feat:修改统计,分离emoji动作

This commit is contained in:
SengokuCola
2025-07-01 19:07:12 +08:00
parent 20cec65e9e
commit ce87eb187f
6 changed files with 95 additions and 95 deletions

View File

@@ -42,7 +42,6 @@ class HFCPerformanceLogger:
"total_time": cycle_data.get("total_time", 0),
"step_times": cycle_data.get("step_times", {}),
"processor_time_costs": cycle_data.get("processor_time_costs", {}), # 前处理器时间
"post_processor_time_costs": cycle_data.get("post_processor_time_costs", {}), # 后处理器时间
"reasoning": cycle_data.get("reasoning", ""),
"success": cycle_data.get("success", False),
}
@@ -60,12 +59,7 @@ class HFCPerformanceLogger:
f"time={record['total_time']:.2f}s",
]
# 添加后处理器时间信息到日志
if record["post_processor_time_costs"]:
post_processor_stats = ", ".join(
[f"{name}: {time_cost:.3f}s" for name, time_cost in record["post_processor_time_costs"].items()]
)
log_parts.append(f"post_processors=({post_processor_stats})")
logger.debug(f"记录HFC循环数据: {', '.join(log_parts)}")

View File

@@ -20,7 +20,7 @@ class HFCVersionManager:
"""HFC版本号管理器"""
# 默认版本号
DEFAULT_VERSION = "v4.0.0"
DEFAULT_VERSION = "v5.0.0"
# 当前运行时版本号
_current_version: Optional[str] = None

View File

@@ -46,9 +46,12 @@ def init_prompt():
# --- Group Chat Prompt ---
memory_activator_prompt = """
你是一个记忆分析器,你需要根据以下信息来进行回忆
以下是一聊天中的信息,请根据这些信息,总结出几个关键词作为记忆回忆的触发词
以下是一聊天记录,请根据这些信息,总结出几个关键词作为记忆回忆的触发词
聊天记录:
{obs_info_text}
你想要回复的消息:
{target_message}
历史关键词(请避免重复提取这些关键词):
{cached_keywords}
@@ -69,12 +72,12 @@ class MemoryActivator:
self.summary_model = LLMRequest(
model=global_config.model.memory_summary,
temperature=0.7,
request_type="focus.memory_activator",
request_type="memory_activator",
)
self.running_memory = []
self.cached_keywords = set() # 用于缓存历史关键词
async def activate_memory_with_chat_history(self, chat_id, target_message, chat_history_prompt) -> List[Dict]:
async def activate_memory_with_chat_history(self, target_message, chat_history_prompt) -> List[Dict]:
"""
激活记忆
@@ -88,23 +91,13 @@ class MemoryActivator:
if not global_config.memory.enable_memory:
return []
# obs_info_text = ""
# for observation in observations:
# if isinstance(observation, ChattingObservation):
# obs_info_text += observation.talking_message_str_truncate_short
# elif isinstance(observation, StructureObservation):
# working_info = observation.get_observe_info()
# for working_info_item in working_info:
# obs_info_text += f"{working_info_item['type']}: {working_info_item['content']}\n"
# logger.info(f"回忆待检索内容obs_info_text: {obs_info_text}")
# 将缓存的关键词转换为字符串用于prompt
cached_keywords_str = ", ".join(self.cached_keywords) if self.cached_keywords else "暂无历史关键词"
prompt = await global_prompt_manager.format_prompt(
"memory_activator_prompt",
obs_info_text=chat_history_prompt,
target_message=target_message,
cached_keywords=cached_keywords_str,
)
@@ -130,9 +123,6 @@ class MemoryActivator:
related_memory = await hippocampus_manager.get_memory_from_topic(
valid_keywords=keywords, max_memory_num=3, max_memory_length=2, max_depth=3
)
# related_memory = await hippocampus_manager.get_memory_from_text(
# text=obs_info_text, max_memory_num=5, max_memory_length=2, max_depth=3, fast_retrieval=False
# )
logger.info(f"获取到的记忆: {related_memory}")