Merge remote-tracking branch 'upstream/debug' into feature
This commit is contained in:
@@ -4,6 +4,8 @@ from .message import Message
|
||||
import jieba
|
||||
from nonebot import get_driver
|
||||
from .config import global_config
|
||||
from snownlp import SnowNLP
|
||||
from ..models.utils_model import LLM_request
|
||||
|
||||
driver = get_driver()
|
||||
config = driver.config
|
||||
@@ -11,12 +13,10 @@ config = driver.config
|
||||
|
||||
class TopicIdentifier:
|
||||
def __init__(self):
|
||||
self.client = OpenAI(
|
||||
api_key=config.siliconflow_key, base_url=config.siliconflow_base_url
|
||||
)
|
||||
|
||||
def identify_topic_llm(self, text: str) -> Optional[str]:
|
||||
"""识别消息主题"""
|
||||
self.llm_client = LLM_request(model=global_config.llm_normal)
|
||||
|
||||
async def identify_topic_llm(self, text: str) -> Optional[List[str]]:
|
||||
"""识别消息主题,返回主题列表"""
|
||||
|
||||
prompt = f"""判断这条消息的主题,如果没有明显主题请回复"无主题",要求:\
|
||||
1. 主题通常2-4个字,必须简短,要求精准概括,不要太具体。\
|
||||
@@ -24,36 +24,20 @@ class TopicIdentifier:
|
||||
3. 这里是
|
||||
消息内容:{text}"""
|
||||
|
||||
response = self.client.chat.completions.create(
|
||||
model=global_config.SILICONFLOW_MODEL_V3,
|
||||
messages=[{"role": "user", "content": prompt}],
|
||||
temperature=0.8,
|
||||
max_tokens=10,
|
||||
)
|
||||
|
||||
if not response or not response.choices:
|
||||
print(f"\033[1;31m[错误]\033[0m OpenAI API 返回为空")
|
||||
# 使用 LLM_request 类进行请求
|
||||
topic, _ = await self.llm_client.generate_response(prompt)
|
||||
|
||||
if not topic:
|
||||
print(f"\033[1;31m[错误]\033[0m LLM API 返回为空")
|
||||
return None
|
||||
|
||||
# 从 OpenAI API 响应中获取第一个选项的消息内容,并去除首尾空白字符
|
||||
topic = (
|
||||
response.choices[0].message.content.strip()
|
||||
if response.choices[0].message.content
|
||||
else None
|
||||
)
|
||||
|
||||
if topic == "无主题":
|
||||
return None
|
||||
else:
|
||||
# print(f"[主题分析结果]{text[:20]}... : {topic}")
|
||||
split_topic = self.parse_topic(topic)
|
||||
return split_topic
|
||||
|
||||
def parse_topic(self, topic: str) -> List[str]:
|
||||
"""解析主题,返回主题列表"""
|
||||
|
||||
# 直接在这里处理主题解析
|
||||
if not topic or topic == "无主题":
|
||||
return []
|
||||
return [t.strip() for t in topic.split(",") if t.strip()]
|
||||
return None
|
||||
|
||||
# 解析主题字符串为列表
|
||||
topic_list = [t.strip() for t in topic.split(",") if t.strip()]
|
||||
return topic_list if topic_list else None
|
||||
|
||||
def identify_topic_jieba(self, text: str) -> Optional[str]:
|
||||
"""使用jieba识别主题"""
|
||||
@@ -239,33 +223,12 @@ class TopicIdentifier:
|
||||
filtered_words = []
|
||||
for word in words:
|
||||
if word not in stop_words and not word.strip() in {
|
||||
"。",
|
||||
",",
|
||||
"、",
|
||||
":",
|
||||
";",
|
||||
"!",
|
||||
"?",
|
||||
'"',
|
||||
'"',
|
||||
""", """,
|
||||
"(",
|
||||
")",
|
||||
"【",
|
||||
"】",
|
||||
"《",
|
||||
"》",
|
||||
"…",
|
||||
"—",
|
||||
"·",
|
||||
"、",
|
||||
"~",
|
||||
"~",
|
||||
"+",
|
||||
"=",
|
||||
"-",
|
||||
"[",
|
||||
"]",
|
||||
'。', ',', '、', ':', ';', '!', '?', '"', '"', ''', ''',
|
||||
'(', ')', '【', '】', '《', '》', '…', '—', '·', '、', '~',
|
||||
'~', '+', '=', '-', '/', '\\', '|', '*', '#', '@', '$', '%',
|
||||
'^', '&', '[', ']', '{', '}', '<', '>', '`', '_', '.', ',',
|
||||
';', ':', '\'', '"', '(', ')', '?', '!', '±', '×', '÷', '≠',
|
||||
'≈', '∈', '∉', '⊆', '⊇', '⊂', '⊃', '∪', '∩', '∧', '∨'
|
||||
}:
|
||||
filtered_words.append(word)
|
||||
|
||||
@@ -280,5 +243,25 @@ class TopicIdentifier:
|
||||
|
||||
return top_words if top_words else None
|
||||
|
||||
def identify_topic_snownlp(self, text: str) -> Optional[List[str]]:
|
||||
"""使用 SnowNLP 进行主题识别
|
||||
|
||||
Args:
|
||||
text (str): 需要识别主题的文本
|
||||
|
||||
Returns:
|
||||
Optional[List[str]]: 返回识别出的主题关键词列表,如果无法识别则返回 None
|
||||
"""
|
||||
if not text or len(text.strip()) == 0:
|
||||
return None
|
||||
|
||||
try:
|
||||
s = SnowNLP(text)
|
||||
# 提取前3个关键词作为主题
|
||||
keywords = s.keywords(3)
|
||||
return keywords if keywords else None
|
||||
except Exception as e:
|
||||
print(f"\033[1;31m[错误]\033[0m SnowNLP 处理失败: {str(e)}")
|
||||
return None
|
||||
|
||||
topic_identifier = TopicIdentifier()
|
||||
|
||||
Reference in New Issue
Block a user