feat:继续重构插件api

This commit is contained in:
SengokuCola
2025-06-10 19:16:58 +08:00
parent e5007cc8cd
commit de0bdd3766
19 changed files with 2161 additions and 682 deletions

View File

@@ -1,7 +0,0 @@
# 导入所有动作模块以确保装饰器被执行
from . import reply_action # noqa
from . import no_reply_action # noqa
from . import exit_focus_chat_action # noqa
from . import emoji_action # noqa
# 在此处添加更多动作模块导入

View File

@@ -1,147 +0,0 @@
from src.common.logger_manager import get_logger
from src.chat.actions.base_action import BaseAction, register_action, ActionActivationType, ChatMode
from typing import Tuple, List
from src.chat.heart_flow.observation.observation import Observation
from src.chat.focus_chat.replyer.default_replyer import DefaultReplyer
from src.chat.message_receive.chat_stream import ChatStream
from src.chat.focus_chat.hfc_utils import create_empty_anchor_message
from src.config.config import global_config
logger = get_logger("action_taken")
@register_action
class EmojiAction(BaseAction):
"""表情动作处理类
处理构建和发送消息表情的动作。
"""
action_name: str = "emoji"
action_description: str = "当你想单独发送一个表情包辅助你的回复表达"
action_parameters: dict[str:str] = {
"description": "文字描述你想要发送的表情包内容",
}
action_require: list[str] = ["表达情绪时可以选择使用", "重点:不要连续发,如果你已经发过[表情包],就不要选择此动作"]
associated_types: list[str] = ["emoji"]
enable_plugin = True
focus_activation_type = ActionActivationType.LLM_JUDGE
normal_activation_type = ActionActivationType.RANDOM
random_activation_probability = global_config.normal_chat.emoji_chance
parallel_action = True
llm_judge_prompt = """
判定是否需要使用表情动作的条件:
1. 用户明确要求使用表情包
2. 这是一个适合表达强烈情绪的场合
3. 不要发送太多表情包,如果你已经发送过多个表情包
"""
# 模式启用设置 - 表情动作只在Focus模式下使用
mode_enable = ChatMode.ALL
def __init__(
self,
action_data: dict,
reasoning: str,
cycle_timers: dict,
thinking_id: str,
observations: List[Observation],
chat_stream: ChatStream,
log_prefix: str,
replyer: DefaultReplyer,
**kwargs,
):
"""初始化回复动作处理器
Args:
action_name: 动作名称
action_data: 动作数据,包含 message, emojis, target 等
reasoning: 执行该动作的理由
cycle_timers: 计时器字典
thinking_id: 思考ID
observations: 观察列表
replyer: 回复器
chat_stream: 聊天流
log_prefix: 日志前缀
"""
super().__init__(action_data, reasoning, cycle_timers, thinking_id)
self.observations = observations
self.replyer = replyer
self.chat_stream = chat_stream
self.log_prefix = log_prefix
async def handle_action(self) -> Tuple[bool, str]:
"""
处理回复动作
Returns:
Tuple[bool, str]: (是否执行成功, 回复文本)
"""
# 注意: 此处可能会使用不同的expressor实现根据任务类型切换不同的回复策略
return await self._handle_reply(
reasoning=self.reasoning,
reply_data=self.action_data,
cycle_timers=self.cycle_timers,
thinking_id=self.thinking_id,
)
async def _handle_reply(
self, reasoning: str, reply_data: dict, cycle_timers: dict, thinking_id: str
) -> tuple[bool, str]:
"""
处理统一的回复动作 - 可包含文本和表情,顺序任意
reply_data格式:
{
"description": "描述你想要发送的表情"
}
"""
logger.info(f"{self.log_prefix} 决定发送表情")
# 从聊天观察获取锚定消息
# chatting_observation: ChattingObservation = next(
# obs for obs in self.observations if isinstance(obs, ChattingObservation)
# )
# if reply_data.get("target"):
# anchor_message = chatting_observation.search_message_by_text(reply_data["target"])
# else:
# anchor_message = None
# 如果没有找到锚点消息,创建一个占位符
# if not anchor_message:
# logger.info(f"{self.log_prefix} 未找到锚点消息,创建占位符")
# anchor_message = await create_empty_anchor_message(
# self.chat_stream.platform, self.chat_stream.group_info, self.chat_stream
# )
# else:
# anchor_message.update_chat_stream(self.chat_stream)
logger.info(f"{self.log_prefix} 为了表情包创建占位符")
anchor_message = await create_empty_anchor_message(
self.chat_stream.platform, self.chat_stream.group_info, self.chat_stream
)
success, reply_set = await self.replyer.deal_emoji(
cycle_timers=cycle_timers,
action_data=reply_data,
anchor_message=anchor_message,
# reasoning=reasoning,
thinking_id=thinking_id,
)
reply_text = ""
if reply_set:
for reply in reply_set:
type = reply[0]
data = reply[1]
if type == "text":
reply_text += data
elif type == "emoji":
reply_text += data
return success, reply_text

View File

@@ -1,88 +0,0 @@
import asyncio
import traceback
from src.common.logger_manager import get_logger
from src.chat.actions.base_action import BaseAction, register_action, ChatMode
from typing import Tuple, List
from src.chat.heart_flow.observation.observation import Observation
from src.chat.message_receive.chat_stream import ChatStream
logger = get_logger("action_taken")
@register_action
class ExitFocusChatAction(BaseAction):
"""退出专注聊天动作处理类
处理决定退出专注聊天的动作。
执行后会将所属的sub heartflow转变为normal_chat状态。
"""
action_name = "exit_focus_chat"
action_description = "退出专注聊天,转为普通聊天模式"
action_parameters = {}
action_require = [
"很长时间没有回复,你决定退出专注聊天",
"当前内容不需要持续专注关注,你决定退出专注聊天",
"聊天内容已经完成,你决定退出专注聊天",
]
# 退出专注聊天是系统核心功能,不是插件,但默认不启用(需要特定条件触发)
enable_plugin = False
# 模式启用设置 - 退出专注聊天动作只在Focus模式下使用
mode_enable = ChatMode.FOCUS
def __init__(
self,
action_data: dict,
reasoning: str,
cycle_timers: dict,
thinking_id: str,
observations: List[Observation],
log_prefix: str,
chat_stream: ChatStream,
shutting_down: bool = False,
**kwargs,
):
"""初始化退出专注聊天动作处理器
Args:
action_data: 动作数据
reasoning: 执行该动作的理由
cycle_timers: 计时器字典
thinking_id: 思考ID
observations: 观察列表
log_prefix: 日志前缀
shutting_down: 是否正在关闭
"""
super().__init__(action_data, reasoning, cycle_timers, thinking_id)
self.observations = observations
self.log_prefix = log_prefix
self._shutting_down = shutting_down
async def handle_action(self) -> Tuple[bool, str]:
"""
处理退出专注聊天的情况
工作流程:
1. 将sub heartflow转换为normal_chat状态
2. 等待新消息、超时或关闭信号
3. 根据等待结果更新连续不回复计数
4. 如果达到阈值,触发回调
Returns:
Tuple[bool, str]: (是否执行成功, 状态转换消息)
"""
try:
# 转换状态
status_message = ""
command = "stop_focus_chat"
return True, status_message, command
except asyncio.CancelledError:
logger.info(f"{self.log_prefix} 处理 'exit_focus_chat' 时等待被中断 (CancelledError)")
raise
except Exception as e:
error_msg = f"处理 'exit_focus_chat' 时发生错误: {str(e)}"
logger.error(f"{self.log_prefix} {error_msg}")
logger.error(traceback.format_exc())
return False, "", ""

View File

@@ -1,139 +0,0 @@
import asyncio
import traceback
from src.common.logger_manager import get_logger
from src.chat.utils.timer_calculator import Timer
from src.chat.actions.base_action import BaseAction, register_action, ActionActivationType, ChatMode
from typing import Tuple, List
from src.chat.heart_flow.observation.observation import Observation
from src.chat.heart_flow.observation.chatting_observation import ChattingObservation
from src.chat.focus_chat.hfc_utils import parse_thinking_id_to_timestamp
logger = get_logger("action_taken")
# 常量定义
WAITING_TIME_THRESHOLD = 1200 # 等待新消息时间阈值,单位秒
@register_action
class NoReplyAction(BaseAction):
"""不回复动作处理类
处理决定不回复的动作。
"""
action_name = "no_reply"
action_description = "暂时不回复消息"
action_parameters = {}
action_require = [
"你连续发送了太多消息,且无人回复",
"想要休息一下",
]
enable_plugin = True
# 激活类型设置
focus_activation_type = ActionActivationType.ALWAYS
# 模式启用设置 - no_reply动作只在Focus模式下使用
mode_enable = ChatMode.FOCUS
def __init__(
self,
action_data: dict,
reasoning: str,
cycle_timers: dict,
thinking_id: str,
observations: List[Observation],
log_prefix: str,
shutting_down: bool = False,
**kwargs,
):
"""初始化不回复动作处理器
Args:
action_name: 动作名称
action_data: 动作数据
reasoning: 执行该动作的理由
cycle_timers: 计时器字典
thinking_id: 思考ID
observations: 观察列表
log_prefix: 日志前缀
shutting_down: 是否正在关闭
"""
super().__init__(action_data, reasoning, cycle_timers, thinking_id)
self.observations = observations
self.log_prefix = log_prefix
self._shutting_down = shutting_down
async def handle_action(self) -> Tuple[bool, str]:
"""
处理不回复的情况
工作流程:
1. 等待新消息、超时或关闭信号
2. 根据等待结果更新连续不回复计数
3. 如果达到阈值,触发回调
Returns:
Tuple[bool, str]: (是否执行成功, 空字符串)
"""
logger.info(f"{self.log_prefix} 决定不回复: {self.reasoning}")
observation = self.observations[0] if self.observations else None
try:
with Timer("等待新消息", self.cycle_timers):
# 等待新消息、超时或关闭信号,并获取结果
await self._wait_for_new_message(observation, self.thinking_id, self.log_prefix)
return True, "" # 不回复动作没有回复文本
except asyncio.CancelledError:
logger.info(f"{self.log_prefix} 处理 'no_reply' 时等待被中断 (CancelledError)")
raise
except Exception as e: # 捕获调用管理器或其他地方可能发生的错误
logger.error(f"{self.log_prefix} 处理 'no_reply' 时发生错误: {e}")
logger.error(traceback.format_exc())
return False, ""
async def _wait_for_new_message(self, observation: ChattingObservation, thinking_id: str, log_prefix: str) -> bool:
"""
等待新消息 或 检测到关闭信号
参数:
observation: 观察实例
thinking_id: 思考ID
log_prefix: 日志前缀
返回:
bool: 是否检测到新消息 (如果因关闭信号退出则返回 False)
"""
wait_start_time = asyncio.get_event_loop().time()
while True:
# --- 在每次循环开始时检查关闭标志 ---
if self._shutting_down:
logger.info(f"{log_prefix} 等待新消息时检测到关闭信号,中断等待。")
return False # 表示因为关闭而退出
# -----------------------------------
thinking_id_timestamp = parse_thinking_id_to_timestamp(thinking_id)
# 检查新消息
if await observation.has_new_messages_since(thinking_id_timestamp):
logger.info(f"{log_prefix} 检测到新消息")
return True
# 检查超时 (放在检查新消息和关闭之后)
if asyncio.get_event_loop().time() - wait_start_time > WAITING_TIME_THRESHOLD:
logger.warning(f"{log_prefix} 等待新消息超时({WAITING_TIME_THRESHOLD}秒)")
return False
try:
# 短暂休眠,让其他任务有机会运行,并能更快响应取消或关闭
await asyncio.sleep(0.5) # 缩短休眠时间
except asyncio.CancelledError:
# 如果在休眠时被取消,再次检查关闭标志
# 如果是正常关闭,则不需要警告
if not self._shutting_down:
logger.warning(f"{log_prefix} _wait_for_new_message 的休眠被意外取消")
# 无论如何,重新抛出异常,让上层处理
raise

View File

@@ -1,193 +0,0 @@
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
from src.common.logger_manager import get_logger
from src.chat.actions.base_action import BaseAction, register_action, ActionActivationType, ChatMode
from typing import Tuple, List
from src.chat.heart_flow.observation.observation import Observation
from src.chat.focus_chat.replyer.default_replyer import DefaultReplyer
from src.chat.message_receive.chat_stream import ChatStream
from src.chat.heart_flow.observation.chatting_observation import ChattingObservation
from src.chat.focus_chat.hfc_utils import create_empty_anchor_message
import time
import traceback
from src.common.database.database_model import ActionRecords
import re
logger = get_logger("action_taken")
@register_action
class ReplyAction(BaseAction):
"""回复动作处理类
处理构建和发送消息回复的动作。
"""
action_name: str = "reply"
action_description: str = "当你想要参与回复或者聊天"
action_parameters: dict[str:str] = {
"reply_to": "如果是明确回复某个人的发言请在reply_to参数中指定格式用户名:发言内容如果不是reply_to的值设为none"
}
action_require: list[str] = [
"你想要闲聊或者随便附和",
"有人提到你",
"如果你刚刚进行了回复,不要对同一个话题重复回应",
]
associated_types: list[str] = ["text"]
enable_plugin = True
# 激活类型设置
focus_activation_type = ActionActivationType.ALWAYS
# 模式启用设置 - 回复动作只在Focus模式下使用
mode_enable = ChatMode.FOCUS
def __init__(
self,
action_data: dict,
reasoning: str,
cycle_timers: dict,
thinking_id: str,
observations: List[Observation],
chat_stream: ChatStream,
log_prefix: str,
replyer: DefaultReplyer,
**kwargs,
):
"""初始化回复动作处理器
Args:
action_name: 动作名称
action_data: 动作数据,包含 message, emojis, target 等
reasoning: 执行该动作的理由
cycle_timers: 计时器字典
thinking_id: 思考ID
observations: 观察列表
replyer: 回复器
chat_stream: 聊天流
log_prefix: 日志前缀
"""
super().__init__(action_data, reasoning, cycle_timers, thinking_id)
self.observations = observations
self.replyer = replyer
self.chat_stream = chat_stream
self.log_prefix = log_prefix
async def handle_action(self) -> Tuple[bool, str]:
"""
处理回复动作
Returns:
Tuple[bool, str]: (是否执行成功, 回复文本)
"""
# 注意: 此处可能会使用不同的expressor实现根据任务类型切换不同的回复策略
success, reply_text = await self._handle_reply(
reasoning=self.reasoning,
reply_data=self.action_data,
cycle_timers=self.cycle_timers,
thinking_id=self.thinking_id,
)
await self.store_action_info(
action_build_into_prompt=False,
action_prompt_display=f"{reply_text}",
)
return success, reply_text
async def _handle_reply(
self, reasoning: str, reply_data: dict, cycle_timers: dict, thinking_id: str
) -> tuple[bool, str]:
"""
处理统一的回复动作 - 可包含文本和表情,顺序任意
reply_data格式:
{
"text": "你好啊" # 文本内容列表(可选)
"target": "锚定消息", # 锚定消息的文本内容
}
"""
logger.info(f"{self.log_prefix} 决定回复: {self.reasoning}")
# 从聊天观察获取锚定消息
chatting_observation: ChattingObservation = next(
obs for obs in self.observations if isinstance(obs, ChattingObservation)
)
reply_to = reply_data.get("reply_to", "none")
if ":" in reply_to or "" in reply_to:
# 使用正则表达式匹配中文或英文冒号
parts = re.split(pattern=r"[:]", string=reply_to, maxsplit=1)
if len(parts) == 2:
target = parts[1].strip()
anchor_message = chatting_observation.search_message_by_text(target)
else:
anchor_message = None
if anchor_message:
anchor_message.update_chat_stream(self.chat_stream)
else:
logger.info(f"{self.log_prefix} 未找到锚点消息,创建占位符")
anchor_message = await create_empty_anchor_message(
self.chat_stream.platform, self.chat_stream.group_info, self.chat_stream
)
success, reply_set = await self.replyer.deal_reply(
cycle_timers=cycle_timers,
action_data=reply_data,
anchor_message=anchor_message,
reasoning=reasoning,
thinking_id=thinking_id,
)
reply_text = ""
for reply in reply_set:
type = reply[0]
data = reply[1]
if type == "text":
reply_text += data
elif type == "emoji":
reply_text += data
return success, reply_text
async def store_action_info(
self, action_build_into_prompt: bool = False, action_prompt_display: str = "", action_done: bool = True
) -> None:
"""存储action执行信息到数据库
Args:
action_build_into_prompt: 是否构建到提示中
action_prompt_display: 动作显示内容
"""
try:
chat_stream = self.chat_stream
if not chat_stream:
logger.error(f"{self.log_prefix} 无法存储action信息缺少chat_stream服务")
return
action_time = time.time()
action_id = f"{action_time}_{self.thinking_id}"
ActionRecords.create(
action_id=action_id,
time=action_time,
action_name=self.__class__.__name__,
action_data=str(self.action_data),
action_done=action_done,
action_build_into_prompt=action_build_into_prompt,
action_prompt_display=action_prompt_display,
chat_id=chat_stream.stream_id,
chat_info_stream_id=chat_stream.stream_id,
chat_info_platform=chat_stream.platform,
user_id=chat_stream.user_info.user_id if chat_stream.user_info else "",
user_nickname=chat_stream.user_info.user_nickname if chat_stream.user_info else "",
user_cardname=chat_stream.user_info.user_cardname if chat_stream.user_info else "",
)
logger.debug(f"{self.log_prefix} 已存储action信息: {action_prompt_display}")
except Exception as e:
logger.error(f"{self.log_prefix} 存储action信息时出错: {e}")
traceback.print_exc()

View File

@@ -15,6 +15,77 @@ logger = get_logger("action_manager")
ActionInfo = Dict[str, Any]
class PluginActionWrapper(BaseAction):
"""
新插件系统Action组件的兼容性包装器
将新插件系统的Action组件包装为旧系统兼容的BaseAction接口
"""
def __init__(self, plugin_action, action_name: str, action_data: dict, reasoning: str, cycle_timers: dict, thinking_id: str):
"""初始化包装器"""
# 调用旧系统BaseAction初始化只传递它能接受的参数
super().__init__(
action_data=action_data,
reasoning=reasoning,
cycle_timers=cycle_timers,
thinking_id=thinking_id
)
# 存储插件Action实例它已经包含了所有必要的服务对象
self.plugin_action = plugin_action
self.action_name = action_name
# 从插件Action实例复制属性到包装器
self._sync_attributes_from_plugin_action()
def _sync_attributes_from_plugin_action(self):
"""从插件Action实例同步属性到包装器"""
# 基本属性
self.action_name = getattr(self.plugin_action, 'action_name', self.action_name)
# 设置兼容的默认值
self.action_description = f"插件Action: {self.action_name}"
self.action_parameters = {}
self.action_require = []
# 激活类型属性(从新插件系统转换)
plugin_focus_type = getattr(self.plugin_action, 'focus_activation_type', None)
plugin_normal_type = getattr(self.plugin_action, 'normal_activation_type', None)
if plugin_focus_type:
self.focus_activation_type = plugin_focus_type.value if hasattr(plugin_focus_type, 'value') else str(plugin_focus_type)
if plugin_normal_type:
self.normal_activation_type = plugin_normal_type.value if hasattr(plugin_normal_type, 'value') else str(plugin_normal_type)
# 其他属性
self.random_activation_probability = getattr(self.plugin_action, 'random_activation_probability', 0.0)
self.llm_judge_prompt = getattr(self.plugin_action, 'llm_judge_prompt', "")
self.activation_keywords = getattr(self.plugin_action, 'activation_keywords', [])
self.keyword_case_sensitive = getattr(self.plugin_action, 'keyword_case_sensitive', False)
# 模式和并行设置
plugin_mode = getattr(self.plugin_action, 'mode_enable', None)
if plugin_mode:
self.mode_enable = plugin_mode.value if hasattr(plugin_mode, 'value') else str(plugin_mode)
self.parallel_action = getattr(self.plugin_action, 'parallel_action', True)
self.enable_plugin = True
async def handle_action(self) -> tuple[bool, str]:
"""兼容旧系统的动作处理接口委托给插件Action的execute方法"""
try:
# 调用插件Action的execute方法
success, response = await self.plugin_action.execute()
logger.debug(f"插件Action {self.action_name} 执行{'成功' if success else '失败'}: {response}")
return success, response
except Exception as e:
logger.error(f"插件Action {self.action_name} 执行异常: {e}")
return False, f"插件Action执行失败: {str(e)}"
class ActionManager:
"""
动作管理器,用于管理各种类型的动作
@@ -113,13 +184,73 @@ class ActionManager:
加载所有插件目录中的动作
注意插件动作的实际导入已经在main.py中完成这里只需要从_ACTION_REGISTRY获取
同时也从新插件系统的component_registry获取Action组件
"""
try:
# 插件动作已在main.py中加载这里只需要从_ACTION_REGISTRY获取
# 从旧的_ACTION_REGISTRY获取插件动作
self._load_registered_actions()
logger.info("从注册表加载插件动作成功")
logger.debug("注册表加载插件动作成功")
# 从新插件系统获取Action组件
self._load_plugin_system_actions()
logger.debug("从新插件系统加载Action组件成功")
except Exception as e:
logger.error(f"加载插件动作失败: {e}")
def _load_plugin_system_actions(self) -> None:
"""从新插件系统的component_registry加载Action组件"""
try:
from src.plugin_system.core.component_registry import component_registry
from src.plugin_system.base.component_types import ComponentType
# 获取所有Action组件
action_components = component_registry.get_components_by_type(ComponentType.ACTION)
for action_name, action_info in action_components.items():
if action_name in self._registered_actions:
logger.debug(f"Action组件 {action_name} 已存在,跳过")
continue
# 将新插件系统的ActionInfo转换为旧系统格式
converted_action_info = {
"description": action_info.description,
"parameters": getattr(action_info, 'action_parameters', {}),
"require": getattr(action_info, 'action_require', []),
"associated_types": getattr(action_info, 'associated_types', []),
"enable_plugin": action_info.enabled,
# 激活类型相关
"focus_activation_type": action_info.focus_activation_type.value,
"normal_activation_type": action_info.normal_activation_type.value,
"random_activation_probability": action_info.random_activation_probability,
"llm_judge_prompt": action_info.llm_judge_prompt,
"activation_keywords": action_info.activation_keywords,
"keyword_case_sensitive": action_info.keyword_case_sensitive,
# 模式和并行设置
"mode_enable": action_info.mode_enable.value,
"parallel_action": action_info.parallel_action,
# 标记这是来自新插件系统的组件
"_plugin_system_component": True,
"_plugin_name": getattr(action_info, 'plugin_name', ''),
}
self._registered_actions[action_name] = converted_action_info
# 如果启用,也添加到默认动作集
if action_info.enabled:
self._default_actions[action_name] = converted_action_info
logger.debug(f"从插件系统加载Action组件: {action_name} (插件: {getattr(action_info, 'plugin_name', 'unknown')})")
logger.info(f"从新插件系统加载了 {len(action_components)} 个Action组件")
except Exception as e:
logger.error(f"从插件系统加载Action组件失败: {e}")
import traceback
logger.error(traceback.format_exc())
def create_action(
self,
@@ -158,7 +289,16 @@ class ActionManager:
# if action_name not in self._using_actions:
# logger.warning(f"当前不可用的动作类型: {action_name}")
# return None
# 检查是否是新插件系统的Action组件
action_info = self._registered_actions.get(action_name)
if action_info and action_info.get("_plugin_system_component", False):
return self._create_plugin_system_action(
action_name, action_data, reasoning, cycle_timers, thinking_id,
observations, chat_stream, log_prefix, shutting_down, expressor, replyer
)
# 旧系统的动作创建逻辑
handler_class = _ACTION_REGISTRY.get(action_name)
if not handler_class:
logger.warning(f"未注册的动作类型: {action_name}")
@@ -184,6 +324,67 @@ class ActionManager:
except Exception as e:
logger.error(f"创建动作处理器实例失败: {e}")
return None
def _create_plugin_system_action(
self,
action_name: str,
action_data: dict,
reasoning: str,
cycle_timers: dict,
thinking_id: str,
observations: List[Observation],
chat_stream: ChatStream,
log_prefix: str,
shutting_down: bool = False,
expressor: DefaultExpressor = None,
replyer: DefaultReplyer = None,
) -> Optional['PluginActionWrapper']:
"""
创建新插件系统的Action组件实例并包装为兼容旧系统的接口
Returns:
Optional[PluginActionWrapper]: 包装后的Action实例
"""
try:
from src.plugin_system.core.component_registry import component_registry
# 获取组件类
component_class = component_registry.get_component_class(action_name)
if not component_class:
logger.error(f"未找到插件Action组件类: {action_name}")
return None
# 创建插件Action实例
plugin_action_instance = component_class(
action_data=action_data,
reasoning=reasoning,
cycle_timers=cycle_timers,
thinking_id=thinking_id,
chat_stream=chat_stream,
expressor=expressor,
replyer=replyer,
observations=observations,
log_prefix=log_prefix
)
# 创建兼容性包装器
wrapper = PluginActionWrapper(
plugin_action=plugin_action_instance,
action_name=action_name,
action_data=action_data,
reasoning=reasoning,
cycle_timers=cycle_timers,
thinking_id=thinking_id
)
logger.debug(f"创建插件Action实例成功: {action_name}")
return wrapper
except Exception as e:
logger.error(f"创建插件Action实例失败 {action_name}: {e}")
import traceback
logger.error(traceback.format_exc())
return None
def get_registered_actions(self) -> Dict[str, ActionInfo]:
"""获取所有已注册的动作集"""