diff --git a/src/plugins/PFC/action_planner.py b/src/plugins/PFC/action_planner.py index a80e96b15..23de9f0d3 100644 --- a/src/plugins/PFC/action_planner.py +++ b/src/plugins/PFC/action_planner.py @@ -21,6 +21,7 @@ PROMPT_INITIAL_REPLY = """{persona_text}。现在你在参与一场QQ私聊, 【当前对话目标】 {goals_str} +{knowledge_info_str} 【最近行动历史概要】 {action_history_summary} @@ -33,7 +34,7 @@ PROMPT_INITIAL_REPLY = """{persona_text}。现在你在参与一场QQ私聊, ------ 可选行动类型以及解释: -fetch_knowledge: 需要调取知识,当需要专业知识或特定信息时选择,对方若提到你不太认识的人名或实体也可以尝试选择 +fetch_knowledge: 需要调取知识或记忆,当需要专业知识或特定信息时选择,对方若提到你不太认识的人名或实体也可以尝试选择 listening: 倾听对方发言,当你认为对方话才说到一半,发言明显未结束时选择 direct_reply: 直接回复对方 rethink_goal: 思考一个对话目标,当你觉得目前对话需要目标,或当前目标不再适用,或话题卡住时选择。注意私聊的环境是灵活的,有可能需要经常选择 @@ -53,6 +54,7 @@ PROMPT_FOLLOW_UP = """{persona_text}。现在你在参与一场QQ私聊,刚刚 【当前对话目标】 {goals_str} +{knowledge_info_str} 【最近行动历史概要】 {action_history_summary} @@ -224,6 +226,41 @@ class ActionPlanner: logger.error(f"[私聊][{self.private_name}]构建对话目标字符串时出错: {e}") goals_str = "- 构建对话目标时出错。\n" + # --- 知识信息字符串构建开始 --- + knowledge_info_str = "【已获取的相关知识和记忆】\n" + try: + # 检查 conversation_info 是否有 knowledge_list 并且不为空 + if hasattr(conversation_info, "knowledge_list") and conversation_info.knowledge_list: + # 最多只显示最近的 5 条知识,防止 Prompt 过长 + recent_knowledge = conversation_info.knowledge_list[-5:] + for i, knowledge_item in enumerate(recent_knowledge): + if isinstance(knowledge_item, dict): + query = knowledge_item.get("query", "未知查询") + knowledge = knowledge_item.get("knowledge", "无知识内容") + source = knowledge_item.get("source", "未知来源") + # 只取知识内容的前 2000 个字,避免太长 + knowledge_snippet = knowledge[:2000] + "..." if len(knowledge) > 2000 else knowledge + knowledge_info_str += ( + f"{i + 1}. 关于 '{query}' 的知识 (来源: {source}):\n {knowledge_snippet}\n" + ) + else: + # 处理列表里不是字典的异常情况 + knowledge_info_str += f"{i + 1}. 发现一条格式不正确的知识记录。\n" + + if not recent_knowledge: # 如果 knowledge_list 存在但为空 + knowledge_info_str += "- 暂无相关知识和记忆。\n" + + else: + # 如果 conversation_info 没有 knowledge_list 属性,或者列表为空 + knowledge_info_str += "- 暂无相关知识记忆。\n" + except AttributeError: + logger.warning(f"[私聊][{self.private_name}]ConversationInfo 对象可能缺少 knowledge_list 属性。") + knowledge_info_str += "- 获取知识列表时出错。\n" + except Exception as e: + logger.error(f"[私聊][{self.private_name}]构建知识信息字符串时出错: {e}") + knowledge_info_str += "- 处理知识列表时出错。\n" + # --- 知识信息字符串构建结束 --- + # 获取聊天历史记录 (chat_history_text) chat_history_text = "" try: @@ -349,6 +386,7 @@ class ActionPlanner: time_since_last_bot_message_info=time_since_last_bot_message_info, timeout_context=timeout_context, chat_history_text=chat_history_text if chat_history_text.strip() else "还没有聊天记录。", + knowledge_info_str=knowledge_info_str, ) logger.debug(f"[私聊][{self.private_name}]发送到LLM的最终提示词:\n------\n{prompt}\n------") diff --git a/src/plugins/PFC/conversation.py b/src/plugins/PFC/conversation.py index c1b314266..9f744c30c 100644 --- a/src/plugins/PFC/conversation.py +++ b/src/plugins/PFC/conversation.py @@ -525,9 +525,9 @@ class Conversation: ) action_successful = True except Exception as fetch_err: - logger.error(f"[私聊][{self.private_name}]获取知识时出错: {fetch_err}") + logger.error(f"[私聊][{self.private_name}]获取知识时出错: {str(fetch_err)}") conversation_info.done_action[action_index].update( - {"status": "recall", "final_reason": f"获取知识失败: {fetch_err}"} + {"status": "recall", "final_reason": f"获取知识失败: {str(fetch_err)}"} ) self.conversation_info.last_successful_reply_action = None # 重置状态 diff --git a/src/plugins/PFC/pfc_KnowledgeFetcher.py b/src/plugins/PFC/pfc_KnowledgeFetcher.py index 099b4979e..0989339df 100644 --- a/src/plugins/PFC/pfc_KnowledgeFetcher.py +++ b/src/plugins/PFC/pfc_KnowledgeFetcher.py @@ -68,16 +68,18 @@ class KnowledgeFetcher: max_depth=3, fast_retrieval=False, ) - knowledge = "" + knowledge_text = "" + sources_text = "无记忆匹配" # 默认值 if related_memory: sources = [] for memory in related_memory: - knowledge += memory[1] + "\n" + knowledge_text += memory[1] + "\n" sources.append(f"记忆片段{memory[0]}") - knowledge = knowledge.strip(), ",".join(sources) + knowledge_text = knowledge_text.strip() + sources_text = ",".join(sources) - knowledge += "现在有以下**知识**可供参考:\n " - knowledge += self._lpmm_get_knowledge(query) - knowledge += "请记住这些**知识**,并根据**知识**回答问题。\n" + knowledge_text += "\n现在有以下**知识**可供参考:\n " + knowledge_text += self._lpmm_get_knowledge(query) + knowledge_text += "\n请记住这些**知识**,并根据**知识**回答问题。\n" - return "未找到相关知识", "无记忆匹配" + return knowledge_text or "未找到相关知识", sources_text or "无记忆匹配" diff --git a/src/plugins/PFC/reply_generator.py b/src/plugins/PFC/reply_generator.py index 9b497ef28..890f807c7 100644 --- a/src/plugins/PFC/reply_generator.py +++ b/src/plugins/PFC/reply_generator.py @@ -17,6 +17,9 @@ logger = get_module_logger("reply_generator") PROMPT_DIRECT_REPLY = """{persona_text}。现在你在参与一场QQ私聊,请根据以下信息生成一条回复: 当前对话目标:{goals_str} + +{knowledge_info_str} + 最近的聊天记录: {chat_history_text} @@ -25,7 +28,7 @@ PROMPT_DIRECT_REPLY = """{persona_text}。现在你在参与一场QQ私聊,请 1. 符合对话目标,以"你"的角度发言(不要自己与自己对话!) 2. 符合你的性格特征和身份细节 3. 通俗易懂,自然流畅,像正常聊天一样,简短(通常20字以内,除非特殊情况) -4. 适当利用相关知识,但不要生硬引用 +4. 可以适当利用相关知识,但不要生硬引用 5. 自然、得体,结合聊天记录逻辑合理,且没有重复表达同质内容 请注意把握聊天内容,不要回复的太有条理,可以有个性。请分清"你"和对方说的话,不要把"你"说的话当做对方说的话,这是你自己说的话。 @@ -39,6 +42,9 @@ PROMPT_DIRECT_REPLY = """{persona_text}。现在你在参与一场QQ私聊,请 PROMPT_SEND_NEW_MESSAGE = """{persona_text}。现在你在参与一场QQ私聊,**刚刚你已经发送了一条或多条消息**,现在请根据以下信息再发一条新消息: 当前对话目标:{goals_str} + +{knowledge_info_str} + 最近的聊天记录: {chat_history_text} @@ -47,7 +53,7 @@ PROMPT_SEND_NEW_MESSAGE = """{persona_text}。现在你在参与一场QQ私聊 1. 符合对话目标,以"你"的角度发言(不要自己与自己对话!) 2. 符合你的性格特征和身份细节 3. 通俗易懂,自然流畅,像正常聊天一样,简短(通常20字以内,除非特殊情况) -4. 适当利用相关知识,但不要生硬引用 +4. 可以适当利用相关知识,但不要生硬引用 5. 跟之前你发的消息自然的衔接,逻辑合理,且没有重复表达同质内容或部分重叠内容 请注意把握聊天内容,不用太有条理,可以有个性。请分清"你"和对方说的话,不要把"你"说的话当做对方说的话,这是你自己说的话。 @@ -131,6 +137,38 @@ class ReplyGenerator: else: goals_str = "- 目前没有明确对话目标\n" # 简化无目标情况 + # --- 新增:构建知识信息字符串 --- + knowledge_info_str = "【供参考的相关知识和记忆】\n" # 稍微改下标题,表明是供参考 + try: + # 检查 conversation_info 是否有 knowledge_list 并且不为空 + if hasattr(conversation_info, "knowledge_list") and conversation_info.knowledge_list: + # 最多只显示最近的 5 条知识 + recent_knowledge = conversation_info.knowledge_list[-5:] + for i, knowledge_item in enumerate(recent_knowledge): + if isinstance(knowledge_item, dict): + query = knowledge_item.get("query", "未知查询") + knowledge = knowledge_item.get("knowledge", "无知识内容") + source = knowledge_item.get("source", "未知来源") + # 只取知识内容的前 2000 个字 + knowledge_snippet = knowledge[:2000] + "..." if len(knowledge) > 2000 else knowledge + knowledge_info_str += ( + f"{i + 1}. 关于 '{query}' (来源: {source}): {knowledge_snippet}\n" # 格式微调,更简洁 + ) + else: + knowledge_info_str += f"{i + 1}. 发现一条格式不正确的知识记录。\n" + + if not recent_knowledge: + knowledge_info_str += "- 暂无。\n" # 更简洁的提示 + + else: + knowledge_info_str += "- 暂无。\n" + except AttributeError: + logger.warning(f"[私聊][{self.private_name}]ConversationInfo 对象可能缺少 knowledge_list 属性。") + knowledge_info_str += "- 获取知识列表时出错。\n" + except Exception as e: + logger.error(f"[私聊][{self.private_name}]构建知识信息字符串时出错: {e}") + knowledge_info_str += "- 处理知识列表时出错。\n" + # 获取聊天历史记录 (chat_history_text) chat_history_text = observation_info.chat_history_str if observation_info.new_messages_count > 0 and observation_info.unprocessed_messages: @@ -162,7 +200,10 @@ class ReplyGenerator: # --- 格式化最终的 Prompt --- prompt = prompt_template.format( - persona_text=persona_text, goals_str=goals_str, chat_history_text=chat_history_text + persona_text=persona_text, + goals_str=goals_str, + chat_history_text=chat_history_text, + knowledge_info_str=knowledge_info_str, ) # --- 调用 LLM 生成 ---