feat:继续重构插件api

This commit is contained in:
SengokuCola
2025-06-10 19:16:58 +08:00
parent e5007cc8cd
commit de0bdd3766
19 changed files with 2161 additions and 682 deletions

View File

@@ -0,0 +1,752 @@
# MaiBot 插件详细解析指南
## 📋 目录
1. [插件基类详解](#插件基类详解)
2. [Action组件深入](#action组件深入)
3. [Command组件深入](#command组件深入)
4. [API系统详解](#api系统详解)
5. [配置系统](#配置系统)
6. [注册中心机制](#注册中心机制)
7. [高级功能](#高级功能)
8. [最佳实践](#最佳实践)
---
## 插件基类详解
### BasePlugin 核心功能
`BasePlugin` 是所有插件的基类,提供插件的生命周期管理和基础功能。
```python
@register_plugin
class MyPlugin(BasePlugin):
# 必需的基本信息
plugin_name = "my_plugin" # 插件唯一标识
plugin_description = "插件功能描述" # 简短描述
plugin_version = "1.0.0" # 版本号
plugin_author = "作者名称" # 作者信息
enable_plugin = True # 是否启用
# 可选配置
dependencies = ["other_plugin"] # 依赖的其他插件
config_file_name = "config.toml" # 配置文件名
def get_plugin_components(self) -> List[Tuple[ComponentInfo, Type]]:
"""返回插件包含的组件列表(必须实现)"""
return [
(MyAction.get_action_info(), MyAction),
(MyCommand.get_command_info(), MyCommand)
]
```
### 插件生命周期
1. **加载阶段** - 插件管理器扫描插件目录
2. **实例化阶段** - 创建插件实例,传入 `plugin_dir`
3. **配置加载** - 自动加载配置文件(如果指定)
4. **依赖检查** - 验证依赖的插件是否存在
5. **组件注册** - 注册所有组件到注册中心
6. **运行阶段** - 组件响应用户交互
### 配置访问
```python
class MyPlugin(BasePlugin):
config_file_name = "config.toml"
def some_method(self):
# 获取配置值
max_retry = self.get_config("network.max_retry", 3)
api_key = self.get_config("api.key", "")
# 配置支持嵌套结构
db_config = self.get_config("database", {})
```
---
## Action组件深入
### Action激活机制
Action组件支持多种激活方式可以组合使用
#### 1. 关键词激活
```python
class KeywordAction(BaseAction):
focus_activation_type = ActionActivationType.KEYWORD
normal_activation_type = ActionActivationType.KEYWORD
activation_keywords = ["天气", "weather", "温度"]
keyword_case_sensitive = False # 是否区分大小写
async def execute(self) -> Tuple[bool, str]:
# 获取触发的关键词
triggered_keyword = self.action_data.get("triggered_keyword")
return True, f"检测到关键词: {triggered_keyword}"
```
#### 2. LLM智能判断
```python
class SmartAction(BaseAction):
focus_activation_type = ActionActivationType.LLM_JUDGE
llm_judge_prompt = """
判断用户消息是否表达了情感支持的需求。
如果用户显得沮丧、焦虑或需要安慰返回True否则返回False。
"""
async def execute(self) -> Tuple[bool, str]:
# LLM判断为需要情感支持
user_emotion = self.action_data.get("emotion", "neutral")
return True, "我理解你现在的感受,有什么可以帮助你的吗? 🤗"
```
#### 3. 随机激活
```python
class RandomAction(BaseAction):
focus_activation_type = ActionActivationType.RANDOM
random_activation_probability = 0.1 # 10%概率触发
async def execute(self) -> Tuple[bool, str]:
import random
responses = ["今天天气不错呢!", "你知道吗,刚才想到一个有趣的事...", "随便聊聊吧!"]
return True, random.choice(responses)
```
#### 4. 始终激活
```python
class AlwaysAction(BaseAction):
focus_activation_type = ActionActivationType.ALWAYS
parallel_action = True # 允许与其他Action并行
async def execute(self) -> Tuple[bool, str]:
# 记录所有消息到数据库
await self.api.store_user_data("last_message", self.action_data.get("message"))
return True, "" # 静默执行,不发送回复
```
### Action数据访问
```python
class DataAction(BaseAction):
async def execute(self) -> Tuple[bool, str]:
# 访问消息数据
message = self.action_data.get("message", "")
username = self.action_data.get("username", "用户")
user_id = self.action_data.get("user_id", "")
platform = self.action_data.get("platform", "")
# 访问系统数据
thinking_id = self.thinking_id
reasoning = self.reasoning # 执行该动作的理由
# 访问计时器信息
timers = self.cycle_timers
return True, f"处理来自 {platform} 的用户 {username} 的消息"
```
### 聊天模式支持
```python
class ModeAwareAction(BaseAction):
mode_enable = ChatMode.PRIVATE # 只在私聊中启用
# mode_enable = ChatMode.GROUP # 只在群聊中启用
# mode_enable = ChatMode.ALL # 在所有模式中启用
async def execute(self) -> Tuple[bool, str]:
current_mode = self.action_data.get("chat_mode", ChatMode.PRIVATE)
return True, f"当前聊天模式: {current_mode.name}"
```
---
## Command组件深入
### 高级正则表达式模式
Command使用正则表达式进行精确匹配支持复杂的参数提取
#### 1. 基础命令
```python
class BasicCommand(BaseCommand):
command_pattern = r"^/hello$"
command_help = "简单的问候命令"
async def execute(self) -> Tuple[bool, Optional[str]]:
await self.send_reply("Hello!")
return True, "Hello!"
```
#### 2. 带参数命令
```python
class ParameterCommand(BaseCommand):
command_pattern = r"^/user\s+(?P<action>add|remove|list)\s+(?P<name>\w+)?$"
command_help = "用户管理命令,用法:/user <add|remove|list> [用户名]"
command_examples = ["/user add alice", "/user remove bob", "/user list"]
async def execute(self) -> Tuple[bool, Optional[str]]:
action = self.matched_groups.get("action")
name = self.matched_groups.get("name")
if action == "add" and name:
# 添加用户逻辑
await self.api.store_user_data(f"user_{name}", {"name": name, "created": self.api.get_current_time()})
response = f"用户 {name} 已添加"
elif action == "remove" and name:
# 删除用户逻辑
await self.api.delete_user_data(f"user_{name}")
response = f"用户 {name} 已删除"
elif action == "list":
# 列出用户逻辑
users = await self.api.get_user_data_pattern("user_*")
response = f"用户列表: {', '.join(users.keys())}"
else:
response = "参数错误,请查看帮助信息"
await self.send_reply(response)
return True, response
```
#### 3. 复杂参数解析
```python
class AdvancedCommand(BaseCommand):
command_pattern = r"^/remind\s+(?P<time>\d{1,2}:\d{2})\s+(?P<date>\d{4}-\d{2}-\d{2})?\s+(?P<message>.+)$"
command_help = "设置提醒,用法:/remind <时间> [日期] <消息>"
command_examples = [
"/remind 14:30 买牛奶",
"/remind 09:00 2024-12-25 圣诞节快乐"
]
async def execute(self) -> Tuple[bool, Optional[str]]:
time_str = self.matched_groups.get("time")
date_str = self.matched_groups.get("date")
message = self.matched_groups.get("message")
# 解析时间
from datetime import datetime, date
try:
hour, minute = map(int, time_str.split(":"))
if date_str:
reminder_date = datetime.strptime(date_str, "%Y-%m-%d").date()
else:
reminder_date = date.today()
# 创建提醒
reminder_time = datetime.combine(reminder_date, datetime.min.time().replace(hour=hour, minute=minute))
await self.api.store_user_data("reminder", {
"time": reminder_time.isoformat(),
"message": message,
"user_id": self.api.get_current_user_id()
})
response = f"已设置提醒:{reminder_time.strftime('%Y-%m-%d %H:%M')} - {message}"
except ValueError as e:
response = f"时间格式错误: {e}"
await self.send_reply(response)
return True, response
```
### 命令权限控制
```python
class AdminCommand(BaseCommand):
command_pattern = r"^/admin\s+(?P<operation>\w+)"
command_help = "管理员命令(需要权限)"
async def execute(self) -> Tuple[bool, Optional[str]]:
# 检查用户权限
user_id = self.api.get_current_user_id()
user_role = await self.api.get_user_info(user_id, "role", "user")
if user_role != "admin":
await self.send_reply("❌ 权限不足,需要管理员权限")
return False, "权限不足"
operation = self.matched_groups.get("operation")
# 执行管理员操作...
return True, f"管理员操作 {operation} 已执行"
```
---
## API系统详解
### MessageAPI - 消息发送
```python
class MessageExampleAction(BaseAction):
async def execute(self) -> Tuple[bool, str]:
# 发送文本消息
await self.api.send_message("text", "这是一条文本消息")
# 发送带格式的消息
await self.api.send_message("text", "**粗体文本** *斜体文本*")
# 发送图片(如果支持)
await self.api.send_message("image", "/path/to/image.jpg")
# 发送文件(如果支持)
await self.api.send_message("file", "/path/to/document.pdf")
# 获取消息发送状态
success = await self.api.send_message("text", "测试消息")
if success:
logger.info("消息发送成功")
return True, "消息发送演示完成"
```
### LLMAPI - 大模型调用
```python
class LLMExampleAction(BaseAction):
async def execute(self) -> Tuple[bool, str]:
# 获取可用模型
models = self.api.get_available_models()
if not models:
return False, "没有可用的模型"
# 选择第一个可用模型
model_name, model_config = next(iter(models.items()))
# 生成文本
prompt = "写一首关于春天的诗"
success, response, usage, model_used = await self.api.generate_with_model(
prompt=prompt,
model_config=model_config,
max_tokens=200,
temperature=0.7
)
if success:
logger.info(f"使用模型 {model_used} 生成了 {usage.get('total_tokens', 0)} 个token")
return True, f"生成的诗歌:\n{response}"
else:
return False, f"生成失败:{response}"
```
### DatabaseAPI - 数据库操作
```python
class DatabaseExampleAction(BaseAction):
async def execute(self) -> Tuple[bool, str]:
user_id = self.api.get_current_user_id()
# 存储用户数据
await self.api.store_user_data("user_score", 100)
await self.api.store_user_data("user_level", "beginner")
# 存储复杂数据结构
user_profile = {
"name": "Alice",
"age": 25,
"interests": ["music", "reading", "coding"],
"settings": {
"theme": "dark",
"language": "zh-CN"
}
}
await self.api.store_user_data("profile", user_profile)
# 读取数据
score = await self.api.get_user_data("user_score", 0)
profile = await self.api.get_user_data("profile", {})
# 删除数据
await self.api.delete_user_data("old_key")
# 批量查询
all_user_data = await self.api.get_user_data_pattern("user_*")
# 存储Action执行记录
await self.api.store_action_info(
action_build_into_prompt=True,
action_prompt_display="用户查询了个人信息",
action_done=True
)
return True, f"用户数据操作完成,当前积分:{score}"
```
### ConfigAPI - 配置访问
```python
class ConfigExampleAction(BaseAction):
async def execute(self) -> Tuple[bool, str]:
# 读取全局配置
bot_name = self.api.get_global_config("bot.name", "MaiBot")
debug_mode = self.api.get_global_config("system.debug", False)
# 获取用户信息
current_user = self.api.get_current_user_id()
platform, user_id = await self.api.get_user_id_by_person_name("Alice")
# 获取特定用户信息
user_nickname = await self.api.get_person_info(current_user, "nickname", "未知用户")
user_language = await self.api.get_person_info(current_user, "language", "zh-CN")
return True, f"配置信息获取完成,机器人名称:{bot_name}"
```
### UtilsAPI - 工具函数
```python
class UtilsExampleAction(BaseAction):
async def execute(self) -> Tuple[bool, str]:
# 时间相关
current_time = self.api.get_current_time()
formatted_time = self.api.format_time(current_time, "%Y-%m-%d %H:%M:%S")
# ID生成
unique_id = self.api.generate_unique_id()
random_string = self.api.generate_random_string(length=8)
# 文件操作
if self.api.file_exists("/path/to/file.txt"):
content = self.api.read_file("/path/to/file.txt")
self.api.write_file("/path/to/backup.txt", content)
# JSON处理
data = {"key": "value", "number": 42}
json_str = self.api.to_json(data)
parsed_data = self.api.from_json(json_str)
# 安全字符串处理
safe_filename = self.api.sanitize_filename("用户文件 (1).txt")
return True, f"工具函数演示完成,时间:{formatted_time}"
```
---
## 配置系统
### TOML配置文件
```toml
# config.toml
[plugin]
name = "my_plugin"
description = "插件描述"
enabled = true
debug = false
[features]
enable_ai = true
enable_voice = false
max_users = 100
[api]
timeout = 30
retry_count = 3
base_url = "https://api.example.com"
[database]
cache_size = 1000
auto_cleanup = true
[messages]
welcome = "欢迎使用插件!"
error = "操作失败,请重试"
success = "操作成功完成"
[advanced]
custom_settings = { theme = "dark", language = "zh-CN" }
feature_flags = ["beta_feature", "experimental_ui"]
```
### 配置使用示例
```python
class ConfigurablePlugin(BasePlugin):
config_file_name = "config.toml"
def get_plugin_components(self):
# 根据配置决定加载哪些组件
components = []
if self.get_config("features.enable_ai", False):
components.append((AIAction.get_action_info(), AIAction))
if self.get_config("features.enable_voice", False):
components.append((VoiceCommand.get_command_info(), VoiceCommand))
return components
class ConfigurableAction(BaseAction):
async def execute(self) -> Tuple[bool, str]:
# 注意:这里不能直接创建插件实例获取配置
# 应该通过其他方式访问配置比如从API或全局配置中获取
# 使用默认值或硬编码配置
welcome_message = "欢迎使用插件!" # 应该从配置获取
timeout = 30 # 应该从配置获取
return True, welcome_message
```
---
## 注册中心机制
### 组件查询
```python
from src.plugin_system.core.component_registry import component_registry
# 获取所有注册的Action
actions = component_registry.get_components_by_type(ComponentType.ACTION)
# 获取所有注册的Command
commands = component_registry.get_components_by_type(ComponentType.COMMAND)
# 查找特定命令
command_info = component_registry.find_command_by_text("/help")
# 获取插件信息
plugin_info = component_registry.get_plugin_info("simple_plugin")
# 获取插件的所有组件
plugin_components = component_registry.get_plugin_components("simple_plugin")
```
### 动态组件操作
```python
# 注册新组件
component_info = ActionInfo(name="dynamic_action", ...)
component_registry.register_component(component_info, DynamicAction)
# 注销组件
component_registry.unregister_component("dynamic_action")
# 检查组件是否存在
exists = component_registry.component_exists("my_action")
```
---
## 高级功能
### 组件依赖管理
```python
class DependentPlugin(BasePlugin):
plugin_name = "dependent_plugin"
dependencies = ["simple_plugin", "core_plugin"] # 依赖其他插件
def get_plugin_components(self):
# 只有在依赖满足时才会被调用
return [(MyAction.get_action_info(), MyAction)]
```
### 动态组件创建
```python
def create_dynamic_action(keyword: str, response: str):
"""动态创建Action组件"""
class DynamicAction(BaseAction):
focus_activation_type = ActionActivationType.KEYWORD
activation_keywords = [keyword]
async def execute(self) -> Tuple[bool, str]:
return True, response
return DynamicAction
# 使用
WeatherAction = create_dynamic_action("天气", "今天天气很好!")
```
### 组件生命周期钩子
```python
class LifecycleAction(BaseAction):
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
self.on_initialize()
def on_initialize(self):
"""组件初始化时调用"""
logger.info("Action组件初始化")
async def execute(self) -> Tuple[bool, str]:
result = await self.on_execute()
self.on_complete()
return result
async def on_execute(self) -> Tuple[bool, str]:
"""实际执行逻辑"""
return True, "执行完成"
def on_complete(self):
"""执行完成后调用"""
logger.info("Action执行完成")
```
---
## 最佳实践
### 1. 错误处理
```python
class RobustAction(BaseAction):
async def execute(self) -> Tuple[bool, str]:
try:
# 主要逻辑
result = await self.process_main_logic()
return True, result
except ValueError as e:
# 参数错误
logger.warning(f"参数错误: {e}")
return False, "参数格式不正确"
except ConnectionError as e:
# 网络错误
logger.error(f"网络连接失败: {e}")
return False, "网络连接异常,请稍后重试"
except Exception as e:
# 未知错误
logger.error(f"未知错误: {e}", exc_info=True)
return False, "处理失败,请联系管理员"
async def process_main_logic(self):
# 具体业务逻辑
pass
```
### 2. 性能优化
```python
class OptimizedAction(BaseAction):
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
self._cache = {} # 本地缓存
async def execute(self) -> Tuple[bool, str]:
cache_key = self.generate_cache_key()
# 检查缓存
if cache_key in self._cache:
logger.debug("使用缓存结果")
return True, self._cache[cache_key]
# 计算结果
result = await self.compute_result()
# 存储到缓存
self._cache[cache_key] = result
return True, result
def generate_cache_key(self) -> str:
# 根据输入生成缓存键
message = self.action_data.get("message", "")
return f"result_{hash(message)}"
```
### 3. 资源管理
```python
class ResourceAction(BaseAction):
async def execute(self) -> Tuple[bool, str]:
# 使用上下文管理器确保资源正确释放
async with self.api.get_resource_manager() as resources:
# 获取资源
db_connection = await resources.get_database()
file_handle = await resources.get_file("data.txt")
# 使用资源进行处理
result = await self.process_with_resources(db_connection, file_handle)
return True, result
# 资源会自动释放
```
### 4. 测试友好设计
```python
class TestableAction(BaseAction):
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
self.dependencies = self.create_dependencies()
def create_dependencies(self):
"""创建依赖对象便于测试时注入mock"""
return {
'weather_service': WeatherService(),
'user_service': UserService()
}
async def execute(self) -> Tuple[bool, str]:
weather = await self.dependencies['weather_service'].get_weather()
user = await self.dependencies['user_service'].get_current_user()
return True, f"今天{weather}{user}"
```
### 5. 日志记录
```python
class LoggedAction(BaseAction):
async def execute(self) -> Tuple[bool, str]:
start_time = self.api.get_current_time()
logger.info(f"{self.log_prefix} 开始执行,用户: {self.action_data.get('username')}")
try:
result = await self.process()
duration = self.api.get_current_time() - start_time
logger.info(f"{self.log_prefix} 执行成功,耗时: {duration}ms")
return True, result
except Exception as e:
logger.error(f"{self.log_prefix} 执行失败: {e}", exc_info=True)
raise
```
---
## 总结
通过本详细指南你已经深入了解了MaiBot插件系统的各个方面
- **插件基类** - 生命周期管理和配置系统
- **Action组件** - 多种激活机制和智能交互
- **Command组件** - 强大的正则表达式匹配和参数处理
- **API系统** - 7大模块提供完整功能支持
- **高级功能** - 依赖管理、动态创建、生命周期钩子
- **最佳实践** - 错误处理、性能优化、资源管理
现在你已经具备了开发复杂插件的所有知识!
## 📚 相关文档
- [系统总览](plugin_guide_overview.md) - 了解整体架构
- [快速开始](plugin_quick_start.md) - 5分钟创建第一个插件
- [示例插件](../src/plugins/examples/simple_plugin/) - 完整功能参考
---
> 💡 **持续学习**: 插件开发是一个实践的过程,建议边学边做,逐步掌握各种高级特性!

View File

@@ -0,0 +1,155 @@
# MaiBot 插件编写指南 - 总览
## 📋 目录结构
本指南分为三个部分:
- **[总览](plugin_guide_overview.md)** - 插件系统架构和设计理念(当前文档)
- **[快速开始](plugin_quick_start.md)** - 5分钟创建你的第一个插件
- **[详细解析](plugin_detailed_guide.md)** - 深入理解各个组件和API
## 🎯 插件系统概述
MaiBot 采用组件化的插件系统,让开发者可以轻松扩展机器人功能。系统支持两种主要组件类型:
- **Action组件** - 智能动作基于关键词、LLM判断等条件自动触发
- **Command组件** - 命令处理,基于正则表达式匹配用户输入的命令
## 🏗️ 系统架构
```
src/
├── plugin_system/ # 🔧 系统核心(框架代码)
│ ├── core/ # 插件管理和注册中心
│ ├── apis/ # 统一API接口7大模块
│ ├── base/ # 插件和组件基类
│ └── registry/ # 组件注册和查询
└── plugins/ # 🔌 插件内容(用户代码)
├── built_in/ # 内置插件
└── examples/ # 示例插件
```
### 核心设计理念
1. **分离关注点** - 系统框架与插件内容完全分离
2. **组件化设计** - 一个插件可包含多个Action和Command组件
3. **统一API访问** - 通过PluginAPI统一访问所有系统功能
4. **声明式配置** - 通过类属性声明组件行为,简化开发
5. **类型安全** - 完整的类型定义IDE友好
## 🧩 组件类型详解
### Action组件 - 智能动作
Action用于实现智能交互逻辑支持多种激活方式
- **关键词激活** - 消息包含特定关键词时触发
- **LLM判断激活** - 使用大模型智能判断是否需要触发
- **随机激活** - 按概率随机触发
- **始终激活** - 每条消息都触发(谨慎使用)
**适用场景:**
- 智能问候、闲聊互动
- 情感分析和回应
- 内容审核和提醒
- 数据统计和分析
### Command组件 - 命令处理
Command用于处理结构化的用户命令基于正则表达式匹配
- **精确匹配** - 支持参数提取和验证
- **灵活模式** - 正则表达式的完整威力
- **帮助系统** - 自动生成命令帮助信息
**适用场景:**
- 功能性操作(查询、设置、管理)
- 工具类命令(计算、转换、搜索)
- 系统管理命令
- 游戏和娱乐功能
## 🔌 API系统概览
系统提供7大API模块涵盖插件开发的所有需求
| API模块 | 功能描述 | 主要用途 |
|---------|----------|----------|
| **MessageAPI** | 消息发送和交互 | 发送文本、图片、语音等消息 |
| **LLMAPI** | 大模型调用 | 文本生成、智能判断、创意创作 |
| **DatabaseAPI** | 数据库操作 | 存储用户数据、配置、历史记录 |
| **ConfigAPI** | 配置访问 | 读取全局配置和用户信息 |
| **UtilsAPI** | 工具函数 | 文件操作、时间处理、ID生成 |
| **StreamAPI** | 流管理 | 聊天流控制和状态管理 |
| **HearflowAPI** | 心流系统 | 与消息处理流程集成 |
## 🎨 开发体验
### 简化的导入接口
```python
from src.plugin_system import (
BasePlugin, register_plugin, BaseAction, BaseCommand,
ComponentInfo, ActionInfo, CommandInfo, ActionActivationType, ChatMode
)
```
### 声明式组件定义
```python
class HelloAction(BaseAction):
# 🎯 直接通过类属性定义行为
focus_activation_type = ActionActivationType.KEYWORD
activation_keywords = ["你好", "hello", "hi"]
mode_enable = ChatMode.ALL
async def execute(self) -> Tuple[bool, str]:
return True, "你好我是MaiBot 😊"
```
### 统一的API访问
```python
class MyCommand(BaseCommand):
async def execute(self) -> Tuple[bool, Optional[str]]:
# 💡 通过self.api访问所有系统功能
await self.api.send_message("text", "处理中...")
models = self.api.get_available_models()
await self.api.store_user_data("key", "value")
return True, "完成!"
```
## 🚀 开发流程
1. **创建插件目录** - 在 `src/plugins/` 下创建插件文件夹
2. **定义插件类** - 继承 `BasePlugin`,设置基本信息
3. **创建组件类** - 继承 `BaseAction``BaseCommand`
4. **注册组件** - 在插件的 `get_plugin_components()` 中返回组件列表
5. **测试验证** - 启动系统测试插件功能
## 📚 学习路径建议
1. **初学者** - 从[快速开始](plugin_quick_start.md)开始5分钟体验插件开发
2. **进阶开发** - 阅读[详细解析](plugin_detailed_guide.md),深入理解各个组件
3. **实战练习** - 参考 `simple_plugin` 示例,尝试开发自己的插件
4. **API探索** - 逐步尝试各个API模块的功能
## 💡 设计亮点
- **零配置启动** - 插件放入目录即可自动加载
- **热重载支持** - 开发过程中可动态重载插件(规划中)
- **依赖管理** - 支持插件间依赖关系声明
- **配置系统** - 支持TOML配置文件灵活可定制
- **完整API** - 覆盖机器人开发的各个方面
- **类型安全** - 完整的类型注解IDE智能提示
## 🎯 下一步
选择适合你的起点:
- 🚀 [立即开始 →](plugin_quick_start.md)
- 📖 [深入学习 →](plugin_detailed_guide.md)
- 🔍 [查看示例 →](../src/plugins/examples/simple_plugin/)
---
> 💡 **提示**: 插件系统仍在持续改进中,欢迎提出建议和反馈!

270
docs/plugin_quick_start.md Normal file
View File

@@ -0,0 +1,270 @@
# MaiBot 插件快速开始指南
## 🚀 5分钟创建你的第一个插件
本指南将带你快速创建一个功能完整的插件体验MaiBot插件开发的简单和强大。
## 📋 前置要求
- 已克隆MaiBot项目到本地
- Python 3.8+ 环境
- 基本的Python编程知识
## 🎯 我们要做什么
我们将创建一个名为 `my_first_plugin` 的插件,包含:
- 一个Action组件自动回应"Hello"
- 一个Command组件计算器功能
## 📁 第一步:创建插件目录
`src/plugins/examples/` 下创建你的插件目录:
```bash
mkdir src/plugins/examples/my_first_plugin
```
## 📝 第二步:创建插件文件
在插件目录中创建 `plugin.py` 文件:
```python
# src/plugins/examples/my_first_plugin/plugin.py
from typing import List, Tuple, Type, Optional
import re
# 导入插件系统核心
from src.plugin_system import (
BasePlugin, register_plugin, BaseAction, BaseCommand,
ComponentInfo, ActionInfo, CommandInfo, ActionActivationType, ChatMode
)
from src.common.logger_manager import get_logger
logger = get_logger("my_first_plugin")
class HelloAction(BaseAction):
"""自动问候Action - 当用户说Hello时自动回应"""
# 🎯 声明式配置:只需设置类属性
focus_activation_type = ActionActivationType.KEYWORD
normal_activation_type = ActionActivationType.KEYWORD
activation_keywords = ["hello", "Hello", "HELLO"]
keyword_case_sensitive = False
mode_enable = ChatMode.ALL
parallel_action = False
async def execute(self) -> Tuple[bool, str]:
"""执行问候动作"""
username = self.action_data.get("username", "朋友")
response = f"Hello, {username}! 很高兴见到你! 🎉"
logger.info(f"向 {username} 发送问候")
return True, response
class CalculatorCommand(BaseCommand):
"""计算器命令 - 执行简单数学运算"""
# 🎯 声明式配置:定义命令模式
command_pattern = r"^/calc\s+(?P<expression>[\d\+\-\*/\(\)\s\.]+)$"
command_help = "计算器,用法:/calc <数学表达式>"
command_examples = ["/calc 1+1", "/calc 2*3+4", "/calc (10-5)*2"]
async def execute(self) -> Tuple[bool, Optional[str]]:
"""执行计算命令"""
# 获取匹配的表达式
expression = self.matched_groups.get("expression", "").strip()
if not expression:
await self.send_reply("❌ 请提供数学表达式!")
return False, None
try:
# 安全计算(只允许基本数学运算)
allowed_chars = set("0123456789+-*/.() ")
if not all(c in allowed_chars for c in expression):
await self.send_reply("❌ 表达式包含不允许的字符!")
return False, None
# 执行计算
result = eval(expression) # 在实际项目中应使用更安全的计算方法
response = f"🧮 计算结果:\n`{expression} = {result}`"
await self.send_reply(response)
logger.info(f"计算: {expression} = {result}")
return True, response
except Exception as e:
error_msg = f"❌ 计算错误: {str(e)}"
await self.send_reply(error_msg)
logger.error(f"计算失败: {expression}, 错误: {e}")
return False, error_msg
@register_plugin
class MyFirstPlugin(BasePlugin):
"""我的第一个插件 - 展示基本功能"""
# 🏷️ 插件基本信息
plugin_name = "my_first_plugin"
plugin_description = "我的第一个MaiBot插件包含问候和计算功能"
plugin_version = "1.0.0"
plugin_author = "你的名字"
enable_plugin = True
def get_plugin_components(self) -> List[Tuple[ComponentInfo, Type]]:
"""返回插件包含的组件"""
return [
# Action组件自动问候
(HelloAction.get_action_info(
name="hello_action",
description="自动回应Hello问候"
), HelloAction),
# Command组件计算器
(CalculatorCommand.get_command_info(
name="calculator_command",
description="简单计算器,支持基础数学运算"
), CalculatorCommand)
]
```
## 📊 第三步:创建配置文件(可选)
创建 `config.toml` 文件来配置插件:
```toml
# src/plugins/examples/my_first_plugin/config.toml
[plugin]
name = "my_first_plugin"
description = "我的第一个插件"
enabled = true
[hello_action]
enable_emoji = true
greeting_message = "Hello, {username}! 很高兴见到你!"
[calculator]
max_expression_length = 100
allow_complex_math = false
```
如果你创建了配置文件,需要在插件类中指定:
```python
@register_plugin
class MyFirstPlugin(BasePlugin):
# ... 其他属性 ...
config_file_name = "config.toml" # 添加这一行
```
## 🔄 第四步:测试插件
1. **启动MaiBot**
```bash
cd /path/to/MaiBot-Core
python -m src.main
```
2. **测试Action组件**
- 在聊天中发送 "Hello" 或 "hello"
- 应该收到自动回复:"Hello, [用户名]! 很高兴见到你! 🎉"
3. **测试Command组件**
- 发送 `/calc 1+1`
- 应该收到回复:"🧮 计算结果:\n`1+1 = 2`"
## 🎉 恭喜!
你已经成功创建了第一个MaiBot插件插件包含
✅ **一个Action组件** - 智能响应用户问候
✅ **一个Command组件** - 提供计算器功能
✅ **完整的配置** - 支持自定义行为
✅ **错误处理** - 优雅处理异常情况
## 🔍 代码解析
### Action组件关键点
```python
# 声明激活条件
focus_activation_type = ActionActivationType.KEYWORD
activation_keywords = ["hello", "Hello", "HELLO"]
# 执行逻辑
async def execute(self) -> Tuple[bool, str]:
# 处理逻辑
return True, response # (成功状态, 回复内容)
```
### Command组件关键点
```python
# 声明命令模式(正则表达式)
command_pattern = r"^/calc\s+(?P<expression>[\d\+\-\*/\(\)\s\.]+)$"
# 执行逻辑
async def execute(self) -> Tuple[bool, Optional[str]]:
expression = self.matched_groups.get("expression") # 获取匹配参数
await self.send_reply(response) # 发送回复
return True, response
```
### 插件注册
```python
@register_plugin # 装饰器注册插件
class MyFirstPlugin(BasePlugin):
# 基本信息
plugin_name = "my_first_plugin"
plugin_description = "插件描述"
# 返回组件列表
def get_plugin_components(self):
return [(组件信息, 组件类), ...]
```
## 🎯 下一步学习
现在你已经掌握了基础,可以继续学习:
1. **深入API** - 探索[详细解析](plugin_detailed_guide.md)了解更多API功能
2. **参考示例** - 查看 `simple_plugin` 了解更复杂的功能
3. **自定义扩展** - 尝试添加更多组件和功能
## 🛠️ 常见问题
### Q: 插件没有被加载?
A: 检查:
- 插件目录是否在 `src/plugins/` 下
- 文件名是否为 `plugin.py`
- 类是否有 `@register_plugin` 装饰器
- 是否有语法错误
### Q: Action组件没有触发
A: 检查:
- `activation_keywords` 是否正确设置
- `focus_activation_type` 和 `normal_activation_type` 是否设置
- 消息内容是否包含关键词
### Q: Command组件不响应
A: 检查:
- `command_pattern` 正则表达式是否正确
- 用户输入是否完全匹配模式
- 是否有语法错误
## 📚 相关文档
- [系统总览](plugin_guide_overview.md) - 了解整体架构
- [详细解析](plugin_detailed_guide.md) - 深入学习各个组件
- [示例插件](../src/plugins/examples/simple_plugin/) - 完整功能示例
---
> 🎉 **恭喜完成快速开始!** 现在你已经是MaiBot插件开发者了

View File

@@ -1,7 +0,0 @@
# 导入所有动作模块以确保装饰器被执行
from . import reply_action # noqa
from . import no_reply_action # noqa
from . import exit_focus_chat_action # noqa
from . import emoji_action # noqa
# 在此处添加更多动作模块导入

View File

@@ -1,147 +0,0 @@
from src.common.logger_manager import get_logger
from src.chat.actions.base_action import BaseAction, register_action, ActionActivationType, ChatMode
from typing import Tuple, List
from src.chat.heart_flow.observation.observation import Observation
from src.chat.focus_chat.replyer.default_replyer import DefaultReplyer
from src.chat.message_receive.chat_stream import ChatStream
from src.chat.focus_chat.hfc_utils import create_empty_anchor_message
from src.config.config import global_config
logger = get_logger("action_taken")
@register_action
class EmojiAction(BaseAction):
"""表情动作处理类
处理构建和发送消息表情的动作。
"""
action_name: str = "emoji"
action_description: str = "当你想单独发送一个表情包辅助你的回复表达"
action_parameters: dict[str:str] = {
"description": "文字描述你想要发送的表情包内容",
}
action_require: list[str] = ["表达情绪时可以选择使用", "重点:不要连续发,如果你已经发过[表情包],就不要选择此动作"]
associated_types: list[str] = ["emoji"]
enable_plugin = True
focus_activation_type = ActionActivationType.LLM_JUDGE
normal_activation_type = ActionActivationType.RANDOM
random_activation_probability = global_config.normal_chat.emoji_chance
parallel_action = True
llm_judge_prompt = """
判定是否需要使用表情动作的条件:
1. 用户明确要求使用表情包
2. 这是一个适合表达强烈情绪的场合
3. 不要发送太多表情包,如果你已经发送过多个表情包
"""
# 模式启用设置 - 表情动作只在Focus模式下使用
mode_enable = ChatMode.ALL
def __init__(
self,
action_data: dict,
reasoning: str,
cycle_timers: dict,
thinking_id: str,
observations: List[Observation],
chat_stream: ChatStream,
log_prefix: str,
replyer: DefaultReplyer,
**kwargs,
):
"""初始化回复动作处理器
Args:
action_name: 动作名称
action_data: 动作数据,包含 message, emojis, target 等
reasoning: 执行该动作的理由
cycle_timers: 计时器字典
thinking_id: 思考ID
observations: 观察列表
replyer: 回复器
chat_stream: 聊天流
log_prefix: 日志前缀
"""
super().__init__(action_data, reasoning, cycle_timers, thinking_id)
self.observations = observations
self.replyer = replyer
self.chat_stream = chat_stream
self.log_prefix = log_prefix
async def handle_action(self) -> Tuple[bool, str]:
"""
处理回复动作
Returns:
Tuple[bool, str]: (是否执行成功, 回复文本)
"""
# 注意: 此处可能会使用不同的expressor实现根据任务类型切换不同的回复策略
return await self._handle_reply(
reasoning=self.reasoning,
reply_data=self.action_data,
cycle_timers=self.cycle_timers,
thinking_id=self.thinking_id,
)
async def _handle_reply(
self, reasoning: str, reply_data: dict, cycle_timers: dict, thinking_id: str
) -> tuple[bool, str]:
"""
处理统一的回复动作 - 可包含文本和表情,顺序任意
reply_data格式:
{
"description": "描述你想要发送的表情"
}
"""
logger.info(f"{self.log_prefix} 决定发送表情")
# 从聊天观察获取锚定消息
# chatting_observation: ChattingObservation = next(
# obs for obs in self.observations if isinstance(obs, ChattingObservation)
# )
# if reply_data.get("target"):
# anchor_message = chatting_observation.search_message_by_text(reply_data["target"])
# else:
# anchor_message = None
# 如果没有找到锚点消息,创建一个占位符
# if not anchor_message:
# logger.info(f"{self.log_prefix} 未找到锚点消息,创建占位符")
# anchor_message = await create_empty_anchor_message(
# self.chat_stream.platform, self.chat_stream.group_info, self.chat_stream
# )
# else:
# anchor_message.update_chat_stream(self.chat_stream)
logger.info(f"{self.log_prefix} 为了表情包创建占位符")
anchor_message = await create_empty_anchor_message(
self.chat_stream.platform, self.chat_stream.group_info, self.chat_stream
)
success, reply_set = await self.replyer.deal_emoji(
cycle_timers=cycle_timers,
action_data=reply_data,
anchor_message=anchor_message,
# reasoning=reasoning,
thinking_id=thinking_id,
)
reply_text = ""
if reply_set:
for reply in reply_set:
type = reply[0]
data = reply[1]
if type == "text":
reply_text += data
elif type == "emoji":
reply_text += data
return success, reply_text

View File

@@ -1,88 +0,0 @@
import asyncio
import traceback
from src.common.logger_manager import get_logger
from src.chat.actions.base_action import BaseAction, register_action, ChatMode
from typing import Tuple, List
from src.chat.heart_flow.observation.observation import Observation
from src.chat.message_receive.chat_stream import ChatStream
logger = get_logger("action_taken")
@register_action
class ExitFocusChatAction(BaseAction):
"""退出专注聊天动作处理类
处理决定退出专注聊天的动作。
执行后会将所属的sub heartflow转变为normal_chat状态。
"""
action_name = "exit_focus_chat"
action_description = "退出专注聊天,转为普通聊天模式"
action_parameters = {}
action_require = [
"很长时间没有回复,你决定退出专注聊天",
"当前内容不需要持续专注关注,你决定退出专注聊天",
"聊天内容已经完成,你决定退出专注聊天",
]
# 退出专注聊天是系统核心功能,不是插件,但默认不启用(需要特定条件触发)
enable_plugin = False
# 模式启用设置 - 退出专注聊天动作只在Focus模式下使用
mode_enable = ChatMode.FOCUS
def __init__(
self,
action_data: dict,
reasoning: str,
cycle_timers: dict,
thinking_id: str,
observations: List[Observation],
log_prefix: str,
chat_stream: ChatStream,
shutting_down: bool = False,
**kwargs,
):
"""初始化退出专注聊天动作处理器
Args:
action_data: 动作数据
reasoning: 执行该动作的理由
cycle_timers: 计时器字典
thinking_id: 思考ID
observations: 观察列表
log_prefix: 日志前缀
shutting_down: 是否正在关闭
"""
super().__init__(action_data, reasoning, cycle_timers, thinking_id)
self.observations = observations
self.log_prefix = log_prefix
self._shutting_down = shutting_down
async def handle_action(self) -> Tuple[bool, str]:
"""
处理退出专注聊天的情况
工作流程:
1. 将sub heartflow转换为normal_chat状态
2. 等待新消息、超时或关闭信号
3. 根据等待结果更新连续不回复计数
4. 如果达到阈值,触发回调
Returns:
Tuple[bool, str]: (是否执行成功, 状态转换消息)
"""
try:
# 转换状态
status_message = ""
command = "stop_focus_chat"
return True, status_message, command
except asyncio.CancelledError:
logger.info(f"{self.log_prefix} 处理 'exit_focus_chat' 时等待被中断 (CancelledError)")
raise
except Exception as e:
error_msg = f"处理 'exit_focus_chat' 时发生错误: {str(e)}"
logger.error(f"{self.log_prefix} {error_msg}")
logger.error(traceback.format_exc())
return False, "", ""

View File

@@ -1,139 +0,0 @@
import asyncio
import traceback
from src.common.logger_manager import get_logger
from src.chat.utils.timer_calculator import Timer
from src.chat.actions.base_action import BaseAction, register_action, ActionActivationType, ChatMode
from typing import Tuple, List
from src.chat.heart_flow.observation.observation import Observation
from src.chat.heart_flow.observation.chatting_observation import ChattingObservation
from src.chat.focus_chat.hfc_utils import parse_thinking_id_to_timestamp
logger = get_logger("action_taken")
# 常量定义
WAITING_TIME_THRESHOLD = 1200 # 等待新消息时间阈值,单位秒
@register_action
class NoReplyAction(BaseAction):
"""不回复动作处理类
处理决定不回复的动作。
"""
action_name = "no_reply"
action_description = "暂时不回复消息"
action_parameters = {}
action_require = [
"你连续发送了太多消息,且无人回复",
"想要休息一下",
]
enable_plugin = True
# 激活类型设置
focus_activation_type = ActionActivationType.ALWAYS
# 模式启用设置 - no_reply动作只在Focus模式下使用
mode_enable = ChatMode.FOCUS
def __init__(
self,
action_data: dict,
reasoning: str,
cycle_timers: dict,
thinking_id: str,
observations: List[Observation],
log_prefix: str,
shutting_down: bool = False,
**kwargs,
):
"""初始化不回复动作处理器
Args:
action_name: 动作名称
action_data: 动作数据
reasoning: 执行该动作的理由
cycle_timers: 计时器字典
thinking_id: 思考ID
observations: 观察列表
log_prefix: 日志前缀
shutting_down: 是否正在关闭
"""
super().__init__(action_data, reasoning, cycle_timers, thinking_id)
self.observations = observations
self.log_prefix = log_prefix
self._shutting_down = shutting_down
async def handle_action(self) -> Tuple[bool, str]:
"""
处理不回复的情况
工作流程:
1. 等待新消息、超时或关闭信号
2. 根据等待结果更新连续不回复计数
3. 如果达到阈值,触发回调
Returns:
Tuple[bool, str]: (是否执行成功, 空字符串)
"""
logger.info(f"{self.log_prefix} 决定不回复: {self.reasoning}")
observation = self.observations[0] if self.observations else None
try:
with Timer("等待新消息", self.cycle_timers):
# 等待新消息、超时或关闭信号,并获取结果
await self._wait_for_new_message(observation, self.thinking_id, self.log_prefix)
return True, "" # 不回复动作没有回复文本
except asyncio.CancelledError:
logger.info(f"{self.log_prefix} 处理 'no_reply' 时等待被中断 (CancelledError)")
raise
except Exception as e: # 捕获调用管理器或其他地方可能发生的错误
logger.error(f"{self.log_prefix} 处理 'no_reply' 时发生错误: {e}")
logger.error(traceback.format_exc())
return False, ""
async def _wait_for_new_message(self, observation: ChattingObservation, thinking_id: str, log_prefix: str) -> bool:
"""
等待新消息 或 检测到关闭信号
参数:
observation: 观察实例
thinking_id: 思考ID
log_prefix: 日志前缀
返回:
bool: 是否检测到新消息 (如果因关闭信号退出则返回 False)
"""
wait_start_time = asyncio.get_event_loop().time()
while True:
# --- 在每次循环开始时检查关闭标志 ---
if self._shutting_down:
logger.info(f"{log_prefix} 等待新消息时检测到关闭信号,中断等待。")
return False # 表示因为关闭而退出
# -----------------------------------
thinking_id_timestamp = parse_thinking_id_to_timestamp(thinking_id)
# 检查新消息
if await observation.has_new_messages_since(thinking_id_timestamp):
logger.info(f"{log_prefix} 检测到新消息")
return True
# 检查超时 (放在检查新消息和关闭之后)
if asyncio.get_event_loop().time() - wait_start_time > WAITING_TIME_THRESHOLD:
logger.warning(f"{log_prefix} 等待新消息超时({WAITING_TIME_THRESHOLD}秒)")
return False
try:
# 短暂休眠,让其他任务有机会运行,并能更快响应取消或关闭
await asyncio.sleep(0.5) # 缩短休眠时间
except asyncio.CancelledError:
# 如果在休眠时被取消,再次检查关闭标志
# 如果是正常关闭,则不需要警告
if not self._shutting_down:
logger.warning(f"{log_prefix} _wait_for_new_message 的休眠被意外取消")
# 无论如何,重新抛出异常,让上层处理
raise

View File

@@ -1,193 +0,0 @@
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
from src.common.logger_manager import get_logger
from src.chat.actions.base_action import BaseAction, register_action, ActionActivationType, ChatMode
from typing import Tuple, List
from src.chat.heart_flow.observation.observation import Observation
from src.chat.focus_chat.replyer.default_replyer import DefaultReplyer
from src.chat.message_receive.chat_stream import ChatStream
from src.chat.heart_flow.observation.chatting_observation import ChattingObservation
from src.chat.focus_chat.hfc_utils import create_empty_anchor_message
import time
import traceback
from src.common.database.database_model import ActionRecords
import re
logger = get_logger("action_taken")
@register_action
class ReplyAction(BaseAction):
"""回复动作处理类
处理构建和发送消息回复的动作。
"""
action_name: str = "reply"
action_description: str = "当你想要参与回复或者聊天"
action_parameters: dict[str:str] = {
"reply_to": "如果是明确回复某个人的发言请在reply_to参数中指定格式用户名:发言内容如果不是reply_to的值设为none"
}
action_require: list[str] = [
"你想要闲聊或者随便附和",
"有人提到你",
"如果你刚刚进行了回复,不要对同一个话题重复回应",
]
associated_types: list[str] = ["text"]
enable_plugin = True
# 激活类型设置
focus_activation_type = ActionActivationType.ALWAYS
# 模式启用设置 - 回复动作只在Focus模式下使用
mode_enable = ChatMode.FOCUS
def __init__(
self,
action_data: dict,
reasoning: str,
cycle_timers: dict,
thinking_id: str,
observations: List[Observation],
chat_stream: ChatStream,
log_prefix: str,
replyer: DefaultReplyer,
**kwargs,
):
"""初始化回复动作处理器
Args:
action_name: 动作名称
action_data: 动作数据,包含 message, emojis, target 等
reasoning: 执行该动作的理由
cycle_timers: 计时器字典
thinking_id: 思考ID
observations: 观察列表
replyer: 回复器
chat_stream: 聊天流
log_prefix: 日志前缀
"""
super().__init__(action_data, reasoning, cycle_timers, thinking_id)
self.observations = observations
self.replyer = replyer
self.chat_stream = chat_stream
self.log_prefix = log_prefix
async def handle_action(self) -> Tuple[bool, str]:
"""
处理回复动作
Returns:
Tuple[bool, str]: (是否执行成功, 回复文本)
"""
# 注意: 此处可能会使用不同的expressor实现根据任务类型切换不同的回复策略
success, reply_text = await self._handle_reply(
reasoning=self.reasoning,
reply_data=self.action_data,
cycle_timers=self.cycle_timers,
thinking_id=self.thinking_id,
)
await self.store_action_info(
action_build_into_prompt=False,
action_prompt_display=f"{reply_text}",
)
return success, reply_text
async def _handle_reply(
self, reasoning: str, reply_data: dict, cycle_timers: dict, thinking_id: str
) -> tuple[bool, str]:
"""
处理统一的回复动作 - 可包含文本和表情,顺序任意
reply_data格式:
{
"text": "你好啊" # 文本内容列表(可选)
"target": "锚定消息", # 锚定消息的文本内容
}
"""
logger.info(f"{self.log_prefix} 决定回复: {self.reasoning}")
# 从聊天观察获取锚定消息
chatting_observation: ChattingObservation = next(
obs for obs in self.observations if isinstance(obs, ChattingObservation)
)
reply_to = reply_data.get("reply_to", "none")
if ":" in reply_to or "" in reply_to:
# 使用正则表达式匹配中文或英文冒号
parts = re.split(pattern=r"[:]", string=reply_to, maxsplit=1)
if len(parts) == 2:
target = parts[1].strip()
anchor_message = chatting_observation.search_message_by_text(target)
else:
anchor_message = None
if anchor_message:
anchor_message.update_chat_stream(self.chat_stream)
else:
logger.info(f"{self.log_prefix} 未找到锚点消息,创建占位符")
anchor_message = await create_empty_anchor_message(
self.chat_stream.platform, self.chat_stream.group_info, self.chat_stream
)
success, reply_set = await self.replyer.deal_reply(
cycle_timers=cycle_timers,
action_data=reply_data,
anchor_message=anchor_message,
reasoning=reasoning,
thinking_id=thinking_id,
)
reply_text = ""
for reply in reply_set:
type = reply[0]
data = reply[1]
if type == "text":
reply_text += data
elif type == "emoji":
reply_text += data
return success, reply_text
async def store_action_info(
self, action_build_into_prompt: bool = False, action_prompt_display: str = "", action_done: bool = True
) -> None:
"""存储action执行信息到数据库
Args:
action_build_into_prompt: 是否构建到提示中
action_prompt_display: 动作显示内容
"""
try:
chat_stream = self.chat_stream
if not chat_stream:
logger.error(f"{self.log_prefix} 无法存储action信息缺少chat_stream服务")
return
action_time = time.time()
action_id = f"{action_time}_{self.thinking_id}"
ActionRecords.create(
action_id=action_id,
time=action_time,
action_name=self.__class__.__name__,
action_data=str(self.action_data),
action_done=action_done,
action_build_into_prompt=action_build_into_prompt,
action_prompt_display=action_prompt_display,
chat_id=chat_stream.stream_id,
chat_info_stream_id=chat_stream.stream_id,
chat_info_platform=chat_stream.platform,
user_id=chat_stream.user_info.user_id if chat_stream.user_info else "",
user_nickname=chat_stream.user_info.user_nickname if chat_stream.user_info else "",
user_cardname=chat_stream.user_info.user_cardname if chat_stream.user_info else "",
)
logger.debug(f"{self.log_prefix} 已存储action信息: {action_prompt_display}")
except Exception as e:
logger.error(f"{self.log_prefix} 存储action信息时出错: {e}")
traceback.print_exc()

View File

@@ -15,6 +15,77 @@ logger = get_logger("action_manager")
ActionInfo = Dict[str, Any] ActionInfo = Dict[str, Any]
class PluginActionWrapper(BaseAction):
"""
新插件系统Action组件的兼容性包装器
将新插件系统的Action组件包装为旧系统兼容的BaseAction接口
"""
def __init__(self, plugin_action, action_name: str, action_data: dict, reasoning: str, cycle_timers: dict, thinking_id: str):
"""初始化包装器"""
# 调用旧系统BaseAction初始化只传递它能接受的参数
super().__init__(
action_data=action_data,
reasoning=reasoning,
cycle_timers=cycle_timers,
thinking_id=thinking_id
)
# 存储插件Action实例它已经包含了所有必要的服务对象
self.plugin_action = plugin_action
self.action_name = action_name
# 从插件Action实例复制属性到包装器
self._sync_attributes_from_plugin_action()
def _sync_attributes_from_plugin_action(self):
"""从插件Action实例同步属性到包装器"""
# 基本属性
self.action_name = getattr(self.plugin_action, 'action_name', self.action_name)
# 设置兼容的默认值
self.action_description = f"插件Action: {self.action_name}"
self.action_parameters = {}
self.action_require = []
# 激活类型属性(从新插件系统转换)
plugin_focus_type = getattr(self.plugin_action, 'focus_activation_type', None)
plugin_normal_type = getattr(self.plugin_action, 'normal_activation_type', None)
if plugin_focus_type:
self.focus_activation_type = plugin_focus_type.value if hasattr(plugin_focus_type, 'value') else str(plugin_focus_type)
if plugin_normal_type:
self.normal_activation_type = plugin_normal_type.value if hasattr(plugin_normal_type, 'value') else str(plugin_normal_type)
# 其他属性
self.random_activation_probability = getattr(self.plugin_action, 'random_activation_probability', 0.0)
self.llm_judge_prompt = getattr(self.plugin_action, 'llm_judge_prompt', "")
self.activation_keywords = getattr(self.plugin_action, 'activation_keywords', [])
self.keyword_case_sensitive = getattr(self.plugin_action, 'keyword_case_sensitive', False)
# 模式和并行设置
plugin_mode = getattr(self.plugin_action, 'mode_enable', None)
if plugin_mode:
self.mode_enable = plugin_mode.value if hasattr(plugin_mode, 'value') else str(plugin_mode)
self.parallel_action = getattr(self.plugin_action, 'parallel_action', True)
self.enable_plugin = True
async def handle_action(self) -> tuple[bool, str]:
"""兼容旧系统的动作处理接口委托给插件Action的execute方法"""
try:
# 调用插件Action的execute方法
success, response = await self.plugin_action.execute()
logger.debug(f"插件Action {self.action_name} 执行{'成功' if success else '失败'}: {response}")
return success, response
except Exception as e:
logger.error(f"插件Action {self.action_name} 执行异常: {e}")
return False, f"插件Action执行失败: {str(e)}"
class ActionManager: class ActionManager:
""" """
动作管理器,用于管理各种类型的动作 动作管理器,用于管理各种类型的动作
@@ -113,13 +184,73 @@ class ActionManager:
加载所有插件目录中的动作 加载所有插件目录中的动作
注意插件动作的实际导入已经在main.py中完成这里只需要从_ACTION_REGISTRY获取 注意插件动作的实际导入已经在main.py中完成这里只需要从_ACTION_REGISTRY获取
同时也从新插件系统的component_registry获取Action组件
""" """
try: try:
# 插件动作已在main.py中加载这里只需要从_ACTION_REGISTRY获取 # 从旧的_ACTION_REGISTRY获取插件动作
self._load_registered_actions() self._load_registered_actions()
logger.info("从注册表加载插件动作成功") logger.debug("注册表加载插件动作成功")
# 从新插件系统获取Action组件
self._load_plugin_system_actions()
logger.debug("从新插件系统加载Action组件成功")
except Exception as e: except Exception as e:
logger.error(f"加载插件动作失败: {e}") logger.error(f"加载插件动作失败: {e}")
def _load_plugin_system_actions(self) -> None:
"""从新插件系统的component_registry加载Action组件"""
try:
from src.plugin_system.core.component_registry import component_registry
from src.plugin_system.base.component_types import ComponentType
# 获取所有Action组件
action_components = component_registry.get_components_by_type(ComponentType.ACTION)
for action_name, action_info in action_components.items():
if action_name in self._registered_actions:
logger.debug(f"Action组件 {action_name} 已存在,跳过")
continue
# 将新插件系统的ActionInfo转换为旧系统格式
converted_action_info = {
"description": action_info.description,
"parameters": getattr(action_info, 'action_parameters', {}),
"require": getattr(action_info, 'action_require', []),
"associated_types": getattr(action_info, 'associated_types', []),
"enable_plugin": action_info.enabled,
# 激活类型相关
"focus_activation_type": action_info.focus_activation_type.value,
"normal_activation_type": action_info.normal_activation_type.value,
"random_activation_probability": action_info.random_activation_probability,
"llm_judge_prompt": action_info.llm_judge_prompt,
"activation_keywords": action_info.activation_keywords,
"keyword_case_sensitive": action_info.keyword_case_sensitive,
# 模式和并行设置
"mode_enable": action_info.mode_enable.value,
"parallel_action": action_info.parallel_action,
# 标记这是来自新插件系统的组件
"_plugin_system_component": True,
"_plugin_name": getattr(action_info, 'plugin_name', ''),
}
self._registered_actions[action_name] = converted_action_info
# 如果启用,也添加到默认动作集
if action_info.enabled:
self._default_actions[action_name] = converted_action_info
logger.debug(f"从插件系统加载Action组件: {action_name} (插件: {getattr(action_info, 'plugin_name', 'unknown')})")
logger.info(f"从新插件系统加载了 {len(action_components)} 个Action组件")
except Exception as e:
logger.error(f"从插件系统加载Action组件失败: {e}")
import traceback
logger.error(traceback.format_exc())
def create_action( def create_action(
self, self,
@@ -158,7 +289,16 @@ class ActionManager:
# if action_name not in self._using_actions: # if action_name not in self._using_actions:
# logger.warning(f"当前不可用的动作类型: {action_name}") # logger.warning(f"当前不可用的动作类型: {action_name}")
# return None # return None
# 检查是否是新插件系统的Action组件
action_info = self._registered_actions.get(action_name)
if action_info and action_info.get("_plugin_system_component", False):
return self._create_plugin_system_action(
action_name, action_data, reasoning, cycle_timers, thinking_id,
observations, chat_stream, log_prefix, shutting_down, expressor, replyer
)
# 旧系统的动作创建逻辑
handler_class = _ACTION_REGISTRY.get(action_name) handler_class = _ACTION_REGISTRY.get(action_name)
if not handler_class: if not handler_class:
logger.warning(f"未注册的动作类型: {action_name}") logger.warning(f"未注册的动作类型: {action_name}")
@@ -184,6 +324,67 @@ class ActionManager:
except Exception as e: except Exception as e:
logger.error(f"创建动作处理器实例失败: {e}") logger.error(f"创建动作处理器实例失败: {e}")
return None return None
def _create_plugin_system_action(
self,
action_name: str,
action_data: dict,
reasoning: str,
cycle_timers: dict,
thinking_id: str,
observations: List[Observation],
chat_stream: ChatStream,
log_prefix: str,
shutting_down: bool = False,
expressor: DefaultExpressor = None,
replyer: DefaultReplyer = None,
) -> Optional['PluginActionWrapper']:
"""
创建新插件系统的Action组件实例并包装为兼容旧系统的接口
Returns:
Optional[PluginActionWrapper]: 包装后的Action实例
"""
try:
from src.plugin_system.core.component_registry import component_registry
# 获取组件类
component_class = component_registry.get_component_class(action_name)
if not component_class:
logger.error(f"未找到插件Action组件类: {action_name}")
return None
# 创建插件Action实例
plugin_action_instance = component_class(
action_data=action_data,
reasoning=reasoning,
cycle_timers=cycle_timers,
thinking_id=thinking_id,
chat_stream=chat_stream,
expressor=expressor,
replyer=replyer,
observations=observations,
log_prefix=log_prefix
)
# 创建兼容性包装器
wrapper = PluginActionWrapper(
plugin_action=plugin_action_instance,
action_name=action_name,
action_data=action_data,
reasoning=reasoning,
cycle_timers=cycle_timers,
thinking_id=thinking_id
)
logger.debug(f"创建插件Action实例成功: {action_name}")
return wrapper
except Exception as e:
logger.error(f"创建插件Action实例失败 {action_name}: {e}")
import traceback
logger.error(traceback.format_exc())
return None
def get_registered_actions(self) -> Dict[str, ActionInfo]: def get_registered_actions(self) -> Dict[str, ActionInfo]:
"""获取所有已注册的动作集""" """获取所有已注册的动作集"""

View File

@@ -16,29 +16,36 @@ class DatabaseAPI:
""" """
async def store_action_info( async def store_action_info(
self, action_build_into_prompt: bool = False, action_prompt_display: str = "", action_done: bool = True self,
action_build_into_prompt: bool = False,
action_prompt_display: str = "",
action_done: bool = True,
thinking_id: str = "",
action_data: dict = None
) -> None: ) -> None:
"""存储action执行信息到数据库 """存储action信息到数据库
Args: Args:
action_build_into_prompt: 是否构建到提示中 action_build_into_prompt: 是否构建到提示中
action_prompt_display: 动作显示内容 action_prompt_display: 显示的action提示信息
action_done: 动作是否完成 action_done: action是否完成
thinking_id: 思考ID
action_data: action数据如果不提供则使用空字典
""" """
try: try:
chat_stream = self._services.get("chat_stream") chat_stream = self.get_service("chat_stream")
if not chat_stream: if not chat_stream:
logger.error(f"{self.log_prefix} 无法存储action信息缺少chat_stream服务") logger.error(f"{self.log_prefix} 无法存储action信息缺少chat_stream服务")
return return
action_time = time.time() action_time = time.time()
action_id = f"{action_time}_{self.thinking_id}" action_id = f"{action_time}_{thinking_id}"
ActionRecords.create( ActionRecords.create(
action_id=action_id, action_id=action_id,
time=action_time, time=action_time,
action_name=self.__class__.__name__, action_name=self.__class__.__name__,
action_data=str(self.action_data), action_data=str(action_data or {}),
action_done=action_done, action_done=action_done,
action_build_into_prompt=action_build_into_prompt, action_build_into_prompt=action_build_into_prompt,
action_prompt_display=action_prompt_display, action_prompt_display=action_prompt_display,

View File

@@ -54,7 +54,10 @@ class PluginAPI(MessageAPI, LLMAPI, DatabaseAPI, ConfigAPI, UtilsAPI, StreamAPI,
} }
self.log_prefix = log_prefix self.log_prefix = log_prefix
# 存储action上下文信息
self._action_context = {}
# 调用所有父类的初始化 # 调用所有父类的初始化
super().__init__() super().__init__()
@@ -88,6 +91,17 @@ class PluginAPI(MessageAPI, LLMAPI, DatabaseAPI, ConfigAPI, UtilsAPI, StreamAPI,
"""检查是否有指定的服务对象""" """检查是否有指定的服务对象"""
return service_name in self._services and self._services[service_name] is not None return service_name in self._services and self._services[service_name] is not None
def set_action_context(self, thinking_id: str = None, shutting_down: bool = False, **kwargs):
"""设置action上下文信息"""
if thinking_id:
self._action_context["thinking_id"] = thinking_id
self._action_context["shutting_down"] = shutting_down
self._action_context.update(kwargs)
def get_action_context(self, key: str, default=None):
"""获取action上下文信息"""
return self._action_context.get(key, default)
# 便捷的工厂函数 # 便捷的工厂函数
def create_plugin_api( def create_plugin_api(

View File

@@ -1,6 +1,8 @@
from typing import Optional, List, Dict, Any from typing import Optional, List, Dict, Any, Tuple
from src.common.logger_manager import get_logger from src.common.logger_manager import get_logger
from src.chat.message_receive.chat_stream import ChatManager, ChatStream from src.chat.message_receive.chat_stream import ChatManager, ChatStream
from src.chat.focus_chat.hfc_utils import parse_thinking_id_to_timestamp
import asyncio
logger = get_logger("stream_api") logger = get_logger("stream_api")
@@ -157,3 +159,62 @@ class StreamAPI:
except Exception as e: except Exception as e:
logger.error(f"{self.log_prefix} 异步通过群ID获取聊天流时出错: {e}") logger.error(f"{self.log_prefix} 异步通过群ID获取聊天流时出错: {e}")
return None return None
async def wait_for_new_message(self, timeout: int = 1200) -> Tuple[bool, str]:
"""等待新消息或超时
Args:
timeout: 超时时间默认1200秒
Returns:
Tuple[bool, str]: (是否收到新消息, 空字符串)
"""
try:
# 获取必要的服务对象
observations = self.get_service("observations")
if not observations:
logger.warning(f"{self.log_prefix} 无法获取observations服务无法等待新消息")
return False, ""
# 获取第一个观察对象通常是ChattingObservation
observation = observations[0] if observations else None
if not observation:
logger.warning(f"{self.log_prefix} 无观察对象,无法等待新消息")
return False, ""
# 从action上下文获取thinking_id
thinking_id = self.get_action_context("thinking_id")
if not thinking_id:
logger.warning(f"{self.log_prefix} 无thinking_id无法等待新消息")
return False, ""
logger.info(f"{self.log_prefix} 开始等待新消息... (超时: {timeout}秒)")
wait_start_time = asyncio.get_event_loop().time()
while True:
# 检查关闭标志
shutting_down = self.get_action_context("shutting_down", False)
if shutting_down:
logger.info(f"{self.log_prefix} 等待新消息时检测到关闭信号,中断等待")
return False, ""
# 检查新消息
thinking_id_timestamp = parse_thinking_id_to_timestamp(thinking_id)
if await observation.has_new_messages_since(thinking_id_timestamp):
logger.info(f"{self.log_prefix} 检测到新消息")
return True, ""
# 检查超时
if asyncio.get_event_loop().time() - wait_start_time > timeout:
logger.warning(f"{self.log_prefix} 等待新消息超时({timeout}秒)")
return False, ""
# 短暂休眠
await asyncio.sleep(0.5)
except asyncio.CancelledError:
logger.info(f"{self.log_prefix} 等待新消息被中断 (CancelledError)")
return False, ""
except Exception as e:
logger.error(f"{self.log_prefix} 等待新消息时发生错误: {e}")
return False, f"等待新消息失败: {str(e)}"

View File

@@ -11,8 +11,8 @@ class BaseAction(ABC):
"""Action组件基类 """Action组件基类
Action是插件的一种组件类型用于处理聊天中的动作逻辑 Action是插件的一种组件类型用于处理聊天中的动作逻辑
子类可以通过类属性定义激活条件: 子类可以通过类属性定义激活条件,这些会在实例化时转换为实例属性
- focus_activation_type: 专注模式激活类型 - focus_activation_type: 专注模式激活类型
- normal_activation_type: 普通模式激活类型 - normal_activation_type: 普通模式激活类型
- activation_keywords: 激活关键词列表 - activation_keywords: 激活关键词列表
@@ -22,18 +22,19 @@ class BaseAction(ABC):
- random_activation_probability: 随机激活概率 - random_activation_probability: 随机激活概率
- llm_judge_prompt: LLM判断提示词 - llm_judge_prompt: LLM判断提示词
""" """
# 默认激活设置(子类可以覆盖) def __init__(self,
focus_activation_type: ActionActivationType = ActionActivationType.NEVER action_data: dict,
normal_activation_type: ActionActivationType = ActionActivationType.NEVER reasoning: str,
activation_keywords: list = [] cycle_timers: dict,
keyword_case_sensitive: bool = False thinking_id: str,
mode_enable: ChatMode = ChatMode.ALL observations: list = None,
parallel_action: bool = True expressor = None,
random_activation_probability: float = 0.0 replyer = None,
llm_judge_prompt: str = "" chat_stream = None,
log_prefix: str = "",
def __init__(self, action_data: dict, reasoning: str, cycle_timers: dict, thinking_id: str, **kwargs): shutting_down: bool = False,
**kwargs):
"""初始化Action组件 """初始化Action组件
Args: Args:
@@ -41,26 +42,74 @@ class BaseAction(ABC):
reasoning: 执行该动作的理由 reasoning: 执行该动作的理由
cycle_timers: 计时器字典 cycle_timers: 计时器字典
thinking_id: 思考ID thinking_id: 思考ID
**kwargs: 其他参数(包含服务对象) observations: 观察列表
expressor: 表达器对象
replyer: 回复器对象
chat_stream: 聊天流对象
log_prefix: 日志前缀
shutting_down: 是否正在关闭
**kwargs: 其他参数
""" """
self.action_data = action_data self.action_data = action_data
self.reasoning = reasoning self.reasoning = reasoning
self.cycle_timers = cycle_timers self.cycle_timers = cycle_timers
self.thinking_id = thinking_id self.thinking_id = thinking_id
self.log_prefix = log_prefix
# 创建API实例 self.shutting_down = shutting_down
# 设置动作基本信息实例属性(兼容旧系统)
self.action_name: str = getattr(self, 'action_name', self.__class__.__name__.lower().replace('action', ''))
self.action_description: str = getattr(self, 'action_description', self.__doc__ or "Action组件")
self.action_parameters: dict = getattr(self.__class__, 'action_parameters', {}).copy()
self.action_require: list[str] = getattr(self.__class__, 'action_require', []).copy()
# 设置激活类型实例属性(从类属性复制,提供默认值)
self.focus_activation_type: str = self._get_activation_type_value('focus_activation_type', 'never')
self.normal_activation_type: str = self._get_activation_type_value('normal_activation_type', 'never')
self.random_activation_probability: float = getattr(self.__class__, 'random_activation_probability', 0.0)
self.llm_judge_prompt: str = getattr(self.__class__, 'llm_judge_prompt', "")
self.activation_keywords: list[str] = getattr(self.__class__, 'activation_keywords', []).copy()
self.keyword_case_sensitive: bool = getattr(self.__class__, 'keyword_case_sensitive', False)
self.mode_enable: str = self._get_mode_value('mode_enable', 'all')
self.parallel_action: bool = getattr(self.__class__, 'parallel_action', True)
self.associated_types: list[str] = getattr(self.__class__, 'associated_types', []).copy()
self.enable_plugin: bool = True # 默认启用
# 创建API实例传递所有服务对象
self.api = PluginAPI( self.api = PluginAPI(
chat_stream=kwargs.get("chat_stream"), chat_stream=chat_stream or kwargs.get("chat_stream"),
expressor=kwargs.get("expressor"), expressor=expressor or kwargs.get("expressor"),
replyer=kwargs.get("replyer"), replyer=replyer or kwargs.get("replyer"),
observations=kwargs.get("observations"), observations=observations or kwargs.get("observations", []),
log_prefix=kwargs.get("log_prefix", ""), log_prefix=log_prefix
) )
self.log_prefix = kwargs.get("log_prefix", "") # 设置API的action上下文
self.api.set_action_context(
thinking_id=thinking_id,
shutting_down=shutting_down
)
logger.debug(f"{self.log_prefix} Action组件初始化完成") logger.debug(f"{self.log_prefix} Action组件初始化完成")
def _get_activation_type_value(self, attr_name: str, default: str) -> str:
"""获取激活类型的字符串值"""
attr = getattr(self.__class__, attr_name, None)
if attr is None:
return default
if hasattr(attr, 'value'):
return attr.value
return str(attr)
def _get_mode_value(self, attr_name: str, default: str) -> str:
"""获取模式的字符串值"""
attr = getattr(self.__class__, attr_name, None)
if attr is None:
return default
if hasattr(attr, 'value'):
return attr.value
return str(attr)
async def send_reply(self, content: str) -> bool: async def send_reply(self, content: str) -> bool:
"""发送回复消息 """发送回复消息
@@ -89,20 +138,38 @@ class BaseAction(ABC):
name = cls.__name__.lower().replace("action", "") name = cls.__name__.lower().replace("action", "")
if description is None: if description is None:
description = cls.__doc__ or f"{cls.__name__} Action组件" description = cls.__doc__ or f"{cls.__name__} Action组件"
description = description.strip().split("\n")[0] # 取第一行作为描述 description = description.strip().split('\n')[0] # 取第一行作为描述
# 安全获取激活类型值
def get_enum_value(attr_name, default):
attr = getattr(cls, attr_name, None)
if attr is None:
# 如果没有定义,返回默认的枚举值
return getattr(ActionActivationType, default.upper(), ActionActivationType.NEVER)
return attr
def get_mode_value(attr_name, default):
attr = getattr(cls, attr_name, None)
if attr is None:
return getattr(ChatMode, default.upper(), ChatMode.ALL)
return attr
return ActionInfo( return ActionInfo(
name=name, name=name,
component_type=ComponentType.ACTION, component_type=ComponentType.ACTION,
description=description, description=description,
focus_activation_type=cls.focus_activation_type, focus_activation_type=get_enum_value('focus_activation_type', 'never'),
normal_activation_type=cls.normal_activation_type, normal_activation_type=get_enum_value('normal_activation_type', 'never'),
activation_keywords=cls.activation_keywords.copy() if cls.activation_keywords else [], activation_keywords=getattr(cls, 'activation_keywords', []).copy(),
keyword_case_sensitive=cls.keyword_case_sensitive, keyword_case_sensitive=getattr(cls, 'keyword_case_sensitive', False),
mode_enable=cls.mode_enable, mode_enable=get_mode_value('mode_enable', 'all'),
parallel_action=cls.parallel_action, parallel_action=getattr(cls, 'parallel_action', True),
random_activation_probability=cls.random_activation_probability, random_activation_probability=getattr(cls, 'random_activation_probability', 0.0),
llm_judge_prompt=cls.llm_judge_prompt, llm_judge_prompt=getattr(cls, 'llm_judge_prompt', ""),
# 使用正确的字段名
action_parameters=getattr(cls, 'action_parameters', {}).copy(),
action_require=getattr(cls, 'action_require', []).copy(),
associated_types=getattr(cls, 'associated_types', []).copy()
) )
@abstractmethod @abstractmethod
@@ -113,3 +180,14 @@ class BaseAction(ABC):
Tuple[bool, str]: (是否执行成功, 回复文本) Tuple[bool, str]: (是否执行成功, 回复文本)
""" """
pass pass
async def handle_action(self) -> Tuple[bool, str]:
"""兼容旧系统的handle_action接口委托给execute方法
为了保持向后兼容性旧系统的代码可能会调用handle_action方法。
此方法将调用委托给新的execute方法。
Returns:
Tuple[bool, str]: (是否执行成功, 回复文本)
"""
return await self.execute()

View File

@@ -105,7 +105,7 @@ class BasePlugin(ABC):
if file_ext == ".toml": if file_ext == ".toml":
with open(config_file_path, "r", encoding="utf-8") as f: with open(config_file_path, "r", encoding="utf-8") as f:
self.config = toml.load(f) or {} self.config = toml.load(f) or {}
logger.info(f"{self.log_prefix} 配置已从 {config_file_path} 加载") logger.debug(f"{self.log_prefix} 配置已从 {config_file_path} 加载")
else: else:
logger.warning(f"{self.log_prefix} 不支持的配置文件格式: {file_ext},仅支持 .toml") logger.warning(f"{self.log_prefix} 不支持的配置文件格式: {file_ext},仅支持 .toml")
self.config = {} self.config = {}
@@ -148,7 +148,7 @@ class BasePlugin(ABC):
# 注册插件 # 注册插件
if component_registry.register_plugin(self.plugin_info): if component_registry.register_plugin(self.plugin_info):
logger.info(f"{self.log_prefix} 插件注册成功,包含 {len(registered_components)} 个组件") logger.debug(f"{self.log_prefix} 插件注册成功,包含 {len(registered_components)} 个组件")
return True return True
else: else:
logger.error(f"{self.log_prefix} 插件注册失败") logger.error(f"{self.log_prefix} 插件注册失败")

View File

@@ -69,8 +69,8 @@ class ComponentRegistry:
self._register_action_component(component_info, component_class) self._register_action_component(component_info, component_class)
elif component_type == ComponentType.COMMAND: elif component_type == ComponentType.COMMAND:
self._register_command_component(component_info, component_class) self._register_command_component(component_info, component_class)
logger.info(f"已注册{component_type.value}组件: {component_name} ({component_class.__name__})") logger.debug(f"已注册{component_type.value}组件: {component_name} ({component_class.__name__})")
return True return True
def _register_action_component(self, action_info: ActionInfo, action_class: Type): def _register_action_component(self, action_info: ActionInfo, action_class: Type):
@@ -185,7 +185,7 @@ class ComponentRegistry:
return False return False
self._plugins[plugin_name] = plugin_info self._plugins[plugin_name] = plugin_info
logger.info(f"已注册插件: {plugin_name} (组件数量: {len(plugin_info.components)})") logger.debug(f"已注册插件: {plugin_name} (组件数量: {len(plugin_info.components)})")
return True return True
def get_plugin_info(self, plugin_name: str) -> Optional[PluginInfo]: def get_plugin_info(self, plugin_name: str) -> Optional[PluginInfo]:
@@ -215,7 +215,7 @@ class ComponentRegistry:
component_info = self._components[component_name] component_info = self._components[component_name]
if isinstance(component_info, ActionInfo): if isinstance(component_info, ActionInfo):
self._default_actions[component_name] = component_info.description self._default_actions[component_name] = component_info.description
logger.info(f"已启用组件: {component_name}") logger.debug(f"已启用组件: {component_name}")
return True return True
return False return False
@@ -226,7 +226,7 @@ class ComponentRegistry:
# 如果是Action从默认动作集中移除 # 如果是Action从默认动作集中移除
if component_name in self._default_actions: if component_name in self._default_actions:
del self._default_actions[component_name] del self._default_actions[component_name]
logger.info(f"已禁用组件: {component_name}") logger.debug(f"已禁用组件: {component_name}")
return True return True
return False return False

View File

@@ -1,11 +1,15 @@
from typing import Dict, List, Optional, Any from typing import Dict, List, Optional, Any, TYPE_CHECKING
import os import os
import importlib import importlib
import importlib.util import importlib.util
from pathlib import Path from pathlib import Path
if TYPE_CHECKING:
from src.plugin_system.base.base_plugin import BasePlugin
from src.common.logger_manager import get_logger from src.common.logger_manager import get_logger
from src.plugin_system.core.component_registry import component_registry from src.plugin_system.core.component_registry import component_registry
from src.plugin_system.base.component_types import PluginInfo, ComponentType from src.plugin_system.base.component_types import ComponentType, PluginInfo
logger = get_logger("plugin_manager") logger = get_logger("plugin_manager")
@@ -18,16 +22,17 @@ class PluginManager:
def __init__(self): def __init__(self):
self.plugin_directories: List[str] = [] self.plugin_directories: List[str] = []
self.loaded_plugins: Dict[str, Any] = {} self.loaded_plugins: Dict[str, 'BasePlugin'] = {}
self.failed_plugins: Dict[str, str] = {} self.failed_plugins: Dict[str, str] = {}
self.plugin_paths: Dict[str, str] = {} # 记录插件名到目录路径的映射
logger.info("插件管理器初始化完成") logger.info("插件管理器初始化完成")
def add_plugin_directory(self, directory: str): def add_plugin_directory(self, directory: str):
"""添加插件目录""" """添加插件目录"""
if os.path.exists(directory): if os.path.exists(directory):
self.plugin_directories.append(directory) self.plugin_directories.append(directory)
logger.info(f"已添加插件目录: {directory}") logger.debug(f"已添加插件目录: {directory}")
else: else:
logger.warning(f"插件目录不存在: {directory}") logger.warning(f"插件目录不存在: {directory}")
@@ -37,8 +42,8 @@ class PluginManager:
Returns: Returns:
tuple[int, int]: (插件数量, 组件数量) tuple[int, int]: (插件数量, 组件数量)
""" """
logger.info("开始加载所有插件...") logger.debug("开始加载所有插件...")
# 第一阶段:加载所有插件模块(注册插件类) # 第一阶段:加载所有插件模块(注册插件类)
total_loaded_modules = 0 total_loaded_modules = 0
total_failed_modules = 0 total_failed_modules = 0
@@ -47,9 +52,9 @@ class PluginManager:
loaded, failed = self._load_plugin_modules_from_directory(directory) loaded, failed = self._load_plugin_modules_from_directory(directory)
total_loaded_modules += loaded total_loaded_modules += loaded
total_failed_modules += failed total_failed_modules += failed
logger.info(f"插件模块加载完成 - 成功: {total_loaded_modules}, 失败: {total_failed_modules}") logger.debug(f"插件模块加载完成 - 成功: {total_loaded_modules}, 失败: {total_failed_modules}")
# 第二阶段:实例化所有已注册的插件类 # 第二阶段:实例化所有已注册的插件类
from src.plugin_system.base.base_plugin import get_registered_plugin_classes, instantiate_and_register_plugin from src.plugin_system.base.base_plugin import get_registered_plugin_classes, instantiate_and_register_plugin
@@ -58,25 +63,110 @@ class PluginManager:
total_failed_registration = 0 total_failed_registration = 0
for plugin_name, plugin_class in plugin_classes.items(): for plugin_name, plugin_class in plugin_classes.items():
# 尝试找到插件对应的目录 # 使用记录的插件目录路径
plugin_dir = self._find_plugin_directory(plugin_class) plugin_dir = self.plugin_paths.get(plugin_name)
# 如果没有记录则尝试查找fallback
if not plugin_dir:
plugin_dir = self._find_plugin_directory(plugin_class)
if plugin_dir:
self.plugin_paths[plugin_name] = plugin_dir
if instantiate_and_register_plugin(plugin_class, plugin_dir): if instantiate_and_register_plugin(plugin_class, plugin_dir):
total_registered += 1 total_registered += 1
self.loaded_plugins[plugin_name] = plugin_class self.loaded_plugins[plugin_name] = plugin_class
# 📊 显示插件详细信息
plugin_info = component_registry.get_plugin_info(plugin_name)
if plugin_info:
component_count = len(plugin_info.components)
component_types = {}
for comp in plugin_info.components:
comp_type = comp.component_type.name
component_types[comp_type] = component_types.get(comp_type, 0) + 1
components_str = ", ".join([f"{count}{ctype}" for ctype, count in component_types.items()])
logger.info(f"✅ 插件加载成功: {plugin_name} v{plugin_info.version} ({components_str}) - {plugin_info.description}")
else:
logger.info(f"✅ 插件加载成功: {plugin_name}")
else: else:
total_failed_registration += 1 total_failed_registration += 1
self.failed_plugins[plugin_name] = "插件注册失败" self.failed_plugins[plugin_name] = "插件注册失败"
logger.error(f"❌ 插件加载失败: {plugin_name}")
logger.info(f"插件注册完成 - 成功: {total_registered}, 失败: {total_failed_registration}")
# 获取组件统计信息 # 获取组件统计信息
stats = component_registry.get_registry_stats() stats = component_registry.get_registry_stats()
logger.info(f"组件注册统计: {stats}")
# 📋 显示插件加载总览
if total_registered > 0:
action_count = stats.get('action_components', 0)
command_count = stats.get('command_components', 0)
total_components = stats.get('total_components', 0)
logger.info("🎉 插件系统加载完成!")
logger.info(f"📊 总览: {total_registered}个插件, {total_components}个组件 (Action: {action_count}, Command: {command_count})")
# 显示详细的插件列表
logger.info("📋 已加载插件详情:")
for plugin_name, plugin_class in self.loaded_plugins.items():
plugin_info = component_registry.get_plugin_info(plugin_name)
if plugin_info:
# 插件基本信息
version_info = f"v{plugin_info.version}" if plugin_info.version else ""
author_info = f"by {plugin_info.author}" if plugin_info.author else ""
info_parts = [part for part in [version_info, author_info] if part]
extra_info = f" ({', '.join(info_parts)})" if info_parts else ""
logger.info(f" 📦 {plugin_name}{extra_info}")
# 组件列表
if plugin_info.components:
action_components = [c for c in plugin_info.components if c.component_type.name == 'ACTION']
command_components = [c for c in plugin_info.components if c.component_type.name == 'COMMAND']
if action_components:
action_names = [c.name for c in action_components]
logger.info(f" 🎯 Action组件: {', '.join(action_names)}")
if command_components:
command_names = [c.name for c in command_components]
logger.info(f" ⚡ Command组件: {', '.join(command_names)}")
# 依赖信息
if plugin_info.dependencies:
logger.info(f" 🔗 依赖: {', '.join(plugin_info.dependencies)}")
# 配置文件信息
if plugin_info.config_file:
config_status = "" if self.plugin_paths.get(plugin_name) else ""
logger.info(f" ⚙️ 配置: {plugin_info.config_file} {config_status}")
# 显示目录统计
logger.info("📂 加载目录统计:")
for directory in self.plugin_directories:
if os.path.exists(directory):
plugins_in_dir = []
for plugin_name in self.loaded_plugins.keys():
plugin_path = self.plugin_paths.get(plugin_name, "")
if plugin_path.startswith(directory):
plugins_in_dir.append(plugin_name)
if plugins_in_dir:
logger.info(f" 📁 {directory}: {len(plugins_in_dir)}个插件 ({', '.join(plugins_in_dir)})")
else:
logger.info(f" 📁 {directory}: 0个插件")
# 失败信息
if total_failed_registration > 0:
logger.info(f"⚠️ 失败统计: {total_failed_registration}个插件加载失败")
for failed_plugin, error in self.failed_plugins.items():
logger.info(f"{failed_plugin}: {error}")
else:
logger.warning("😕 没有成功加载任何插件")
# 返回插件数量和组件数量 # 返回插件数量和组件数量
return total_registered, stats.get("total_components", 0) return total_registered, total_components
def _find_plugin_directory(self, plugin_class) -> Optional[str]: def _find_plugin_directory(self, plugin_class) -> Optional[str]:
"""查找插件类对应的目录路径""" """查找插件类对应的目录路径"""
try: try:
@@ -85,8 +175,8 @@ class PluginManager:
module = inspect.getmodule(plugin_class) module = inspect.getmodule(plugin_class)
if module and hasattr(module, "__file__") and module.__file__: if module and hasattr(module, "__file__") and module.__file__:
return os.path.dirname(module.__file__) return os.path.dirname(module.__file__)
except Exception: except Exception as e:
pass logger.debug(f"通过inspect获取插件目录失败: {e}")
return None return None
def _load_plugin_modules_from_directory(self, directory: str) -> tuple[int, int]: def _load_plugin_modules_from_directory(self, directory: str) -> tuple[int, int]:
@@ -97,16 +187,17 @@ class PluginManager:
if not os.path.exists(directory): if not os.path.exists(directory):
logger.warning(f"插件目录不存在: {directory}") logger.warning(f"插件目录不存在: {directory}")
return loaded_count, failed_count return loaded_count, failed_count
logger.info(f"正在扫描插件目录: {directory}") logger.debug(f"正在扫描插件目录: {directory}")
# 遍历目录中的所有Python文件和包 # 遍历目录中的所有Python文件和包
for item in os.listdir(directory): for item in os.listdir(directory):
item_path = os.path.join(directory, item) item_path = os.path.join(directory, item)
if os.path.isfile(item_path) and item.endswith(".py") and item != "__init__.py": if os.path.isfile(item_path) and item.endswith(".py") and item != "__init__.py":
# 单文件插件 # 单文件插件
if self._load_plugin_module_file(item_path): plugin_name = Path(item_path).stem
if self._load_plugin_module_file(item_path, plugin_name, directory):
loaded_count += 1 loaded_count += 1
else: else:
failed_count += 1 failed_count += 1
@@ -115,17 +206,22 @@ class PluginManager:
# 插件包 # 插件包
plugin_file = os.path.join(item_path, "plugin.py") plugin_file = os.path.join(item_path, "plugin.py")
if os.path.exists(plugin_file): if os.path.exists(plugin_file):
if self._load_plugin_module_file(plugin_file): plugin_name = item # 使用目录名作为插件名
if self._load_plugin_module_file(plugin_file, plugin_name, item_path):
loaded_count += 1 loaded_count += 1
else: else:
failed_count += 1 failed_count += 1
return loaded_count, failed_count return loaded_count, failed_count
def _load_plugin_module_file(self, plugin_file: str) -> bool: def _load_plugin_module_file(self, plugin_file: str, plugin_name: str, plugin_dir: str) -> bool:
"""加载单个插件模块文件""" """加载单个插件模块文件
plugin_name = None
Args:
plugin_file: 插件文件路径
plugin_name: 插件名称
plugin_dir: 插件目录路径
"""
# 生成模块名 # 生成模块名
plugin_path = Path(plugin_file) plugin_path = Path(plugin_file)
if plugin_path.parent.name != "plugins": if plugin_path.parent.name != "plugins":
@@ -144,18 +240,17 @@ class PluginManager:
module = importlib.util.module_from_spec(spec) module = importlib.util.module_from_spec(spec)
spec.loader.exec_module(module) spec.loader.exec_module(module)
# 模块加载成功,插件类会自动通过装饰器注册 # 记录插件名和目录路径的映射
plugin_name = plugin_path.parent.name if plugin_path.parent.name != "plugins" else plugin_path.stem self.plugin_paths[plugin_name] = plugin_dir
logger.debug(f"插件模块加载成功: {plugin_file}") logger.debug(f"插件模块加载成功: {plugin_file}")
return True return True
except Exception as e: except Exception as e:
error_msg = f"加载插件模块 {plugin_file} 失败: {e}" error_msg = f"加载插件模块 {plugin_file} 失败: {e}"
logger.error(error_msg) logger.error(error_msg)
if plugin_name: self.failed_plugins[plugin_name] = error_msg
self.failed_plugins[plugin_name] = error_msg
return False return False
def get_loaded_plugins(self) -> List[PluginInfo]: def get_loaded_plugins(self) -> List[PluginInfo]:
@@ -174,7 +269,7 @@ class PluginManager:
# 启用插件的所有组件 # 启用插件的所有组件
for component in plugin_info.components: for component in plugin_info.components:
component_registry.enable_component(component.name) component_registry.enable_component(component.name)
logger.info(f"已启用插件: {plugin_name}") logger.debug(f"已启用插件: {plugin_name}")
return True return True
return False return False
@@ -186,7 +281,7 @@ class PluginManager:
# 禁用插件的所有组件 # 禁用插件的所有组件
for component in plugin_info.components: for component in plugin_info.components:
component_registry.disable_component(component.name) component_registry.disable_component(component.name)
logger.info(f"已禁用插件: {plugin_name}") logger.debug(f"已禁用插件: {plugin_name}")
return True return True
return False return False

View File

@@ -0,0 +1,27 @@
# 核心动作插件配置文件
[plugin]
name = "core_actions"
description = "系统核心动作插件"
version = "0.2"
author = "built-in"
enabled = true
[no_reply]
# 等待新消息的超时时间(秒)
waiting_timeout = 1200
[emoji]
# 表情动作配置
enabled = true
# 在Normal模式下的随机激活概率
random_probability = 0.1
# 是否启用智能表情选择
smart_selection = true
# LLM判断相关配置
[emoji.llm_judge]
# 是否启用LLM智能判断
enabled = true
# 自定义判断提示词(可选)
custom_prompt = ""

View File

@@ -0,0 +1,395 @@
"""
核心动作插件
将系统核心动作reply、no_reply、emoji转换为新插件系统格式
这是系统的内置插件,提供基础的聊天交互功能
"""
import asyncio
import re
import time
import traceback
from typing import List, Tuple, Type, Optional
# 导入新插件系统
from src.plugin_system import (
BasePlugin, register_plugin, BaseAction,
ComponentInfo, ActionInfo, ActionActivationType, ChatMode
)
# 导入依赖的系统组件
from src.common.logger_manager import get_logger
from src.chat.heart_flow.observation.observation import Observation
from src.chat.heart_flow.observation.chatting_observation import ChattingObservation
from src.chat.focus_chat.hfc_utils import create_empty_anchor_message, parse_thinking_id_to_timestamp
from src.chat.utils.timer_calculator import Timer
from src.common.database.database_model import ActionRecords
from src.config.config import global_config
logger = get_logger("core_actions")
# 常量定义
WAITING_TIME_THRESHOLD = 1200 # 等待新消息时间阈值,单位秒
class ReplyAction(BaseAction):
"""回复动作 - 参与聊天回复"""
# 激活设置
focus_activation_type = ActionActivationType.ALWAYS
normal_activation_type = ActionActivationType.NEVER
mode_enable = ChatMode.FOCUS
parallel_action = False
# 动作参数定义(旧系统格式)
action_parameters = {
"reply_to": "如果是明确回复某个人的发言请在reply_to参数中指定格式用户名:发言内容如果不是reply_to的值设为none"
}
# 动作使用场景(旧系统字段名)
action_require = [
"你想要闲聊或者随便附和",
"有人提到你",
"如果你刚刚进行了回复,不要对同一个话题重复回应"
]
# 关联类型
associated_types = ["text"]
async def execute(self) -> Tuple[bool, str]:
"""执行回复动作"""
logger.info(f"{self.log_prefix} 决定回复: {self.reasoning}")
try:
# 获取聊天观察
chatting_observation = self._get_chatting_observation()
if not chatting_observation:
return False, "未找到聊天观察"
# 处理回复目标
anchor_message = await self._resolve_reply_target(chatting_observation)
# 获取回复器服务
replyer = self.api.get_service("replyer")
if not replyer:
logger.error(f"{self.log_prefix} 未找到回复器服务")
return False, "回复器服务不可用"
# 执行回复
success, reply_set = await replyer.deal_reply(
cycle_timers=self.cycle_timers,
action_data=self.action_data,
anchor_message=anchor_message,
reasoning=self.reasoning,
thinking_id=self.thinking_id,
)
# 构建回复文本
reply_text = self._build_reply_text(reply_set)
# 存储动作记录
await self.api.store_action_info(
action_build_into_prompt=False,
action_prompt_display=reply_text,
action_done=True,
thinking_id=self.thinking_id,
action_data=self.action_data
)
return success, reply_text
except Exception as e:
logger.error(f"{self.log_prefix} 回复动作执行失败: {e}")
return False, f"回复失败: {str(e)}"
def _get_chatting_observation(self) -> Optional[ChattingObservation]:
"""获取聊天观察对象"""
observations = self.api.get_service("observations") or []
for obs in observations:
if isinstance(obs, ChattingObservation):
return obs
return None
async def _resolve_reply_target(self, chatting_observation: ChattingObservation):
"""解析回复目标消息"""
reply_to = self.action_data.get("reply_to", "none")
if ":" in reply_to or "" in reply_to:
# 解析回复目标格式:用户名:消息内容
parts = re.split(pattern=r"[:]", string=reply_to, maxsplit=1)
if len(parts) == 2:
target = parts[1].strip()
anchor_message = chatting_observation.search_message_by_text(target)
if anchor_message:
chat_stream = self.api.get_service("chat_stream")
if chat_stream:
anchor_message.update_chat_stream(chat_stream)
return anchor_message
# 创建空锚点消息
logger.info(f"{self.log_prefix} 未找到锚点消息,创建占位符")
chat_stream = self.api.get_service("chat_stream")
if chat_stream:
return await create_empty_anchor_message(
chat_stream.platform,
chat_stream.group_info,
chat_stream
)
return None
def _build_reply_text(self, reply_set) -> str:
"""构建回复文本"""
reply_text = ""
if reply_set:
for reply in reply_set:
reply_type = reply[0]
data = reply[1]
if reply_type in ["text", "emoji"]:
reply_text += data
return reply_text
class NoReplyAction(BaseAction):
"""不回复动作,继承时会等待新消息或超时"""
focus_activation_type = ActionActivationType.ALWAYS
normal_activation_type = ActionActivationType.NEVER
mode_enable = ChatMode.FOCUS
parallel_action = False
# 默认超时时间,将由插件在注册时设置
waiting_timeout = 1200
# 动作参数定义
action_parameters = {}
# 动作使用场景
action_require = [
"你连续发送了太多消息,且无人回复",
"想要暂时不回复"
]
# 关联类型
associated_types = []
async def execute(self) -> Tuple[bool, str]:
"""执行不回复动作,等待新消息或超时"""
try:
# 使用类属性中的超时时间
timeout = self.waiting_timeout
logger.info(f"{self.log_prefix} 选择不回复,等待新消息中... (超时: {timeout}秒)")
# 等待新消息或达到时间上限
return await self.api.wait_for_new_message(timeout)
except Exception as e:
logger.error(f"{self.log_prefix} 不回复动作执行失败: {e}")
return False, f"不回复动作执行失败: {e}"
class EmojiAction(BaseAction):
"""表情动作 - 发送表情包"""
# 激活设置
focus_activation_type = ActionActivationType.LLM_JUDGE
normal_activation_type = ActionActivationType.RANDOM
mode_enable = ChatMode.ALL
parallel_action = True
random_activation_probability = 0.1 # 默认值,可通过配置覆盖
# LLM判断提示词
llm_judge_prompt = """
判定是否需要使用表情动作的条件:
1. 用户明确要求使用表情包
2. 这是一个适合表达强烈情绪的场合
3. 不要发送太多表情包,如果你已经发送过多个表情包则回答""
请回答""""
"""
# 动作参数定义
action_parameters = {
"description": "文字描述你想要发送的表情包内容"
}
# 动作使用场景
action_require = [
"表达情绪时可以选择使用",
"重点:不要连续发,如果你已经发过[表情包],就不要选择此动作"
]
# 关联类型
associated_types = ["emoji"]
async def execute(self) -> Tuple[bool, str]:
"""执行表情动作"""
logger.info(f"{self.log_prefix} 决定发送表情")
try:
# 创建空锚点消息
anchor_message = await self._create_anchor_message()
if not anchor_message:
return False, "无法创建锚点消息"
# 获取回复器服务
replyer = self.api.get_service("replyer")
if not replyer:
logger.error(f"{self.log_prefix} 未找到回复器服务")
return False, "回复器服务不可用"
# 执行表情处理
success, reply_set = await replyer.deal_emoji(
cycle_timers=self.cycle_timers,
action_data=self.action_data,
anchor_message=anchor_message,
thinking_id=self.thinking_id,
)
# 构建回复文本
reply_text = self._build_reply_text(reply_set)
return success, reply_text
except Exception as e:
logger.error(f"{self.log_prefix} 表情动作执行失败: {e}")
return False, f"表情发送失败: {str(e)}"
async def _create_anchor_message(self):
"""创建锚点消息"""
chat_stream = self.api.get_service("chat_stream")
if chat_stream:
logger.info(f"{self.log_prefix} 为表情包创建占位符")
return await create_empty_anchor_message(
chat_stream.platform,
chat_stream.group_info,
chat_stream
)
return None
def _build_reply_text(self, reply_set) -> str:
"""构建回复文本"""
reply_text = ""
if reply_set:
for reply in reply_set:
reply_type = reply[0]
data = reply[1]
if reply_type in ["text", "emoji"]:
reply_text += data
return reply_text
class ExitFocusChatAction(BaseAction):
"""退出专注聊天动作 - 从专注模式切换到普通模式"""
# 激活设置
focus_activation_type = ActionActivationType.LLM_JUDGE
normal_activation_type = ActionActivationType.NEVER
mode_enable = ChatMode.FOCUS
parallel_action = False
# LLM判断提示词
llm_judge_prompt = """
判定是否需要退出专注聊天的条件:
1. 很长时间没有回复,应该退出专注聊天
2. 当前内容不需要持续专注关注
3. 聊天内容已经完成,话题结束
请回答""""
"""
# 动作参数定义
action_parameters = {}
# 动作使用场景
action_require = [
"很长时间没有回复,你决定退出专注聊天",
"当前内容不需要持续专注关注,你决定退出专注聊天",
"聊天内容已经完成,你决定退出专注聊天"
]
# 关联类型
associated_types = []
async def execute(self) -> Tuple[bool, str]:
"""执行退出专注聊天动作"""
logger.info(f"{self.log_prefix} 决定退出专注聊天: {self.reasoning}")
try:
# 转换状态 - 这里返回特殊的命令标识
status_message = ""
# 通过返回值中的特殊标识来通知系统执行状态切换
# 系统会识别这个返回值并执行相应的状态切换逻辑
self._mark_state_change()
return True, status_message
except Exception as e:
logger.error(f"{self.log_prefix} 退出专注聊天动作执行失败: {e}")
return False, f"退出专注聊天失败: {str(e)}"
def _mark_state_change(self):
"""标记状态切换请求"""
# 通过action_data传递状态切换命令
self.action_data["_system_command"] = "stop_focus_chat"
logger.debug(f"{self.log_prefix} 已标记状态切换命令: stop_focus_chat")
@register_plugin
class CoreActionsPlugin(BasePlugin):
"""核心动作插件
系统内置插件,提供基础的聊天交互功能:
- Reply: 回复动作
- NoReply: 不回复动作
- Emoji: 表情动作
"""
# 插件基本信息
plugin_name = "core_actions"
plugin_description = "系统核心动作插件,提供基础聊天交互功能"
plugin_version = "1.0.0"
plugin_author = "MaiBot团队"
enable_plugin = True
config_file_name = "config.toml"
def get_plugin_components(self) -> List[Tuple[ComponentInfo, Type]]:
"""返回插件包含的组件列表"""
# 从配置获取表情动作的随机概率
emoji_chance = self.get_config("emoji.random_probability", 0.1)
# 动态设置EmojiAction的随机概率
EmojiAction.random_activation_probability = emoji_chance
# 从配置获取不回复动作的超时时间
no_reply_timeout = self.get_config("no_reply.waiting_timeout", 1200)
# 动态设置NoReplyAction的超时时间
NoReplyAction.waiting_timeout = no_reply_timeout
return [
# 回复动作
(ReplyAction.get_action_info(
name="reply",
description="参与聊天回复,处理文本和表情的发送"
), ReplyAction),
# 不回复动作
(NoReplyAction.get_action_info(
name="no_reply",
description="暂时不回复消息,等待新消息或超时"
), NoReplyAction),
# 表情动作
(EmojiAction.get_action_info(
name="emoji",
description="发送表情包辅助表达情绪"
), EmojiAction),
# 退出专注聊天动作
(ExitFocusChatAction.get_action_info(
name="exit_focus_chat",
description="退出专注聊天,从专注模式切换到普通模式"
), ExitFocusChatAction)
]

View File

@@ -40,13 +40,12 @@ class HelloAction(BaseAction):
async def execute(self) -> Tuple[bool, str]: async def execute(self) -> Tuple[bool, str]:
"""执行问候动作""" """执行问候动作"""
username = self.action_data.get("username", "朋友") username = self.action_data.get("username", "朋友")
# 使用配置文件中的问候消息 # 使用默认配置值(避免创建新插件实例)
plugin_instance = SimplePlugin() greeting_template = "你好,{username}"
greeting_template = plugin_instance.get_config("hello_action.greeting_message", "你好,{username}") enable_emoji = True
enable_emoji = plugin_instance.get_config("hello_action.enable_emoji", True) enable_llm = False
enable_llm = plugin_instance.get_config("hello_action.enable_llm_greeting", False)
# 如果启用LLM生成个性化问候 # 如果启用LLM生成个性化问候
if enable_llm: if enable_llm:
try: try:
@@ -117,12 +116,11 @@ class StatusCommand(BaseCommand):
"""执行状态查询命令""" """执行状态查询命令"""
# 获取匹配的参数 # 获取匹配的参数
query_type = self.matched_groups.get("type", "系统") query_type = self.matched_groups.get("type", "系统")
# 从配置文件获取设置 # 使用默认配置值(避免创建新插件实例)
plugin_instance = SimplePlugin() show_detailed = True
show_detailed = plugin_instance.get_config("status_command.show_detailed_info", True) allowed_types = ["系统", "插件"]
allowed_types = plugin_instance.get_config("status_command.allowed_types", ["系统", "插件"])
if query_type not in allowed_types: if query_type not in allowed_types:
response = f"不支持的查询类型: {query_type}\n支持的类型: {', '.join(allowed_types)}" response = f"不支持的查询类型: {query_type}\n支持的类型: {', '.join(allowed_types)}"
elif show_detailed: elif show_detailed: