Merge branch 'dev' of https://github.com/MaiM-with-u/MaiBot into dev
This commit is contained in:
@@ -17,7 +17,7 @@ from src.manager.mood_manager import mood_manager
|
||||
from src.chat.heart_flow.utils_chat import get_chat_type_and_target_info
|
||||
from src.chat.message_receive.chat_stream import ChatStream
|
||||
from src.chat.focus_chat.hfc_utils import parse_thinking_id_to_timestamp
|
||||
from src.individuality.individuality import Individuality
|
||||
from src.individuality.individuality import individuality
|
||||
from src.chat.utils.prompt_builder import Prompt, global_prompt_manager
|
||||
from src.chat.utils.chat_message_builder import build_readable_messages, get_raw_msg_before_timestamp_with_chat
|
||||
import time
|
||||
@@ -281,7 +281,6 @@ class DefaultExpressor:
|
||||
in_mind_reply,
|
||||
target_message,
|
||||
) -> str:
|
||||
individuality = Individuality.get_instance()
|
||||
prompt_personality = individuality.get_prompt(x_person=0, level=2)
|
||||
|
||||
# Determine if it's a group chat
|
||||
@@ -294,7 +293,7 @@ class DefaultExpressor:
|
||||
message_list_before_now = get_raw_msg_before_timestamp_with_chat(
|
||||
chat_id=chat_stream.stream_id,
|
||||
timestamp=time.time(),
|
||||
limit=global_config.chat.observation_context_size,
|
||||
limit=global_config.focus_chat.observation_context_size,
|
||||
)
|
||||
chat_talking_prompt = await build_readable_messages(
|
||||
message_list_before_now,
|
||||
|
||||
@@ -36,24 +36,6 @@ def init_prompt() -> None:
|
||||
"""
|
||||
Prompt(learn_style_prompt, "learn_style_prompt")
|
||||
|
||||
personality_expression_prompt = """
|
||||
{personality}
|
||||
|
||||
请从以上人设中总结出这个角色可能的语言风格
|
||||
思考回复的特殊内容和情感
|
||||
思考有没有特殊的梗,一并总结成语言风格
|
||||
总结成如下格式的规律,总结的内容要详细,但具有概括性:
|
||||
当"xxx"时,可以"xxx", xxx不超过10个字
|
||||
|
||||
例如:
|
||||
当"表示十分惊叹"时,使用"我嘞个xxxx"
|
||||
当"表示讽刺的赞同,不想讲道理"时,使用"对对对"
|
||||
当"想说明某个观点,但懒得明说",使用"懂的都懂"
|
||||
|
||||
现在请你概括
|
||||
"""
|
||||
Prompt(personality_expression_prompt, "personality_expression_prompt")
|
||||
|
||||
learn_grammar_prompt = """
|
||||
{chat_str}
|
||||
|
||||
@@ -278,44 +260,6 @@ class ExpressionLearner:
|
||||
expressions.append((chat_id, situation, style))
|
||||
return expressions
|
||||
|
||||
async def extract_and_store_personality_expressions(self):
|
||||
"""
|
||||
检查data/expression/personality目录,不存在则创建。
|
||||
用peronality变量作为chat_str,调用LLM生成表达风格,解析后count=100,存储到expressions.json。
|
||||
"""
|
||||
dir_path = os.path.join("data", "expression", "personality")
|
||||
os.makedirs(dir_path, exist_ok=True)
|
||||
file_path = os.path.join(dir_path, "expressions.json")
|
||||
|
||||
# 构建prompt
|
||||
prompt = await global_prompt_manager.format_prompt(
|
||||
"personality_expression_prompt",
|
||||
personality=global_config.personality.expression_style,
|
||||
)
|
||||
# logger.info(f"个性表达方式提取prompt: {prompt}")
|
||||
|
||||
try:
|
||||
response, _ = await self.express_learn_model.generate_response_async(prompt)
|
||||
except Exception as e:
|
||||
logger.error(f"个性表达方式提取失败: {e}")
|
||||
return
|
||||
|
||||
logger.info(f"个性表达方式提取response: {response}")
|
||||
# chat_id用personality
|
||||
expressions = self.parse_expression_response(response, "personality")
|
||||
# 转为dict并count=100
|
||||
result = []
|
||||
for _, situation, style in expressions:
|
||||
result.append({"situation": situation, "style": style, "count": 100})
|
||||
# 超过50条时随机删除多余的,只保留50条
|
||||
if len(result) > 50:
|
||||
remove_count = len(result) - 50
|
||||
remove_indices = set(random.sample(range(len(result)), remove_count))
|
||||
result = [item for idx, item in enumerate(result) if idx not in remove_indices]
|
||||
with open(file_path, "w", encoding="utf-8") as f:
|
||||
json.dump(result, f, ensure_ascii=False, indent=2)
|
||||
logger.info(f"已写入{len(result)}条表达到{file_path}")
|
||||
|
||||
|
||||
init_prompt()
|
||||
|
||||
|
||||
@@ -3,7 +3,7 @@ import contextlib
|
||||
import time
|
||||
import traceback
|
||||
from collections import deque
|
||||
from typing import List, Optional, Dict, Any, Deque, Callable, Coroutine
|
||||
from typing import List, Optional, Dict, Any, Deque
|
||||
from src.chat.message_receive.chat_stream import ChatStream
|
||||
from src.chat.message_receive.chat_stream import chat_manager
|
||||
from rich.traceback import install
|
||||
@@ -26,10 +26,22 @@ from src.chat.focus_chat.info_processors.self_processor import SelfProcessor
|
||||
from src.chat.focus_chat.planners.planner import ActionPlanner
|
||||
from src.chat.focus_chat.planners.action_manager import ActionManager
|
||||
from src.chat.focus_chat.working_memory.working_memory import WorkingMemory
|
||||
from src.config.config import global_config
|
||||
|
||||
install(extra_lines=3)
|
||||
|
||||
|
||||
# 定义处理器映射:键是处理器名称,值是 (处理器类, 可选的配置键名)
|
||||
# 如果配置键名为 None,则该处理器默认启用且不能通过 focus_chat_processor 配置禁用
|
||||
PROCESSOR_CLASSES = {
|
||||
"ChattingInfoProcessor": (ChattingInfoProcessor, None),
|
||||
"MindProcessor": (MindProcessor, None),
|
||||
"ToolProcessor": (ToolProcessor, "tool_use_processor"),
|
||||
"WorkingMemoryProcessor": (WorkingMemoryProcessor, "working_memory_processor"),
|
||||
"SelfProcessor": (SelfProcessor, "self_identify_processor"),
|
||||
}
|
||||
|
||||
|
||||
WAITING_TIME_THRESHOLD = 300 # 等待新消息时间阈值,单位秒
|
||||
|
||||
EMOJI_SEND_PRO = 0.3 # 设置一个概率,比如 30% 才真的发
|
||||
@@ -90,6 +102,21 @@ class HeartFChatting:
|
||||
observe_id=self.stream_id, working_memory=self.working_memory
|
||||
)
|
||||
|
||||
# 根据配置文件和默认规则确定启用的处理器
|
||||
self.enabled_processor_names: List[str] = []
|
||||
config_processor_settings = global_config.focus_chat_processor
|
||||
|
||||
for proc_name, (_proc_class, config_key) in PROCESSOR_CLASSES.items():
|
||||
if config_key: # 此处理器可通过配置控制
|
||||
if getattr(config_processor_settings, config_key, True): # 默认启用 (如果配置中未指定该键)
|
||||
self.enabled_processor_names.append(proc_name)
|
||||
else: # 此处理器不在配置映射中 (config_key is None),默认启用
|
||||
self.enabled_processor_names.append(proc_name)
|
||||
|
||||
logger.info(f"{self.log_prefix} 将启用的处理器: {self.enabled_processor_names}")
|
||||
self.processors: List[BaseProcessor] = []
|
||||
self._register_default_processors()
|
||||
|
||||
self.expressor = DefaultExpressor(chat_id=self.stream_id)
|
||||
self.action_manager = ActionManager()
|
||||
self.action_planner = ActionPlanner(log_prefix=self.log_prefix, action_manager=self.action_manager)
|
||||
@@ -97,9 +124,6 @@ class HeartFChatting:
|
||||
self.hfcloop_observation.set_action_manager(self.action_manager)
|
||||
|
||||
self.all_observations = observations
|
||||
# --- 处理器列表 ---
|
||||
self.processors: List[BaseProcessor] = []
|
||||
self._register_default_processors()
|
||||
|
||||
# 初始化状态控制
|
||||
self._initialized = False
|
||||
@@ -150,13 +174,40 @@ class HeartFChatting:
|
||||
return True
|
||||
|
||||
def _register_default_processors(self):
|
||||
"""注册默认的信息处理器"""
|
||||
self.processors.append(ChattingInfoProcessor())
|
||||
self.processors.append(MindProcessor(subheartflow_id=self.stream_id))
|
||||
self.processors.append(ToolProcessor(subheartflow_id=self.stream_id))
|
||||
self.processors.append(WorkingMemoryProcessor(subheartflow_id=self.stream_id))
|
||||
self.processors.append(SelfProcessor(subheartflow_id=self.stream_id))
|
||||
logger.info(f"{self.log_prefix} 已注册默认处理器: {[p.__class__.__name__ for p in self.processors]}")
|
||||
"""根据 self.enabled_processor_names 注册信息处理器"""
|
||||
self.processors = [] # 清空已有的
|
||||
|
||||
for name in self.enabled_processor_names: # 'name' is "ChattingInfoProcessor", etc.
|
||||
processor_info = PROCESSOR_CLASSES.get(name) # processor_info is (ProcessorClass, config_key)
|
||||
if processor_info:
|
||||
processor_actual_class = processor_info[0] # 获取实际的类定义
|
||||
# 根据处理器类名判断是否需要 subheartflow_id
|
||||
if name in ["MindProcessor", "ToolProcessor", "WorkingMemoryProcessor", "SelfProcessor"]:
|
||||
self.processors.append(processor_actual_class(subheartflow_id=self.stream_id))
|
||||
elif name == "ChattingInfoProcessor":
|
||||
self.processors.append(processor_actual_class())
|
||||
else:
|
||||
# 对于PROCESSOR_CLASSES中定义但此处未明确处理构造的处理器
|
||||
# (例如, 新增了一个处理器到PROCESSOR_CLASSES, 它不需要id, 也不叫ChattingInfoProcessor)
|
||||
try:
|
||||
self.processors.append(processor_actual_class()) # 尝试无参构造
|
||||
logger.debug(f"{self.log_prefix} 注册处理器 {name} (尝试无参构造).")
|
||||
except TypeError:
|
||||
logger.error(
|
||||
f"{self.log_prefix} 处理器 {name} 构造失败。它可能需要参数(如 subheartflow_id)但未在注册逻辑中明确处理。"
|
||||
)
|
||||
else:
|
||||
# 这理论上不应该发生,因为 enabled_processor_names 是从 PROCESSOR_CLASSES 的键生成的
|
||||
logger.warning(
|
||||
f"{self.log_prefix} 在 PROCESSOR_CLASSES 中未找到名为 '{name}' 的处理器定义,将跳过注册。"
|
||||
)
|
||||
|
||||
if self.processors:
|
||||
logger.info(
|
||||
f"{self.log_prefix} 已根据配置和默认规则注册处理器: {[p.__class__.__name__ for p in self.processors]}"
|
||||
)
|
||||
else:
|
||||
logger.warning(f"{self.log_prefix} 没有注册任何处理器。这可能是由于配置错误或所有处理器都被禁用了。")
|
||||
|
||||
async def start(self):
|
||||
"""
|
||||
@@ -260,6 +311,8 @@ class HeartFChatting:
|
||||
+ (f"\n详情: {'; '.join(timer_strings)}" if timer_strings else "")
|
||||
)
|
||||
|
||||
await asyncio.sleep(global_config.focus_chat.think_interval)
|
||||
|
||||
except asyncio.CancelledError:
|
||||
# 设置了关闭标志位后被取消是正常流程
|
||||
if not self._shutting_down:
|
||||
|
||||
@@ -5,7 +5,6 @@ from ...config.config import global_config
|
||||
from ..message_receive.message import MessageRecv
|
||||
from ..message_receive.storage import MessageStorage
|
||||
from ..utils.utils import is_mentioned_bot_in_message
|
||||
from maim_message import Seg
|
||||
from src.chat.heart_flow.heartflow import heartflow
|
||||
from src.common.logger_manager import get_logger
|
||||
from ..message_receive.chat_stream import chat_manager
|
||||
@@ -79,26 +78,26 @@ async def _calculate_interest(message: MessageRecv) -> Tuple[float, bool]:
|
||||
return interested_rate, is_mentioned
|
||||
|
||||
|
||||
def _get_message_type(message: MessageRecv) -> str:
|
||||
"""获取消息类型
|
||||
# def _get_message_type(message: MessageRecv) -> str:
|
||||
# """获取消息类型
|
||||
|
||||
Args:
|
||||
message: 消息对象
|
||||
# Args:
|
||||
# message: 消息对象
|
||||
|
||||
Returns:
|
||||
str: 消息类型
|
||||
"""
|
||||
if message.message_segment.type != "seglist":
|
||||
return message.message_segment.type
|
||||
# Returns:
|
||||
# str: 消息类型
|
||||
# """
|
||||
# if message.message_segment.type != "seglist":
|
||||
# return message.message_segment.type
|
||||
|
||||
if (
|
||||
isinstance(message.message_segment.data, list)
|
||||
and all(isinstance(x, Seg) for x in message.message_segment.data)
|
||||
and len(message.message_segment.data) == 1
|
||||
):
|
||||
return message.message_segment.data[0].type
|
||||
# if (
|
||||
# isinstance(message.message_segment.data, list)
|
||||
# and all(isinstance(x, Seg) for x in message.message_segment.data)
|
||||
# and len(message.message_segment.data) == 1
|
||||
# ):
|
||||
# return message.message_segment.data[0].type
|
||||
|
||||
return "seglist"
|
||||
# return "seglist"
|
||||
|
||||
|
||||
def _check_ban_words(text: str, chat, userinfo) -> bool:
|
||||
@@ -112,7 +111,7 @@ def _check_ban_words(text: str, chat, userinfo) -> bool:
|
||||
Returns:
|
||||
bool: 是否包含过滤词
|
||||
"""
|
||||
for word in global_config.chat.ban_words:
|
||||
for word in global_config.message_receive.ban_words:
|
||||
if word in text:
|
||||
chat_name = chat.group_info.group_name if chat.group_info else "私聊"
|
||||
logger.info(f"[{chat_name}]{userinfo.user_nickname}:{text}")
|
||||
@@ -132,7 +131,7 @@ def _check_ban_regex(text: str, chat, userinfo) -> bool:
|
||||
Returns:
|
||||
bool: 是否匹配过滤正则
|
||||
"""
|
||||
for pattern in global_config.chat.ban_msgs_regex:
|
||||
for pattern in global_config.message_receive.ban_msgs_regex:
|
||||
if pattern.search(text):
|
||||
chat_name = chat.group_info.group_name if chat.group_info else "私聊"
|
||||
logger.info(f"[{chat_name}]{userinfo.user_nickname}:{text}")
|
||||
@@ -141,7 +140,7 @@ def _check_ban_regex(text: str, chat, userinfo) -> bool:
|
||||
return False
|
||||
|
||||
|
||||
class HeartFCProcessor:
|
||||
class HeartFCMessageReceiver:
|
||||
"""心流处理器,负责处理接收到的消息并计算兴趣度"""
|
||||
|
||||
def __init__(self):
|
||||
@@ -1,20 +1,16 @@
|
||||
from src.config.config import global_config
|
||||
from src.common.logger_manager import get_logger
|
||||
from src.individuality.individuality import Individuality
|
||||
from src.individuality.individuality import individuality
|
||||
from src.chat.utils.prompt_builder import Prompt, global_prompt_manager
|
||||
from src.chat.utils.chat_message_builder import build_readable_messages, get_raw_msg_before_timestamp_with_chat
|
||||
from src.chat.person_info.relationship_manager import relationship_manager
|
||||
from src.chat.utils.utils import get_embedding
|
||||
import time
|
||||
from typing import Union, Optional
|
||||
from typing import Optional
|
||||
from src.chat.utils.utils import get_recent_group_speaker
|
||||
from src.manager.mood_manager import mood_manager
|
||||
from src.chat.memory_system.Hippocampus import HippocampusManager
|
||||
from src.chat.knowledge.knowledge_lib import qa_manager
|
||||
import random
|
||||
import json
|
||||
import math
|
||||
from src.common.database.database_model import Knowledges
|
||||
|
||||
|
||||
logger = get_logger("prompt")
|
||||
@@ -103,7 +99,6 @@ class PromptBuilder:
|
||||
return None
|
||||
|
||||
async def _build_prompt_normal(self, chat_stream, message_txt: str, sender_name: str = "某人") -> str:
|
||||
individuality = Individuality.get_instance()
|
||||
prompt_personality = individuality.get_prompt(x_person=2, level=2)
|
||||
is_group_chat = bool(chat_stream.group_info)
|
||||
|
||||
@@ -112,7 +107,7 @@ class PromptBuilder:
|
||||
who_chat_in_group = get_recent_group_speaker(
|
||||
chat_stream.stream_id,
|
||||
(chat_stream.user_info.platform, chat_stream.user_info.user_id) if chat_stream.user_info else None,
|
||||
limit=global_config.chat.observation_context_size,
|
||||
limit=global_config.focus_chat.observation_context_size,
|
||||
)
|
||||
elif chat_stream.user_info:
|
||||
who_chat_in_group.append(
|
||||
@@ -161,7 +156,7 @@ class PromptBuilder:
|
||||
message_list_before_now = get_raw_msg_before_timestamp_with_chat(
|
||||
chat_id=chat_stream.stream_id,
|
||||
timestamp=time.time(),
|
||||
limit=global_config.chat.observation_context_size,
|
||||
limit=global_config.focus_chat.observation_context_size,
|
||||
)
|
||||
chat_talking_prompt = await build_readable_messages(
|
||||
message_list_before_now,
|
||||
@@ -265,129 +260,6 @@ class PromptBuilder:
|
||||
|
||||
return prompt
|
||||
|
||||
async def get_prompt_info_old(self, message: str, threshold: float):
|
||||
start_time = time.time()
|
||||
related_info = ""
|
||||
logger.debug(f"获取知识库内容,元消息:{message[:30]}...,消息长度: {len(message)}")
|
||||
# 1. 先从LLM获取主题,类似于记忆系统的做法
|
||||
topics = []
|
||||
|
||||
# 如果无法提取到主题,直接使用整个消息
|
||||
if not topics:
|
||||
logger.info("未能提取到任何主题,使用整个消息进行查询")
|
||||
embedding = await get_embedding(message, request_type="prompt_build")
|
||||
if not embedding:
|
||||
logger.error("获取消息嵌入向量失败")
|
||||
return ""
|
||||
|
||||
related_info = self.get_info_from_db(embedding, limit=3, threshold=threshold)
|
||||
logger.info(f"知识库检索完成,总耗时: {time.time() - start_time:.3f}秒")
|
||||
return related_info
|
||||
|
||||
# 2. 对每个主题进行知识库查询
|
||||
logger.info(f"开始处理{len(topics)}个主题的知识库查询")
|
||||
|
||||
# 优化:批量获取嵌入向量,减少API调用
|
||||
embeddings = {}
|
||||
topics_batch = [topic for topic in topics if len(topic) > 0]
|
||||
if message: # 确保消息非空
|
||||
topics_batch.append(message)
|
||||
|
||||
# 批量获取嵌入向量
|
||||
embed_start_time = time.time()
|
||||
for text in topics_batch:
|
||||
if not text or len(text.strip()) == 0:
|
||||
continue
|
||||
|
||||
try:
|
||||
embedding = await get_embedding(text, request_type="prompt_build")
|
||||
if embedding:
|
||||
embeddings[text] = embedding
|
||||
else:
|
||||
logger.warning(f"获取'{text}'的嵌入向量失败")
|
||||
except Exception as e:
|
||||
logger.error(f"获取'{text}'的嵌入向量时发生错误: {str(e)}")
|
||||
|
||||
logger.info(f"批量获取嵌入向量完成,耗时: {time.time() - embed_start_time:.3f}秒")
|
||||
|
||||
if not embeddings:
|
||||
logger.error("所有嵌入向量获取失败")
|
||||
return ""
|
||||
|
||||
# 3. 对每个主题进行知识库查询
|
||||
all_results = []
|
||||
query_start_time = time.time()
|
||||
|
||||
# 首先添加原始消息的查询结果
|
||||
if message in embeddings:
|
||||
original_results = self.get_info_from_db(embeddings[message], limit=3, threshold=threshold, return_raw=True)
|
||||
if original_results:
|
||||
for result in original_results:
|
||||
result["topic"] = "原始消息"
|
||||
all_results.extend(original_results)
|
||||
logger.info(f"原始消息查询到{len(original_results)}条结果")
|
||||
|
||||
# 然后添加每个主题的查询结果
|
||||
for topic in topics:
|
||||
if not topic or topic not in embeddings:
|
||||
continue
|
||||
|
||||
try:
|
||||
topic_results = self.get_info_from_db(embeddings[topic], limit=3, threshold=threshold, return_raw=True)
|
||||
if topic_results:
|
||||
# 添加主题标记
|
||||
for result in topic_results:
|
||||
result["topic"] = topic
|
||||
all_results.extend(topic_results)
|
||||
logger.info(f"主题'{topic}'查询到{len(topic_results)}条结果")
|
||||
except Exception as e:
|
||||
logger.error(f"查询主题'{topic}'时发生错误: {str(e)}")
|
||||
|
||||
logger.info(f"知识库查询完成,耗时: {time.time() - query_start_time:.3f}秒,共获取{len(all_results)}条结果")
|
||||
|
||||
# 4. 去重和过滤
|
||||
process_start_time = time.time()
|
||||
unique_contents = set()
|
||||
filtered_results = []
|
||||
for result in all_results:
|
||||
content = result["content"]
|
||||
if content not in unique_contents:
|
||||
unique_contents.add(content)
|
||||
filtered_results.append(result)
|
||||
|
||||
# 5. 按相似度排序
|
||||
filtered_results.sort(key=lambda x: x["similarity"], reverse=True)
|
||||
|
||||
# 6. 限制总数量(最多10条)
|
||||
filtered_results = filtered_results[:10]
|
||||
logger.info(
|
||||
f"结果处理完成,耗时: {time.time() - process_start_time:.3f}秒,过滤后剩余{len(filtered_results)}条结果"
|
||||
)
|
||||
|
||||
# 7. 格式化输出
|
||||
if filtered_results:
|
||||
format_start_time = time.time()
|
||||
grouped_results = {}
|
||||
for result in filtered_results:
|
||||
topic = result["topic"]
|
||||
if topic not in grouped_results:
|
||||
grouped_results[topic] = []
|
||||
grouped_results[topic].append(result)
|
||||
|
||||
# 按主题组织输出
|
||||
for topic, results in grouped_results.items():
|
||||
related_info += f"【主题: {topic}】\n"
|
||||
for _i, result in enumerate(results, 1):
|
||||
_similarity = result["similarity"]
|
||||
content = result["content"].strip()
|
||||
related_info += f"{content}\n"
|
||||
related_info += "\n"
|
||||
|
||||
logger.info(f"格式化输出完成,耗时: {time.time() - format_start_time:.3f}秒")
|
||||
|
||||
logger.info(f"知识库检索总耗时: {time.time() - start_time:.3f}秒")
|
||||
return related_info
|
||||
|
||||
async def get_prompt_info(self, message: str, threshold: float):
|
||||
related_info = ""
|
||||
start_time = time.time()
|
||||
@@ -407,93 +279,11 @@ class PromptBuilder:
|
||||
logger.debug(f"获取知识库内容,相关信息:{related_info[:100]}...,信息长度: {len(related_info)}")
|
||||
return related_info
|
||||
else:
|
||||
logger.debug("从LPMM知识库获取知识失败,使用旧版数据库进行检索")
|
||||
knowledge_from_old = await self.get_prompt_info_old(message, threshold=threshold)
|
||||
related_info += knowledge_from_old
|
||||
logger.debug(f"获取知识库内容,相关信息:{related_info[:100]}...,信息长度: {len(related_info)}")
|
||||
return related_info
|
||||
logger.debug("从LPMM知识库获取知识失败,可能是从未导入过知识,返回空知识...")
|
||||
return "未检索到知识"
|
||||
except Exception as e:
|
||||
logger.error(f"获取知识库内容时发生异常: {str(e)}")
|
||||
try:
|
||||
knowledge_from_old = await self.get_prompt_info_old(message, threshold=threshold)
|
||||
related_info += knowledge_from_old
|
||||
logger.debug(
|
||||
f"异常后使用旧版数据库获取知识,相关信息:{related_info[:100]}...,信息长度: {len(related_info)}"
|
||||
)
|
||||
return related_info
|
||||
except Exception as e2:
|
||||
logger.error(f"使用旧版数据库获取知识时也发生异常: {str(e2)}")
|
||||
return ""
|
||||
|
||||
@staticmethod
|
||||
def get_info_from_db(
|
||||
query_embedding: list, limit: int = 1, threshold: float = 0.5, return_raw: bool = False
|
||||
) -> Union[str, list]:
|
||||
if not query_embedding:
|
||||
return "" if not return_raw else []
|
||||
|
||||
results_with_similarity = []
|
||||
try:
|
||||
# Fetch all knowledge entries
|
||||
# This might be inefficient for very large databases.
|
||||
# Consider strategies like FAISS or other vector search libraries if performance becomes an issue.
|
||||
all_knowledges = Knowledges.select()
|
||||
|
||||
if not all_knowledges:
|
||||
return [] if return_raw else ""
|
||||
|
||||
query_embedding_magnitude = math.sqrt(sum(x * x for x in query_embedding))
|
||||
if query_embedding_magnitude == 0: # Avoid division by zero
|
||||
return "" if not return_raw else []
|
||||
|
||||
for knowledge_item in all_knowledges:
|
||||
try:
|
||||
db_embedding_str = knowledge_item.embedding
|
||||
db_embedding = json.loads(db_embedding_str)
|
||||
|
||||
if len(db_embedding) != len(query_embedding):
|
||||
logger.warning(
|
||||
f"Embedding length mismatch for knowledge ID {knowledge_item.id if hasattr(knowledge_item, 'id') else 'N/A'}. Skipping."
|
||||
)
|
||||
continue
|
||||
|
||||
# Calculate Cosine Similarity
|
||||
dot_product = sum(q * d for q, d in zip(query_embedding, db_embedding))
|
||||
db_embedding_magnitude = math.sqrt(sum(x * x for x in db_embedding))
|
||||
|
||||
if db_embedding_magnitude == 0: # Avoid division by zero
|
||||
similarity = 0.0
|
||||
else:
|
||||
similarity = dot_product / (query_embedding_magnitude * db_embedding_magnitude)
|
||||
|
||||
if similarity >= threshold:
|
||||
results_with_similarity.append({"content": knowledge_item.content, "similarity": similarity})
|
||||
except json.JSONDecodeError:
|
||||
logger.error(
|
||||
f"Failed to parse embedding for knowledge ID {knowledge_item.id if hasattr(knowledge_item, 'id') else 'N/A'}"
|
||||
)
|
||||
except Exception as e:
|
||||
logger.error(f"Error processing knowledge item: {e}")
|
||||
|
||||
# Sort by similarity in descending order
|
||||
results_with_similarity.sort(key=lambda x: x["similarity"], reverse=True)
|
||||
|
||||
# Limit results
|
||||
limited_results = results_with_similarity[:limit]
|
||||
|
||||
logger.debug(f"知识库查询结果数量 (after Peewee processing): {len(limited_results)}")
|
||||
|
||||
if not limited_results:
|
||||
return "" if not return_raw else []
|
||||
|
||||
if return_raw:
|
||||
return limited_results
|
||||
else:
|
||||
return "\n".join(str(result["content"]) for result in limited_results)
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"Error querying Knowledges with Peewee: {e}")
|
||||
return "" if not return_raw else []
|
||||
return "未检索到知识"
|
||||
|
||||
|
||||
init_prompt()
|
||||
|
||||
@@ -80,4 +80,4 @@ class ActionInfo(InfoBase):
|
||||
Returns:
|
||||
bool: 如果有任何动作需要添加或移除则返回True
|
||||
"""
|
||||
return bool(self.get_add_actions() or self.get_remove_actions())
|
||||
return bool(self.get_add_actions() or self.get_remove_actions())
|
||||
|
||||
@@ -1,14 +1,10 @@
|
||||
from typing import List, Optional, Any
|
||||
from src.chat.focus_chat.info.obs_info import ObsInfo
|
||||
from src.chat.heart_flow.observation.observation import Observation
|
||||
from src.chat.focus_chat.info.info_base import InfoBase
|
||||
from src.chat.focus_chat.info.action_info import ActionInfo
|
||||
from .base_processor import BaseProcessor
|
||||
from src.common.logger_manager import get_logger
|
||||
from src.chat.heart_flow.observation.chatting_observation import ChattingObservation
|
||||
from src.chat.heart_flow.observation.hfcloop_observation import HFCloopObservation
|
||||
from src.chat.focus_chat.info.cycle_info import CycleInfo
|
||||
from datetime import datetime
|
||||
from typing import Dict
|
||||
from src.chat.models.utils_model import LLMRequest
|
||||
from src.config.config import global_config
|
||||
@@ -55,10 +51,7 @@ class ActionProcessor(BaseProcessor):
|
||||
# 处理Observation对象
|
||||
if observations:
|
||||
for obs in observations:
|
||||
|
||||
if isinstance(obs, HFCloopObservation):
|
||||
|
||||
|
||||
# 创建动作信息
|
||||
action_info = ActionInfo()
|
||||
action_changes = await self.analyze_loop_actions(obs)
|
||||
@@ -75,7 +68,6 @@ class ActionProcessor(BaseProcessor):
|
||||
|
||||
return processed_infos
|
||||
|
||||
|
||||
async def analyze_loop_actions(self, obs: HFCloopObservation) -> Dict[str, List[str]]:
|
||||
"""分析最近的循环内容并决定动作的增减
|
||||
|
||||
@@ -87,29 +79,29 @@ class ActionProcessor(BaseProcessor):
|
||||
}
|
||||
"""
|
||||
result = {"add": [], "remove": []}
|
||||
|
||||
|
||||
# 获取最近10次循环
|
||||
recent_cycles = obs.history_loop[-10:] if len(obs.history_loop) > 10 else obs.history_loop
|
||||
if not recent_cycles:
|
||||
return result
|
||||
|
||||
|
||||
# 统计no_reply的数量
|
||||
no_reply_count = 0
|
||||
reply_sequence = [] # 记录最近的动作序列
|
||||
|
||||
|
||||
for cycle in recent_cycles:
|
||||
action_type = cycle.loop_plan_info["action_result"]["action_type"]
|
||||
if action_type == "no_reply":
|
||||
no_reply_count += 1
|
||||
reply_sequence.append(action_type == "reply")
|
||||
|
||||
|
||||
# 检查no_reply比例
|
||||
if len(recent_cycles) >= 5 and (no_reply_count / len(recent_cycles)) >= 0.8:
|
||||
result["add"].append("exit_focus_chat")
|
||||
|
||||
|
||||
# 获取最近三次的reply状态
|
||||
last_three = reply_sequence[-3:] if len(reply_sequence) >= 3 else reply_sequence
|
||||
|
||||
|
||||
# 根据最近的reply情况决定是否移除reply动作
|
||||
if len(last_three) >= 3 and all(last_three):
|
||||
# 如果最近三次都是reply,直接移除
|
||||
@@ -122,5 +114,5 @@ class ActionProcessor(BaseProcessor):
|
||||
# 如果最近一次是reply,20%概率移除
|
||||
if random.random() < 0.2:
|
||||
result["remove"].append("reply")
|
||||
|
||||
|
||||
return result
|
||||
|
||||
@@ -5,7 +5,7 @@ from src.config.config import global_config
|
||||
import time
|
||||
import traceback
|
||||
from src.common.logger_manager import get_logger
|
||||
from src.individuality.individuality import Individuality
|
||||
from src.individuality.individuality import individuality
|
||||
from src.chat.utils.prompt_builder import Prompt, global_prompt_manager
|
||||
from src.chat.utils.json_utils import safe_json_dumps
|
||||
from src.chat.message_receive.chat_stream import chat_manager
|
||||
@@ -194,7 +194,6 @@ class MindProcessor(BaseProcessor):
|
||||
|
||||
# ---------- 3. 准备个性化数据 ----------
|
||||
# 获取个性化信息
|
||||
individuality = Individuality.get_instance()
|
||||
|
||||
relation_prompt = ""
|
||||
for person in person_list:
|
||||
|
||||
@@ -5,7 +5,7 @@ from src.config.config import global_config
|
||||
import time
|
||||
import traceback
|
||||
from src.common.logger_manager import get_logger
|
||||
from src.individuality.individuality import Individuality
|
||||
from src.individuality.individuality import individuality
|
||||
from src.chat.utils.prompt_builder import Prompt, global_prompt_manager
|
||||
from src.chat.message_receive.chat_stream import chat_manager
|
||||
from src.chat.person_info.relationship_manager import relationship_manager
|
||||
@@ -21,8 +21,9 @@ logger = get_logger("processor")
|
||||
|
||||
def init_prompt():
|
||||
indentify_prompt = """
|
||||
你的名字是{bot_name},你是一个AI,但是你伪装成了一个人类,你的人格是,{prompt_personality}。
|
||||
你的头像形象是一只橙色的鱼,头上有绿色的树叶。
|
||||
{name_block}
|
||||
你是一个AI,但是你伪装成了一个人类,你的人格是,{prompt_personality}。
|
||||
{indentify_block}
|
||||
|
||||
{relation_prompt}
|
||||
{memory_str}
|
||||
@@ -36,8 +37,8 @@ def init_prompt():
|
||||
3. 你的自我认同是否有助于你的回答,如果你需要自我相关的信息来帮你参与聊天,请输出,否则请输出十个字以内的简短自我认同
|
||||
4. 一般情况下不用输出自我认同,只需要输出十几个字的简短自我认同就好,除非有明显需要自我认同的场景
|
||||
|
||||
请回复的平淡一些,简短一些,说中文,不要浮夸,平淡一些。
|
||||
请注意不要输出多余内容(包括前后缀,冒号和引号,括号(),表情包,at或 @等 )。只输出内容。
|
||||
请思考的平淡一些,简短一些,说中文,不要浮夸,平淡一些。
|
||||
请注意不要输出多余内容(包括前后缀,冒号和引号,括号(),表情包,at或 @等 )。只输出自我认同内容。
|
||||
|
||||
"""
|
||||
Prompt(indentify_prompt, "indentify_prompt")
|
||||
@@ -125,16 +126,22 @@ class SelfProcessor(BaseProcessor):
|
||||
# hfcloop_observe_info = observation.get_observe_info()
|
||||
pass
|
||||
|
||||
individuality = Individuality.get_instance()
|
||||
personality_block = individuality.get_prompt(x_person=2, level=2)
|
||||
nickname_str = ""
|
||||
for nicknames in global_config.bot.alias_names:
|
||||
nickname_str += f"{nicknames},"
|
||||
name_block = f"你的名字是{global_config.bot.nickname},你的昵称有{nickname_str},有人也会用这些昵称称呼你。"
|
||||
|
||||
personality_block = individuality.get_personality_prompt(x_person=2, level=2)
|
||||
identity_block = individuality.get_identity_prompt(x_person=2, level=2)
|
||||
|
||||
relation_prompt = ""
|
||||
for person in person_list:
|
||||
relation_prompt += await relationship_manager.build_relationship_info(person, is_id=True)
|
||||
|
||||
prompt = (await global_prompt_manager.get_prompt_async("indentify_prompt")).format(
|
||||
bot_name=individuality.name,
|
||||
name_block=name_block,
|
||||
prompt_personality=personality_block,
|
||||
indentify_block=identity_block,
|
||||
memory_str=memory_str,
|
||||
relation_prompt=relation_prompt,
|
||||
time_now=time.strftime("%Y-%m-%d %H:%M:%S", time.localtime()),
|
||||
|
||||
@@ -3,7 +3,7 @@ from src.chat.models.utils_model import LLMRequest
|
||||
from src.config.config import global_config
|
||||
import time
|
||||
from src.common.logger_manager import get_logger
|
||||
from src.individuality.individuality import Individuality
|
||||
from src.individuality.individuality import individuality
|
||||
from src.chat.utils.prompt_builder import Prompt, global_prompt_manager
|
||||
from src.tools.tool_use import ToolUser
|
||||
from src.chat.utils.json_utils import process_llm_tool_calls
|
||||
@@ -133,7 +133,7 @@ class ToolProcessor(BaseProcessor):
|
||||
relation_prompt += await relationship_manager.build_relationship_info(person, is_id=True)
|
||||
|
||||
# 获取个性信息
|
||||
individuality = Individuality.get_instance()
|
||||
|
||||
# prompt_personality = individuality.get_prompt(x_person=2, level=2)
|
||||
|
||||
# 获取时间信息
|
||||
|
||||
@@ -1,9 +1,8 @@
|
||||
from typing import Dict, List, Optional, Callable, Coroutine, Type, Any
|
||||
from typing import Dict, List, Optional, Type, Any
|
||||
from src.chat.focus_chat.planners.actions.base_action import BaseAction, _ACTION_REGISTRY
|
||||
from src.chat.heart_flow.observation.observation import Observation
|
||||
from src.chat.focus_chat.expressors.default_expressor import DefaultExpressor
|
||||
from src.chat.message_receive.chat_stream import ChatStream
|
||||
from src.chat.focus_chat.heartFC_Cycleinfo import CycleDetail
|
||||
from src.common.logger_manager import get_logger
|
||||
import importlib
|
||||
import pkgutil
|
||||
|
||||
@@ -1,12 +1,9 @@
|
||||
import asyncio
|
||||
import traceback
|
||||
from src.common.logger_manager import get_logger
|
||||
from src.chat.utils.timer_calculator import Timer
|
||||
from src.chat.focus_chat.planners.actions.base_action import BaseAction, register_action
|
||||
from typing import Tuple, List, Callable, Coroutine
|
||||
from typing import Tuple, List
|
||||
from src.chat.heart_flow.observation.observation import Observation
|
||||
from src.chat.heart_flow.observation.chatting_observation import ChattingObservation
|
||||
from src.chat.heart_flow.sub_heartflow import SubHeartFlow
|
||||
from src.chat.message_receive.chat_stream import ChatStream
|
||||
from src.chat.heart_flow.heartflow import heartflow
|
||||
from src.chat.heart_flow.sub_heartflow import ChatState
|
||||
@@ -61,8 +58,6 @@ class ExitFocusChatAction(BaseAction):
|
||||
self._shutting_down = shutting_down
|
||||
self.chat_id = chat_stream.stream_id
|
||||
|
||||
|
||||
|
||||
async def handle_action(self) -> Tuple[bool, str]:
|
||||
"""
|
||||
处理退出专注聊天的情况
|
||||
@@ -83,7 +78,7 @@ class ExitFocusChatAction(BaseAction):
|
||||
if self.sub_heartflow:
|
||||
try:
|
||||
# 转换为normal_chat状态
|
||||
await self.sub_heartflow.change_chat_state(ChatState.NORMAL_CHAT)
|
||||
await self.sub_heartflow.change_chat_state(ChatState.CHAT)
|
||||
status_message = "已成功切换到普通聊天模式"
|
||||
logger.info(f"{self.log_prefix} {status_message}")
|
||||
except Exception as e:
|
||||
@@ -95,7 +90,6 @@ class ExitFocusChatAction(BaseAction):
|
||||
logger.warning(f"{self.log_prefix} {warning_msg}")
|
||||
return False, warning_msg
|
||||
|
||||
|
||||
return True, status_message
|
||||
|
||||
except asyncio.CancelledError:
|
||||
@@ -105,4 +99,4 @@ class ExitFocusChatAction(BaseAction):
|
||||
error_msg = f"处理 'exit_focus_chat' 时发生错误: {str(e)}"
|
||||
logger.error(f"{self.log_prefix} {error_msg}")
|
||||
logger.error(traceback.format_exc())
|
||||
return False, error_msg
|
||||
return False, error_msg
|
||||
|
||||
@@ -3,7 +3,7 @@ import traceback
|
||||
from src.common.logger_manager import get_logger
|
||||
from src.chat.utils.timer_calculator import Timer
|
||||
from src.chat.focus_chat.planners.actions.base_action import BaseAction, register_action
|
||||
from typing import Tuple, List, Callable, Coroutine
|
||||
from typing import Tuple, List
|
||||
from src.chat.heart_flow.observation.observation import Observation
|
||||
from src.chat.heart_flow.observation.chatting_observation import ChattingObservation
|
||||
from src.chat.focus_chat.hfc_utils import parse_thinking_id_to_timestamp
|
||||
|
||||
@@ -41,7 +41,7 @@ class PluginAction(BaseAction):
|
||||
return platform, user_id
|
||||
|
||||
# 提供简化的API方法
|
||||
async def send_message(self, text: str, target: Optional[str] = None) -> bool:
|
||||
async def send_message(self, type: str, data: str, target: Optional[str] = "") -> bool:
|
||||
"""发送消息的简化方法
|
||||
|
||||
Args:
|
||||
@@ -60,7 +60,7 @@ class PluginAction(BaseAction):
|
||||
return False
|
||||
|
||||
# 构造简化的动作数据
|
||||
reply_data = {"text": text, "target": target or "", "emojis": []}
|
||||
# reply_data = {"text": text, "target": target or "", "emojis": []}
|
||||
|
||||
# 获取锚定消息(如果有)
|
||||
observations = self._services.get("observations", [])
|
||||
@@ -68,7 +68,8 @@ class PluginAction(BaseAction):
|
||||
chatting_observation: ChattingObservation = next(
|
||||
obs for obs in observations if isinstance(obs, ChattingObservation)
|
||||
)
|
||||
anchor_message = chatting_observation.search_message_by_text(reply_data["target"])
|
||||
|
||||
anchor_message = chatting_observation.search_message_by_text(target)
|
||||
|
||||
# 如果没有找到锚点消息,创建一个占位符
|
||||
if not anchor_message:
|
||||
@@ -80,7 +81,7 @@ class PluginAction(BaseAction):
|
||||
anchor_message.update_chat_stream(chat_stream)
|
||||
|
||||
response_set = [
|
||||
("text", text),
|
||||
(type, data),
|
||||
]
|
||||
|
||||
# 调用内部方法发送消息
|
||||
|
||||
@@ -12,7 +12,7 @@ from src.chat.focus_chat.info.action_info import ActionInfo
|
||||
from src.chat.focus_chat.info.structured_info import StructuredInfo
|
||||
from src.common.logger_manager import get_logger
|
||||
from src.chat.utils.prompt_builder import Prompt, global_prompt_manager
|
||||
from src.individuality.individuality import Individuality
|
||||
from src.individuality.individuality import individuality
|
||||
from src.chat.focus_chat.planners.action_manager import ActionManager
|
||||
|
||||
logger = get_logger("planner")
|
||||
@@ -92,37 +92,37 @@ class ActionPlanner:
|
||||
try:
|
||||
# 获取观察信息
|
||||
extra_info: list[str] = []
|
||||
|
||||
|
||||
# 首先处理动作变更
|
||||
for info in all_plan_info:
|
||||
if isinstance(info, ActionInfo) and info.has_changes():
|
||||
add_actions = info.get_add_actions()
|
||||
remove_actions = info.get_remove_actions()
|
||||
reason = info.get_reason()
|
||||
|
||||
|
||||
# 处理动作的增加
|
||||
for action_name in add_actions:
|
||||
if action_name in self.action_manager.get_registered_actions():
|
||||
self.action_manager.add_action_to_using(action_name)
|
||||
logger.debug(f"{self.log_prefix}添加动作: {action_name}, 原因: {reason}")
|
||||
|
||||
|
||||
# 处理动作的移除
|
||||
for action_name in remove_actions:
|
||||
self.action_manager.remove_action_from_using(action_name)
|
||||
logger.debug(f"{self.log_prefix}移除动作: {action_name}, 原因: {reason}")
|
||||
|
||||
|
||||
# 如果当前选择的动作被移除了,更新为no_reply
|
||||
if action in remove_actions:
|
||||
action = "no_reply"
|
||||
reasoning = f"之前选择的动作{action}已被移除,原因: {reason}"
|
||||
|
||||
|
||||
# 继续处理其他信息
|
||||
for info in all_plan_info:
|
||||
if isinstance(info, ObsInfo):
|
||||
observed_messages = info.get_talking_message()
|
||||
observed_messages_str = info.get_talking_message_str_truncate()
|
||||
chat_type = info.get_chat_type()
|
||||
is_group_chat = (chat_type == "group")
|
||||
is_group_chat = chat_type == "group"
|
||||
elif isinstance(info, MindInfo):
|
||||
current_mind = info.get_current_mind()
|
||||
elif isinstance(info, CycleInfo):
|
||||
@@ -134,20 +134,16 @@ class ActionPlanner:
|
||||
|
||||
# 获取当前可用的动作
|
||||
current_available_actions = self.action_manager.get_using_actions()
|
||||
|
||||
|
||||
# 如果没有可用动作,直接返回no_reply
|
||||
if not current_available_actions:
|
||||
logger.warning(f"{self.log_prefix}没有可用的动作,将使用no_reply")
|
||||
action = "no_reply"
|
||||
reasoning = "没有可用的动作"
|
||||
return {
|
||||
"action_result": {
|
||||
"action_type": action,
|
||||
"action_data": action_data,
|
||||
"reasoning": reasoning
|
||||
},
|
||||
"action_result": {"action_type": action, "action_data": action_data, "reasoning": reasoning},
|
||||
"current_mind": current_mind,
|
||||
"observed_messages": observed_messages
|
||||
"observed_messages": observed_messages,
|
||||
}
|
||||
|
||||
# --- 构建提示词 (调用修改后的 PromptBuilder 方法) ---
|
||||
@@ -271,7 +267,6 @@ class ActionPlanner:
|
||||
else:
|
||||
mind_info_block = "你刚参与聊天"
|
||||
|
||||
individuality = Individuality.get_instance()
|
||||
personality_block = individuality.get_prompt(x_person=2, level=2)
|
||||
|
||||
action_options_block = ""
|
||||
|
||||
Reference in New Issue
Block a user