feat: wonderful new

This commit is contained in:
SengokuCola
2025-04-17 15:29:20 +08:00
parent eeb13a8498
commit cfdaf00559
9 changed files with 1032 additions and 304 deletions

244
interest_monitor_gui.py Normal file
View File

@@ -0,0 +1,244 @@
import tkinter as tk
from tkinter import ttk
import time
import os
from datetime import datetime
import random
from collections import deque
import json # 引入 json
# --- 引入 Matplotlib ---
import matplotlib.pyplot as plt
from matplotlib.figure import Figure
from matplotlib.backends.backend_tkagg import FigureCanvasTkAgg
import matplotlib.dates as mdates # 用于处理日期格式
import matplotlib # 导入 matplotlib
# --- 配置 ---
LOG_FILE_PATH = os.path.join("logs", "interest", "interest_history.log") # 指向历史日志文件
REFRESH_INTERVAL_MS = 200 # 刷新间隔 (毫秒) - 可以适当调长,因为读取文件可能耗时
WINDOW_TITLE = "Interest Monitor (Live History)"
MAX_HISTORY_POINTS = 1000 # 图表上显示的最大历史点数 (可以增加)
MAX_STREAMS_TO_DISPLAY = 15 # 最多显示多少个聊天流的折线图 (可以增加)
# *** 添加 Matplotlib 中文字体配置 ***
# 尝试使用 'SimHei' 或 'Microsoft YaHei'如果找不到matplotlib 会回退到默认字体
# 确保你的系统上安装了这些字体
matplotlib.rcParams['font.sans-serif'] = ['SimHei', 'Microsoft YaHei']
matplotlib.rcParams['axes.unicode_minus'] = False # 解决负号'-'显示为方块的问题
class InterestMonitorApp:
def __init__(self, root):
self.root = root
self.root.title(WINDOW_TITLE)
self.root.geometry("1800x800") # 调整窗口大小以适应图表
# --- 数据存储 ---
# 使用 deque 来存储有限的历史数据点
# key: stream_id, value: deque([(timestamp, interest_level), ...])
self.stream_history = {}
self.stream_colors = {} # 为每个 stream 分配颜色
self.stream_display_names = {} # *** New: Store display names (group_name) ***
# --- UI 元素 ---
# 状态标签
self.status_label = tk.Label(root, text="Initializing...", anchor="w", fg="grey")
self.status_label.pack(side=tk.BOTTOM, fill=tk.X, padx=5, pady=2)
# Matplotlib 图表设置
self.fig = Figure(figsize=(5, 4), dpi=100)
self.ax = self.fig.add_subplot(111)
# 配置在 update_plot 中进行,避免重复
# 创建 Tkinter 画布嵌入 Matplotlib 图表
self.canvas = FigureCanvasTkAgg(self.fig, master=root)
self.canvas_widget = self.canvas.get_tk_widget()
self.canvas_widget.pack(side=tk.TOP, fill=tk.BOTH, expand=1)
# --- 初始化和启动刷新 ---
self.update_display() # 首次加载并开始刷新循环
def get_random_color(self):
"""生成随机颜色用于区分线条"""
return "#{:06x}".format(random.randint(0, 0xFFFFFF))
def load_and_update_history(self):
"""从 history log 文件加载数据并更新历史记录"""
if not os.path.exists(LOG_FILE_PATH):
self.set_status(f"Error: Log file not found at {LOG_FILE_PATH}", "red")
# 如果文件不存在,不清空现有数据,以便显示最后一次成功读取的状态
return
# *** Reset display names each time we reload ***
new_stream_history = {}
new_stream_display_names = {}
read_count = 0
error_count = 0
# *** Calculate the timestamp threshold for the last 30 minutes ***
current_time = time.time()
time_threshold = current_time - (15 * 60) # 30 minutes in seconds
try:
with open(LOG_FILE_PATH, 'r', encoding='utf-8') as f:
for line in f:
read_count += 1
try:
log_entry = json.loads(line.strip())
timestamp = log_entry.get("timestamp")
# *** Add time filtering ***
if timestamp is None or float(timestamp) < time_threshold:
continue # Skip old or invalid entries
stream_id = log_entry.get("stream_id")
interest_level = log_entry.get("interest_level")
group_name = log_entry.get("group_name", stream_id) # *** Get group_name, fallback to stream_id ***
# *** Check other required fields AFTER time filtering ***
if stream_id is None or interest_level is None:
error_count += 1
continue # 跳过无效行
# 如果是第一次读到这个 stream_id则创建 deque
if stream_id not in new_stream_history:
new_stream_history[stream_id] = deque(maxlen=MAX_HISTORY_POINTS)
# 检查是否已有颜色,没有则分配
if stream_id not in self.stream_colors:
self.stream_colors[stream_id] = self.get_random_color()
# *** Store the latest display name found for this stream_id ***
new_stream_display_names[stream_id] = group_name
# 添加数据点
new_stream_history[stream_id].append((float(timestamp), float(interest_level)))
except json.JSONDecodeError:
error_count += 1
# logger.warning(f"Skipping invalid JSON line: {line.strip()}")
continue # 跳过无法解析的行
except (TypeError, ValueError) as e:
error_count += 1
# logger.warning(f"Skipping line due to data type error ({e}): {line.strip()}")
continue # 跳过数据类型错误的行
# 读取完成后,用新数据替换旧数据
self.stream_history = new_stream_history
self.stream_display_names = new_stream_display_names # *** Update display names ***
status_msg = f"Data loaded at {datetime.now().strftime('%H:%M:%S')}. Lines read: {read_count}."
if error_count > 0:
status_msg += f" Skipped {error_count} invalid lines."
self.set_status(status_msg, "orange")
else:
self.set_status(status_msg, "green")
except IOError as e:
self.set_status(f"Error reading file {LOG_FILE_PATH}: {e}", "red")
except Exception as e:
self.set_status(f"An unexpected error occurred during loading: {e}", "red")
def update_plot(self):
"""更新 Matplotlib 图表"""
self.ax.clear() # 清除旧图
# *** 设置中文标题和标签 ***
self.ax.set_title("兴趣度随时间变化图")
self.ax.set_xlabel("时间")
self.ax.set_ylabel("兴趣度")
self.ax.xaxis.set_major_formatter(mdates.DateFormatter('%H:%M:%S'))
self.ax.grid(True)
self.ax.set_ylim(0, 10) # 固定 Y 轴范围 0-10
# 只绘制最新的 N 个 stream (按最后记录的兴趣度排序)
# 注意:现在是基于文件读取的快照排序,可能不是实时最新
active_streams = sorted(
self.stream_history.items(),
key=lambda item: item[1][-1][1] if item[1] else 0, # 按最后兴趣度排序
reverse=True
)[:MAX_STREAMS_TO_DISPLAY]
all_times = [] # 用于确定 X 轴范围
for stream_id, history in active_streams:
if not history:
continue
timestamps, interests = zip(*history)
# 将 time.time() 时间戳转换为 matplotlib 可识别的日期格式
try:
mpl_dates = [datetime.fromtimestamp(ts) for ts in timestamps]
all_times.extend(mpl_dates) # 收集所有时间点
# *** Use display name for label ***
display_label = self.stream_display_names.get(stream_id, stream_id)
self.ax.plot(
mpl_dates,
interests,
label=display_label, # *** Use display_label ***
color=self.stream_colors.get(stream_id, 'grey'),
marker='.',
markersize=3,
linestyle='-',
linewidth=1
)
except ValueError as e:
print(f"Skipping plot for {stream_id} due to invalid timestamp: {e}")
continue
if all_times:
# 根据数据动态调整 X 轴范围,留一点边距
min_time = min(all_times)
max_time = max(all_times)
# delta = max_time - min_time
# self.ax.set_xlim(min_time - delta * 0.05, max_time + delta * 0.05)
self.ax.set_xlim(min_time, max_time)
# 自动格式化X轴标签
self.fig.autofmt_xdate()
else:
# 如果没有数据,设置一个默认的时间范围,例如最近一小时
now = datetime.now()
one_hour_ago = now - timedelta(hours=1)
self.ax.set_xlim(one_hour_ago, now)
# 添加图例
if active_streams:
# 调整图例位置和大小
# 字体已通过全局 matplotlib.rcParams 设置
self.ax.legend(loc='upper left', bbox_to_anchor=(1.02, 1), borderaxespad=0., fontsize='x-small')
# 调整布局,确保图例不被裁剪
self.fig.tight_layout(rect=[0, 0, 0.85, 1]) # 右侧留出空间给图例
self.canvas.draw() # 重绘画布
def update_display(self):
"""主更新循环"""
try:
self.load_and_update_history() # 从文件加载数据并更新内部状态
self.update_plot() # 根据内部状态更新图表
except Exception as e:
# 提供更详细的错误信息
import traceback
error_msg = f"Error during update: {e}\n{traceback.format_exc()}"
self.set_status(error_msg, "red")
print(error_msg) # 打印详细错误到控制台
# 安排下一次刷新
self.root.after(REFRESH_INTERVAL_MS, self.update_display)
def set_status(self, message: str, color: str = "grey"):
"""更新状态栏标签"""
# 限制状态栏消息长度
max_len = 150
display_message = (message[:max_len] + '...') if len(message) > max_len else message
self.status_label.config(text=display_message, fg=color)
if __name__ == "__main__":
# 导入 timedelta 用于默认时间范围
from datetime import timedelta
root = tk.Tk()
app = InterestMonitorApp(root)
root.mainloop()

View File

@@ -17,6 +17,7 @@ from .common.logger import get_module_logger
from .plugins.remote import heartbeat_thread # noqa: F401
from .individuality.individuality import Individuality
from .common.server import global_server
from .plugins.chat_module.heartFC_chat.interest import InterestManager
logger = get_module_logger("main")
@@ -110,6 +111,15 @@ class MainSystem:
asyncio.create_task(heartflow.heartflow_start_working())
logger.success("心流系统启动成功")
# 启动 InterestManager 的后台任务
interest_manager = InterestManager() # 获取单例
await interest_manager.start_background_tasks()
logger.success("InterestManager 后台任务启动成功")
# 启动 HeartFC_Chat 的后台任务(例如兴趣监控)
await chat_bot.heartFC_chat.start()
logger.success("HeartFC_Chat 模块启动成功")
init_time = int(1000 * (time.time() - init_start_time))
logger.success(f"初始化完成,神经元放电{init_time}")
except Exception as e:

View File

@@ -8,6 +8,8 @@ from ..chat_module.only_process.only_message_process import MessageProcessor
from src.common.logger import get_module_logger, CHAT_STYLE_CONFIG, LogConfig
from ..chat_module.think_flow_chat.think_flow_chat import ThinkFlowChat
from ..chat_module.reasoning_chat.reasoning_chat import ReasoningChat
from ..chat_module.heartFC_chat.heartFC_chat import HeartFC_Chat
from ..chat_module.heartFC_chat.heartFC_processor import HeartFC_Processor
from ..utils.prompt_builder import Prompt, global_prompt_manager
import traceback
@@ -30,6 +32,8 @@ class ChatBot:
self.mood_manager.start_mood_update() # 启动情绪更新
self.think_flow_chat = ThinkFlowChat()
self.reasoning_chat = ReasoningChat()
self.heartFC_chat = HeartFC_Chat()
self.heartFC_processor = HeartFC_Processor(self.heartFC_chat)
self.only_process_chat = MessageProcessor()
# 创建初始化PFC管理器的任务会在_ensure_started时执行
@@ -117,7 +121,12 @@ class ChatBot:
if groupinfo.group_id in global_config.talk_allowed_groups:
# logger.debug(f"开始群聊模式{str(message_data)[:50]}...")
if global_config.response_mode == "heart_flow":
await self.think_flow_chat.process_message(message_data)
# logger.info(f"启动最新最好的思维流FC模式{str(message_data)[:50]}...")
await self.heartFC_processor.process_message(message_data)
elif global_config.response_mode == "reasoning":
# logger.debug(f"开始推理模式{str(message_data)[:50]}...")
await self.reasoning_chat.process_message(message_data)

View File

@@ -1,27 +1,23 @@
import time
from random import random
import traceback
from typing import List
from ...memory_system.Hippocampus import HippocampusManager
from typing import List, Optional
import asyncio
from ...moods.moods import MoodManager
from ....config.config import global_config
from ...chat.emoji_manager import emoji_manager
from .heartFC__generator import ResponseGenerator
from ...chat.message import MessageSending, MessageRecv, MessageThinking, MessageSet
from .messagesender import MessageManager
from ...storage.storage import MessageStorage
from ...chat.utils import is_mentioned_bot_in_message, get_recent_group_detailed_plain_text
from ...chat.utils_image import image_path_to_base64
from ...willing.willing_manager import willing_manager
from ...message import UserInfo, Seg
from src.heart_flow.heartflow import heartflow
from src.common.logger import get_module_logger, CHAT_STYLE_CONFIG, LogConfig
from ...chat.chat_stream import chat_manager
from ...person_info.relationship_manager import relationship_manager
from ...chat.message_buffer import message_buffer
from src.plugins.respon_info_catcher.info_catcher import info_catcher_manager
from ...utils.timer_calculater import Timer
from src.do_tool.tool_use import ToolUser
from .interest import InterestManager, InterestChatting
# 定义日志配置
chat_config = LogConfig(
@@ -29,19 +25,103 @@ chat_config = LogConfig(
file_format=CHAT_STYLE_CONFIG["file_format"],
)
logger = get_module_logger("think_flow_chat", config=chat_config)
logger = get_module_logger("heartFC_chat", config=chat_config)
# 新增常量
INTEREST_LEVEL_REPLY_THRESHOLD = 4.0
INTEREST_MONITOR_INTERVAL_SECONDS = 1
class ThinkFlowChat:
class HeartFC_Chat:
def __init__(self):
self.storage = MessageStorage()
self.gpt = ResponseGenerator()
self.mood_manager = MoodManager.get_instance()
self.mood_manager.start_mood_update()
self.tool_user = ToolUser()
self.interest_manager = InterestManager()
self._interest_monitor_task: Optional[asyncio.Task] = None
async def _create_thinking_message(self, message, chat, userinfo, messageinfo):
"""创建思考消息"""
async def start(self):
"""Starts asynchronous tasks like the interest monitor."""
logger.info("HeartFC_Chat starting asynchronous tasks...")
await self.interest_manager.start_background_tasks()
self._initialize_monitor_task()
logger.info("HeartFC_Chat asynchronous tasks started.")
def _initialize_monitor_task(self):
"""启动后台兴趣监控任务"""
if self._interest_monitor_task is None or self._interest_monitor_task.done():
try:
loop = asyncio.get_running_loop()
self._interest_monitor_task = loop.create_task(self._interest_monitor_loop())
logger.info(f"Interest monitor task created. Interval: {INTEREST_MONITOR_INTERVAL_SECONDS}s, Level Threshold: {INTEREST_LEVEL_REPLY_THRESHOLD}")
except RuntimeError:
logger.error("Failed to create interest monitor task: No running event loop.")
raise
else:
logger.warning("Interest monitor task creation skipped: already running or exists.")
async def _interest_monitor_loop(self):
"""后台任务,定期检查兴趣度变化并触发回复"""
logger.info("Interest monitor loop starting...")
await asyncio.sleep(0.3)
while True:
await asyncio.sleep(INTEREST_MONITOR_INTERVAL_SECONDS)
try:
interest_items_snapshot: List[tuple[str, InterestChatting]] = []
stream_ids = list(self.interest_manager.interest_dict.keys())
for stream_id in stream_ids:
chatting_instance = self.interest_manager.get_interest_chatting(stream_id)
if chatting_instance:
interest_items_snapshot.append((stream_id, chatting_instance))
for stream_id, chatting_instance in interest_items_snapshot:
triggering_message = chatting_instance.last_triggering_message
current_interest = chatting_instance.get_interest()
# 添加调试日志,检查触发条件
# logger.debug(f"[兴趣监控][{stream_id}] 当前兴趣: {current_interest:.2f}, 阈值: {INTEREST_LEVEL_REPLY_THRESHOLD}, 触发消息存在: {triggering_message is not None}")
if current_interest > INTEREST_LEVEL_REPLY_THRESHOLD and triggering_message is not None:
logger.info(f"[{stream_id}] 检测到高兴趣度 ({current_interest:.2f} > {INTEREST_LEVEL_REPLY_THRESHOLD}). 基于消息 ID: {triggering_message.message_info.message_id} 的上下文触发回复") # 更新日志信息使其更清晰
chatting_instance.reset_trigger_info()
logger.debug(f"[{stream_id}] Trigger info reset before starting reply task.")
asyncio.create_task(self._process_triggered_reply(stream_id, triggering_message))
except asyncio.CancelledError:
logger.info("Interest monitor loop cancelled.")
break
except Exception as e:
logger.error(f"Error in interest monitor loop: {e}")
logger.error(traceback.format_exc())
await asyncio.sleep(5)
async def _process_triggered_reply(self, stream_id: str, triggering_message: MessageRecv):
"""Helper coroutine to handle the processing of a triggered reply based on interest level."""
try:
logger.info(f"[{stream_id}] Starting level-triggered reply generation for message ID: {triggering_message.message_info.message_id}...")
await self.trigger_reply_generation(triggering_message)
# 在回复处理后降低兴趣度,降低固定值:新阈值的一半
decrease_value = INTEREST_LEVEL_REPLY_THRESHOLD / 2
self.interest_manager.decrease_interest(stream_id, value=decrease_value)
post_trigger_interest = self.interest_manager.get_interest(stream_id)
# 更新日志以反映降低的是基于新阈值的固定值
logger.info(f"[{stream_id}] Interest decreased by fixed value {decrease_value:.2f} (LevelThreshold/2) after processing level-triggered reply. Current interest: {post_trigger_interest:.2f}")
except Exception as e:
logger.error(f"Error processing level-triggered reply for stream_id {stream_id}, context message_id {triggering_message.message_info.message_id}: {e}")
logger.error(traceback.format_exc())
async def _create_thinking_message(self, message: MessageRecv):
"""创建思考消息 (从 message 获取信息)"""
chat = message.chat_stream
if not chat:
logger.error(f"Cannot create thinking message, chat_stream is None for message ID: {message.message_info.message_id}")
return None
userinfo = message.message_info.user_info # 发起思考的用户(即原始消息发送者)
messageinfo = message.message_info # 原始消息信息
bot_user_info = UserInfo(
user_id=global_config.BOT_QQ,
user_nickname=global_config.BOT_NICKNAME,
@@ -53,8 +133,8 @@ class ThinkFlowChat:
thinking_message = MessageThinking(
message_id=thinking_id,
chat_stream=chat,
bot_user_info=bot_user_info,
reply=message,
bot_user_info=bot_user_info, # 思考消息的发出者是 bot
reply=message, # 回复的是原始消息
thinking_start_time=thinking_time_point,
)
@@ -62,24 +142,21 @@ class ThinkFlowChat:
return thinking_id
async def _send_response_messages(self, message, chat, response_set: List[str], thinking_id) -> MessageSending:
"""发送回复消息"""
async def _send_response_messages(self, message: MessageRecv, response_set: List[str], thinking_id) -> MessageSending:
chat = message.chat_stream
container = MessageManager().get_container(chat.stream_id)
thinking_message = None
for msg in container.messages:
if isinstance(msg, MessageThinking) and msg.message_info.message_id == thinking_id:
thinking_message = msg
container.messages.remove(msg)
break
if not thinking_message:
logger.warning("未找到对应的思考消息,可能已超时被移除")
return None
thinking_start_time = thinking_message.thinking_start_time
message_set = MessageSet(chat, thinking_id)
mark_head = False
first_bot_msg = None
for msg in response_set:
@@ -90,11 +167,11 @@ class ThinkFlowChat:
bot_user_info=UserInfo(
user_id=global_config.BOT_QQ,
user_nickname=global_config.BOT_NICKNAME,
platform=message.message_info.platform,
platform=message.message_info.platform, # 从传入的 message 获取 platform
),
sender_info=message.message_info.user_info,
sender_info=message.message_info.user_info, # 发送给谁
message_segment=message_segment,
reply=message,
reply=message, # 回复原始消息
is_head=not mark_head,
is_emoji=False,
thinking_start_time=thinking_start_time,
@@ -102,24 +179,22 @@ class ThinkFlowChat:
if not mark_head:
mark_head = True
first_bot_msg = bot_message
# print(f"thinking_start_time:{bot_message.thinking_start_time}")
message_set.add_message(bot_message)
MessageManager().add_message(message_set)
return first_bot_msg
async def _handle_emoji(self, message, chat, response, send_emoji=""):
"""处理表情包"""
async def _handle_emoji(self, message: MessageRecv, response_set, send_emoji=""):
"""处理表情包 (从 message 获取信息)"""
chat = message.chat_stream
if send_emoji:
emoji_raw = await emoji_manager.get_emoji_for_text(send_emoji)
else:
emoji_raw = await emoji_manager.get_emoji_for_text(response)
emoji_text_source = "".join(response_set) if response_set else ""
emoji_raw = await emoji_manager.get_emoji_for_text(emoji_text_source)
if emoji_raw:
emoji_path, description = emoji_raw
emoji_cq = image_path_to_base64(emoji_path)
thinking_time_point = round(message.message_info.time, 2)
message_segment = Seg(type="emoji", data=emoji_cq)
bot_message = MessageSending(
message_id="mt" + str(thinking_time_point),
@@ -129,13 +204,12 @@ class ThinkFlowChat:
user_nickname=global_config.BOT_NICKNAME,
platform=message.message_info.platform,
),
sender_info=message.message_info.user_info,
sender_info=message.message_info.user_info, # 发送给谁
message_segment=message_segment,
reply=message,
reply=message, # 回复原始消息
is_head=False,
is_emoji=True,
)
MessageManager().add_message(bot_message)
async def _update_relationship(self, message: MessageRecv, response_set):
@@ -147,131 +221,50 @@ class ThinkFlowChat:
)
self.mood_manager.update_mood_from_emotion(emotion, global_config.mood_intensity_factor)
async def process_message(self, message_data: str) -> None:
"""处理消息并生成回复"""
timing_results = {}
response_set = None
message = MessageRecv(message_data)
groupinfo = message.message_info.group_info
async def trigger_reply_generation(self, message: MessageRecv):
"""根据意愿阈值触发的实际回复生成和发送逻辑 (V3 - 简化参数)"""
chat = message.chat_stream
userinfo = message.message_info.user_info
messageinfo = message.message_info
# 消息加入缓冲池
await message_buffer.start_caching_messages(message)
timing_results = {}
response_set = None
thinking_id = None
info_catcher = None
# 创建聊天流
chat = await chat_manager.get_or_create_stream(
platform=messageinfo.platform,
user_info=userinfo,
group_info=groupinfo,
)
message.update_chat_stream(chat)
# 创建心流与chat的观察
heartflow.create_subheartflow(chat.stream_id)
await message.process()
logger.trace(f"消息处理成功{message.processed_plain_text}")
# 过滤词/正则表达式过滤
if self._check_ban_words(message.processed_plain_text, chat, userinfo) or self._check_ban_regex(
message.raw_message, chat, userinfo
):
return
logger.trace(f"过滤词/正则表达式过滤成功{message.processed_plain_text}")
await self.storage.store_message(message, chat)
logger.trace(f"存储成功{message.processed_plain_text}")
# 记忆激活
with Timer("记忆激活", timing_results):
interested_rate = await HippocampusManager.get_instance().get_activate_from_text(
message.processed_plain_text, fast_retrieval=True
)
logger.trace(f"记忆激活: {interested_rate}")
# 查询缓冲器结果会整合前面跳过的消息改变processed_plain_text
buffer_result = await message_buffer.query_buffer_result(message)
# 处理提及
is_mentioned, reply_probability = is_mentioned_bot_in_message(message)
# 意愿管理器设置当前message信息
willing_manager.setup(message, chat, is_mentioned, interested_rate)
# 处理缓冲器结果
if not buffer_result:
await willing_manager.bombing_buffer_message_handle(message.message_info.message_id)
willing_manager.delete(message.message_info.message_id)
F_type = "seglist"
if message.message_segment.type != "seglist":
F_type =message.message_segment.type
else:
if (isinstance(message.message_segment.data, list)
and all(isinstance(x, Seg) for x in message.message_segment.data)
and len(message.message_segment.data) == 1):
F_type = message.message_segment.data[0].type
if F_type == "text":
logger.info(f"触发缓冲,已炸飞消息:{message.processed_plain_text}")
elif F_type == "image":
logger.info("触发缓冲,已炸飞表情包/图片")
elif F_type == "seglist":
logger.info("触发缓冲,已炸飞消息列")
return
# 获取回复概率
is_willing = False
if reply_probability != 1:
is_willing = True
reply_probability = await willing_manager.get_reply_probability(message.message_info.message_id)
if message.message_info.additional_config:
if "maimcore_reply_probability_gain" in message.message_info.additional_config.keys():
reply_probability += message.message_info.additional_config["maimcore_reply_probability_gain"]
# 打印消息信息
mes_name = chat.group_info.group_name if chat.group_info else "私聊"
current_time = time.strftime("%H:%M:%S", time.localtime(message.message_info.time))
willing_log = f"[回复意愿:{await willing_manager.get_willing(chat.stream_id):.2f}]" if is_willing else ""
logger.info(
f"[{current_time}][{mes_name}]"
f"{chat.user_info.user_nickname}:"
f"{message.processed_plain_text}{willing_log}[概率:{reply_probability * 100:.1f}%]"
)
do_reply = False
if random() < reply_probability:
try:
do_reply = True
# 回复前处理
await willing_manager.before_generate_reply_handle(message.message_info.message_id)
# 创建思考消息
try:
with Timer("创建思考消息", timing_results):
thinking_id = await self._create_thinking_message(message, chat, userinfo, messageinfo)
except Exception as e:
logger.error(f"心流创建思考消息失败: {e}")
logger.trace(f"创建捕捉器thinking_id:{thinking_id}")
info_catcher = info_catcher_manager.get_info_catcher(thinking_id)
info_catcher.catch_decide_to_response(message)
# 观察
try:
with Timer("观察", timing_results):
await heartflow.get_subheartflow(chat.stream_id).do_observe()
sub_hf = heartflow.get_subheartflow(chat.stream_id)
if not sub_hf:
logger.warning(f"尝试观察时未找到 stream_id {chat.stream_id} 的 subheartflow")
return
await sub_hf.do_observe()
except Exception as e:
logger.error(f"心流观察失败: {e}")
logger.error(traceback.format_exc())
info_catcher.catch_after_observe(timing_results["观察"])
container = MessageManager().get_container(chat.stream_id)
thinking_count = container.count_thinking_messages()
max_thinking_messages = getattr(global_config, 'max_concurrent_thinking_messages', 3)
if thinking_count >= max_thinking_messages:
logger.warning(f"聊天流 {chat.stream_id} 已有 {thinking_count} 条思考消息,取消回复。触发消息: {message.processed_plain_text[:30]}...")
return
try:
with Timer("创建思考消息", timing_results):
thinking_id = await self._create_thinking_message(message)
except Exception as e:
logger.error(f"心流创建思考消息失败: {e}")
return
if not thinking_id:
logger.error("未能成功创建思考消息 ID无法继续回复流程。")
return
logger.trace(f"创建捕捉器thinking_id:{thinking_id}")
info_catcher = info_catcher_manager.get_info_catcher(thinking_id)
info_catcher.catch_decide_to_response(message)
# 思考前使用工具
update_relationship = ""
get_mid_memory_id = []
tool_result_info = {}
send_emoji = ""
@@ -279,149 +272,93 @@ class ThinkFlowChat:
with Timer("思考前使用工具", timing_results):
tool_result = await self.tool_user.use_tool(
message.processed_plain_text,
message.message_info.user_info.user_nickname,
userinfo.user_nickname,
chat,
heartflow.get_subheartflow(chat.stream_id),
)
# 如果工具被使用且获得了结果,将收集到的信息合并到思考中
# collected_info = ""
if tool_result.get("used_tools", False):
if "structured_info" in tool_result:
tool_result_info = tool_result["structured_info"]
# collected_info = ""
get_mid_memory_id = []
update_relationship = ""
# 动态解析工具结果
for tool_name, tool_data in tool_result_info.items():
# tool_result_info += f"\n{tool_name} 相关信息:\n"
# for item in tool_data:
# tool_result_info += f"- {item['name']}: {item['content']}\n"
# 特殊判定mid_chat_mem
if tool_name == "mid_chat_mem":
for mid_memory in tool_data:
get_mid_memory_id.append(mid_memory["content"])
# 特殊判定change_mood
if tool_name == "change_mood":
for mood in tool_data:
self.mood_manager.update_mood_from_emotion(
mood["content"], global_config.mood_intensity_factor
)
# 特殊判定change_relationship
if tool_name == "change_relationship":
update_relationship = tool_data[0]["content"]
if tool_name == "send_emoji":
send_emoji = tool_data[0]["content"]
except Exception as e:
logger.error(f"思考前工具调用失败: {e}")
logger.error(traceback.format_exc())
# 处理关系更新
if update_relationship:
stance, emotion = await self.gpt._get_emotion_tags_with_reason(
"你还没有回复", message.processed_plain_text, update_relationship
)
await relationship_manager.calculate_update_relationship_value(
chat_stream=message.chat_stream, label=emotion, stance=stance
)
# 思考前脑内状态
current_mind, past_mind = "", ""
try:
with Timer("思考前脑内状态", timing_results):
current_mind, past_mind = await heartflow.get_subheartflow(
chat.stream_id
).do_thinking_before_reply(
sub_hf = heartflow.get_subheartflow(chat.stream_id)
if sub_hf:
current_mind, past_mind = await sub_hf.do_thinking_before_reply(
message_txt=message.processed_plain_text,
sender_info=message.message_info.user_info,
sender_info=userinfo,
chat_stream=chat,
obs_id=get_mid_memory_id,
extra_info=tool_result_info,
)
else:
logger.warning(f"尝试思考前状态时未找到 stream_id {chat.stream_id} 的 subheartflow")
except Exception as e:
logger.error(f"心流思考前脑内状态失败: {e}")
logger.error(traceback.format_exc())
# 确保变量被定义,即使在错误情况下
current_mind = ""
past_mind = ""
if info_catcher:
info_catcher.catch_afer_shf_step(timing_results.get("思考前脑内状态"), past_mind, current_mind)
info_catcher.catch_afer_shf_step(timing_results["思考前脑内状态"], past_mind, current_mind)
# 生成回复
try:
with Timer("生成回复", timing_results):
response_set = await self.gpt.generate_response(message, thinking_id)
info_catcher.catch_after_generate_response(timing_results["生成回复"])
except Exception as e:
logger.error(f"GPT 生成回复失败: {e}")
logger.error(traceback.format_exc())
if info_catcher: info_catcher.done_catch()
return
if info_catcher:
info_catcher.catch_after_generate_response(timing_results.get("生成回复"))
if not response_set:
logger.info("回复生成失败,返回为空")
if info_catcher: info_catcher.done_catch()
return
# 发送消息
first_bot_msg = None
try:
with Timer("发送消息", timing_results):
first_bot_msg = await self._send_response_messages(message, chat, response_set, thinking_id)
first_bot_msg = await self._send_response_messages(message, response_set, thinking_id)
except Exception as e:
logger.error(f"心流发送消息失败: {e}")
info_catcher.catch_after_response(timing_results["发送消息"], response_set, first_bot_msg)
if info_catcher:
info_catcher.catch_after_response(timing_results.get("发送消息"), response_set, first_bot_msg)
info_catcher.done_catch()
# 处理表情包
try:
with Timer("处理表情包", timing_results):
if send_emoji:
logger.info(f"麦麦决定发送表情包{send_emoji}")
await self._handle_emoji(message, chat, response_set, send_emoji)
await self._handle_emoji(message, response_set, send_emoji)
except Exception as e:
logger.error(f"心流处理表情包失败: {e}")
# 回复后处理
await willing_manager.after_generate_reply_handle(message.message_info.message_id)
except Exception as e:
logger.error(f"心流处理消息失败: {e}")
logger.error(traceback.format_exc())
# 输出性能计时结果
if do_reply:
timing_str = " | ".join([f"{step}: {duration:.2f}" for step, duration in timing_results.items()])
trigger_msg = message.processed_plain_text
response_msg = " ".join(response_set) if response_set else "无回复"
logger.info(f"触发消息: {trigger_msg[:20]}... | 思维消息: {response_msg[:20]}... | 性能计时: {timing_str}")
else:
# 不回复处理
await willing_manager.not_reply_handle(message.message_info.message_id)
logger.info(f"回复任务完成: 触发消息: {trigger_msg[:20]}... | 思维消息: {response_msg[:20]}... | 性能计时: {timing_str}")
# 意愿管理器注销当前message信息
willing_manager.delete(message.message_info.message_id)
if first_bot_msg:
try:
with Timer("更新关系情绪", timing_results):
await self._update_relationship(message, response_set)
except Exception as e:
logger.error(f"更新关系情绪失败: {e}")
logger.error(traceback.format_exc())
def _check_ban_words(self, text: str, chat, userinfo) -> bool:
"""检查消息中是否包含过滤词"""
for word in global_config.ban_words:
if word in text:
logger.info(
f"[{chat.group_info.group_name if chat.group_info else '私聊'}]{userinfo.user_nickname}:{text}"
)
logger.info(f"[过滤词识别]消息中含有{word}filtered")
return True
return False
except Exception as e:
logger.error(f"回复生成任务失败 (trigger_reply_generation V3): {e}")
logger.error(traceback.format_exc())
def _check_ban_regex(self, text: str, chat, userinfo) -> bool:
"""检查消息是否匹配过滤正则表达式"""
for pattern in global_config.ban_msgs_regex:
if pattern.search(text):
logger.info(
f"[{chat.group_info.group_name if chat.group_info else '私聊'}]{userinfo.user_nickname}:{text}"
)
logger.info(f"[正则表达式过滤]消息匹配到{pattern}filtered")
return True
return False
finally:
pass

View File

@@ -0,0 +1,170 @@
import time
import traceback
import asyncio
from ...memory_system.Hippocampus import HippocampusManager
from ....config.config import global_config
from ...chat.message import MessageRecv
from ...storage.storage import MessageStorage
from ...chat.utils import is_mentioned_bot_in_message
from ...message import UserInfo, Seg
from src.heart_flow.heartflow import heartflow
from src.common.logger import get_module_logger, CHAT_STYLE_CONFIG, LogConfig
from ...chat.chat_stream import chat_manager
from ...chat.message_buffer import message_buffer
from ...utils.timer_calculater import Timer
from .interest import InterestManager
from .heartFC_chat import HeartFC_Chat # 导入 HeartFC_Chat 以调用回复生成
# 定义日志配置
processor_config = LogConfig(
console_format=CHAT_STYLE_CONFIG["console_format"],
file_format=CHAT_STYLE_CONFIG["file_format"],
)
logger = get_module_logger("heartFC_processor", config=processor_config)
# # 定义兴趣度增加触发回复的阈值 (移至 InterestManager)
# INTEREST_INCREASE_THRESHOLD = 0.5
class HeartFC_Processor:
def __init__(self, chat_instance: HeartFC_Chat):
self.storage = MessageStorage()
self.interest_manager = InterestManager() # TODO: 可能需要传递 chat_instance 给 InterestManager 或修改其方法签名
self.chat_instance = chat_instance # 持有 HeartFC_Chat 实例
async def process_message(self, message_data: str) -> None:
"""处理接收到的消息,更新状态,并将回复决策委托给 InterestManager"""
timing_results = {} # 初始化 timing_results
message = None
try:
message = MessageRecv(message_data)
groupinfo = message.message_info.group_info
userinfo = message.message_info.user_info
messageinfo = message.message_info
# 消息加入缓冲池
await message_buffer.start_caching_messages(message)
# 创建聊天流
chat = await chat_manager.get_or_create_stream(
platform=messageinfo.platform,
user_info=userinfo,
group_info=groupinfo,
)
if not chat:
logger.error(f"无法为消息创建或获取聊天流: user {userinfo.user_id}, group {groupinfo.group_id if groupinfo else 'None'}")
return
message.update_chat_stream(chat)
# 创建心流与chat的观察 (在接收消息时创建,以便后续观察和思考)
heartflow.create_subheartflow(chat.stream_id)
await message.process()
logger.trace(f"消息处理成功: {message.processed_plain_text}")
# 过滤词/正则表达式过滤
if self._check_ban_words(message.processed_plain_text, chat, userinfo) or self._check_ban_regex(
message.raw_message, chat, userinfo
):
return
logger.trace(f"过滤词/正则表达式过滤成功: {message.processed_plain_text}")
# 查询缓冲器结果
buffer_result = await message_buffer.query_buffer_result(message)
# 处理缓冲器结果 (Bombing logic)
if not buffer_result:
F_type = "seglist"
if message.message_segment.type != "seglist":
F_type = message.message_segment.type
else:
if (isinstance(message.message_segment.data, list)
and all(isinstance(x, Seg) for x in message.message_segment.data)
and len(message.message_segment.data) == 1):
F_type = message.message_segment.data[0].type
if F_type == "text":
logger.debug(f"触发缓冲,消息:{message.processed_plain_text}")
elif F_type == "image":
logger.debug("触发缓冲,表情包/图片等待中")
elif F_type == "seglist":
logger.debug("触发缓冲,消息列表等待中")
return # 被缓冲器拦截,不生成回复
# ---- 只有通过缓冲的消息才进行存储和后续处理 ----
# 存储消息 (使用可能被缓冲器更新过的 message)
try:
await self.storage.store_message(message, chat)
logger.trace(f"存储成功 (通过缓冲后): {message.processed_plain_text}")
except Exception as e:
logger.error(f"存储消息失败: {e}")
logger.error(traceback.format_exc())
# 存储失败可能仍需考虑是否继续,暂时返回
return
# 激活度计算 (使用可能被缓冲器更新过的 message.processed_plain_text)
is_mentioned, _ = is_mentioned_bot_in_message(message)
interested_rate = 0.0 # 默认值
try:
with Timer("记忆激活", timing_results):
interested_rate = await HippocampusManager.get_instance().get_activate_from_text(
message.processed_plain_text, fast_retrieval=True # 使用更新后的文本
)
logger.trace(f"记忆激活率 (通过缓冲后): {interested_rate:.2f}")
except Exception as e:
logger.error(f"计算记忆激活率失败: {e}")
logger.error(traceback.format_exc())
if is_mentioned:
interested_rate += 0.8
# 更新兴趣度
try:
self.interest_manager.increase_interest(chat.stream_id, value=interested_rate, message=message)
current_interest = self.interest_manager.get_interest(chat.stream_id) # 获取更新后的值用于日志
logger.trace(f"使用激活率 {interested_rate:.2f} 更新后 (通过缓冲后),当前兴趣度: {current_interest:.2f}")
except Exception as e:
logger.error(f"更新兴趣度失败: {e}") # 调整日志消息
logger.error(traceback.format_exc())
# ---- 兴趣度计算和更新结束 ----
# 打印消息接收和处理信息
mes_name = chat.group_info.group_name if chat.group_info else "私聊"
current_time = time.strftime("%H:%M:%S", time.localtime(message.message_info.time))
logger.info(
f"[{current_time}][{mes_name}]"
f"{chat.user_info.user_nickname}:"
f"{message.processed_plain_text}"
f"兴趣度: {current_interest:.2f}"
)
# 回复触发逻辑已移至 HeartFC_Chat 的监控任务
except Exception as e:
logger.error(f"消息处理失败 (process_message V3): {e}")
logger.error(traceback.format_exc())
if message: # 记录失败的消息内容
logger.error(f"失败消息原始内容: {message.raw_message}")
def _check_ban_words(self, text: str, chat, userinfo) -> bool:
"""检查消息中是否包含过滤词"""
for word in global_config.ban_words:
if word in text:
logger.info(
f"[{chat.group_info.group_name if chat.group_info else '私聊'}]{userinfo.user_nickname}:{text}"
)
logger.info(f"[过滤词识别]消息中含有{word}filtered")
return True
return False
def _check_ban_regex(self, text: str, chat, userinfo) -> bool:
"""检查消息是否匹配过滤正则表达式"""
for pattern in global_config.ban_msgs_regex:
if pattern.search(text):
logger.info(
f"[{chat.group_info.group_name if chat.group_info else '私聊'}]{userinfo.user_nickname}:{text}"
)
logger.info(f"[正则表达式过滤]消息匹配到{pattern}filtered")
return True
return False

View File

@@ -0,0 +1,370 @@
import time
import math
import asyncio
import threading
import json # 引入 json
import os # 引入 os
import traceback # <--- 添加导入
from typing import Optional # <--- 添加导入
from src.common.logger import get_module_logger, LogConfig, DEFAULT_CONFIG # 引入 DEFAULT_CONFIG
from src.plugins.chat.chat_stream import chat_manager # *** Import ChatManager ***
from ...chat.message import MessageRecv # 导入 MessageRecv
# 定义日志配置 (使用 loguru 格式)
interest_log_config = LogConfig(
console_format=DEFAULT_CONFIG["console_format"], # 使用默认控制台格式
file_format=DEFAULT_CONFIG["file_format"] # 使用默认文件格式
)
logger = get_module_logger("InterestManager", config=interest_log_config)
# 定义常量
DEFAULT_DECAY_RATE_PER_SECOND = 0.95 # 每秒衰减率 (兴趣保留 99%)
# DEFAULT_INCREASE_AMOUNT = 10.0 # 不再需要固定增加值
MAX_INTEREST = 10.0 # 最大兴趣值
MIN_INTEREST_THRESHOLD = 0.1 # 低于此值可能被清理 (可选)
CLEANUP_INTERVAL_SECONDS = 3600 # 清理任务运行间隔 (例如1小时)
INACTIVE_THRESHOLD_SECONDS = 3600 * 24 # 不活跃时间阈值 (例如1天)
LOG_INTERVAL_SECONDS = 3 # 日志记录间隔 (例如30秒)
LOG_DIRECTORY = "logs/interest" # 日志目录
LOG_FILENAME = "interest_log.json" # 快照日志文件名 (保留,以防其他地方用到)
HISTORY_LOG_FILENAME = "interest_history.log" # 新的历史日志文件名
# 移除阈值,将移至 HeartFC_Chat
# INTEREST_INCREASE_THRESHOLD = 0.5
class InterestChatting:
def __init__(self, decay_rate=DEFAULT_DECAY_RATE_PER_SECOND, max_interest=MAX_INTEREST):
self.interest_level: float = 0.0
self.last_update_time: float = time.time()
self.decay_rate_per_second: float = decay_rate
# self.increase_amount: float = increase_amount # 移除固定的 increase_amount
self.max_interest: float = max_interest
# 新增:用于追踪最后一次显著增加的信息,供外部监控任务使用
self.last_increase_amount: float = 0.0
self.last_triggering_message: MessageRecv | None = None
def _calculate_decay(self, current_time: float):
"""计算从上次更新到现在的衰减"""
time_delta = current_time - self.last_update_time
if time_delta > 0:
# 指数衰减: interest = interest * (decay_rate ^ time_delta)
# 添加处理极小兴趣值避免 math domain error
if self.interest_level < 1e-9:
self.interest_level = 0.0
else:
# 检查 decay_rate_per_second 是否为非正数,避免 math domain error
if self.decay_rate_per_second <= 0:
logger.warning(f"InterestChatting encountered non-positive decay rate: {self.decay_rate_per_second}. Setting interest to 0.")
self.interest_level = 0.0
# 检查 interest_level 是否为负数,虽然理论上不应发生,但以防万一
elif self.interest_level < 0:
logger.warning(f"InterestChatting encountered negative interest level: {self.interest_level}. Setting interest to 0.")
self.interest_level = 0.0
else:
try:
decay_factor = math.pow(self.decay_rate_per_second, time_delta)
self.interest_level *= decay_factor
except ValueError as e:
# 捕获潜在的 math domain error例如对负数开非整数次方虽然已加保护
logger.error(f"Math error during decay calculation: {e}. Rate: {self.decay_rate_per_second}, Delta: {time_delta}, Level: {self.interest_level}. Setting interest to 0.")
self.interest_level = 0.0
# 防止低于阈值 (如果需要)
# self.interest_level = max(self.interest_level, MIN_INTEREST_THRESHOLD)
self.last_update_time = current_time
def increase_interest(self, current_time: float, value: float, message: Optional[MessageRecv]):
"""根据传入的值增加兴趣值,并记录增加量和关联消息"""
self._calculate_decay(current_time) # 先计算衰减
# 记录这次增加的具体数值和消息,供外部判断是否触发
self.last_increase_amount = value
self.last_triggering_message = message
# 应用增加
self.interest_level += value
self.interest_level = min(self.interest_level, self.max_interest) # 不超过最大值
self.last_update_time = current_time # 更新时间戳
def decrease_interest(self, current_time: float, value: float):
"""降低兴趣值并更新时间 (确保不低于0)"""
# 注意:降低兴趣度是否需要先衰减?取决于具体逻辑,这里假设不衰减直接减
self.interest_level -= value
self.interest_level = max(self.interest_level, 0.0) # 确保不低于0
self.last_update_time = current_time # 降低也更新时间戳
def reset_trigger_info(self):
"""重置触发相关信息,在外部任务处理后调用"""
self.last_increase_amount = 0.0
self.last_triggering_message = None
def get_interest(self) -> float:
"""获取当前兴趣值 (由后台任务更新)"""
return self.interest_level
def get_state(self) -> dict:
"""获取当前状态字典"""
# 不再需要传入 current_time 来计算,直接获取
interest = self.get_interest() # 使用修改后的 get_interest
return {
"interest_level": round(interest, 2),
"last_update_time": self.last_update_time,
# 可以选择性地暴露 last_increase_amount 给状态,方便调试
# "last_increase_amount": round(self.last_increase_amount, 2)
}
class InterestManager:
_instance = None
_lock = threading.Lock()
_initialized = False
def __new__(cls, *args, **kwargs):
if cls._instance is None:
with cls._lock:
# Double-check locking
if cls._instance is None:
cls._instance = super().__new__(cls)
return cls._instance
def __init__(self):
if not self._initialized:
with self._lock:
# 确保初始化也只执行一次
if not self._initialized:
logger.info("Initializing InterestManager singleton...")
# key: stream_id (str), value: InterestChatting instance
self.interest_dict: dict[str, InterestChatting] = {}
# 保留旧的快照文件路径变量,尽管此任务不再写入
self._snapshot_log_file_path = os.path.join(LOG_DIRECTORY, LOG_FILENAME)
# 定义新的历史日志文件路径
self._history_log_file_path = os.path.join(LOG_DIRECTORY, HISTORY_LOG_FILENAME)
self._ensure_log_directory()
self._cleanup_task = None
self._logging_task = None # 添加日志任务变量
self._initialized = True
logger.info("InterestManager initialized.") # 修改日志消息
self._decay_task = None # 新增:衰减任务变量
def _ensure_log_directory(self):
"""确保日志目录存在"""
try:
os.makedirs(LOG_DIRECTORY, exist_ok=True)
logger.info(f"Log directory '{LOG_DIRECTORY}' ensured.")
except OSError as e:
logger.error(f"Error creating log directory '{LOG_DIRECTORY}': {e}")
async def _periodic_cleanup_task(self, interval_seconds: int, threshold: float, max_age_seconds: int):
"""后台清理任务的异步函数"""
while True:
await asyncio.sleep(interval_seconds)
logger.info(f"Running periodic cleanup (interval: {interval_seconds}s)...")
self.cleanup_inactive_chats(threshold=threshold, max_age_seconds=max_age_seconds)
async def _periodic_log_task(self, interval_seconds: int):
"""后台日志记录任务的异步函数 (记录历史数据,包含 group_name)"""
while True:
await asyncio.sleep(interval_seconds)
logger.debug(f"Running periodic history logging (interval: {interval_seconds}s)...")
try:
current_timestamp = time.time()
all_states = self.get_all_interest_states() # 获取当前所有状态
# 以追加模式打开历史日志文件
with open(self._history_log_file_path, 'a', encoding='utf-8') as f:
count = 0
for stream_id, state in all_states.items():
# *** Get group name from ChatManager ***
group_name = stream_id # Default to stream_id
try:
# Use the imported chat_manager instance
chat_stream = chat_manager.get_stream(stream_id)
if chat_stream and chat_stream.group_info:
group_name = chat_stream.group_info.group_name
elif chat_stream and not chat_stream.group_info:
# Handle private chats - maybe use user nickname?
group_name = f"私聊_{chat_stream.user_info.user_nickname}" if chat_stream.user_info else stream_id
except Exception as e:
logger.warning(f"Could not get group name for stream_id {stream_id}: {e}")
# Fallback to stream_id is already handled by default value
log_entry = {
"timestamp": round(current_timestamp, 2),
"stream_id": stream_id,
"interest_level": state.get("interest_level", 0.0), # 确保有默认值
"group_name": group_name # *** Add group_name ***
}
# 将每个条目作为单独的 JSON 行写入
f.write(json.dumps(log_entry, ensure_ascii=False) + '\n')
count += 1
logger.debug(f"Successfully appended {count} interest history entries to {self._history_log_file_path}")
# 注意:不再写入快照文件 interest_log.json
# 如果需要快照文件,可以在这里单独写入 self._snapshot_log_file_path
# 例如:
# with open(self._snapshot_log_file_path, 'w', encoding='utf-8') as snap_f:
# json.dump(all_states, snap_f, indent=4, ensure_ascii=False)
# logger.debug(f"Successfully wrote snapshot to {self._snapshot_log_file_path}")
except IOError as e:
logger.error(f"Error writing interest history log to {self._history_log_file_path}: {e}")
except Exception as e:
logger.error(f"Unexpected error during periodic history logging: {e}")
async def _periodic_decay_task(self):
"""后台衰减任务的异步函数,每秒更新一次所有实例的衰减"""
while True:
await asyncio.sleep(1) # 每秒运行一次
current_time = time.time()
# logger.debug("Running periodic decay calculation...") # 调试日志,可能过于频繁
# 创建字典项的快照进行迭代,避免在迭代时修改字典的问题
items_snapshot = list(self.interest_dict.items())
count = 0
for stream_id, chatting in items_snapshot:
try:
# 调用 InterestChatting 实例的衰减方法
chatting._calculate_decay(current_time)
count += 1
except Exception as e:
logger.error(f"Error calculating decay for stream_id {stream_id}: {e}")
# if count > 0: # 仅在实际处理了项目时记录日志,避免空闲时刷屏
# logger.debug(f"Applied decay to {count} streams.")
async def start_background_tasks(self):
"""Starts the background cleanup, logging, and decay tasks."""
if self._cleanup_task is None or self._cleanup_task.done():
self._cleanup_task = asyncio.create_task(
self._periodic_cleanup_task(
interval_seconds=CLEANUP_INTERVAL_SECONDS,
threshold=MIN_INTEREST_THRESHOLD,
max_age_seconds=INACTIVE_THRESHOLD_SECONDS
)
)
logger.info(f"Periodic cleanup task created. Interval: {CLEANUP_INTERVAL_SECONDS}s, Inactive Threshold: {INACTIVE_THRESHOLD_SECONDS}s")
else:
logger.warning("Cleanup task creation skipped: already running or exists.")
if self._logging_task is None or self._logging_task.done():
self._logging_task = asyncio.create_task(
self._periodic_log_task(interval_seconds=LOG_INTERVAL_SECONDS)
)
logger.info(f"Periodic logging task created. Interval: {LOG_INTERVAL_SECONDS}s")
else:
logger.warning("Logging task creation skipped: already running or exists.")
# 启动新的衰减任务
if self._decay_task is None or self._decay_task.done():
self._decay_task = asyncio.create_task(
self._periodic_decay_task()
)
logger.info("Periodic decay task created. Interval: 1s")
else:
logger.warning("Decay task creation skipped: already running or exists.")
def get_all_interest_states(self) -> dict[str, dict]:
"""获取所有聊天流的当前兴趣状态"""
# 不再需要 current_time, 因为 get_state 现在不接收它
states = {}
# 创建副本以避免在迭代时修改字典
items_snapshot = list(self.interest_dict.items())
for stream_id, chatting in items_snapshot:
try:
# 直接调用 get_state它会使用内部的 get_interest 获取已更新的值
states[stream_id] = chatting.get_state()
except Exception as e:
logger.warning(f"Error getting state for stream_id {stream_id}: {e}")
return states
def get_interest_chatting(self, stream_id: str) -> Optional[InterestChatting]:
"""获取指定流的 InterestChatting 实例,如果不存在则返回 None"""
return self.interest_dict.get(stream_id)
def _get_or_create_interest_chatting(self, stream_id: str) -> InterestChatting:
"""获取或创建指定流的 InterestChatting 实例 (线程安全)"""
# 由于字典操作本身在 CPython 中大部分是原子的,
# 且主要写入发生在 __init__ 和 cleanup (由单任务执行)
# 读取和 get_or_create 主要在事件循环线程,简单场景下可能不需要锁。
# 但为保险起见或跨线程使用考虑,可加锁。
# with self._lock:
if stream_id not in self.interest_dict:
logger.debug(f"Creating new InterestChatting for stream_id: {stream_id}")
self.interest_dict[stream_id] = InterestChatting()
# 首次创建时兴趣为 0由第一次消息的 activate rate 决定初始值
return self.interest_dict[stream_id]
def get_interest(self, stream_id: str) -> float:
"""获取指定聊天流当前的兴趣度 (值由后台任务更新)"""
# current_time = time.time() # 不再需要获取当前时间
interest_chatting = self._get_or_create_interest_chatting(stream_id)
# 直接调用修改后的 get_interest不传入时间
return interest_chatting.get_interest()
def increase_interest(self, stream_id: str, value: float, message: MessageRecv):
"""当收到消息时,增加指定聊天流的兴趣度,并传递关联消息"""
current_time = time.time()
interest_chatting = self._get_or_create_interest_chatting(stream_id)
# 调用修改后的 increase_interest传入 message
interest_chatting.increase_interest(current_time, value, message)
logger.debug(f"Increased interest for stream_id: {stream_id} by {value:.2f} to {interest_chatting.interest_level:.2f}") # 更新日志
def decrease_interest(self, stream_id: str, value: float):
"""降低指定聊天流的兴趣度"""
current_time = time.time()
# 尝试获取,如果不存在则不做任何事
interest_chatting = self.get_interest_chatting(stream_id)
if interest_chatting:
interest_chatting.decrease_interest(current_time, value)
logger.debug(f"Decreased interest for stream_id: {stream_id} by {value:.2f} to {interest_chatting.interest_level:.2f}")
else:
logger.warning(f"Attempted to decrease interest for non-existent stream_id: {stream_id}")
def cleanup_inactive_chats(self, threshold=MIN_INTEREST_THRESHOLD, max_age_seconds=INACTIVE_THRESHOLD_SECONDS):
"""
清理长时间不活跃或兴趣度过低的聊天流记录
threshold: 低于此兴趣度的将被清理
max_age_seconds: 超过此时间未更新的将被清理
"""
current_time = time.time()
keys_to_remove = []
initial_count = len(self.interest_dict)
# with self._lock: # 如果需要锁整个迭代过程
# 创建副本以避免在迭代时修改字典
items_snapshot = list(self.interest_dict.items())
for stream_id, chatting in items_snapshot:
# 先计算当前兴趣,确保是最新的
# 加锁保护 chatting 对象状态的读取和可能的修改
# with self._lock: # 如果 InterestChatting 内部操作不是原子的
interest = chatting.get_interest()
last_update = chatting.last_update_time
should_remove = False
reason = ""
if interest < threshold:
should_remove = True
reason = f"interest ({interest:.2f}) < threshold ({threshold})"
# 只有设置了 max_age_seconds 才检查时间
if max_age_seconds is not None and (current_time - last_update) > max_age_seconds:
should_remove = True
reason = f"inactive time ({current_time - last_update:.0f}s) > max age ({max_age_seconds}s)" + (f", {reason}" if reason else "") # 附加之前的理由
if should_remove:
keys_to_remove.append(stream_id)
logger.debug(f"Marking stream_id {stream_id} for removal. Reason: {reason}")
if keys_to_remove:
logger.info(f"Cleanup identified {len(keys_to_remove)} inactive/low-interest streams.")
# with self._lock: # 确保删除操作的原子性
for key in keys_to_remove:
# 再次检查 key 是否存在,以防万一在迭代和删除之间状态改变
if key in self.interest_dict:
del self.interest_dict[key]
logger.debug(f"Removed stream_id: {key}")
final_count = initial_count - len(keys_to_remove)
logger.info(f"Cleanup finished. Removed {len(keys_to_remove)} streams. Current count: {final_count}")
else:
logger.info(f"Cleanup finished. No streams met removal criteria. Current count: {initial_count}")
# 不再需要手动创建实例和任务
# manager = InterestManager()
# asyncio.create_task(periodic_cleanup(manager, 3600))

View File

@@ -5,8 +5,7 @@ from typing import Dict, List, Optional, Union
from src.common.logger import get_module_logger
from ....common.database import db
from ...message.api import global_api
from ...message import MessageSending, MessageThinking, MessageSet
from ...chat.message import MessageSending, MessageThinking, MessageSet
from ...storage.storage import MessageStorage
from ....config.config import global_config
from ...chat.utils import truncate_message, calculate_typing_time, count_messages_between
@@ -97,22 +96,10 @@ class MessageContainer:
self.max_size = max_size
self.messages = []
self.last_send_time = 0
self.thinking_wait_timeout = 20 # 思考等待超时时间(秒)
def get_timeout_messages(self) -> List[MessageSending]:
"""获取所有超时的Message_Sending对象思考时间超过20秒按thinking_start_time排序"""
current_time = time.time()
timeout_messages = []
for msg in self.messages:
if isinstance(msg, MessageSending):
if current_time - msg.thinking_start_time > self.thinking_wait_timeout:
timeout_messages.append(msg)
# 按thinking_start_time排序时间早的在前面
timeout_messages.sort(key=lambda x: x.thinking_start_time)
return timeout_messages
def count_thinking_messages(self) -> int:
"""计算当前容器中思考消息的数量"""
return sum(1 for msg in self.messages if isinstance(msg, MessageThinking))
def get_earliest_message(self) -> Optional[Union[MessageThinking, MessageSending]]:
"""获取thinking_start_time最早的消息对象"""
@@ -224,10 +211,10 @@ class MessageManager:
if (
message_earliest.is_head
and (thinking_messages_count > 4 or thinking_messages_length > 250)
and (thinking_messages_count > 3 or thinking_messages_length > 200)
and not message_earliest.is_private_message() # 避免在私聊时插入reply
):
logger.debug(f"设置回复消息{message_earliest.processed_plain_text}")
logger.debug(f"距离原始消息太长,设置回复消息{message_earliest.processed_plain_text}")
message_earliest.set_reply()
await message_earliest.process()

View File

@@ -400,7 +400,7 @@ class Hippocampus:
# 过滤掉不存在于记忆图中的关键词
valid_keywords = [keyword for keyword in keywords if keyword in self.memory_graph.G]
if not valid_keywords:
logger.info("没有找到有效的关键词节点")
# logger.info("没有找到有效的关键词节点")
return []
logger.info(f"有效的关键词: {', '.join(valid_keywords)}")
@@ -590,7 +590,7 @@ class Hippocampus:
# 过滤掉不存在于记忆图中的关键词
valid_keywords = [keyword for keyword in keywords if keyword in self.memory_graph.G]
if not valid_keywords:
logger.info("没有找到有效的关键词节点")
# logger.info("没有找到有效的关键词节点")
return 0
logger.info(f"有效的关键词: {', '.join(valid_keywords)}")
@@ -1114,7 +1114,7 @@ class Hippocampus:
# 过滤掉不存在于记忆图中的关键词
valid_keywords = [keyword for keyword in keywords if keyword in self.memory_graph.G]
if not valid_keywords:
logger.info("没有找到有效的关键词节点")
# logger.info("没有找到有效的关键词节点")
return []
logger.info(f"有效的关键词: {', '.join(valid_keywords)}")
@@ -1304,7 +1304,7 @@ class Hippocampus:
# 过滤掉不存在于记忆图中的关键词
valid_keywords = [keyword for keyword in keywords if keyword in self.memory_graph.G]
if not valid_keywords:
logger.info("没有找到有效的关键词节点")
# logger.info("没有找到有效的关键词节点")
return 0
logger.info(f"有效的关键词: {', '.join(valid_keywords)}")

View File

@@ -371,6 +371,7 @@ class PersonInfoManager:
"msg_interval_list", lambda x: isinstance(x, list) and len(x) >= 100
)
for person_id, msg_interval_list_ in msg_interval_lists.items():
await asyncio.sleep(0.3)
try:
time_interval = []
for t1, t2 in zip(msg_interval_list_, msg_interval_list_[1:]):