This commit is contained in:
tt-P607
2025-08-19 17:44:43 +08:00

View File

@@ -83,59 +83,163 @@ class ChatConfig(ValidatedConfigBase):
proactive_thinking_interval: int = Field(default=1500, description="主动思考间隔") proactive_thinking_interval: int = Field(default=1500, description="主动思考间隔")
proactive_thinking_prompt_template: str = Field(default="", description="主动思考提示模板") proactive_thinking_prompt_template: str = Field(default="", description="主动思考提示模板")
def get_current_talk_frequency(self, stream_id: str) -> float: def get_current_talk_frequency(self, chat_stream_id: Optional[str] = None) -> float:
""" """
根据时间和聊天流ID获取当前的聊天频率 根据当前时间和聊天流获取对应的 talk_frequency
Args: Args:
stream_id: 聊天流ID chat_stream_id: 聊天流ID,格式为 "platform:chat_id:type"
Returns: Returns:
float: 当前聊天频率 float: 对应的频率
"""
if not self.talk_frequency_adjust:
return self.talk_frequency
# 优先检查聊天流特定的配置
if chat_stream_id:
stream_frequency = self._get_stream_specific_frequency(chat_stream_id)
if stream_frequency is not None:
return stream_frequency
# 检查全局时段配置(第一个元素为空字符串的配置)
global_frequency = self._get_global_frequency()
if global_frequency is not None:
return global_frequency
# 如果都没有匹配,返回默认值
return self.talk_frequency
def _get_time_based_frequency(self, time_freq_list: list[str]) -> Optional[float]:
"""
根据时间配置列表获取当前时段的频率
Args:
time_freq_list: 时间频率配置列表,格式为 ["HH:MM,frequency", ...]
Returns:
float: 频率值,如果没有配置则返回 None
""" """
import time
from datetime import datetime from datetime import datetime
# 获取当前时间 current_time = datetime.now().strftime("%H:%M")
current_time = datetime.now() current_hour, current_minute = map(int, current_time.split(":"))
current_hour = current_time.hour current_minutes = current_hour * 60 + current_minute
current_minute = current_time.minute
current_time_str = f"{current_hour:02d}:{current_minute:02d}"
# 查找匹配的聊天频率调整配置 # 解析时间频率配置
for config_entry in self.talk_frequency_adjust: time_freq_pairs = []
if not config_entry: for time_freq_str in time_freq_list:
try:
time_str, freq_str = time_freq_str.split(",")
hour, minute = map(int, time_str.split(":"))
frequency = float(freq_str)
minutes = hour * 60 + minute
time_freq_pairs.append((minutes, frequency))
except (ValueError, IndexError):
continue continue
# 第一个元素是聊天流匹配模式 if not time_freq_pairs:
stream_pattern = config_entry[0] return None
# 检查是否匹配当前聊天流 # 按时间排序
if stream_pattern == "" or stream_pattern in stream_id: time_freq_pairs.sort(key=lambda x: x[0])
# 查找当前时间对应的频率
current_frequency = self.talk_frequency
# 遍历时间-频率 # 查找当前时间对应的频率
for time_freq_pair in config_entry[1:]: current_frequency = None
if "," not in time_freq_pair: for minutes, frequency in time_freq_pairs:
continue if current_minutes >= minutes:
current_frequency = frequency
else:
break
time_part, freq_part = time_freq_pair.split(",", 1) # 如果当前时间在所有配置时间之前,使用最后一个时间段的频率(跨天逻辑)
try: if current_frequency is None and time_freq_pairs:
config_hour, config_minute = map(int, time_part.split(":")) current_frequency = time_freq_pairs[-1][1]
config_time_minutes = config_hour * 60 + config_minute
current_time_minutes = current_hour * 60 + current_minute
# 如果当前时间大于等于配置时间,更新频率 return current_frequency
if current_time_minutes >= config_time_minutes:
current_frequency = float(freq_part)
except (ValueError, IndexError):
continue
return current_frequency def _get_stream_specific_frequency(self, chat_stream_id: str):
"""
获取特定聊天流在当前时间的频率
# 如果没有找到匹配的配置,返回默认频率 Args:
return self.talk_frequency chat_stream_id: 聊天流ID哈希值
Returns:
float: 频率值,如果没有配置则返回 None
"""
# 查找匹配的聊天流配置
for config_item in self.talk_frequency_adjust:
if not config_item or len(config_item) < 2:
continue
stream_config_str = config_item[0] # 例如 "qq:1026294844:group"
# 解析配置字符串并生成对应的 chat_id
config_chat_id = self._parse_stream_config_to_chat_id(stream_config_str)
if config_chat_id is None:
continue
# 比较生成的 chat_id
if config_chat_id != chat_stream_id:
continue
# 使用通用的时间频率解析方法
return self._get_time_based_frequency(config_item[1:])
return None
def _parse_stream_config_to_chat_id(self, stream_config_str: str) -> Optional[str]:
"""
解析流配置字符串并生成对应的 chat_id
Args:
stream_config_str: 格式为 "platform:id:type" 的字符串
Returns:
str: 生成的 chat_id如果解析失败则返回 None
"""
try:
parts = stream_config_str.split(":")
if len(parts) != 3:
return None
platform = parts[0]
id_str = parts[1]
stream_type = parts[2]
# 判断是否为群聊
is_group = stream_type == "group"
# 使用与 ChatStream.get_stream_id 相同的逻辑生成 chat_id
import hashlib
if is_group:
components = [platform, str(id_str)]
else:
components = [platform, str(id_str), "private"]
key = "_".join(components)
return hashlib.md5(key.encode()).hexdigest()
except (ValueError, IndexError):
return None
def _get_global_frequency(self) -> Optional[float]:
"""
获取全局默认频率配置
Returns:
float: 频率值,如果没有配置则返回 None
"""
for config_item in self.talk_frequency_adjust:
if not config_item or len(config_item) < 2:
continue
# 检查是否为全局默认配置(第一个元素为空字符串)
if config_item[0] == "":
return self._get_time_based_frequency(config_item[1:])
return None
@@ -160,49 +264,131 @@ class ExpressionConfig(ValidatedConfigBase):
expression_learning: list[list] = Field(default_factory=lambda: [], description="表达学习") expression_learning: list[list] = Field(default_factory=lambda: [], description="表达学习")
expression_groups: list[list[str]] = Field(default_factory=list, description="表达组") expression_groups: list[list[str]] = Field(default_factory=list, description="表达组")
def get_expression_config_for_chat(self, chat_id: str) -> tuple[bool, bool, float]: def _parse_stream_config_to_chat_id(self, stream_config_str: str) -> Optional[str]:
""" """
获取指定聊天流的表达配置 解析流配置字符串并生成对应的 chat_id
Args: Args:
chat_id: 聊天流ID stream_config_str: 格式为 "platform:id:type" 的字符串
Returns: Returns:
tuple[bool, bool, float]: (use_expression, enable_learning, learning_intensity) str: 生成的 chat_id如果解析失败则返回 None
""" """
# 默认值 try:
use_expression = False parts = stream_config_str.split(":")
enable_learning = False if len(parts) != 3:
learning_intensity = 1.0 return None
# 查找匹配的表达学习配置 platform = parts[0]
for config_entry in self.expression_learning: id_str = parts[1]
if not config_entry or len(config_entry) < 4: stream_type = parts[2]
# 判断是否为群聊
is_group = stream_type == "group"
# 使用与 ChatStream.get_stream_id 相同的逻辑生成 chat_id
import hashlib
if is_group:
components = [platform, str(id_str)]
else:
components = [platform, str(id_str), "private"]
key = "_".join(components)
return hashlib.md5(key.encode()).hexdigest()
except (ValueError, IndexError):
return None
def get_expression_config_for_chat(self, chat_stream_id: Optional[str] = None) -> tuple[bool, bool, float]:
"""
根据聊天流ID获取表达配置
Args:
chat_stream_id: 聊天流ID格式为哈希值
Returns:
tuple: (是否使用表达, 是否学习表达, 学习间隔)
"""
if not self.expression_learning:
# 如果没有配置使用默认值启用表达启用学习300秒间隔
return True, True, 300
# 优先检查聊天流特定的配置
if chat_stream_id:
specific_config = self._get_stream_specific_config(chat_stream_id)
if specific_config is not None:
return specific_config
# 检查全局配置(第一个元素为空字符串的配置)
global_config = self._get_global_config()
if global_config is not None:
return global_config
# 如果都没有匹配,返回默认值
return True, True, 300
def _get_stream_specific_config(self, chat_stream_id: str) -> Optional[tuple[bool, bool, float]]:
"""
获取特定聊天流的表达配置
Args:
chat_stream_id: 聊天流ID哈希值
Returns:
tuple: (是否使用表达, 是否学习表达, 学习间隔),如果没有配置则返回 None
"""
for config_item in self.expression_learning:
if not config_item or len(config_item) < 4:
continue continue
# 配置格式: [chat_pattern, use_expression, enable_learning, learning_intensity] stream_config_str = config_item[0] # 例如 "qq:1026294844:group"
chat_pattern = config_entry[0]
# 检查是否匹配当前聊天流 # 如果是空字符串,跳过(这是全局配置)
if chat_pattern == "" or chat_pattern in chat_id: if stream_config_str == "":
continue
# 解析配置字符串并生成对应的 chat_id
config_chat_id = self._parse_stream_config_to_chat_id(stream_config_str)
if config_chat_id is None:
continue
# 比较生成的 chat_id
if config_chat_id != chat_stream_id:
continue
# 解析配置
try:
use_expression = config_item[1].lower() == "enable"
enable_learning = config_item[2].lower() == "enable"
learning_intensity = float(config_item[3])
return use_expression, enable_learning, learning_intensity
except (ValueError, IndexError):
continue
return None
def _get_global_config(self) -> Optional[tuple[bool, bool, float]]:
"""
获取全局表达配置
Returns:
tuple: (是否使用表达, 是否学习表达, 学习间隔),如果没有配置则返回 None
"""
for config_item in self.expression_learning:
if not config_item or len(config_item) < 4:
continue
# 检查是否为全局配置(第一个元素为空字符串)
if config_item[0] == "":
try: try:
# 解析配置值 use_expression = config_item[1].lower() == "enable"
use_expr_str = config_entry[1].lower() if isinstance(config_entry[1], str) else str(config_entry[1]) enable_learning = config_item[2].lower() == "enable"
enable_learn_str = config_entry[2].lower() if isinstance(config_entry[2], str) else str(config_entry[2]) learning_intensity = float(config_item[3])
use_expression = use_expr_str in ['enable', 'true', '1']
enable_learning = enable_learn_str in ['enable', 'true', '1']
learning_intensity = float(config_entry[3])
# 找到匹配的配置后返回
return use_expression, enable_learning, learning_intensity return use_expression, enable_learning, learning_intensity
except (ValueError, IndexError):
except (ValueError, IndexError, TypeError):
# 如果解析失败,继续查找下一个配置
continue continue
# 如果没有找到匹配的配置,返回默认值 return None
return use_expression, enable_learning, learning_intensity