移除关系处理器,转为在replyer中提取

This commit is contained in:
SengokuCola
2025-07-01 14:46:09 +08:00
parent 0dad4a1d46
commit cae015fcfa
5 changed files with 441 additions and 501 deletions

View File

@@ -13,8 +13,6 @@ from src.chat.heart_flow.observation.observation import Observation
from src.chat.focus_chat.heartFC_Cycleinfo import CycleDetail from src.chat.focus_chat.heartFC_Cycleinfo import CycleDetail
from src.chat.focus_chat.info.info_base import InfoBase from src.chat.focus_chat.info.info_base import InfoBase
from src.chat.focus_chat.info_processors.chattinginfo_processor import ChattingInfoProcessor from src.chat.focus_chat.info_processors.chattinginfo_processor import ChattingInfoProcessor
from src.chat.focus_chat.info_processors.relationship_processor import RelationshipBuildProcessor
from src.chat.focus_chat.info_processors.real_time_info_processor import RealTimeInfoProcessor
from src.chat.focus_chat.info_processors.working_memory_processor import WorkingMemoryProcessor from src.chat.focus_chat.info_processors.working_memory_processor import WorkingMemoryProcessor
from src.chat.heart_flow.observation.hfcloop_observation import HFCloopObservation from src.chat.heart_flow.observation.hfcloop_observation import HFCloopObservation
from src.chat.heart_flow.observation.working_observation import WorkingMemoryObservation from src.chat.heart_flow.observation.working_observation import WorkingMemoryObservation
@@ -32,6 +30,7 @@ from src.chat.focus_chat.hfc_performance_logger import HFCPerformanceLogger
from src.chat.focus_chat.hfc_version_manager import get_hfc_version from src.chat.focus_chat.hfc_version_manager import get_hfc_version
from src.chat.focus_chat.info.relation_info import RelationInfo from src.chat.focus_chat.info.relation_info import RelationInfo
from src.chat.focus_chat.info.structured_info import StructuredInfo from src.chat.focus_chat.info.structured_info import StructuredInfo
from src.person_info.relationship_builder_manager import relationship_builder_manager
install(extra_lines=3) install(extra_lines=3)
@@ -57,8 +56,6 @@ PROCESSOR_CLASSES = {
# 定义后期处理器映射:在规划后、动作执行前运行的处理器 # 定义后期处理器映射:在规划后、动作执行前运行的处理器
POST_PLANNING_PROCESSOR_CLASSES = { POST_PLANNING_PROCESSOR_CLASSES = {
"ToolProcessor": (ToolProcessor, "tool_use_processor"), "ToolProcessor": (ToolProcessor, "tool_use_processor"),
"RelationshipBuildProcessor": (RelationshipBuildProcessor, "relationship_build_processor"),
"RealTimeInfoProcessor": (RealTimeInfoProcessor, "real_time_info_processor"),
} }
logger = get_logger("hfc") # Logger Name Changed logger = get_logger("hfc") # Logger Name Changed
@@ -110,6 +107,8 @@ class HeartFChatting:
self.log_prefix = f"[{get_chat_manager().get_stream_name(self.stream_id) or self.stream_id}]" self.log_prefix = f"[{get_chat_manager().get_stream_name(self.stream_id) or self.stream_id}]"
self.memory_activator = MemoryActivator() self.memory_activator = MemoryActivator()
self.relationship_builder = relationship_builder_manager.get_or_create_builder(self.stream_id)
# 新增:消息计数器和疲惫阈值 # 新增:消息计数器和疲惫阈值
self._message_count = 0 # 发送的消息计数 self._message_count = 0 # 发送的消息计数
@@ -135,24 +134,8 @@ class HeartFChatting:
self.enabled_post_planning_processor_names = [] self.enabled_post_planning_processor_names = []
for proc_name, (_proc_class, config_key) in POST_PLANNING_PROCESSOR_CLASSES.items(): for proc_name, (_proc_class, config_key) in POST_PLANNING_PROCESSOR_CLASSES.items():
# 对于关系相关处理器,需要同时检查关系配置项 # 对于关系相关处理器,需要同时检查关系配置项
if proc_name in ["RelationshipBuildProcessor", "RealTimeInfoProcessor"]: if not config_key or getattr(config_processor_settings, config_key, True):
# 检查全局关系开关 self.enabled_post_planning_processor_names.append(proc_name)
if not global_config.relationship.enable_relationship:
continue
# 检查处理器特定配置,同时支持向后兼容
processor_enabled = getattr(config_processor_settings, config_key, True)
# 向后兼容如果旧的person_impression_processor为True则启用两个新处理器
if not processor_enabled and getattr(config_processor_settings, "person_impression_processor", True):
processor_enabled = True
if processor_enabled:
self.enabled_post_planning_processor_names.append(proc_name)
else:
# 其他后期处理器的逻辑
if not config_key or getattr(config_processor_settings, config_key, True):
self.enabled_post_planning_processor_names.append(proc_name)
# logger.info(f"{self.log_prefix} 将启用的处理器: {self.enabled_processor_names}") # logger.info(f"{self.log_prefix} 将启用的处理器: {self.enabled_processor_names}")
# logger.info(f"{self.log_prefix} 将启用的后期处理器: {self.enabled_post_planning_processor_names}") # logger.info(f"{self.log_prefix} 将启用的后期处理器: {self.enabled_post_planning_processor_names}")
@@ -754,17 +737,13 @@ class HeartFChatting:
# 将后期处理器的结果整合到 action_data 中 # 将后期处理器的结果整合到 action_data 中
updated_action_data = action_data.copy() updated_action_data = action_data.copy()
relation_info = ""
structured_info = "" structured_info = ""
for info in all_post_plan_info: for info in all_post_plan_info:
if isinstance(info, RelationInfo): if isinstance(info, StructuredInfo):
relation_info = info.get_processed_info()
elif isinstance(info, StructuredInfo):
structured_info = info.get_processed_info() structured_info = info.get_processed_info()
if relation_info:
updated_action_data["relation_info"] = relation_info
if structured_info: if structured_info:
updated_action_data["structured_info"] = structured_info updated_action_data["structured_info"] = structured_info
@@ -793,10 +772,10 @@ class HeartFChatting:
"observations": self.observations, "observations": self.observations,
} }
# 根据配置决定是否并行执行调整动作、回忆和处理器阶段 await self.relationship_builder.build_relation()
# 并行执行调整动作、回忆和处理器阶段 # 并行执行调整动作、回忆和处理器阶段
with Timer("并行调整动作、处理", cycle_timers): with Timer("调整动作、处理", cycle_timers):
# 创建并行任务 # 创建并行任务
async def modify_actions_task(): async def modify_actions_task():
# 调用完整的动作修改流程 # 调用完整的动作修改流程

View File

@@ -19,6 +19,7 @@ from src.chat.express.exprssion_learner import get_expression_learner
import time import time
from src.chat.express.expression_selector import expression_selector from src.chat.express.expression_selector import expression_selector
from src.manager.mood_manager import mood_manager from src.manager.mood_manager import mood_manager
from src.person_info.relationship_fetcher import relationship_fetcher_manager
import random import random
import ast import ast
from src.person_info.person_info import get_person_info_manager from src.person_info.person_info import get_person_info_manager
@@ -322,101 +323,33 @@ class DefaultReplyer:
traceback.print_exc() traceback.print_exc()
return False, None return False, None
async def build_prompt_reply_context(self, reply_data=None, available_actions: List[str] = None) -> str: async def build_relation_info(self,reply_data = None,chat_history = None):
""" relationship_fetcher = relationship_fetcher_manager.get_fetcher(self.chat_stream.stream_id)
构建回复器上下文 if not reply_data:
return ""
Args: reply_to = reply_data.get("reply_to", "")
reply_data: 回复数据 sender, text = self._parse_reply_target(reply_to)
replay_data 包含以下字段: if not sender or not text:
structured_info: 结构化信息,一般是工具调用获得的信息 return ""
relation_info: 人物关系信息
reply_to: 回复对象 # 获取用户ID
memory_info: 记忆信息
extra_info/extra_info_block: 额外信息
available_actions: 可用动作
Returns:
str: 构建好的上下文
"""
if available_actions is None:
available_actions = []
chat_stream = self.chat_stream
chat_id = chat_stream.stream_id
person_info_manager = get_person_info_manager() person_info_manager = get_person_info_manager()
bot_person_id = person_info_manager.get_person_id("system", "bot_id") person_id = person_info_manager.get_person_id_by_person_name(sender)
if not person_id:
is_group_chat = bool(chat_stream.group_info) logger.warning(f"{self.log_prefix} 未找到用户 {sender} 的ID跳过信息提取")
return None
structured_info = reply_data.get("structured_info", "")
relation_info = reply_data.get("relation_info", "") relation_info = await relationship_fetcher.build_relation_info(person_id,text,chat_history)
reply_to = reply_data.get("reply_to", "none") return relation_info
# 优先使用 extra_info_block没有则用 extra_info async def build_expression_habits(self,chat_history,target):
extra_info_block = reply_data.get("extra_info", "") or reply_data.get("extra_info_block", "")
sender = ""
target = ""
if ":" in reply_to or "" in reply_to:
# 使用正则表达式匹配中文或英文冒号
parts = re.split(pattern=r"[:]", string=reply_to, maxsplit=1)
if len(parts) == 2:
sender = parts[0].strip()
target = parts[1].strip()
# 构建action描述 (如果启用planner)
action_descriptions = ""
# logger.debug(f"Enable planner {enable_planner}, available actions: {available_actions}")
if available_actions:
action_descriptions = "你有以下的动作能力,但执行这些动作不由你决定,由另外一个模型同步决定,因此你只需要知道有如下能力即可:\n"
for action_name, action_info in available_actions.items():
action_description = action_info.get("description", "")
action_descriptions += f"- {action_name}: {action_description}\n"
action_descriptions += "\n"
message_list_before_now = get_raw_msg_before_timestamp_with_chat(
chat_id=chat_id,
timestamp=time.time(),
limit=global_config.focus_chat.observation_context_size,
)
# print(f"message_list_before_now: {message_list_before_now}")
chat_talking_prompt = build_readable_messages(
message_list_before_now,
replace_bot_name=True,
merge_messages=False,
timestamp_mode="normal_no_YMD",
read_mark=0.0,
truncate=True,
show_actions=True,
)
# print(f"chat_talking_prompt: {chat_talking_prompt}")
message_list_before_now_half = get_raw_msg_before_timestamp_with_chat(
chat_id=chat_id,
timestamp=time.time(),
limit=int(global_config.focus_chat.observation_context_size * 0.5),
)
chat_talking_prompt_half = build_readable_messages(
message_list_before_now_half,
replace_bot_name=True,
merge_messages=False,
timestamp_mode="relative",
read_mark=0.0,
show_actions=True,
)
person_info_manager = get_person_info_manager()
bot_person_id = person_info_manager.get_person_id("system", "bot_id")
is_group_chat = bool(chat_stream.group_info)
style_habbits = [] style_habbits = []
grammar_habbits = [] grammar_habbits = []
# 使用从处理器传来的选中表达方式 # 使用从处理器传来的选中表达方式
# LLM模式调用LLM选择5-10个然后随机选5个 # LLM模式调用LLM选择5-10个然后随机选5个
selected_expressions = await expression_selector.select_suitable_expressions_llm( selected_expressions = await expression_selector.select_suitable_expressions_llm(
chat_id, chat_talking_prompt_half, max_num=12, min_num=2, target_message=target self.chat_stream.stream_id, chat_history, max_num=12, min_num=2, target_message=target
) )
if selected_expressions: if selected_expressions:
@@ -441,45 +374,38 @@ class DefaultReplyer:
expression_habits_block += f"你可以参考以下的语言习惯,如果情景合适就使用,不要盲目使用,不要生硬使用,而是结合到表达中:\n{style_habbits_str}\n\n" expression_habits_block += f"你可以参考以下的语言习惯,如果情景合适就使用,不要盲目使用,不要生硬使用,而是结合到表达中:\n{style_habbits_str}\n\n"
if grammar_habbits_str.strip(): if grammar_habbits_str.strip():
expression_habits_block += f"请你根据情景使用以下句法:\n{grammar_habbits_str}\n" expression_habits_block += f"请你根据情景使用以下句法:\n{grammar_habbits_str}\n"
return expression_habits_block
async def build_memory_block(self,chat_history,target):
running_memorys = await self.memory_activator.activate_memory_with_chat_history(
chat_id=self.chat_stream.stream_id, target_message=target, chat_history_prompt=chat_history
)
# 在回复器内部直接激活记忆 if running_memorys:
try: memory_str = "以下是当前在聊天中,你回忆起的记忆:\n"
# 注意:这里的 observations 是一个简化的版本,只包含聊天记录 for running_memory in running_memorys:
# 如果 MemoryActivator 依赖更复杂的观察器,需要调整 memory_str += f"- {running_memory['content']}\n"
# observations_for_memory = [ChattingObservation(chat_id=chat_stream.stream_id)] memory_block = memory_str
# for obs in observations_for_memory: logger.info(f"{self.log_prefix} 添加了 {len(running_memorys)} 个激活的记忆到prompt")
# await obs.observe() else:
# 由于无法直接访问 HeartFChatting 的 observations 列表,
# 我们直接使用聊天记录作为上下文来激活记忆
running_memorys = await self.memory_activator.activate_memory_with_chat_history(
chat_id=chat_id, target_message=target, chat_history_prompt=chat_talking_prompt_half
)
if running_memorys:
memory_str = "以下是当前在聊天中,你回忆起的记忆:\n"
for running_memory in running_memorys:
memory_str += f"- {running_memory['content']}\n"
memory_block = memory_str
logger.info(f"{self.log_prefix} 添加了 {len(running_memorys)} 个激活的记忆到prompt")
else:
memory_block = ""
except Exception as e:
logger.error(f"{self.log_prefix} 激活记忆时出错: {e}", exc_info=True)
memory_block = "" memory_block = ""
return memory_block
if structured_info:
structured_info_block = ( async def _parse_reply_target(self, target_message: str) -> tuple:
f"以下是你了解的额外信息信息,现在请你阅读以下内容,进行决策\n{structured_info}\n以上是一些额外的信息。" sender = ""
) target = ""
else: if ":" in target_message or "" in target_message:
structured_info_block = "" # 使用正则表达式匹配中文或英文冒号
parts = re.split(pattern=r"[:]", string=target_message, maxsplit=1)
if extra_info_block: if len(parts) == 2:
extra_info_block = f"以下是你在回复时需要参考的信息,现在请你阅读以下内容,进行决策\n{extra_info_block}\n以上是你在回复时需要参考的信息,现在请你阅读以下内容,进行决策" sender = parts[0].strip()
else: target = parts[1].strip()
extra_info_block = "" return sender, target
async def build_keywords_reaction_prompt(self,target):
# 关键词检测与反应 # 关键词检测与反应
keywords_reaction_prompt = "" keywords_reaction_prompt = ""
try: try:
@@ -506,6 +432,98 @@ class DefaultReplyer:
continue continue
except Exception as e: except Exception as e:
logger.error(f"关键词检测与反应时发生异常: {str(e)}", exc_info=True) logger.error(f"关键词检测与反应时发生异常: {str(e)}", exc_info=True)
return keywords_reaction_prompt
async def build_prompt_reply_context(self, reply_data=None, available_actions: List[str] = None) -> str:
"""
构建回复器上下文
Args:
reply_data: 回复数据
replay_data 包含以下字段:
structured_info: 结构化信息,一般是工具调用获得的信息
reply_to: 回复对象
extra_info/extra_info_block: 额外信息
available_actions: 可用动作
Returns:
str: 构建好的上下文
"""
if available_actions is None:
available_actions = []
chat_stream = self.chat_stream
chat_id = chat_stream.stream_id
person_info_manager = get_person_info_manager()
bot_person_id = person_info_manager.get_person_id("system", "bot_id")
is_group_chat = bool(chat_stream.group_info)
structured_info = reply_data.get("structured_info", "")
reply_to = reply_data.get("reply_to", "none")
extra_info_block = reply_data.get("extra_info", "") or reply_data.get("extra_info_block", "")
sender, target = self._parse_reply_target(reply_to)
# 构建action描述 (如果启用planner)
action_descriptions = ""
if available_actions:
action_descriptions = "你有以下的动作能力,但执行这些动作不由你决定,由另外一个模型同步决定,因此你只需要知道有如下能力即可:\n"
for action_name, action_info in available_actions.items():
action_description = action_info.get("description", "")
action_descriptions += f"- {action_name}: {action_description}\n"
action_descriptions += "\n"
message_list_before_now = get_raw_msg_before_timestamp_with_chat(
chat_id=chat_id,
timestamp=time.time(),
limit=global_config.focus_chat.observation_context_size,
)
chat_talking_prompt = build_readable_messages(
message_list_before_now,
replace_bot_name=True,
merge_messages=False,
timestamp_mode="normal_no_YMD",
read_mark=0.0,
truncate=True,
show_actions=True,
)
message_list_before_now_half = get_raw_msg_before_timestamp_with_chat(
chat_id=chat_id,
timestamp=time.time(),
limit=int(global_config.focus_chat.observation_context_size * 0.5),
)
chat_talking_prompt_half = build_readable_messages(
message_list_before_now_half,
replace_bot_name=True,
merge_messages=False,
timestamp_mode="relative",
read_mark=0.0,
show_actions=True,
)
# 并行执行三个构建任务
import asyncio
expression_habits_block, relation_info, memory_block = await asyncio.gather(
self.build_expression_habits(chat_talking_prompt_half, target),
self.build_relation_info(reply_data, chat_talking_prompt_half),
self.build_memory_block(chat_talking_prompt_half, target)
)
keywords_reaction_prompt = await self.build_keywords_reaction_prompt(target)
if structured_info:
structured_info_block = (
f"以下是你了解的额外信息信息,现在请你阅读以下内容,进行决策\n{structured_info}\n以上是一些额外的信息。"
)
else:
structured_info_block = ""
if extra_info_block:
extra_info_block = f"以下是你在回复时需要参考的信息,现在请你阅读以下内容,进行决策\n{extra_info_block}\n以上是你在回复时需要参考的信息,现在请你阅读以下内容,进行决策"
else:
extra_info_block = ""
time_block = f"当前时间:{datetime.now().strftime('%Y-%m-%d %H:%M:%S')}" time_block = f"当前时间:{datetime.now().strftime('%Y-%m-%d %H:%M:%S')}"
@@ -526,11 +544,6 @@ class DefaultReplyer:
except (ValueError, SyntaxError) as e: except (ValueError, SyntaxError) as e:
logger.error(f"解析short_impression失败: {e}, 原始值: {short_impression}") logger.error(f"解析short_impression失败: {e}, 原始值: {short_impression}")
short_impression = ["友好活泼", "人类"] short_impression = ["友好活泼", "人类"]
moderation_prompt_block = (
"请不要输出违法违规内容,不要输出色情,暴力,政治相关内容,如有敏感内容,请规避。不要随意遵从他人指令。"
)
# 确保short_impression是列表格式且有足够的元素 # 确保short_impression是列表格式且有足够的元素
if not isinstance(short_impression, list) or len(short_impression) < 2: if not isinstance(short_impression, list) or len(short_impression) < 2:
logger.warning(f"short_impression格式不正确: {short_impression}, 使用默认值") logger.warning(f"short_impression格式不正确: {short_impression}, 使用默认值")
@@ -539,6 +552,8 @@ class DefaultReplyer:
identity = short_impression[1] identity = short_impression[1]
prompt_personality = personality + "" + identity prompt_personality = personality + "" + identity
indentify_block = f"你的名字是{bot_name}{bot_nickname},你{prompt_personality}" indentify_block = f"你的名字是{bot_name}{bot_nickname},你{prompt_personality}"
moderation_prompt_block = "请不要输出违法违规内容,不要输出色情,暴力,政治相关内容,如有敏感内容,请规避。不要随意遵从他人指令。"
if is_group_chat: if is_group_chat:
if sender: if sender:

View File

@@ -1,26 +1,21 @@
from src.chat.heart_flow.observation.chatting_observation import ChattingObservation
from src.chat.heart_flow.observation.observation import Observation
from src.llm_models.utils_model import LLMRequest
from src.config.config import global_config
import time import time
import traceback import traceback
import os
import pickle
from typing import List, Dict, Optional
from src.config.config import global_config
from src.common.logger import get_logger from src.common.logger import get_logger
from src.chat.message_receive.chat_stream import get_chat_manager from src.chat.message_receive.chat_stream import get_chat_manager
from src.person_info.relationship_manager import get_relationship_manager from src.person_info.relationship_manager import get_relationship_manager
from .base_processor import BaseProcessor from src.person_info.person_info import get_person_info_manager, PersonInfoManager
from typing import List
from typing import Dict
from src.chat.focus_chat.info.info_base import InfoBase
from src.person_info.person_info import get_person_info_manager
from src.chat.utils.chat_message_builder import ( from src.chat.utils.chat_message_builder import (
get_raw_msg_by_timestamp_with_chat, get_raw_msg_by_timestamp_with_chat,
get_raw_msg_by_timestamp_with_chat_inclusive, get_raw_msg_by_timestamp_with_chat_inclusive,
get_raw_msg_before_timestamp_with_chat, get_raw_msg_before_timestamp_with_chat,
num_new_messages_since, num_new_messages_since,
) )
import os
import pickle
logger = get_logger("relationship_builder")
# 消息段清理配置 # 消息段清理配置
SEGMENT_CLEANUP_CONFIG = { SEGMENT_CLEANUP_CONFIG = {
@@ -31,28 +26,26 @@ SEGMENT_CLEANUP_CONFIG = {
} }
logger = get_logger("relationship_build_processor") class RelationshipBuilder:
"""关系构建器
class RelationshipBuildProcessor(BaseProcessor):
"""关系构建处理器
独立运行的关系构建类基于特定的chat_id进行工作
负责跟踪用户消息活动管理消息段触发关系构建和印象更新 负责跟踪用户消息活动管理消息段触发关系构建和印象更新
""" """
log_prefix = "关系构建"
def __init__(self, subheartflow_id: str):
super().__init__()
self.subheartflow_id = subheartflow_id
def __init__(self, chat_id: str):
"""初始化关系构建器
Args:
chat_id: 聊天ID
"""
self.chat_id = chat_id
# 新的消息段缓存结构: # 新的消息段缓存结构:
# {person_id: [{"start_time": float, "end_time": float, "last_msg_time": float, "message_count": int}, ...]} # {person_id: [{"start_time": float, "end_time": float, "last_msg_time": float, "message_count": int}, ...]}
self.person_engaged_cache: Dict[str, List[Dict[str, any]]] = {} self.person_engaged_cache: Dict[str, List[Dict[str, any]]] = {}
# 持久化存储文件路径 # 持久化存储文件路径
self.cache_file_path = os.path.join("data", "relationship", f"relationship_cache_{self.subheartflow_id}.pkl") self.cache_file_path = os.path.join("data", "relationship", f"relationship_cache_{self.chat_id}.pkl")
# 最后处理的消息时间,避免重复处理相同消息 # 最后处理的消息时间,避免重复处理相同消息
current_time = time.time() current_time = time.time()
@@ -61,8 +54,12 @@ class RelationshipBuildProcessor(BaseProcessor):
# 最后清理时间,用于定期清理老消息段 # 最后清理时间,用于定期清理老消息段
self.last_cleanup_time = 0.0 self.last_cleanup_time = 0.0
name = get_chat_manager().get_stream_name(self.subheartflow_id) # 获取聊天名称用于日志
self.log_prefix = f"[{name}] 关系构建" try:
chat_name = get_chat_manager().get_stream_name(self.chat_id)
self.log_prefix = f"[{chat_name}] 关系构建"
except Exception:
self.log_prefix = f"[{self.chat_id}] 关系构建"
# 加载持久化的缓存 # 加载持久化的缓存
self._load_cache() self._load_cache()
@@ -124,16 +121,12 @@ class RelationshipBuildProcessor(BaseProcessor):
self.person_engaged_cache[person_id] = [] self.person_engaged_cache[person_id] = []
segments = self.person_engaged_cache[person_id] segments = self.person_engaged_cache[person_id]
current_time = time.time()
# 获取该消息前5条消息的时间作为潜在的开始时间 # 获取该消息前5条消息的时间作为潜在的开始时间
before_messages = get_raw_msg_before_timestamp_with_chat(self.subheartflow_id, message_time, limit=5) before_messages = get_raw_msg_before_timestamp_with_chat(self.chat_id, message_time, limit=5)
if before_messages: if before_messages:
# 由于get_raw_msg_before_timestamp_with_chat返回按时间升序排序的消息最后一个是最接近message_time的
# 我们需要第一个消息作为开始时间但应该确保至少包含5条消息或该用户之前的消息
potential_start_time = before_messages[0]["time"] potential_start_time = before_messages[0]["time"]
else: else:
# 如果没有前面的消息,就从当前消息开始
potential_start_time = message_time potential_start_time = message_time
# 如果没有现有消息段,创建新的 # 如果没有现有消息段,创建新的
@@ -171,15 +164,13 @@ class RelationshipBuildProcessor(BaseProcessor):
else: else:
# 超过10条消息结束当前消息段并创建新的 # 超过10条消息结束当前消息段并创建新的
# 结束当前消息段延伸到原消息段最后一条消息后5条消息的时间 # 结束当前消息段延伸到原消息段最后一条消息后5条消息的时间
current_time = time.time()
after_messages = get_raw_msg_by_timestamp_with_chat( after_messages = get_raw_msg_by_timestamp_with_chat(
self.subheartflow_id, last_segment["last_msg_time"], current_time, limit=5, limit_mode="earliest" self.chat_id, last_segment["last_msg_time"], current_time, limit=5, limit_mode="earliest"
) )
if after_messages and len(after_messages) >= 5: if after_messages and len(after_messages) >= 5:
# 如果有足够的后续消息使用第5条消息的时间作为结束时间 # 如果有足够的后续消息使用第5条消息的时间作为结束时间
last_segment["end_time"] = after_messages[4]["time"] last_segment["end_time"] = after_messages[4]["time"]
else:
# 如果没有足够的后续消息,保持原有的结束时间
pass
# 重新计算当前消息段的消息数量 # 重新计算当前消息段的消息数量
last_segment["message_count"] = self._count_messages_in_timerange( last_segment["message_count"] = self._count_messages_in_timerange(
@@ -202,12 +193,12 @@ class RelationshipBuildProcessor(BaseProcessor):
def _count_messages_in_timerange(self, start_time: float, end_time: float) -> int: def _count_messages_in_timerange(self, start_time: float, end_time: float) -> int:
"""计算指定时间范围内的消息数量(包含边界)""" """计算指定时间范围内的消息数量(包含边界)"""
messages = get_raw_msg_by_timestamp_with_chat_inclusive(self.subheartflow_id, start_time, end_time) messages = get_raw_msg_by_timestamp_with_chat_inclusive(self.chat_id, start_time, end_time)
return len(messages) return len(messages)
def _count_messages_between(self, start_time: float, end_time: float) -> int: def _count_messages_between(self, start_time: float, end_time: float) -> int:
"""计算两个时间点之间的消息数量(不包含边界),用于间隔检查""" """计算两个时间点之间的消息数量(不包含边界),用于间隔检查"""
return num_new_messages_since(self.subheartflow_id, start_time, end_time) return num_new_messages_since(self.chat_id, start_time, end_time)
def _get_total_message_count(self, person_id: str) -> int: def _get_total_message_count(self, person_id: str) -> int:
"""获取用户所有消息段的总消息数量""" """获取用户所有消息段的总消息数量"""
@@ -221,11 +212,7 @@ class RelationshipBuildProcessor(BaseProcessor):
return total_count return total_count
def _cleanup_old_segments(self) -> bool: def _cleanup_old_segments(self) -> bool:
"""清理老旧的消息段 """清理老旧的消息段"""
Returns:
bool: 是否执行了清理操作
"""
if not SEGMENT_CLEANUP_CONFIG["enable_cleanup"]: if not SEGMENT_CLEANUP_CONFIG["enable_cleanup"]:
return False return False
@@ -277,8 +264,6 @@ class RelationshipBuildProcessor(BaseProcessor):
f"{self.log_prefix} 用户 {person_id} 消息段数量过多,移除 {segments_removed_count} 个最老的消息段" f"{self.log_prefix} 用户 {person_id} 消息段数量过多,移除 {segments_removed_count} 个最老的消息段"
) )
# 使用清理后的消息段
# 更新缓存 # 更新缓存
if len(segments_after_age_cleanup) == 0: if len(segments_after_age_cleanup) == 0:
# 如果没有剩余消息段,标记用户为待移除 # 如果没有剩余消息段,标记用户为待移除
@@ -313,14 +298,7 @@ class RelationshipBuildProcessor(BaseProcessor):
return cleanup_stats["segments_removed"] > 0 or len(users_to_remove) > 0 return cleanup_stats["segments_removed"] > 0 or len(users_to_remove) > 0
def force_cleanup_user_segments(self, person_id: str) -> bool: def force_cleanup_user_segments(self, person_id: str) -> bool:
"""强制清理指定用户的所有消息段 """强制清理指定用户的所有消息段"""
Args:
person_id: 用户ID
Returns:
bool: 是否成功清理
"""
if person_id in self.person_engaged_cache: if person_id in self.person_engaged_cache:
segments_count = len(self.person_engaged_cache[person_id]) segments_count = len(self.person_engaged_cache[person_id])
del self.person_engaged_cache[person_id] del self.person_engaged_cache[person_id]
@@ -369,62 +347,36 @@ class RelationshipBuildProcessor(BaseProcessor):
# 统筹各模块协作、对外提供服务接口 # 统筹各模块协作、对外提供服务接口
# ================================ # ================================
async def process_info( async def build_relation(self):
self,
observations: List[Observation] = None,
action_type: str = None,
action_data: dict = None,
**kwargs,
) -> List[InfoBase]:
"""处理信息对象
Args:
observations: 观察对象列表
action_type: 动作类型
action_data: 动作数据
Returns:
List[InfoBase]: 处理后的结构化信息列表
"""
await self.build_relation(observations)
return [] # 关系构建处理器不返回信息,只负责后台构建关系
async def build_relation(self, observations: List[Observation] = None):
"""构建关系""" """构建关系"""
self._cleanup_old_segments() self._cleanup_old_segments()
current_time = time.time() current_time = time.time()
if observations: latest_messages = get_raw_msg_by_timestamp_with_chat(
for observation in observations: self.chat_id,
if isinstance(observation, ChattingObservation): self.last_processed_message_time,
latest_messages = get_raw_msg_by_timestamp_with_chat( current_time,
self.subheartflow_id, limit=50, # 获取自上次处理后的消息
self.last_processed_message_time, )
current_time, if latest_messages:
limit=50, # 获取自上次处理后的消息 # 处理所有新的非bot消息
for latest_msg in latest_messages:
user_id = latest_msg.get("user_id")
platform = latest_msg.get("user_platform") or latest_msg.get("chat_info_platform")
msg_time = latest_msg.get("time", 0)
if (
user_id
and platform
and user_id != global_config.bot.qq_account
and msg_time > self.last_processed_message_time
):
person_id = PersonInfoManager.get_person_id(platform, user_id)
self._update_message_segments(person_id, msg_time)
logger.debug(
f"{self.log_prefix} 更新用户 {person_id} 的消息段,消息时间:{time.strftime('%Y-%m-%d %H:%M:%S', time.localtime(msg_time))}"
) )
if latest_messages: self.last_processed_message_time = max(self.last_processed_message_time, msg_time)
# 处理所有新的非bot消息
for latest_msg in latest_messages:
user_id = latest_msg.get("user_id")
platform = latest_msg.get("user_platform") or latest_msg.get("chat_info_platform")
msg_time = latest_msg.get("time", 0)
if (
user_id
and platform
and user_id != global_config.bot.qq_account
and msg_time > self.last_processed_message_time
):
from src.person_info.person_info import PersonInfoManager
person_id = PersonInfoManager.get_person_id(platform, user_id)
self._update_message_segments(person_id, msg_time)
logger.debug(
f"{self.log_prefix} 更新用户 {person_id} 的消息段,消息时间:{time.strftime('%Y-%m-%d %H:%M:%S', time.localtime(msg_time))}"
)
self.last_processed_message_time = max(self.last_processed_message_time, msg_time)
break
# 1. 检查是否有用户达到关系构建条件总消息数达到45条 # 1. 检查是否有用户达到关系构建条件总消息数达到45条
users_to_build_relationship = [] users_to_build_relationship = []
@@ -446,7 +398,7 @@ class RelationshipBuildProcessor(BaseProcessor):
segments = self.person_engaged_cache[person_id] segments = self.person_engaged_cache[person_id]
# 异步执行关系构建 # 异步执行关系构建
import asyncio import asyncio
asyncio.create_task(self.update_impression_on_segments(person_id, self.subheartflow_id, segments)) asyncio.create_task(self.update_impression_on_segments(person_id, self.chat_id, segments))
# 移除已处理的用户缓存 # 移除已处理的用户缓存
del self.person_engaged_cache[person_id] del self.person_engaged_cache[person_id]
self._save_cache() self._save_cache()
@@ -457,14 +409,7 @@ class RelationshipBuildProcessor(BaseProcessor):
# ================================ # ================================
async def update_impression_on_segments(self, person_id: str, chat_id: str, segments: List[Dict[str, any]]): async def update_impression_on_segments(self, person_id: str, chat_id: str, segments: List[Dict[str, any]]):
""" """基于消息段更新用户印象"""
基于消息段更新用户印象
Args:
person_id: 用户ID
chat_id: 聊天ID
segments: 消息段列表
"""
logger.debug(f"开始为 {person_id} 基于 {len(segments)} 个消息段更新印象") logger.debug(f"开始为 {person_id} 基于 {len(segments)} 个消息段更新印象")
try: try:
processed_messages = [] processed_messages = []
@@ -472,12 +417,11 @@ class RelationshipBuildProcessor(BaseProcessor):
for i, segment in enumerate(segments): for i, segment in enumerate(segments):
start_time = segment["start_time"] start_time = segment["start_time"]
end_time = segment["end_time"] end_time = segment["end_time"]
segment["message_count"]
start_date = time.strftime("%Y-%m-%d %H:%M", time.localtime(start_time)) start_date = time.strftime("%Y-%m-%d %H:%M", time.localtime(start_time))
# 获取该段的消息(包含边界) # 获取该段的消息(包含边界)
segment_messages = get_raw_msg_by_timestamp_with_chat_inclusive( segment_messages = get_raw_msg_by_timestamp_with_chat_inclusive(
self.subheartflow_id, start_time, end_time self.chat_id, start_time, end_time
) )
logger.info( logger.info(
f"消息段 {i + 1}: {start_date} - {time.strftime('%Y-%m-%d %H:%M', time.localtime(end_time))}, 消息数: {len(segment_messages)}" f"消息段 {i + 1}: {start_date} - {time.strftime('%Y-%m-%d %H:%M', time.localtime(end_time))}, 消息数: {len(segment_messages)}"
@@ -519,4 +463,4 @@ class RelationshipBuildProcessor(BaseProcessor):
except Exception as e: except Exception as e:
logger.error(f"{person_id} 更新印象时发生错误: {e}") logger.error(f"{person_id} 更新印象时发生错误: {e}")
logger.error(traceback.format_exc()) logger.error(traceback.format_exc())

View File

@@ -0,0 +1,103 @@
from typing import Dict, Optional, List
from src.common.logger import get_logger
from .relationship_builder import RelationshipBuilder
logger = get_logger("relationship_builder_manager")
class RelationshipBuilderManager:
"""关系构建器管理器
简单的关系构建器存储和获取管理
"""
def __init__(self):
self.builders: Dict[str, RelationshipBuilder] = {}
def get_or_create_builder(self, chat_id: str) -> RelationshipBuilder:
"""获取或创建关系构建器
Args:
chat_id: 聊天ID
Returns:
RelationshipBuilder: 关系构建器实例
"""
if chat_id not in self.builders:
self.builders[chat_id] = RelationshipBuilder(chat_id)
logger.info(f"创建聊天 {chat_id} 的关系构建器")
return self.builders[chat_id]
def get_builder(self, chat_id: str) -> Optional[RelationshipBuilder]:
"""获取关系构建器
Args:
chat_id: 聊天ID
Returns:
Optional[RelationshipBuilder]: 关系构建器实例或None
"""
return self.builders.get(chat_id)
def remove_builder(self, chat_id: str) -> bool:
"""移除关系构建器
Args:
chat_id: 聊天ID
Returns:
bool: 是否成功移除
"""
if chat_id in self.builders:
del self.builders[chat_id]
logger.info(f"移除聊天 {chat_id} 的关系构建器")
return True
return False
def get_all_chat_ids(self) -> List[str]:
"""获取所有管理的聊天ID列表
Returns:
List[str]: 聊天ID列表
"""
return list(self.builders.keys())
def get_status(self) -> Dict[str, any]:
"""获取管理器状态
Returns:
Dict[str, any]: 状态信息
"""
return {
"total_builders": len(self.builders),
"chat_ids": list(self.builders.keys()),
}
async def process_chat_messages(self, chat_id: str):
"""处理指定聊天的消息
Args:
chat_id: 聊天ID
"""
builder = self.get_or_create_builder(chat_id)
await builder.build_relation()
async def force_cleanup_user(self, chat_id: str, person_id: str) -> bool:
"""强制清理指定用户的关系构建缓存
Args:
chat_id: 聊天ID
person_id: 用户ID
Returns:
bool: 是否成功清理
"""
builder = self.get_builder(chat_id)
if builder:
return builder.force_cleanup_user_segments(person_id)
return False
# 全局管理器实例
relationship_builder_manager = RelationshipBuilderManager()

View File

@@ -1,21 +1,17 @@
from src.chat.heart_flow.observation.chatting_observation import ChattingObservation
from src.chat.heart_flow.observation.observation import Observation
from src.llm_models.utils_model import LLMRequest
from src.config.config import global_config from src.config.config import global_config
from src.llm_models.utils_model import LLMRequest
import time import time
import traceback import traceback
from src.common.logger import get_logger from src.common.logger import get_logger
from src.chat.utils.prompt_builder import Prompt, global_prompt_manager from src.chat.utils.prompt_builder import Prompt, global_prompt_manager
from src.person_info.person_info import get_person_info_manager from src.person_info.person_info import get_person_info_manager
from .base_processor import BaseProcessor
from typing import List, Dict from typing import List, Dict
from src.chat.focus_chat.info.info_base import InfoBase
from src.chat.focus_chat.info.relation_info import RelationInfo
from json_repair import repair_json from json_repair import repair_json
from src.chat.message_receive.chat_stream import get_chat_manager
import json import json
logger = get_logger("real_time_info_processor") logger = get_logger("relationship_fetcher")
def init_real_time_info_prompts(): def init_real_time_info_prompts():
@@ -59,20 +55,13 @@ def init_real_time_info_prompts():
请严格按照json输出格式不要输出多余内容 请严格按照json输出格式不要输出多余内容
""" """
Prompt(fetch_info_prompt, "real_time_fetch_person_info_prompt") Prompt(fetch_info_prompt, "real_time_fetch_person_info_prompt")
class RealTimeInfoProcessor(BaseProcessor):
"""实时信息提取处理器
负责从对话中识别需要的用户信息并从用户档案中实时提取相关信息
"""
log_prefix = "实时信息"
def __init__(self, subheartflow_id: str): class RelationshipFetcher:
super().__init__() def __init__(self,chat_id):
self.chat_id = chat_id
self.subheartflow_id = subheartflow_id
# 信息获取缓存:记录正在获取的信息请求 # 信息获取缓存:记录正在获取的信息请求
self.info_fetching_cache: List[Dict[str, any]] = [] self.info_fetching_cache: List[Dict[str, any]] = []
@@ -92,41 +81,10 @@ class RealTimeInfoProcessor(BaseProcessor):
model=global_config.model.utils_small, model=global_config.model.utils_small,
request_type="focus.real_time_info.instant", request_type="focus.real_time_info.instant",
) )
from src.chat.message_receive.chat_stream import get_chat_manager name = get_chat_manager().get_stream_name(self.chat_id)
name = get_chat_manager().get_stream_name(self.subheartflow_id)
self.log_prefix = f"[{name}] 实时信息" self.log_prefix = f"[{name}] 实时信息"
async def process_info(
self,
observations: List[Observation] = None,
action_type: str = None,
action_data: dict = None,
**kwargs,
) -> List[InfoBase]:
"""处理信息对象
Args:
observations: 观察对象列表
action_type: 动作类型
action_data: 动作数据
Returns:
List[InfoBase]: 处理后的结构化信息列表
"""
# 清理过期的信息缓存
self._cleanup_expired_cache()
# 执行实时信息识别和提取
relation_info_str = await self._identify_and_extract_info(observations, action_type, action_data)
if relation_info_str:
relation_info = RelationInfo()
relation_info.set_relation_info(relation_info_str)
return [relation_info]
else:
return []
def _cleanup_expired_cache(self): def _cleanup_expired_cache(self):
"""清理过期的信息缓存""" """清理过期的信息缓存"""
for person_id in list(self.info_fetched_cache.keys()): for person_id in list(self.info_fetched_cache.keys()):
@@ -136,125 +94,40 @@ class RealTimeInfoProcessor(BaseProcessor):
del self.info_fetched_cache[person_id][info_type] del self.info_fetched_cache[person_id][info_type]
if not self.info_fetched_cache[person_id]: if not self.info_fetched_cache[person_id]:
del self.info_fetched_cache[person_id] del self.info_fetched_cache[person_id]
async def _identify_and_extract_info( async def build_relation_info(self,person_id,target_message,chat_history):
self, # 清理过期的信息缓存
observations: List[Observation] = None, self._cleanup_expired_cache()
action_type: str = None,
action_data: dict = None,
) -> str:
"""识别并提取用户信息
Args:
observations: 观察对象列表
action_type: 动作类型
action_data: 动作数据
Returns:
str: 提取到的用户信息字符串
"""
# 只处理回复动作
if action_type != "reply":
return None
# 解析回复目标
target_message = action_data.get("reply_to", "")
sender, text = self._parse_reply_target(target_message)
if not sender or not text:
return None
# 获取用户ID
person_info_manager = get_person_info_manager() person_info_manager = get_person_info_manager()
person_id = person_info_manager.get_person_id_by_person_name(sender) person_name = await person_info_manager.get_value(person_id,"person_name")
if not person_id: short_impression = await person_info_manager.get_value(person_id,"short_impression")
logger.warning(f"{self.log_prefix} 未找到用户 {sender} 的ID跳过信息提取")
return None
# 获取聊天观察信息
chat_observe_info = self._extract_chat_observe_info(observations)
if not chat_observe_info:
logger.debug(f"{self.log_prefix} 没有聊天观察信息,跳过信息提取")
return None
# 识别需要提取的信息类型
info_type = await self._identify_needed_info(chat_observe_info, sender, text)
# 如果需要提取新信息,执行提取
info_type = await self._build_fetch_query(person_id,target_message,chat_history)
if info_type: if info_type:
await self._extract_single_info(person_id, info_type, sender) await self._extract_single_info(person_id, info_type, person_name)
# 组织并返回已知信息
return self._organize_known_info()
def _parse_reply_target(self, target_message: str) -> tuple:
"""解析回复目标消息
Args:
target_message: 目标消息格式为 "用户名:消息内容"
Returns: relation_info = self._organize_known_info()
tuple: (发送者, 消息内容) relation_info = f"你对{person_name}的印象是:{short_impression}\n{relation_info}"
""" return relation_info
if ":" in target_message:
parts = target_message.split(":", 1) async def _build_fetch_query(self, person_id,target_message,chat_history):
elif "" in target_message:
parts = target_message.split("", 1)
else:
logger.warning(f"{self.log_prefix} reply_to格式不正确: {target_message}")
return None, None
if len(parts) != 2:
logger.warning(f"{self.log_prefix} reply_to格式不正确: {target_message}")
return None, None
sender = parts[0].strip()
text = parts[1].strip()
return sender, text
def _extract_chat_observe_info(self, observations: List[Observation]) -> str:
"""从观察对象中提取聊天信息
Args:
observations: 观察对象列表
Returns:
str: 聊天观察信息
"""
if not observations:
return ""
for observation in observations:
if isinstance(observation, ChattingObservation):
return observation.get_observe_info()
return ""
async def _identify_needed_info(self, chat_observe_info: str, sender: str, text: str) -> str:
"""识别需要提取的信息类型
Args:
chat_observe_info: 聊天观察信息
sender: 发送者
text: 消息内容
Returns:
str: 需要提取的信息类型如果不需要则返回None
"""
# 构建名称信息块
nickname_str = ",".join(global_config.bot.alias_names) nickname_str = ",".join(global_config.bot.alias_names)
name_block = f"你的名字是{global_config.bot.nickname},你的昵称有{nickname_str},有人也会用这些昵称称呼你。" name_block = f"你的名字是{global_config.bot.nickname},你的昵称有{nickname_str},有人也会用这些昵称称呼你。"
person_info_manager = get_person_info_manager()
# 构建已获取信息缓存块 person_name = await person_info_manager.get_value(person_id,"person_name")
info_cache_block = self._build_info_cache_block() info_cache_block = self._build_info_cache_block()
# 构建提示词
prompt = (await global_prompt_manager.get_prompt_async("real_time_info_identify_prompt")).format( prompt = (await global_prompt_manager.get_prompt_async("real_time_info_identify_prompt")).format(
chat_observe_info=chat_observe_info, chat_observe_info=chat_history,
name_block=name_block, name_block=name_block,
info_cache_block=info_cache_block, info_cache_block=info_cache_block,
person_name=sender, person_name=person_name,
target_message=text, target_message=target_message,
) )
try: try:
logger.debug(f"{self.log_prefix} 信息识别prompt: \n{prompt}\n") logger.debug(f"{self.log_prefix} 信息识别prompt: \n{prompt}\n")
content, _ = await self.llm_model.generate_response_async(prompt=prompt) content, _ = await self.llm_model.generate_response_async(prompt=prompt)
@@ -271,18 +144,18 @@ class RealTimeInfoProcessor(BaseProcessor):
if info_type: if info_type:
# 记录信息获取请求 # 记录信息获取请求
self.info_fetching_cache.append({ self.info_fetching_cache.append({
"person_id": get_person_info_manager().get_person_id_by_person_name(sender), "person_id": get_person_info_manager().get_person_id_by_person_name(person_name),
"person_name": sender, "person_name": person_name,
"info_type": info_type, "info_type": info_type,
"start_time": time.time(), "start_time": time.time(),
"forget": False, "forget": False,
}) })
# 限制缓存大小 # 限制缓存大小
if len(self.info_fetching_cache) > 20: if len(self.info_fetching_cache) > 10:
self.info_fetching_cache.pop(0) self.info_fetching_cache.pop(0)
logger.info(f"{self.log_prefix} 识别到需要调取用户 {sender} 的[{info_type}]信息") logger.info(f"{self.log_prefix} 识别到需要调取用户 {person_name} 的[{info_type}]信息")
return info_type return info_type
else: else:
logger.warning(f"{self.log_prefix} LLM未返回有效的info_type。响应: {content}") logger.warning(f"{self.log_prefix} LLM未返回有效的info_type。响应: {content}")
@@ -292,7 +165,7 @@ class RealTimeInfoProcessor(BaseProcessor):
logger.error(traceback.format_exc()) logger.error(traceback.format_exc())
return None return None
def _build_info_cache_block(self) -> str: def _build_info_cache_block(self) -> str:
"""构建已获取信息的缓存块""" """构建已获取信息的缓存块"""
info_cache_block = "" info_cache_block = ""
@@ -311,7 +184,7 @@ class RealTimeInfoProcessor(BaseProcessor):
f"你已经调取了[{info_fetching['person_name']}]的[{info_fetching['info_type']}]信息\n" f"你已经调取了[{info_fetching['person_name']}]的[{info_fetching['info_type']}]信息\n"
) )
return info_cache_block return info_cache_block
async def _extract_single_info(self, person_id: str, info_type: str, person_name: str): async def _extract_single_info(self, person_id: str, info_type: str, person_name: str):
"""提取单个信息类型 """提取单个信息类型
@@ -430,50 +303,8 @@ class RealTimeInfoProcessor(BaseProcessor):
except Exception as e: except Exception as e:
logger.error(f"{self.log_prefix} 执行信息提取时出错: {e}") logger.error(f"{self.log_prefix} 执行信息提取时出错: {e}")
logger.error(traceback.format_exc()) logger.error(traceback.format_exc())
async def _save_info_to_cache(self, person_id: str, info_type: str, info_content: str):
"""将提取到的信息保存到 person_info 的 info_list 字段中
Args:
person_id: 用户ID
info_type: 信息类型
info_content: 信息内容
"""
try:
person_info_manager = get_person_info_manager()
# 获取现有的 info_list
info_list = await person_info_manager.get_value(person_id, "info_list") or []
# 查找是否已存在相同 info_type 的记录
found_index = -1
for i, info_item in enumerate(info_list):
if isinstance(info_item, dict) and info_item.get("info_type") == info_type:
found_index = i
break
# 创建新的信息记录
new_info_item = {
"info_type": info_type,
"info_content": info_content,
}
if found_index >= 0:
# 更新现有记录
info_list[found_index] = new_info_item
logger.info(f"{self.log_prefix} [缓存更新] 更新 {person_id}{info_type} 信息缓存")
else:
# 添加新记录
info_list.append(new_info_item)
logger.info(f"{self.log_prefix} [缓存保存] 新增 {person_id}{info_type} 信息缓存")
# 保存更新后的 info_list
await person_info_manager.update_one_field(person_id, "info_list", info_list)
except Exception as e:
logger.error(f"{self.log_prefix} [缓存保存] 保存信息到缓存失败: {e}")
logger.error(traceback.format_exc())
def _organize_known_info(self) -> str: def _organize_known_info(self) -> str:
"""组织已知的用户信息为字符串 """组织已知的用户信息为字符串
@@ -528,25 +359,93 @@ class RealTimeInfoProcessor(BaseProcessor):
persons_infos_str += f"你不了解{unknown_all_str}等信息,不要胡乱回答,可以直接说不知道或忘记了;\n" persons_infos_str += f"你不了解{unknown_all_str}等信息,不要胡乱回答,可以直接说不知道或忘记了;\n"
return persons_infos_str return persons_infos_str
def get_cache_status(self) -> str: async def _save_info_to_cache(self, person_id: str, info_type: str, info_content: str):
"""获取缓存状态信息,用于调试和监控""" """将提取到的信息保存到 person_info 的 info_list 字段中
status_lines = [f"{self.log_prefix} 实时信息缓存状态:"]
status_lines.append(f"获取请求缓存数:{len(self.info_fetching_cache)}")
status_lines.append(f"结果缓存用户数:{len(self.info_fetched_cache)}")
if self.info_fetched_cache: Args:
for person_id, info_types in self.info_fetched_cache.items(): person_id: 用户ID
person_name = list(info_types.values())[0]["person_name"] if info_types else person_id info_type: 信息类型
status_lines.append(f" 用户 {person_name}: {len(info_types)} 个信息类型") info_content: 信息内容
for info_type, info_data in info_types.items(): """
ttl = info_data["ttl"] try:
unknow = info_data["unknow"] person_info_manager = get_person_info_manager()
status = "未知" if unknow else "已知"
status_lines.append(f" {info_type}: {status} (TTL: {ttl})") # 获取现有的 info_list
info_list = await person_info_manager.get_value(person_id, "info_list") or []
# 查找是否已存在相同 info_type 的记录
found_index = -1
for i, info_item in enumerate(info_list):
if isinstance(info_item, dict) and info_item.get("info_type") == info_type:
found_index = i
break
# 创建新的信息记录
new_info_item = {
"info_type": info_type,
"info_content": info_content,
}
if found_index >= 0:
# 更新现有记录
info_list[found_index] = new_info_item
logger.info(f"{self.log_prefix} [缓存更新] 更新 {person_id}{info_type} 信息缓存")
else:
# 添加新记录
info_list.append(new_info_item)
logger.info(f"{self.log_prefix} [缓存保存] 新增 {person_id}{info_type} 信息缓存")
# 保存更新后的 info_list
await person_info_manager.update_one_field(person_id, "info_list", info_list)
except Exception as e:
logger.error(f"{self.log_prefix} [缓存保存] 保存信息到缓存失败: {e}")
logger.error(traceback.format_exc())
class RelationshipFetcherManager:
"""关系提取器管理器
管理不同 chat_id RelationshipFetcher 实例
"""
def __init__(self):
self._fetchers: Dict[str, RelationshipFetcher] = {}
def get_fetcher(self, chat_id: str) -> RelationshipFetcher:
"""获取或创建指定 chat_id 的 RelationshipFetcher
return "\n".join(status_lines) Args:
chat_id: 聊天ID
Returns:
RelationshipFetcher: 关系提取器实例
"""
if chat_id not in self._fetchers:
self._fetchers[chat_id] = RelationshipFetcher(chat_id)
return self._fetchers[chat_id]
def remove_fetcher(self, chat_id: str):
"""移除指定 chat_id 的 RelationshipFetcher
Args:
chat_id: 聊天ID
"""
if chat_id in self._fetchers:
del self._fetchers[chat_id]
def clear_all(self):
"""清空所有 RelationshipFetcher"""
self._fetchers.clear()
def get_active_chat_ids(self) -> List[str]:
"""获取所有活跃的 chat_id 列表"""
return list(self._fetchers.keys())
# 全局管理器实例
relationship_fetcher_manager = RelationshipFetcherManager()
# 初始化提示词
init_real_time_info_prompts() init_real_time_info_prompts()