
config.MODEL_V3_PROBABILITY = response_config.get("model_v3_probability", config.MODEL_V3_PROBABILITY)
|
||||
config.MODEL_R1_DISTILL_PROBABILITY = response_config.get("model_r1_distill_probability", config.MODEL_R1_DISTILL_PROBABILITY)
|
||||
config.API_USING = response_config.get("api_using", config.API_USING)
|
||||
config.API_PAID = response_config.get("api_paid", config.API_PAID)
|
||||
|
||||
# 加载模型配置
|
||||
if "model" in toml_dict:
|
||||
model_config = toml_dict["model"]
|
||||
|
||||
if "llm_reasoning" in model_config:
|
||||
config.llm_reasoning = model_config["llm_reasoning"]
|
||||
|
||||
if "llm_reasoning_minor" in model_config:
|
||||
config.llm_reasoning_minor = model_config["llm_reasoning_minor"]
|
||||
|
||||
if "llm_normal" in model_config:
|
||||
config.llm_normal = model_config["llm_normal"]
|
||||
|
||||
if "llm_normal_minor" in model_config:
|
||||
config.llm_normal_minor = model_config["llm_normal_minor"]
|
||||
|
||||
if "vlm" in model_config:
|
||||
config.vlm = model_config["vlm"]
|
||||
|
||||
# 消息配置
|
||||
if "message" in toml_dict:
|
||||
@@ -125,12 +152,21 @@ class BotConfig:
|
||||
return config
|
||||
|
||||
# 获取配置文件路径
|
||||
bot_config_path = BotConfig.get_default_config_path()
|
||||
config_dir = os.path.dirname(bot_config_path)
|
||||
|
||||
logger.info(f"尝试从 {bot_config_path} 加载机器人配置")
|
||||
bot_config_floder_path = BotConfig.get_config_dir()
|
||||
print(f"正在品鉴配置文件目录: {bot_config_floder_path}")
|
||||
bot_config_path = os.path.join(bot_config_floder_path, "bot_config_dev.toml")
|
||||
if not os.path.exists(bot_config_path):
|
||||
# 如果开发环境配置文件不存在,则使用默认配置文件
|
||||
bot_config_path = os.path.join(bot_config_floder_path, "bot_config.toml")
|
||||
logger.info("使用默认配置文件")
|
||||
else:
|
||||
logger.info("已找到开发环境配置文件")
|
||||
|
||||
global_config = BotConfig.load_config(config_path=bot_config_path)
|
||||
|
||||
|
||||
|
||||
@dataclass
|
||||
class LLMConfig:
|
||||
"""机器人配置类"""
|
||||
@@ -151,3 +187,4 @@ llm_config.DEEP_SEEK_BASE_URL = config.deep_seek_base_url
|
||||
if not global_config.enable_advance_output:
|
||||
# logger.remove()
|
||||
pass
|
||||
|
||||
|
||||
@@ -12,6 +12,7 @@ import time
|
||||
import asyncio
|
||||
from .utils_image import storage_image,storage_emoji
|
||||
from .utils_user import get_user_nickname
|
||||
from ..models.utils_model import LLM_request
|
||||
#解析各种CQ码
|
||||
#包含CQ码类
|
||||
import urllib3
|
||||
@@ -57,6 +58,11 @@ class CQCode:
|
||||
translated_plain_text: Optional[str] = None
|
||||
reply_message: Dict = None # 存储回复消息
|
||||
image_base64: Optional[str] = None
|
||||
_llm: Optional[LLM_request] = None
|
||||
|
||||
def __post_init__(self):
|
||||
"""初始化LLM实例"""
|
||||
self._llm = LLM_request(model=global_config.vlm, temperature=0.4, max_tokens=300)
|
||||
|
||||
def translate(self):
|
||||
"""根据CQ码类型进行相应的翻译处理"""
|
||||
@@ -161,7 +167,7 @@ class CQCode:
|
||||
# 将 base64 字符串转换为字节类型
|
||||
image_bytes = base64.b64decode(base64_str)
|
||||
storage_emoji(image_bytes)
|
||||
return self.get_image_description(base64_str)
|
||||
return self.get_emoji_description(base64_str)
|
||||
else:
|
||||
return '[表情包]'
|
||||
|
||||
@@ -181,93 +187,23 @@ class CQCode:
|
||||
|
||||
def get_emoji_description(self, image_base64: str) -> str:
|
||||
"""调用AI接口获取表情包描述"""
|
||||
headers = {
|
||||
"Content-Type": "application/json",
|
||||
"Authorization": f"Bearer {config.siliconflow_key}"
|
||||
}
|
||||
|
||||
payload = {
|
||||
"model": "deepseek-ai/deepseek-vl2",
|
||||
"messages": [
|
||||
{
|
||||
"role": "user",
|
||||
"content": [
|
||||
{
|
||||
"type": "text",
|
||||
"text": "这是一个表情包,请用简短的中文描述这个表情包传达的情感和含义。最多20个字。"
|
||||
},
|
||||
{
|
||||
"type": "image_url",
|
||||
"image_url": {
|
||||
"url": f"data:image/jpeg;base64,{image_base64}"
|
||||
}
|
||||
}
|
||||
]
|
||||
}
|
||||
],
|
||||
"max_tokens": 50,
|
||||
"temperature": 0.4
|
||||
}
|
||||
|
||||
response = requests.post(
|
||||
f"{config.siliconflow_base_url}chat/completions",
|
||||
headers=headers,
|
||||
json=payload,
|
||||
timeout=30
|
||||
)
|
||||
|
||||
if response.status_code == 200:
|
||||
result_json = response.json()
|
||||
if "choices" in result_json and len(result_json["choices"]) > 0:
|
||||
description = result_json["choices"][0]["message"]["content"]
|
||||
return f"[表情包:{description}]"
|
||||
|
||||
raise ValueError(f"AI接口调用失败: {response.text}")
|
||||
try:
|
||||
prompt = "这是一个表情包,请用简短的中文描述这个表情包传达的情感和含义。最多20个字。"
|
||||
description, _ = self._llm.generate_response_for_image_sync(prompt, image_base64)
|
||||
return f"[表情包:{description}]"
|
||||
except Exception as e:
|
||||
print(f"\033[1;31m[错误]\033[0m AI接口调用失败: {str(e)}")
|
||||
return "[表情包]"
|
||||
|
||||
def get_image_description(self, image_base64: str) -> str:
|
||||
"""调用AI接口获取普通图片描述"""
|
||||
headers = {
|
||||
"Content-Type": "application/json",
|
||||
"Authorization": f"Bearer {config.siliconflow_key}"
|
||||
}
|
||||
|
||||
payload = {
|
||||
"model": "deepseek-ai/deepseek-vl2",
|
||||
"messages": [
|
||||
{
|
||||
"role": "user",
|
||||
"content": [
|
||||
{
|
||||
"type": "text",
|
||||
"text": "请用中文描述这张图片的内容。如果有文字,请把文字都描述出来。并尝试猜测这个图片的含义。最多200个字。"
|
||||
},
|
||||
{
|
||||
"type": "image_url",
|
||||
"image_url": {
|
||||
"url": f"data:image/jpeg;base64,{image_base64}"
|
||||
}
|
||||
}
|
||||
]
|
||||
}
|
||||
],
|
||||
"max_tokens": 300,
|
||||
"temperature": 0.6
|
||||
}
|
||||
|
||||
response = requests.post(
|
||||
f"{config.siliconflow_base_url}chat/completions",
|
||||
headers=headers,
|
||||
json=payload,
|
||||
timeout=30
|
||||
)
|
||||
|
||||
if response.status_code == 200:
|
||||
result_json = response.json()
|
||||
if "choices" in result_json and len(result_json["choices"]) > 0:
|
||||
description = result_json["choices"][0]["message"]["content"]
|
||||
return f"[图片:{description}]"
|
||||
|
||||
raise ValueError(f"AI接口调用失败: {response.text}")
|
||||
try:
|
||||
prompt = "请用中文描述这张图片的内容。如果有文字,请把文字都描述出来。并尝试猜测这个图片的含义。最多200个字。"
|
||||
description, _ = self._llm.generate_response_for_image_sync(prompt, image_base64)
|
||||
return f"[图片:{description}]"
|
||||
except Exception as e:
|
||||
print(f"\033[1;31m[错误]\033[0m AI接口调用失败: {str(e)}")
|
||||
return "[图片]"
|
||||
|
||||
def translate_forward(self) -> str:
|
||||
"""处理转发消息"""
|
||||
@@ -349,7 +285,7 @@ class CQCode:
|
||||
# 创建Message对象
|
||||
from .message import Message
|
||||
if self.reply_message == None:
|
||||
print(f"\033[1;31m[错误]\033[0m 回复消息为空")
|
||||
# print(f"\033[1;31m[错误]\033[0m 回复消息为空")
|
||||
return '[回复某人消息]'
|
||||
|
||||
if self.reply_message.sender.user_id:
|
||||
|
||||
@@ -14,6 +14,8 @@ import asyncio
|
||||
import time
|
||||
|
||||
from nonebot import get_driver
|
||||
from ..chat.config import global_config
|
||||
from ..models.utils_model import LLM_request
|
||||
|
||||
driver = get_driver()
|
||||
config = driver.config
|
||||
@@ -43,6 +45,7 @@ class EmojiManager:
|
||||
def __init__(self):
|
||||
self.db = Database.get_instance()
|
||||
self._scan_task = None
|
||||
self.llm = LLM_request(model=global_config.vlm, temperature=0.3, max_tokens=50)
|
||||
|
||||
def _ensure_emoji_dir(self):
|
||||
"""确保表情存储目录存在"""
|
||||
@@ -87,55 +90,23 @@ class EmojiManager:
|
||||
print(f"\033[1;31m[错误]\033[0m 记录表情使用失败: {str(e)}")
|
||||
|
||||
async def _get_emotion_from_text(self, text: str) -> List[str]:
|
||||
"""从文本中识别情感关键词,使用DeepSeek API进行分析
|
||||
"""从文本中识别情感关键词
|
||||
Args:
|
||||
text: 输入文本
|
||||
Returns:
|
||||
List[str]: 匹配到的情感标签列表
|
||||
"""
|
||||
try:
|
||||
# 准备请求数据
|
||||
headers = {
|
||||
"Content-Type": "application/json",
|
||||
"Authorization": f"Bearer {config.siliconflow_key}"
|
||||
}
|
||||
prompt = f'分析这段文本:"{text}",从"happy,angry,sad,surprised,disgusted,fearful,neutral"中选出最匹配的1个情感标签。只需要返回标签,不要输出其他任何内容。'
|
||||
|
||||
payload = {
|
||||
"model": "deepseek-ai/DeepSeek-V3",
|
||||
"messages": [
|
||||
{
|
||||
"role": "user",
|
||||
"content": [
|
||||
{
|
||||
"type": "text",
|
||||
"text": f'分析这段文本:"{text}",从"happy,angry,sad,surprised,disgusted,fearful,neutral"中选出最匹配的1个情感标签。只需要返回标签,不要输出其他任何内容。'
|
||||
}
|
||||
]
|
||||
}
|
||||
],
|
||||
"max_tokens": 50,
|
||||
"temperature": 0.3
|
||||
}
|
||||
content, _ = await self.llm.generate_response(prompt)
|
||||
emotion = content.strip().lower()
|
||||
|
||||
async with aiohttp.ClientSession() as session:
|
||||
async with session.post(
|
||||
f"{config.siliconflow_base_url}chat/completions",
|
||||
headers=headers,
|
||||
json=payload
|
||||
) as response:
|
||||
if response.status != 200:
|
||||
print(f"\033[1;31m[错误]\033[0m API请求失败: {await response.text()}")
|
||||
return ['neutral']
|
||||
|
||||
result = json.loads(await response.text())
|
||||
if "choices" in result and len(result["choices"]) > 0:
|
||||
emotion = result["choices"][0]["message"]["content"].strip().lower()
|
||||
# 确保返回的标签是有效的
|
||||
if emotion in self.EMOTION_KEYWORDS:
|
||||
print(f"\033[1;32m[成功]\033[0m 识别到的情感: {emotion}")
|
||||
return [emotion] # 返回单个情感标签的列表
|
||||
if emotion in self.EMOTION_KEYWORDS:
|
||||
print(f"\033[1;32m[成功]\033[0m 识别到的情感: {emotion}")
|
||||
return [emotion]
|
||||
|
||||
return ['neutral'] # 如果无法识别情感,返回neutral
|
||||
return ['neutral']
|
||||
|
||||
except Exception as e:
|
||||
print(f"\033[1;31m[错误]\033[0m 情感分析失败: {str(e)}")
|
||||
@@ -250,52 +221,20 @@ class EmojiManager:
|
||||
|
||||
async def _get_emoji_tag(self, image_base64: str) -> str:
|
||||
"""获取表情包的标签"""
|
||||
async with aiohttp.ClientSession() as session:
|
||||
headers = {
|
||||
"Content-Type": "application/json",
|
||||
"Authorization": f"Bearer {config.siliconflow_key}"
|
||||
}
|
||||
try:
|
||||
prompt = '这是一个表情包,请从"happy", "angry", "sad", "surprised", "disgusted", "fearful", "neutral"中选出1个情感标签。只输出标签,不要输出其他任何内容,只输出情感标签就好'
|
||||
|
||||
payload = {
|
||||
"model": "deepseek-ai/deepseek-vl2",
|
||||
"messages": [
|
||||
{
|
||||
"role": "user",
|
||||
"content": [
|
||||
{
|
||||
"type": "text",
|
||||
"text": '这是一个表情包,请从"happy", "angry", "sad", "surprised", "disgusted", "fearful", "neutral"中选出1个情感标签。只输出标签,不要输出其他任何内容,只输出情感标签就好'
|
||||
},
|
||||
{
|
||||
"type": "image_url",
|
||||
"image_url": {
|
||||
"url": f"data:image/jpeg;base64,{image_base64}"
|
||||
}
|
||||
}
|
||||
]
|
||||
}
|
||||
],
|
||||
"max_tokens": 60,
|
||||
"temperature": 0.3
|
||||
}
|
||||
content, _ = await self.llm.generate_response_for_image(prompt, image_base64)
|
||||
tag_result = content.strip().lower()
|
||||
|
||||
async with session.post(
|
||||
f"{config.siliconflow_base_url}chat/completions",
|
||||
headers=headers,
|
||||
json=payload
|
||||
) as response:
|
||||
if response.status == 200:
|
||||
result = await response.json()
|
||||
if "choices" in result and len(result["choices"]) > 0:
|
||||
tag_result = result["choices"][0]["message"]["content"].strip().lower()
|
||||
|
||||
valid_tags = ["happy", "angry", "sad", "surprised", "disgusted", "fearful", "neutral"]
|
||||
for tag_match in valid_tags:
|
||||
if tag_match in tag_result or tag_match == tag_result:
|
||||
return tag_match
|
||||
print(f"\033[1;33m[警告]\033[0m 无效的标签: {tag_match}, 跳过")
|
||||
else:
|
||||
print(f"\033[1;31m[错误]\033[0m 获取标签失败, 状态码: {response.status}")
|
||||
valid_tags = ["happy", "angry", "sad", "surprised", "disgusted", "fearful", "neutral"]
|
||||
for tag_match in valid_tags:
|
||||
if tag_match in tag_result or tag_match == tag_result:
|
||||
return tag_match
|
||||
print(f"\033[1;33m[警告]\033[0m 无效的标签: {tag_result}, 跳过")
|
||||
|
||||
except Exception as e:
|
||||
print(f"\033[1;31m[错误]\033[0m 获取标签失败: {str(e)}")
|
||||
|
||||
print(f"\033[1;32m[调试信息]\033[0m 使用默认标签: neutral")
|
||||
return "skip" # 默认标签
|
||||
|
||||
@@ -13,274 +13,120 @@ from .prompt_builder import prompt_builder
|
||||
from .config import global_config
|
||||
from .utils import process_llm_response
|
||||
from nonebot import get_driver
|
||||
from ..models.utils_model import LLM_request
|
||||
|
||||
driver = get_driver()
|
||||
config = driver.config
|
||||
|
||||
|
||||
class LLMResponseGenerator:
|
||||
class ResponseGenerator:
|
||||
def __init__(self):
|
||||
if global_config.API_USING == "siliconflow":
|
||||
self.client = OpenAI(
|
||||
api_key=config.siliconflow_key,
|
||||
base_url=config.siliconflow_base_url
|
||||
)
|
||||
elif global_config.API_USING == "deepseek":
|
||||
self.client = OpenAI(
|
||||
api_key=config.deep_seek_key,
|
||||
base_url=config.deep_seek_base_url
|
||||
)
|
||||
|
||||
self.model_r1 = LLM_request(model=global_config.llm_reasoning, temperature=0.7)
|
||||
self.model_v3 = LLM_request(model=global_config.llm_normal, temperature=0.7)
|
||||
self.model_r1_distill = LLM_request(model=global_config.llm_reasoning_minor, temperature=0.7)
|
||||
self.db = Database.get_instance()
|
||||
|
||||
# 当前使用的模型类型
|
||||
self.current_model_type = 'r1' # 默认使用 R1
|
||||
|
||||
async def generate_response(self, message: Message) -> Optional[Union[str, List[str]]]:
|
||||
"""根据当前模型类型选择对应的生成函数"""
|
||||
# 从global_config中获取模型概率值
|
||||
model_r1_probability = global_config.MODEL_R1_PROBABILITY
|
||||
model_v3_probability = global_config.MODEL_V3_PROBABILITY
|
||||
model_r1_distill_probability = global_config.MODEL_R1_DISTILL_PROBABILITY
|
||||
|
||||
# 生成随机数并根据概率选择模型
|
||||
# 从global_config中获取模型概率值并选择模型
|
||||
rand = random.random()
|
||||
if rand < model_r1_probability:
|
||||
if rand < global_config.MODEL_R1_PROBABILITY:
|
||||
self.current_model_type = 'r1'
|
||||
elif rand < model_r1_probability + model_v3_probability:
|
||||
current_model = self.model_r1
|
||||
elif rand < global_config.MODEL_R1_PROBABILITY + global_config.MODEL_V3_PROBABILITY:
|
||||
self.current_model_type = 'v3'
|
||||
current_model = self.model_v3
|
||||
else:
|
||||
self.current_model_type = 'r1_distill' # 默认使用 R1-Distill
|
||||
|
||||
self.current_model_type = 'r1_distill'
|
||||
current_model = self.model_r1_distill
|
||||
|
||||
print(f"+++++++++++++++++{global_config.BOT_NICKNAME}{self.current_model_type}思考中+++++++++++++++++")
|
||||
if self.current_model_type == 'r1':
|
||||
model_response = await self._generate_r1_response(message)
|
||||
elif self.current_model_type == 'v3':
|
||||
model_response = await self._generate_v3_response(message)
|
||||
else:
|
||||
model_response = await self._generate_r1_distill_response(message)
|
||||
|
||||
# 打印情感标签
|
||||
print(f'{global_config.BOT_NICKNAME}的回复是:{model_response}')
|
||||
model_response, emotion = await self._process_response(model_response)
|
||||
model_response = await self._generate_response_with_model(message, current_model)
|
||||
|
||||
if model_response:
|
||||
print(f"为 '{model_response}' 获取到的情感标签为:{emotion}")
|
||||
valuedict={
|
||||
print(f'{global_config.BOT_NICKNAME}的回复是:{model_response}')
|
||||
model_response, emotion = await self._process_response(model_response)
|
||||
if model_response:
|
||||
print(f"为 '{model_response}' 获取到的情感标签为:{emotion}")
|
||||
valuedict={
|
||||
'happy':0.5,'angry':-1,'sad':-0.5,'surprised':0.5,'disgusted':-1.5,'fearful':-0.25,'neutral':0.25
|
||||
}
|
||||
await relationship_manager.update_relationship_value(message.user_id, relationship_value=valuedict[emotion[0]])
|
||||
}
|
||||
await relationship_manager.update_relationship_value(message.user_id, relationship_value=valuedict[emotion[0]])
|
||||
|
||||
return model_response, emotion
|
||||
return None, []
|
||||
|
||||
return model_response, emotion
|
||||
|
||||
async def _generate_base_response(
|
||||
self,
|
||||
message: Message,
|
||||
model_name: str,
|
||||
model_params: Optional[Dict[str, Any]] = None
|
||||
) -> Optional[str]:
|
||||
async def _generate_response_with_model(self, message: Message, model: LLM_request) -> Optional[str]:
|
||||
"""使用指定的模型生成回复"""
|
||||
sender_name = message.user_nickname or f"用户{message.user_id}"
|
||||
if message.user_cardname:
|
||||
sender_name=f"[({message.user_id}){message.user_nickname}]{message.user_cardname}"
|
||||
|
||||
# 获取关系值
|
||||
if relationship_manager.get_relationship(message.user_id):
|
||||
relationship_value = relationship_manager.get_relationship(message.user_id).relationship_value
|
||||
relationship_value = relationship_manager.get_relationship(message.user_id).relationship_value if relationship_manager.get_relationship(message.user_id) else 0.0
|
||||
if relationship_value != 0.0:
|
||||
print(f"\033[1;32m[关系管理]\033[0m 回复中_当前关系值: {relationship_value}")
|
||||
else:
|
||||
relationship_value = 0.0
|
||||
|
||||
|
||||
''' 构建prompt '''
|
||||
prompt,prompt_check = prompt_builder._build_prompt(
|
||||
# 构建prompt
|
||||
prompt, prompt_check = prompt_builder._build_prompt(
|
||||
message_txt=message.processed_plain_text,
|
||||
sender_name=sender_name,
|
||||
relationship_value=relationship_value,
|
||||
group_id=message.group_id
|
||||
)
|
||||
|
||||
|
||||
# 设置默认参数
|
||||
default_params = {
|
||||
"model": model_name,
|
||||
"messages": [{"role": "user", "content": prompt}],
|
||||
"stream": False,
|
||||
"max_tokens": 2048,
|
||||
"temperature": 0.7
|
||||
}
|
||||
|
||||
default_params_check = {
|
||||
"model": "deepseek-ai/DeepSeek-R1-Distill-Qwen-32B",
|
||||
"messages": [{"role": "user", "content": prompt_check}],
|
||||
"stream": False,
|
||||
"max_tokens": 2048,
|
||||
"temperature": 0.7
|
||||
}
|
||||
|
||||
default_params_check = {
|
||||
"model": "deepseek-ai/DeepSeek-R1-Distill-Qwen-32B",
|
||||
"messages": [{"role": "user", "content": prompt_check}],
|
||||
"stream": False,
|
||||
"max_tokens": 1024,
|
||||
"temperature": 0.7
|
||||
}
|
||||
|
||||
default_params_check = {
|
||||
"model": "deepseek-ai/DeepSeek-R1-Distill-Qwen-32B",
|
||||
"messages": [{"role": "user", "content": prompt_check}],
|
||||
"stream": False,
|
||||
"max_tokens": 1024,
|
||||
"temperature": 0.7
|
||||
}
|
||||
|
||||
# 更新参数
|
||||
if model_params:
|
||||
default_params.update(model_params)
|
||||
|
||||
|
||||
def create_completion():
|
||||
return self.client.chat.completions.create(**default_params)
|
||||
|
||||
def create_completion_check():
|
||||
return self.client.chat.completions.create(**default_params_check)
|
||||
|
||||
loop = asyncio.get_event_loop()
|
||||
|
||||
# 读空气模块
|
||||
air = 0
|
||||
reasoning_content_check=''
|
||||
content_check=''
|
||||
if global_config.enable_kuuki_read:
|
||||
response_check = await loop.run_in_executor(None, create_completion_check)
|
||||
if response_check:
|
||||
reasoning_content_check = ""
|
||||
if hasattr(response_check.choices[0].message, "reasoning"):
|
||||
reasoning_content_check = response_check.choices[0].message.reasoning or reasoning_content_check
|
||||
elif hasattr(response_check.choices[0].message, "reasoning_content"):
|
||||
reasoning_content_check = response_check.choices[0].message.reasoning_content or reasoning_content_check
|
||||
content_check = response_check.choices[0].message.content
|
||||
print(f"\033[1;32m[读空气]\033[0m 读空气结果为{content_check}")
|
||||
if 'yes' not in content_check.lower():
|
||||
air = 1
|
||||
#稀释读空气的判定
|
||||
if air == 1 and random.random() < 0.3:
|
||||
self.db.db.reasoning_logs.insert_one({
|
||||
'time': time.time(),
|
||||
'group_id': message.group_id,
|
||||
'user': sender_name,
|
||||
'message': message.processed_plain_text,
|
||||
'model': model_name,
|
||||
'reasoning_check': reasoning_content_check,
|
||||
'response_check': content_check,
|
||||
'reasoning': "",
|
||||
'response': "",
|
||||
'prompt': prompt,
|
||||
'prompt_check': prompt_check,
|
||||
'model_params': default_params
|
||||
})
|
||||
return None
|
||||
|
||||
|
||||
|
||||
|
||||
content_check, reasoning_content_check = await self.model_v3.generate_response(prompt_check)
|
||||
print(f"\033[1;32m[读空气]\033[0m 读空气结果为{content_check}")
|
||||
if 'yes' not in content_check.lower() and random.random() < 0.3:
|
||||
self._save_to_db(
|
||||
message=message,
|
||||
sender_name=sender_name,
|
||||
prompt=prompt,
|
||||
prompt_check=prompt_check,
|
||||
content="",
|
||||
content_check=content_check,
|
||||
reasoning_content="",
|
||||
reasoning_content_check=reasoning_content_check
|
||||
)
|
||||
return None
|
||||
|
||||
response = await loop.run_in_executor(None, create_completion)
|
||||
# 生成回复
|
||||
content, reasoning_content = await model.generate_response(prompt)
|
||||
|
||||
# 检查响应内容
|
||||
if not response:
|
||||
print("请求未返回任何内容")
|
||||
return None
|
||||
|
||||
if not response.choices or not response.choices[0].message.content:
|
||||
print("请求返回的内容无效:", response)
|
||||
return None
|
||||
|
||||
content = response.choices[0].message.content
|
||||
|
||||
# 获取推理内容
|
||||
reasoning_content = ""
|
||||
if hasattr(response.choices[0].message, "reasoning"):
|
||||
reasoning_content = response.choices[0].message.reasoning or reasoning_content
|
||||
elif hasattr(response.choices[0].message, "reasoning_content"):
|
||||
reasoning_content = response.choices[0].message.reasoning_content or reasoning_content
|
||||
|
||||
# 保存到数据库
|
||||
self._save_to_db(
|
||||
message=message,
|
||||
sender_name=sender_name,
|
||||
prompt=prompt,
|
||||
prompt_check=prompt_check,
|
||||
content=content,
|
||||
content_check=content_check if global_config.enable_kuuki_read else "",
|
||||
reasoning_content=reasoning_content,
|
||||
reasoning_content_check=reasoning_content_check if global_config.enable_kuuki_read else ""
|
||||
)
|
||||
|
||||
return content
|
||||
|
||||
def _save_to_db(self, message: Message, sender_name: str, prompt: str, prompt_check: str,
|
||||
content: str, content_check: str, reasoning_content: str, reasoning_content_check: str):
|
||||
"""保存对话记录到数据库"""
|
||||
self.db.db.reasoning_logs.insert_one({
|
||||
'time': time.time(),
|
||||
'group_id': message.group_id,
|
||||
'user': sender_name,
|
||||
'message': message.processed_plain_text,
|
||||
'model': model_name,
|
||||
'model': self.current_model_type,
|
||||
'reasoning_check': reasoning_content_check,
|
||||
'response_check': content_check,
|
||||
'reasoning': reasoning_content,
|
||||
'response': content,
|
||||
'prompt': prompt,
|
||||
'prompt_check': prompt_check,
|
||||
'model_params': default_params
|
||||
'prompt_check': prompt_check
|
||||
})
|
||||
|
||||
return content
|
||||
|
||||
async def _generate_r1_response(self, message: Message) -> Optional[str]:
|
||||
"""使用 DeepSeek-R1 模型生成回复"""
|
||||
if global_config.API_USING == "deepseek":
|
||||
return await self._generate_base_response(
|
||||
message,
|
||||
"deepseek-reasoner",
|
||||
{"temperature": 0.7, "max_tokens": 2048}
|
||||
)
|
||||
else:
|
||||
return await self._generate_base_response(
|
||||
message,
|
||||
"Pro/deepseek-ai/DeepSeek-R1",
|
||||
{"temperature": 0.7, "max_tokens": 2048}
|
||||
)
|
||||
|
||||
async def _generate_v3_response(self, message: Message) -> Optional[str]:
|
||||
"""使用 DeepSeek-V3 模型生成回复"""
|
||||
if global_config.API_USING == "deepseek":
|
||||
return await self._generate_base_response(
|
||||
message,
|
||||
"deepseek-chat",
|
||||
{"temperature": 0.8, "max_tokens": 2048}
|
||||
)
|
||||
else:
|
||||
return await self._generate_base_response(
|
||||
message,
|
||||
"Pro/deepseek-ai/DeepSeek-V3",
|
||||
{"temperature": 0.8, "max_tokens": 2048}
|
||||
)
|
||||
|
||||
async def _generate_r1_distill_response(self, message: Message) -> Optional[str]:
|
||||
"""使用 DeepSeek-R1-Distill-Qwen-32B 模型生成回复"""
|
||||
return await self._generate_base_response(
|
||||
message,
|
||||
"deepseek-ai/DeepSeek-R1-Distill-Qwen-32B",
|
||||
{"temperature": 0.7, "max_tokens": 2048}
|
||||
)
|
||||
|
||||
async def _get_group_chat_context(self, message: Message) -> str:
|
||||
"""获取群聊上下文"""
|
||||
recent_messages = self.db.db.messages.find(
|
||||
{"group_id": message.group_id}
|
||||
).sort("time", -1).limit(15)
|
||||
|
||||
messages_list = list(recent_messages)[::-1]
|
||||
group_chat = ""
|
||||
|
||||
for msg_dict in messages_list:
|
||||
time_str = time.strftime("%m-%d %H:%M:%S", time.localtime(msg_dict['time']))
|
||||
display_name = msg_dict.get('user_nickname', f"用户{msg_dict['user_id']}")
|
||||
cardname = msg_dict.get('user_cardname', '')
|
||||
display_name = f"[({msg_dict['user_id']}){display_name}]{cardname}" if cardname!='' else display_name
|
||||
content = msg_dict.get('processed_plain_text', msg_dict['plain_text'])
|
||||
|
||||
group_chat += f"[{time_str}] {display_name}: {content}\n"
|
||||
|
||||
return group_chat
|
||||
|
||||
async def _get_emotion_tags(self, content: str) -> List[str]:
|
||||
"""提取情感标签"""
|
||||
@@ -291,33 +137,12 @@ class LLMResponseGenerator:
|
||||
输出:
|
||||
'''
|
||||
|
||||
messages = [{"role": "user", "content": prompt}]
|
||||
|
||||
loop = asyncio.get_event_loop()
|
||||
if global_config.API_USING == "deepseek":
|
||||
model = "deepseek-chat"
|
||||
else:
|
||||
model = "Pro/deepseek-ai/DeepSeek-V3"
|
||||
create_completion = partial(
|
||||
self.client.chat.completions.create,
|
||||
model=model,
|
||||
messages=messages,
|
||||
stream=False,
|
||||
max_tokens=30,
|
||||
temperature=0.6
|
||||
)
|
||||
response = await loop.run_in_executor(None, create_completion)
|
||||
|
||||
if response.choices[0].message.content:
|
||||
# 确保返回的是列表格式
|
||||
emotion_tag = response.choices[0].message.content.strip()
|
||||
return [emotion_tag] # 将单个标签包装成列表返回
|
||||
|
||||
return ["neutral"] # 如果无法获取情感标签,返回默认值
|
||||
content, _ = await self.model_v3.generate_response(prompt)
|
||||
return [content.strip()] if content else ["neutral"]
|
||||
|
||||
except Exception as e:
|
||||
print(f"获取情感标签时出错: {e}")
|
||||
return ["neutral"] # 发生错误时返回默认值
|
||||
return ["neutral"]
|
||||
|
||||
async def _process_response(self, content: str) -> Tuple[List[str], List[str]]:
|
||||
"""处理响应内容,返回处理后的内容和情感标签"""
|
||||
@@ -325,10 +150,6 @@ class LLMResponseGenerator:
|
||||
return None, []
|
||||
|
||||
emotion_tags = await self._get_emotion_tags(content)
|
||||
|
||||
processed_response = process_llm_response(content)
|
||||
|
||||
return processed_response, emotion_tags
|
||||
|
||||
# 创建全局实例
|
||||
llm_response = LLMResponseGenerator()
|
||||
return processed_response, emotion_tags
|
||||
@@ -72,12 +72,15 @@ class PromptBuilder:
|
||||
# print(f"\033[1;32m[前额叶]\033[0m 合并所有需要的记忆2: {list(overlapping_second_layer)}")
|
||||
|
||||
# 使用集合去重
|
||||
all_memories = list(set(all_first_layer_items) | set(overlapping_second_layer))
|
||||
# 从每个来源随机选择2条记忆(如果有的话)
|
||||
selected_first_layer = random.sample(all_first_layer_items, min(2, len(all_first_layer_items))) if all_first_layer_items else []
|
||||
selected_second_layer = random.sample(list(overlapping_second_layer), min(2, len(overlapping_second_layer))) if overlapping_second_layer else []
|
||||
|
||||
# 合并并去重
|
||||
all_memories = list(set(selected_first_layer + selected_second_layer))
|
||||
if all_memories:
|
||||
print(f"\033[1;32m[前额叶]\033[0m 合并所有需要的记忆: {all_memories}")
|
||||
|
||||
if all_memories: # 只在列表非空时选择随机项
|
||||
random_item = choice(all_memories)
|
||||
random_item = " ".join(all_memories)
|
||||
memory_prompt = f"看到这些聊天,你想起来{random_item}\n"
|
||||
else:
|
||||
memory_prompt = "" # 如果没有记忆,则返回空字符串
|
||||
@@ -150,7 +153,7 @@ class PromptBuilder:
|
||||
if personality_choice < 4/6: # 第一种人格
|
||||
prompt_personality = f'''{activate_prompt}你的网名叫{global_config.BOT_NICKNAME},{personality[0]},{promt_info_prompt},
|
||||
现在请你给出日常且口语化的回复,平淡一些,尽量简短一些。{is_bot_prompt}
|
||||
请注意把握群里的聊天内容,不要回复的太有条理,可以有个性。'''
|
||||
请注意把握群里的聊天内容,不要刻意突出自身学科背景,不要回复的太有条理,可以有个性。'''
|
||||
elif personality_choice < 1: # 第二种人格
|
||||
prompt_personality = f'''{activate_prompt}你的网名叫{global_config.BOT_NICKNAME},{personality[1]},{promt_info_prompt},
|
||||
|
||||
|
||||
@@ -3,6 +3,7 @@ from openai import OpenAI
|
||||
from .message import Message
|
||||
import jieba
|
||||
from nonebot import get_driver
|
||||
from .config import global_config
|
||||
|
||||
driver = get_driver()
|
||||
config = driver.config
|
||||
@@ -24,7 +25,7 @@ class TopicIdentifier:
|
||||
消息内容:{text}"""
|
||||
|
||||
response = self.client.chat.completions.create(
|
||||
model="Pro/deepseek-ai/DeepSeek-V3",
|
||||
model=global_config.SILICONFLOW_MODEL_V3,
|
||||
messages=[{"role": "user", "content": prompt}],
|
||||
temperature=0.8,
|
||||
max_tokens=10
|
||||
|
||||
Reference in New Issue
Block a user