删除注释掉的请求函数
This commit is contained in:
@@ -178,395 +178,6 @@ class LLMRequest:
|
||||
output_cost = (completion_tokens / 1000000) * self.pri_out
|
||||
return round(input_cost + output_cost, 6)
|
||||
|
||||
'''
|
||||
async def _execute_request(
|
||||
self,
|
||||
endpoint: str,
|
||||
prompt: str = None,
|
||||
image_base64: str = None,
|
||||
image_format: str = None,
|
||||
payload: dict = None,
|
||||
retry_policy: dict = None,
|
||||
response_handler: callable = None,
|
||||
user_id: str = "system",
|
||||
request_type: str = None,
|
||||
):
|
||||
"""统一请求执行入口
|
||||
Args:
|
||||
endpoint: API端点路径 (如 "chat/completions")
|
||||
prompt: prompt文本
|
||||
image_base64: 图片的base64编码
|
||||
image_format: 图片格式
|
||||
payload: 请求体数据
|
||||
retry_policy: 自定义重试策略
|
||||
response_handler: 自定义响应处理器
|
||||
user_id: 用户ID
|
||||
request_type: 请求类型
|
||||
"""
|
||||
|
||||
if request_type is None:
|
||||
request_type = self.request_type
|
||||
|
||||
# 合并重试策略
|
||||
default_retry = {
|
||||
"max_retries": 3,
|
||||
"base_wait": 10,
|
||||
"retry_codes": [429, 413, 500, 503],
|
||||
"abort_codes": [400, 401, 402, 403],
|
||||
}
|
||||
policy = {**default_retry, **(retry_policy or {})}
|
||||
|
||||
# 常见Error Code Mapping
|
||||
error_code_mapping = {
|
||||
400: "参数不正确",
|
||||
401: "API key 错误,认证失败,请检查/config/bot_config.toml和.env中的配置是否正确哦~",
|
||||
402: "账号余额不足",
|
||||
403: "需要实名,或余额不足",
|
||||
404: "Not Found",
|
||||
429: "请求过于频繁,请稍后再试",
|
||||
500: "服务器内部故障",
|
||||
503: "服务器负载过高",
|
||||
}
|
||||
|
||||
api_url = f"{self.base_url.rstrip('/')}/{endpoint.lstrip('/')}"
|
||||
# 判断是否为流式
|
||||
stream_mode = self.stream
|
||||
# logger_msg = "进入流式输出模式," if stream_mode else ""
|
||||
# logger.debug(f"{logger_msg}发送请求到URL: {api_url}")
|
||||
# logger.info(f"使用模型: {self.model_name}")
|
||||
|
||||
# 构建请求体
|
||||
if image_base64:
|
||||
payload = await self._build_payload(prompt, image_base64, image_format)
|
||||
elif payload is None:
|
||||
payload = await self._build_payload(prompt)
|
||||
|
||||
# 流式输出标志
|
||||
# 先构建payload,再添加流式输出标志
|
||||
if stream_mode:
|
||||
payload["stream"] = stream_mode
|
||||
|
||||
for retry in range(policy["max_retries"]):
|
||||
try:
|
||||
# 使用上下文管理器处理会话
|
||||
headers = await self._build_headers()
|
||||
# 似乎是openai流式必须要的东西,不过阿里云的qwq-plus加了这个没有影响
|
||||
if stream_mode:
|
||||
headers["Accept"] = "text/event-stream"
|
||||
|
||||
async with aiohttp.ClientSession() as session:
|
||||
try:
|
||||
async with session.post(api_url, headers=headers, json=payload) as response:
|
||||
# 处理需要重试的状态码
|
||||
if response.status in policy["retry_codes"]:
|
||||
wait_time = policy["base_wait"] * (2**retry)
|
||||
logger.warning(
|
||||
f"模型 {self.model_name} 错误码: {response.status}, 等待 {wait_time}秒后重试"
|
||||
)
|
||||
if response.status == 413:
|
||||
logger.warning("请求体过大,尝试压缩...")
|
||||
image_base64 = compress_base64_image_by_scale(image_base64)
|
||||
payload = await self._build_payload(prompt, image_base64, image_format)
|
||||
elif response.status in [500, 503]:
|
||||
logger.error(
|
||||
f"模型 {self.model_name} 错误码: {response.status} - {error_code_mapping.get(response.status)}"
|
||||
)
|
||||
raise RuntimeError("服务器负载过高,模型恢复失败QAQ")
|
||||
else:
|
||||
logger.warning(f"模型 {self.model_name} 请求限制(429),等待{wait_time}秒后重试...")
|
||||
|
||||
await asyncio.sleep(wait_time)
|
||||
continue
|
||||
elif response.status in policy["abort_codes"]:
|
||||
logger.error(
|
||||
f"模型 {self.model_name} 错误码: {response.status} - {error_code_mapping.get(response.status)}"
|
||||
)
|
||||
# 尝试获取并记录服务器返回的详细错误信息
|
||||
try:
|
||||
error_json = await response.json()
|
||||
if error_json and isinstance(error_json, list) and len(error_json) > 0:
|
||||
for error_item in error_json:
|
||||
if "error" in error_item and isinstance(error_item["error"], dict):
|
||||
error_obj = error_item["error"]
|
||||
error_code = error_obj.get("code")
|
||||
error_message = error_obj.get("message")
|
||||
error_status = error_obj.get("status")
|
||||
logger.error(
|
||||
f"服务器错误详情: 代码={error_code}, 状态={error_status}, "
|
||||
f"消息={error_message}"
|
||||
)
|
||||
elif isinstance(error_json, dict) and "error" in error_json:
|
||||
# 处理单个错误对象的情况
|
||||
error_obj = error_json.get("error", {})
|
||||
error_code = error_obj.get("code")
|
||||
error_message = error_obj.get("message")
|
||||
error_status = error_obj.get("status")
|
||||
logger.error(
|
||||
f"服务器错误详情: 代码={error_code}, 状态={error_status}, 消息={error_message}"
|
||||
)
|
||||
else:
|
||||
# 记录原始错误响应内容
|
||||
logger.error(f"服务器错误响应: {error_json}")
|
||||
except Exception as e:
|
||||
logger.warning(f"无法解析服务器错误响应: {str(e)}")
|
||||
|
||||
if response.status == 403:
|
||||
# 只针对硅基流动的V3和R1进行降级处理
|
||||
if (
|
||||
self.model_name.startswith("Pro/deepseek-ai")
|
||||
and self.base_url == "https://api.siliconflow.cn/v1/"
|
||||
):
|
||||
old_model_name = self.model_name
|
||||
self.model_name = self.model_name[4:] # 移除"Pro/"前缀
|
||||
logger.warning(
|
||||
f"检测到403错误,模型从 {old_model_name} 降级为 {self.model_name}"
|
||||
)
|
||||
|
||||
# 对全局配置进行更新
|
||||
if global_config.llm_normal.get("name") == old_model_name:
|
||||
global_config.llm_normal["name"] = self.model_name
|
||||
logger.warning(f"将全局配置中的 llm_normal 模型临时降级至{self.model_name}")
|
||||
|
||||
if global_config.llm_reasoning.get("name") == old_model_name:
|
||||
global_config.llm_reasoning["name"] = self.model_name
|
||||
logger.warning(
|
||||
f"将全局配置中的 llm_reasoning 模型临时降级至{self.model_name}"
|
||||
)
|
||||
|
||||
# 更新payload中的模型名
|
||||
if payload and "model" in payload:
|
||||
payload["model"] = self.model_name
|
||||
|
||||
# 重新尝试请求
|
||||
retry -= 1 # 不计入重试次数
|
||||
continue
|
||||
|
||||
raise RuntimeError(f"请求被拒绝: {error_code_mapping.get(response.status)}")
|
||||
|
||||
response.raise_for_status()
|
||||
reasoning_content = ""
|
||||
|
||||
# 将流式输出转化为非流式输出
|
||||
if stream_mode:
|
||||
flag_delta_content_finished = False
|
||||
accumulated_content = ""
|
||||
usage = None # 初始化usage变量,避免未定义错误
|
||||
|
||||
async for line_bytes in response.content:
|
||||
try:
|
||||
line = line_bytes.decode("utf-8").strip()
|
||||
if not line:
|
||||
continue
|
||||
if line.startswith("data:"):
|
||||
data_str = line[5:].strip()
|
||||
if data_str == "[DONE]":
|
||||
break
|
||||
try:
|
||||
chunk = json.loads(data_str)
|
||||
if flag_delta_content_finished:
|
||||
chunk_usage = chunk.get("usage", None)
|
||||
if chunk_usage:
|
||||
usage = chunk_usage # 获取token用量
|
||||
else:
|
||||
delta = chunk["choices"][0]["delta"]
|
||||
delta_content = delta.get("content")
|
||||
if delta_content is None:
|
||||
delta_content = ""
|
||||
accumulated_content += delta_content
|
||||
# 检测流式输出文本是否结束
|
||||
finish_reason = chunk["choices"][0].get("finish_reason")
|
||||
if delta.get("reasoning_content", None):
|
||||
reasoning_content += delta["reasoning_content"]
|
||||
if finish_reason == "stop":
|
||||
chunk_usage = chunk.get("usage", None)
|
||||
if chunk_usage:
|
||||
usage = chunk_usage
|
||||
break
|
||||
# 部分平台在文本输出结束前不会返回token用量,此时需要再获取一次chunk
|
||||
flag_delta_content_finished = True
|
||||
|
||||
except Exception as e:
|
||||
logger.exception(f"模型 {self.model_name} 解析流式输出错误: {str(e)}")
|
||||
except GeneratorExit:
|
||||
logger.warning("模型 {self.model_name} 流式输出被中断,正在清理资源...")
|
||||
# 确保资源被正确清理
|
||||
await response.release()
|
||||
# 返回已经累积的内容
|
||||
result = {
|
||||
"choices": [
|
||||
{
|
||||
"message": {
|
||||
"content": accumulated_content,
|
||||
"reasoning_content": reasoning_content,
|
||||
# 流式输出可能没有工具调用,此处不需要添加tool_calls字段
|
||||
}
|
||||
}
|
||||
],
|
||||
"usage": usage,
|
||||
}
|
||||
return (
|
||||
response_handler(result)
|
||||
if response_handler
|
||||
else self._default_response_handler(result, user_id, request_type, endpoint)
|
||||
)
|
||||
except Exception as e:
|
||||
logger.error(f"模型 {self.model_name} 处理流式输出时发生错误: {str(e)}")
|
||||
# 确保在发生错误时也能正确清理资源
|
||||
try:
|
||||
await response.release()
|
||||
except Exception as cleanup_error:
|
||||
logger.error(f"清理资源时发生错误: {cleanup_error}")
|
||||
# 返回已经累积的内容
|
||||
result = {
|
||||
"choices": [
|
||||
{
|
||||
"message": {
|
||||
"content": accumulated_content,
|
||||
"reasoning_content": reasoning_content,
|
||||
# 流式输出可能没有工具调用,此处不需要添加tool_calls字段
|
||||
}
|
||||
}
|
||||
],
|
||||
"usage": usage,
|
||||
}
|
||||
return (
|
||||
response_handler(result)
|
||||
if response_handler
|
||||
else self._default_response_handler(result, user_id, request_type, endpoint)
|
||||
)
|
||||
content = accumulated_content
|
||||
think_match = re.search(r"<think>(.*?)</think>", content, re.DOTALL)
|
||||
if think_match:
|
||||
reasoning_content = think_match.group(1).strip()
|
||||
content = re.sub(r"<think>.*?</think>", "", content, flags=re.DOTALL).strip()
|
||||
# 构造一个伪result以便调用自定义响应处理器或默认处理器
|
||||
result = {
|
||||
"choices": [
|
||||
{
|
||||
"message": {
|
||||
"content": content,
|
||||
"reasoning_content": reasoning_content,
|
||||
# 流式输出可能没有工具调用,此处不需要添加tool_calls字段
|
||||
}
|
||||
}
|
||||
],
|
||||
"usage": usage,
|
||||
}
|
||||
return (
|
||||
response_handler(result)
|
||||
if response_handler
|
||||
else self._default_response_handler(result, user_id, request_type, endpoint)
|
||||
)
|
||||
else:
|
||||
result = await response.json()
|
||||
# 使用自定义处理器或默认处理
|
||||
return (
|
||||
response_handler(result)
|
||||
if response_handler
|
||||
else self._default_response_handler(result, user_id, request_type, endpoint)
|
||||
)
|
||||
|
||||
except (aiohttp.ClientError, asyncio.TimeoutError) as e:
|
||||
if retry < policy["max_retries"] - 1:
|
||||
wait_time = policy["base_wait"] * (2**retry)
|
||||
logger.error(f"模型 {self.model_name} 网络错误,等待{wait_time}秒后重试... 错误: {str(e)}")
|
||||
await asyncio.sleep(wait_time)
|
||||
continue
|
||||
else:
|
||||
logger.critical(f"模型 {self.model_name} 网络错误达到最大重试次数: {str(e)}")
|
||||
raise RuntimeError(f"网络请求失败: {str(e)}") from e
|
||||
except Exception as e:
|
||||
logger.critical(f"模型 {self.model_name} 未预期的错误: {str(e)}")
|
||||
raise RuntimeError(f"请求过程中发生错误: {str(e)}") from e
|
||||
|
||||
except aiohttp.ClientResponseError as e:
|
||||
# 处理aiohttp抛出的响应错误
|
||||
if retry < policy["max_retries"] - 1:
|
||||
wait_time = policy["base_wait"] * (2**retry)
|
||||
logger.error(
|
||||
f"模型 {self.model_name} HTTP响应错误,等待{wait_time}秒后重试... 状态码: {e.status}, 错误: {e.message}"
|
||||
)
|
||||
try:
|
||||
if hasattr(e, "response") and e.response and hasattr(e.response, "text"):
|
||||
error_text = await e.response.text()
|
||||
try:
|
||||
error_json = json.loads(error_text)
|
||||
if isinstance(error_json, list) and len(error_json) > 0:
|
||||
for error_item in error_json:
|
||||
if "error" in error_item and isinstance(error_item["error"], dict):
|
||||
error_obj = error_item["error"]
|
||||
logger.error(
|
||||
f"模型 {self.model_name} 服务器错误详情: 代码={error_obj.get('code')}, "
|
||||
f"状态={error_obj.get('status')}, "
|
||||
f"消息={error_obj.get('message')}"
|
||||
)
|
||||
elif isinstance(error_json, dict) and "error" in error_json:
|
||||
error_obj = error_json.get("error", {})
|
||||
logger.error(
|
||||
f"模型 {self.model_name} 服务器错误详情: 代码={error_obj.get('code')}, "
|
||||
f"状态={error_obj.get('status')}, "
|
||||
f"消息={error_obj.get('message')}"
|
||||
)
|
||||
else:
|
||||
logger.error(f"模型 {self.model_name} 服务器错误响应: {error_json}")
|
||||
except (json.JSONDecodeError, TypeError) as json_err:
|
||||
logger.warning(
|
||||
f"模型 {self.model_name} 响应不是有效的JSON: {str(json_err)}, 原始内容: {error_text[:200]}"
|
||||
)
|
||||
except (AttributeError, TypeError, ValueError) as parse_err:
|
||||
logger.warning(f"模型 {self.model_name} 无法解析响应错误内容: {str(parse_err)}")
|
||||
|
||||
await asyncio.sleep(wait_time)
|
||||
else:
|
||||
logger.critical(
|
||||
f"模型 {self.model_name} HTTP响应错误达到最大重试次数: 状态码: {e.status}, 错误: {e.message}"
|
||||
)
|
||||
# 安全地检查和记录请求详情
|
||||
if (
|
||||
image_base64
|
||||
and payload
|
||||
and isinstance(payload, dict)
|
||||
and "messages" in payload
|
||||
and len(payload["messages"]) > 0
|
||||
):
|
||||
if isinstance(payload["messages"][0], dict) and "content" in payload["messages"][0]:
|
||||
content = payload["messages"][0]["content"]
|
||||
if isinstance(content, list) and len(content) > 1 and "image_url" in content[1]:
|
||||
payload["messages"][0]["content"][1]["image_url"]["url"] = (
|
||||
f"data:image/{image_format.lower() if image_format else 'jpeg'};base64,"
|
||||
f"{image_base64[:10]}...{image_base64[-10:]}"
|
||||
)
|
||||
logger.critical(f"请求头: {await self._build_headers(no_key=True)} 请求体: {payload}")
|
||||
raise RuntimeError(f"模型 {self.model_name} API请求失败: 状态码 {e.status}, {e.message}") from e
|
||||
except Exception as e:
|
||||
if retry < policy["max_retries"] - 1:
|
||||
wait_time = policy["base_wait"] * (2**retry)
|
||||
logger.error(f"模型 {self.model_name} 请求失败,等待{wait_time}秒后重试... 错误: {str(e)}")
|
||||
await asyncio.sleep(wait_time)
|
||||
else:
|
||||
logger.critical(f"模型 {self.model_name} 请求失败: {str(e)}")
|
||||
# 安全地检查和记录请求详情
|
||||
if (
|
||||
image_base64
|
||||
and payload
|
||||
and isinstance(payload, dict)
|
||||
and "messages" in payload
|
||||
and len(payload["messages"]) > 0
|
||||
):
|
||||
if isinstance(payload["messages"][0], dict) and "content" in payload["messages"][0]:
|
||||
content = payload["messages"][0]["content"]
|
||||
if isinstance(content, list) and len(content) > 1 and "image_url" in content[1]:
|
||||
payload["messages"][0]["content"][1]["image_url"]["url"] = (
|
||||
f"data:image/{image_format.lower() if image_format else 'jpeg'};base64,"
|
||||
f"{image_base64[:10]}...{image_base64[-10:]}"
|
||||
)
|
||||
logger.critical(f"请求头: {await self._build_headers(no_key=True)} 请求体: {payload}")
|
||||
raise RuntimeError(f"模型 {self.model_name} API请求失败: {str(e)}") from e
|
||||
|
||||
logger.error(f"模型 {self.model_name} 达到最大重试次数,请求仍然失败")
|
||||
raise RuntimeError(f"模型 {self.model_name} 达到最大重试次数,API请求仍然失败")
|
||||
'''
|
||||
|
||||
async def _prepare_request(
|
||||
self,
|
||||
endpoint: str,
|
||||
|
||||
Reference in New Issue
Block a user