feat:修改统计,分离emoji动作
This commit is contained in:
@@ -42,7 +42,6 @@ class HFCPerformanceLogger:
|
||||
"total_time": cycle_data.get("total_time", 0),
|
||||
"step_times": cycle_data.get("step_times", {}),
|
||||
"processor_time_costs": cycle_data.get("processor_time_costs", {}), # 前处理器时间
|
||||
"post_processor_time_costs": cycle_data.get("post_processor_time_costs", {}), # 后处理器时间
|
||||
"reasoning": cycle_data.get("reasoning", ""),
|
||||
"success": cycle_data.get("success", False),
|
||||
}
|
||||
@@ -60,12 +59,7 @@ class HFCPerformanceLogger:
|
||||
f"time={record['total_time']:.2f}s",
|
||||
]
|
||||
|
||||
# 添加后处理器时间信息到日志
|
||||
if record["post_processor_time_costs"]:
|
||||
post_processor_stats = ", ".join(
|
||||
[f"{name}: {time_cost:.3f}s" for name, time_cost in record["post_processor_time_costs"].items()]
|
||||
)
|
||||
log_parts.append(f"post_processors=({post_processor_stats})")
|
||||
|
||||
|
||||
logger.debug(f"记录HFC循环数据: {', '.join(log_parts)}")
|
||||
|
||||
|
||||
@@ -20,7 +20,7 @@ class HFCVersionManager:
|
||||
"""HFC版本号管理器"""
|
||||
|
||||
# 默认版本号
|
||||
DEFAULT_VERSION = "v4.0.0"
|
||||
DEFAULT_VERSION = "v5.0.0"
|
||||
|
||||
# 当前运行时版本号
|
||||
_current_version: Optional[str] = None
|
||||
|
||||
@@ -46,9 +46,12 @@ def init_prompt():
|
||||
# --- Group Chat Prompt ---
|
||||
memory_activator_prompt = """
|
||||
你是一个记忆分析器,你需要根据以下信息来进行回忆
|
||||
以下是一场聊天中的信息,请根据这些信息,总结出几个关键词作为记忆回忆的触发词
|
||||
以下是一段聊天记录,请根据这些信息,总结出几个关键词作为记忆回忆的触发词
|
||||
|
||||
聊天记录:
|
||||
{obs_info_text}
|
||||
你想要回复的消息:
|
||||
{target_message}
|
||||
|
||||
历史关键词(请避免重复提取这些关键词):
|
||||
{cached_keywords}
|
||||
@@ -69,12 +72,12 @@ class MemoryActivator:
|
||||
self.summary_model = LLMRequest(
|
||||
model=global_config.model.memory_summary,
|
||||
temperature=0.7,
|
||||
request_type="focus.memory_activator",
|
||||
request_type="memory_activator",
|
||||
)
|
||||
self.running_memory = []
|
||||
self.cached_keywords = set() # 用于缓存历史关键词
|
||||
|
||||
async def activate_memory_with_chat_history(self, chat_id, target_message, chat_history_prompt) -> List[Dict]:
|
||||
async def activate_memory_with_chat_history(self, target_message, chat_history_prompt) -> List[Dict]:
|
||||
"""
|
||||
激活记忆
|
||||
|
||||
@@ -88,23 +91,13 @@ class MemoryActivator:
|
||||
if not global_config.memory.enable_memory:
|
||||
return []
|
||||
|
||||
# obs_info_text = ""
|
||||
# for observation in observations:
|
||||
# if isinstance(observation, ChattingObservation):
|
||||
# obs_info_text += observation.talking_message_str_truncate_short
|
||||
# elif isinstance(observation, StructureObservation):
|
||||
# working_info = observation.get_observe_info()
|
||||
# for working_info_item in working_info:
|
||||
# obs_info_text += f"{working_info_item['type']}: {working_info_item['content']}\n"
|
||||
|
||||
# logger.info(f"回忆待检索内容:obs_info_text: {obs_info_text}")
|
||||
|
||||
# 将缓存的关键词转换为字符串,用于prompt
|
||||
cached_keywords_str = ", ".join(self.cached_keywords) if self.cached_keywords else "暂无历史关键词"
|
||||
|
||||
prompt = await global_prompt_manager.format_prompt(
|
||||
"memory_activator_prompt",
|
||||
obs_info_text=chat_history_prompt,
|
||||
target_message=target_message,
|
||||
cached_keywords=cached_keywords_str,
|
||||
)
|
||||
|
||||
@@ -130,9 +123,6 @@ class MemoryActivator:
|
||||
related_memory = await hippocampus_manager.get_memory_from_topic(
|
||||
valid_keywords=keywords, max_memory_num=3, max_memory_length=2, max_depth=3
|
||||
)
|
||||
# related_memory = await hippocampus_manager.get_memory_from_text(
|
||||
# text=obs_info_text, max_memory_num=5, max_memory_length=2, max_depth=3, fast_retrieval=False
|
||||
# )
|
||||
|
||||
logger.info(f"获取到的记忆: {related_memory}")
|
||||
|
||||
|
||||
@@ -23,7 +23,7 @@ def init_real_time_info_prompts():
|
||||
|
||||
{name_block}
|
||||
现在,你想要回复{person_name}的消息,消息内容是:{target_message}。请根据聊天记录和你要回复的消息,从你对{person_name}的了解中提取有关的信息:
|
||||
1.你需要提供你想要提取的信息具体是哪方面的信息,例如:年龄,性别,对ta的印象,最近发生的事等等。
|
||||
1.你需要提供你想要提取的信息具体是哪方面的信息,例如:年龄,性别,你们之间的交流方式,最近发生的事等等。
|
||||
2.请注意,请不要重复调取相同的信息,已经调取的信息如下:
|
||||
{info_cache_block}
|
||||
3.如果当前聊天记录中没有需要查询的信息,或者现有信息已经足够回复,请返回{{"none": "不需要查询"}}
|
||||
@@ -71,13 +71,13 @@ class RelationshipFetcher:
|
||||
# LLM模型配置
|
||||
self.llm_model = LLMRequest(
|
||||
model=global_config.model.relation,
|
||||
request_type="focus.real_time_info",
|
||||
request_type="relation",
|
||||
)
|
||||
|
||||
# 小模型用于即时信息提取
|
||||
self.instant_llm_model = LLMRequest(
|
||||
model=global_config.model.utils_small,
|
||||
request_type="focus.real_time_info.instant",
|
||||
request_type="relation.instant",
|
||||
)
|
||||
|
||||
name = get_chat_manager().get_stream_name(self.chat_id)
|
||||
|
||||
81
src/plugins/built_in/core_actions/emoji.py
Normal file
81
src/plugins/built_in/core_actions/emoji.py
Normal file
@@ -0,0 +1,81 @@
|
||||
from typing import Tuple
|
||||
|
||||
# 导入新插件系统
|
||||
from src.plugin_system import BaseAction, ActionActivationType, ChatMode
|
||||
|
||||
# 导入依赖的系统组件
|
||||
from src.common.logger import get_logger
|
||||
|
||||
# 导入API模块 - 标准Python包方式
|
||||
from src.plugin_system.apis import emoji_api
|
||||
from src.plugins.built_in.core_actions.no_reply import NoReplyAction
|
||||
|
||||
|
||||
logger = get_logger("core_actions")
|
||||
|
||||
|
||||
|
||||
class EmojiAction(BaseAction):
|
||||
"""表情动作 - 发送表情包"""
|
||||
|
||||
# 激活设置
|
||||
focus_activation_type = ActionActivationType.LLM_JUDGE
|
||||
normal_activation_type = ActionActivationType.RANDOM
|
||||
mode_enable = ChatMode.ALL
|
||||
parallel_action = True
|
||||
random_activation_probability = 0.2 # 默认值,可通过配置覆盖
|
||||
|
||||
# 动作基本信息
|
||||
action_name = "emoji"
|
||||
action_description = "发送表情包辅助表达情绪"
|
||||
|
||||
# LLM判断提示词
|
||||
llm_judge_prompt = """
|
||||
判定是否需要使用表情动作的条件:
|
||||
1. 用户明确要求使用表情包
|
||||
2. 这是一个适合表达强烈情绪的场合
|
||||
3. 不要发送太多表情包,如果你已经发送过多个表情包则回答"否"
|
||||
|
||||
请回答"是"或"否"。
|
||||
"""
|
||||
|
||||
# 动作参数定义
|
||||
action_parameters = {"description": "文字描述你想要发送的表情包内容"}
|
||||
|
||||
# 动作使用场景
|
||||
action_require = ["发送表情包辅助表达情绪","表达情绪时可以选择使用", "不要连续发送,如果你已经发过[表情包],就不要选择此动作"]
|
||||
|
||||
# 关联类型
|
||||
associated_types = ["emoji"]
|
||||
|
||||
async def execute(self) -> Tuple[bool, str]:
|
||||
"""执行表情动作"""
|
||||
logger.info(f"{self.log_prefix} 决定发送表情")
|
||||
|
||||
try:
|
||||
# 1. 根据描述选择表情包
|
||||
description = self.action_data.get("description", "")
|
||||
emoji_result = await emoji_api.get_by_description(description)
|
||||
|
||||
if not emoji_result:
|
||||
logger.warning(f"{self.log_prefix} 未找到匹配描述 '{description}' 的表情包")
|
||||
return False, f"未找到匹配 '{description}' 的表情包"
|
||||
|
||||
emoji_base64, emoji_description, matched_emotion = emoji_result
|
||||
logger.info(f"{self.log_prefix} 找到表情包: {emoji_description}, 匹配情感: {matched_emotion}")
|
||||
|
||||
# 使用BaseAction的便捷方法发送表情包
|
||||
success = await self.send_emoji(emoji_base64)
|
||||
|
||||
if not success:
|
||||
logger.error(f"{self.log_prefix} 表情包发送失败")
|
||||
return False, "表情包发送失败"
|
||||
|
||||
# 重置NoReplyAction的连续计数器
|
||||
NoReplyAction.reset_consecutive_count()
|
||||
|
||||
return True, f"发送表情包: {emoji_description}"
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"{self.log_prefix} 表情动作执行失败: {e}")
|
||||
return False, f"表情发送失败: {str(e)}"
|
||||
@@ -18,8 +18,9 @@ from src.config.config import global_config
|
||||
from src.common.logger import get_logger
|
||||
|
||||
# 导入API模块 - 标准Python包方式
|
||||
from src.plugin_system.apis import emoji_api, generator_api, message_api
|
||||
from src.plugin_system.apis import generator_api, message_api
|
||||
from src.plugins.built_in.core_actions.no_reply import NoReplyAction
|
||||
from src.plugins.built_in.core_actions.emoji import EmojiAction
|
||||
|
||||
logger = get_logger("core_actions")
|
||||
|
||||
@@ -112,72 +113,6 @@ class ReplyAction(BaseAction):
|
||||
return False, f"回复失败: {str(e)}"
|
||||
|
||||
|
||||
class EmojiAction(BaseAction):
|
||||
"""表情动作 - 发送表情包"""
|
||||
|
||||
# 激活设置
|
||||
focus_activation_type = ActionActivationType.LLM_JUDGE
|
||||
normal_activation_type = ActionActivationType.RANDOM
|
||||
mode_enable = ChatMode.ALL
|
||||
parallel_action = True
|
||||
random_activation_probability = 0.2 # 默认值,可通过配置覆盖
|
||||
|
||||
# 动作基本信息
|
||||
action_name = "emoji"
|
||||
action_description = "发送表情包辅助表达情绪"
|
||||
|
||||
# LLM判断提示词
|
||||
llm_judge_prompt = """
|
||||
判定是否需要使用表情动作的条件:
|
||||
1. 用户明确要求使用表情包
|
||||
2. 这是一个适合表达强烈情绪的场合
|
||||
3. 不要发送太多表情包,如果你已经发送过多个表情包则回答"否"
|
||||
|
||||
请回答"是"或"否"。
|
||||
"""
|
||||
|
||||
# 动作参数定义
|
||||
action_parameters = {"description": "文字描述你想要发送的表情包内容"}
|
||||
|
||||
# 动作使用场景
|
||||
action_require = ["表达情绪时可以选择使用", "重点:不要连续发,如果你已经发过[表情包],就不要选择此动作"]
|
||||
|
||||
# 关联类型
|
||||
associated_types = ["emoji"]
|
||||
|
||||
async def execute(self) -> Tuple[bool, str]:
|
||||
"""执行表情动作"""
|
||||
logger.info(f"{self.log_prefix} 决定发送表情")
|
||||
|
||||
try:
|
||||
# 1. 根据描述选择表情包
|
||||
description = self.action_data.get("description", "")
|
||||
emoji_result = await emoji_api.get_by_description(description)
|
||||
|
||||
if not emoji_result:
|
||||
logger.warning(f"{self.log_prefix} 未找到匹配描述 '{description}' 的表情包")
|
||||
return False, f"未找到匹配 '{description}' 的表情包"
|
||||
|
||||
emoji_base64, emoji_description, matched_emotion = emoji_result
|
||||
logger.info(f"{self.log_prefix} 找到表情包: {emoji_description}, 匹配情感: {matched_emotion}")
|
||||
|
||||
# 使用BaseAction的便捷方法发送表情包
|
||||
success = await self.send_emoji(emoji_base64)
|
||||
|
||||
if not success:
|
||||
logger.error(f"{self.log_prefix} 表情包发送失败")
|
||||
return False, "表情包发送失败"
|
||||
|
||||
# 重置NoReplyAction的连续计数器
|
||||
NoReplyAction.reset_consecutive_count()
|
||||
|
||||
return True, f"发送表情包: {emoji_description}"
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"{self.log_prefix} 表情动作执行失败: {e}")
|
||||
return False, f"表情发送失败: {str(e)}"
|
||||
|
||||
|
||||
@register_plugin
|
||||
class CoreActionsPlugin(BasePlugin):
|
||||
"""核心动作插件
|
||||
|
||||
Reference in New Issue
Block a user