better:优化hfc逻辑

This commit is contained in:
SengokuCola
2025-04-19 18:48:59 +08:00
parent b1dc34f7b1
commit c9ab9d4935
11 changed files with 227 additions and 475 deletions

View File

@@ -7,7 +7,6 @@ import time
from typing import Optional
from datetime import datetime
import traceback
from src.plugins.chat.message import UserInfo
from src.plugins.chat.utils import parse_text_timestamps
# from src.plugins.schedule.schedule_generator import bot_schedule
@@ -21,7 +20,6 @@ from src.individuality.individuality import Individuality
import random
from src.plugins.chat.chat_stream import ChatStream
from src.plugins.person_info.relationship_manager import relationship_manager
from src.plugins.chat.utils import get_recent_group_speaker
from ..plugins.utils.prompt_builder import Prompt, global_prompt_manager
subheartflow_config = LogConfig(
@@ -39,40 +37,16 @@ def init_prompt():
# prompt += "{prompt_schedule}\n"
# prompt += "{relation_prompt_all}\n"
prompt += "{prompt_personality}\n"
prompt += "刚刚你的想法是{current_thinking_info}可以适当转换话题\n"
prompt += "刚刚你的想法是\n{current_thinking_info}\n可以适当转换话题\n"
prompt += "-----------------------------------\n"
prompt += "现在是{time_now}你正在上网和qq群里的网友们聊天群里正在聊的话题是\n{chat_observe_info}\n"
prompt += "你现在{mood_info}\n"
# prompt += "你注意到{sender_name}刚刚说:{message_txt}\n"
prompt += "思考时可以想想如何对群聊内容进行回复,关注新话题,大家正在说的话才是聊天的主题。回复的要求是:平淡一些,简短一些,说中文,尽量不要说你说过的话。如果你要回复,最好只回复一个人的一个话题\n"
prompt += "现在请你根据刚刚的想法继续思考,思考时可以想想如何对群聊内容进行回复,关注新话题,大家正在说的话才是聊天的主题。\n"
prompt += "回复的要求是:平淡一些,简短一些,说中文,尽量不要说你说过的话。如果你要回复,最好只回复一个人的一个话题\n"
prompt += "请注意不要输出多余内容(包括前后缀,冒号和引号,括号, 表情,等),不要带有括号和动作描写"
prompt += "记得结合上述的消息,不要分点输出,生成内心想法,文字不要浮夸,注意{bot_name}指的就是你。"
Prompt(prompt, "sub_heartflow_prompt_before")
prompt = ""
# prompt += f"你现在正在做的事情是:{schedule_info}\n"
prompt += "{extra_info}\n"
prompt += "{prompt_personality}\n"
prompt += "现在是{time_now}你正在上网和qq群里的网友们聊天群里正在聊的话题是\n{chat_observe_info}\n"
prompt += "刚刚你的想法是{current_thinking_info}"
prompt += "你现在看到了网友们发的新消息:{message_new_info}\n"
prompt += "你刚刚回复了群友们:{reply_info}"
prompt += "你现在{mood_info}"
prompt += "现在你接下去继续思考,产生新的想法,记得保留你刚刚的想法,不要分点输出,输出连贯的内心独白"
prompt += "不要太长,但是记得结合上述的消息,要记得你的人设,关注聊天和新内容,关注你回复的内容,不要思考太多:"
Prompt(prompt, "sub_heartflow_prompt_after")
# prompt += f"你现在正在做的事情是:{schedule_info}\n"
prompt += "{extra_info}\n"
prompt += "{prompt_personality}\n"
prompt += "现在是{time_now}你正在上网和qq群里的网友们聊天群里正在聊的话题是\n{chat_observe_info}\n"
prompt += "刚刚你的想法是{current_thinking_info}"
prompt += "你现在看到了网友们发的新消息:{message_new_info}\n"
# prompt += "你刚刚回复了群友们:{reply_info}"
prompt += "你现在{mood_info}"
prompt += "现在你接下去继续思考,产生新的想法,记得保留你刚刚的想法,不要分点输出,输出连贯的内心独白"
prompt += "不要思考太多,不要输出多余内容(包括前后缀,冒号和引号,括号, 表情,等),不要带有括号和动作描写"
prompt += "记得结合上述的消息,生成内心想法,文字不要浮夸,注意{bot_name}指的就是你。"
Prompt(prompt, "sub_heartflow_prompt_after_observe")
class CurrentState:
@@ -97,7 +71,7 @@ class SubHeartflow:
self.llm_model = LLMRequest(
model=global_config.llm_sub_heartflow,
temperature=global_config.llm_sub_heartflow["temp"],
max_tokens=600,
max_tokens=800,
request_type="sub_heart_flow",
)
@@ -156,13 +130,6 @@ class SubHeartflow:
# 这个后台循环现在主要负责检查是否需要自我销毁
# 不再主动进行思考或状态更新,这些由 HeartFC_Chat 驱动
# 检查是否需要冻结(这个逻辑可能需要重新审视,因为激活状态现在由外部驱动)
# if current_time - self.last_reply_time > global_config.sub_heart_flow_freeze_time:
# self.is_active = False
# else:
# self.is_active = True
# self.last_active_time = current_time # 由外部调用(如 thinking更新
# 检查是否超过指定时间没有激活 (例如,没有被调用进行思考)
if current_time - self.last_active_time > global_config.sub_heart_flow_stop_time: # 例如 5 分钟
logger.info(
@@ -173,11 +140,6 @@ class SubHeartflow:
# heartflow.remove_subheartflow(self.subheartflow_id) # 假设有这样的方法
break # 退出循环以停止任务
# 不再需要内部驱动的状态更新和思考
# self.current_state.update_current_state_info()
# await self.do_a_thinking()
# await self.judge_willing()
await asyncio.sleep(global_config.sub_heart_flow_update_interval) # 定期检查销毁条件
async def ensure_observed(self):
@@ -275,13 +237,16 @@ class SubHeartflow:
prompt = await relationship_manager.convert_all_person_sign_to_person_name(prompt)
prompt = parse_text_timestamps(prompt, mode="lite")
logger.debug(f"[{self.subheartflow_id}] Thinking Prompt:\n{prompt}")
logger.debug(f"[{self.subheartflow_id}] 心流思考prompt:\n{prompt}\n")
try:
response, reasoning_content = await self.llm_model.generate_response_async(prompt)
logger.debug(f"[{self.subheartflow_id}] 心流思考结果:\n{response}\n")
if not response: # 如果 LLM 返回空,给一个默认想法
response = "(不知道该想些什么...)"
logger.warning(f"[{self.subheartflow_id}] LLM returned empty response for thinking.")
logger.warning(f"[{self.subheartflow_id}] LLM 返回空结果,思考失败。")
except Exception as e:
logger.error(f"[{self.subheartflow_id}] 内心独白获取失败: {e}")
response = "(思考时发生错误...)" # 错误时的默认想法
@@ -290,186 +255,14 @@ class SubHeartflow:
# self.current_mind 已经在 update_current_mind 中更新
logger.info(f"[{self.subheartflow_id}] 思考前脑内状态:{self.current_mind}")
# logger.info(f"[{self.subheartflow_id}] 思考前脑内状态:{self.current_mind}")
return self.current_mind, self.past_mind
async def do_thinking_after_observe(
self, message_txt: str, sender_info: UserInfo, chat_stream: ChatStream, extra_info: str, obs_id: int = None
):
current_thinking_info = self.current_mind
mood_info = self.current_state.mood
# mood_info = "你很生气,很愤怒"
observation = self.observations[0]
if obs_id:
# print(f"11111111111有id,开始获取观察信息{obs_id}")
chat_observe_info = observation.get_observe_info(obs_id)
else:
chat_observe_info = observation.get_observe_info()
extra_info_prompt = ""
for tool_name, tool_data in extra_info.items():
extra_info_prompt += f"{tool_name} 相关信息:\n"
for item in tool_data:
extra_info_prompt += f"- {item['name']}: {item['content']}\n"
# 开始构建prompt
prompt_personality = f"你的名字是{self.bot_name},你"
# person
individuality = Individuality.get_instance()
personality_core = individuality.personality.personality_core
prompt_personality += personality_core
personality_sides = individuality.personality.personality_sides
random.shuffle(personality_sides)
prompt_personality += f",{personality_sides[0]}"
identity_detail = individuality.identity.identity_detail
random.shuffle(identity_detail)
prompt_personality += f",{identity_detail[0]}"
# 关系
who_chat_in_group = [
(chat_stream.user_info.platform, chat_stream.user_info.user_id, chat_stream.user_info.user_nickname)
]
who_chat_in_group += get_recent_group_speaker(
chat_stream.stream_id,
(chat_stream.user_info.platform, chat_stream.user_info.user_id),
limit=global_config.MAX_CONTEXT_SIZE,
)
relation_prompt = ""
for person in who_chat_in_group:
relation_prompt += await relationship_manager.build_relationship_info(person)
# relation_prompt_all = (
# f"{relation_prompt}关系等级越大,关系越好,请分析聊天记录,"
# f"根据你和说话者{sender_name}的关系和态度进行回复,明确你的立场和情感。"
# )
relation_prompt_all = (await global_prompt_manager.get_prompt_async("relationship_prompt")).format(
relation_prompt, sender_info.user_nickname
)
sender_name_sign = (
f"<{chat_stream.platform}:{sender_info.user_id}:{sender_info.user_nickname}:{sender_info.user_cardname}>"
)
time_now = time.strftime("%Y-%m-%d %H:%M:%S", time.localtime())
prompt = (await global_prompt_manager.get_prompt_async("sub_heartflow_prompt_after_observe")).format(
extra_info_prompt,
# prompt_schedule,
relation_prompt_all,
prompt_personality,
current_thinking_info,
time_now,
chat_observe_info,
mood_info,
sender_name_sign,
message_txt,
self.bot_name,
)
prompt = await relationship_manager.convert_all_person_sign_to_person_name(prompt)
prompt = parse_text_timestamps(prompt, mode="lite")
try:
response, reasoning_content = await self.llm_model.generate_response_async(prompt)
except Exception as e:
logger.error(f"回复前内心独白获取失败: {e}")
response = ""
self.update_current_mind(response)
self.current_mind = response
logger.info(f"prompt:\n{prompt}\n")
logger.info(f"麦麦的思考前脑内状态:{self.current_mind}")
return self.current_mind, self.past_mind
# async def do_thinking_after_reply(self, reply_content, chat_talking_prompt, extra_info):
# # print("麦麦回复之后脑袋转起来了")
# # 开始构建prompt
# prompt_personality = f"你的名字是{self.bot_name},你"
# # person
# individuality = Individuality.get_instance()
# personality_core = individuality.personality.personality_core
# prompt_personality += personality_core
# extra_info_prompt = ""
# for tool_name, tool_data in extra_info.items():
# extra_info_prompt += f"{tool_name} 相关信息:\n"
# for item in tool_data:
# extra_info_prompt += f"- {item['name']}: {item['content']}\n"
# personality_sides = individuality.personality.personality_sides
# random.shuffle(personality_sides)
# prompt_personality += f",{personality_sides[0]}"
# identity_detail = individuality.identity.identity_detail
# random.shuffle(identity_detail)
# prompt_personality += f",{identity_detail[0]}"
# current_thinking_info = self.current_mind
# mood_info = self.current_state.mood
# observation = self.observations[0]
# chat_observe_info = observation.observe_info
# message_new_info = chat_talking_prompt
# reply_info = reply_content
# time_now = time.strftime("%Y-%m-%d %H:%M:%S", time.localtime())
# prompt = (await global_prompt_manager.get_prompt_async("sub_heartflow_prompt_after")).format(
# extra_info_prompt,
# prompt_personality,
# time_now,
# chat_observe_info,
# current_thinking_info,
# message_new_info,
# reply_info,
# mood_info,
# )
# prompt = await relationship_manager.convert_all_person_sign_to_person_name(prompt)
# prompt = parse_text_timestamps(prompt, mode="lite")
# try:
# response, reasoning_content = await self.llm_model.generate_response_async(prompt)
# except Exception as e:
# logger.error(f"回复后内心独白获取失败: {e}")
# response = ""
# self.update_current_mind(response)
# self.current_mind = response
# logger.info(f"麦麦回复后的脑内状态:{self.current_mind}")
# self.last_reply_time = time.time()
def update_current_mind(self, response):
self.past_mind.append(self.current_mind)
self.current_mind = response
async def check_reply_trigger(self) -> bool:
"""根据观察到的信息和内部状态,判断是否应该触发一次回复。
TODO: 实现具体的判断逻辑。
例如:检查 self.observations[0].now_message_info 是否包含提及、问题,
或者 self.current_mind 中是否包含强烈的回复意图等。
"""
# Placeholder: 目前始终返回 False需要后续实现
logger.trace(f"[{self.subheartflow_id}] check_reply_trigger called. (Logic Pending)")
# --- 实现触发逻辑 --- #
# 示例:如果观察到的最新消息包含自己的名字,则有一定概率触发
# observation = self._get_primary_observation()
# if observation and self.bot_name in observation.now_message_info[-100:]: # 检查最后100个字符
# if random.random() < 0.3: # 30% 概率触发
# logger.info(f"[{self.subheartflow_id}] Triggering reply based on mention.")
# return True
# ------------------ #
return False # 默认不触发
init_prompt()
# subheartflow = SubHeartflow()