better:优化hfc逻辑

This commit is contained in:
SengokuCola
2025-04-19 18:48:59 +08:00
parent b1dc34f7b1
commit c9ab9d4935
11 changed files with 227 additions and 475 deletions

View File

@@ -6,7 +6,6 @@ from src.config.config import global_config
from src.common.database import db
from src.common.logger import get_module_logger
import traceback
import asyncio
logger = get_module_logger("observation")
@@ -39,7 +38,20 @@ class ChattingObservation(Observation):
self.mid_memory_info = ""
self.now_message_info = ""
self._observe_lock = asyncio.Lock() # 添加
# self._observe_lock = asyncio.Lock() # 移除
# 初始化时加载最近的10条消息
initial_messages_cursor = (
db.messages.find({"chat_id": self.chat_id, "time": {"$lt": self.last_observe_time}})
.sort("time", -1) # 按时间倒序
.limit(10) # 获取最多10条
)
initial_messages = list(initial_messages_cursor)
initial_messages.reverse() # 恢复时间正序
self.talking_message = initial_messages # 将这些消息设为初始上下文
self.now_message_info = self.translate_message_list_to_str(self.talking_message) # 更新初始的 now_message_info
self.llm_summary = LLMRequest(
model=global_config.llm_observation, temperature=0.7, max_tokens=300, request_type="chat_observation"
@@ -73,139 +85,101 @@ class ChattingObservation(Observation):
return self.now_message_info
async def observe(self):
async with self._observe_lock: # 获取
# 查找新消息,最多获取 self.max_now_obs_len 条
new_messages_cursor = (
# async with self._observe_lock: # 移除
# 查找新消息,最多获取 self.max_now_obs_len 条
new_messages_cursor = (
db.messages.find({"chat_id": self.chat_id, "time": {"$gt": self.last_observe_time}})
.sort("time", -1) # 按时间倒序排序
.limit(self.max_now_obs_len) # 限制数量
)
new_messages = list(new_messages_cursor)
new_messages.reverse() # 反转列表,使消息按时间正序排列
if not new_messages:
# 如果没有获取到限制数量内的较新消息,可能仍然有更早的消息,但我们只关注最近的
# 检查是否有任何新消息(即使超出限制),以决定是否更新 last_observe_time
# 注意:这里的查询也可能与其他并发 observe 冲突,但锁保护了状态更新
# 由于外部已加锁,此处的并发冲突担忧不再需要
any_new_message = db.messages.find_one(
{"chat_id": self.chat_id, "time": {"$gt": self.last_observe_time}}
)
if not any_new_message:
return # 确实没有新消息
# 如果有超过限制的更早的新消息,仍然需要更新时间戳,防止重复获取旧消息
# 但不将它们加入 talking_message
latest_message_time_cursor = (
db.messages.find({"chat_id": self.chat_id, "time": {"$gt": self.last_observe_time}})
.sort("time", -1) # 按时间倒序排序
.limit(self.max_now_obs_len) # 限制数量
.sort("time", -1)
.limit(1)
)
new_messages = list(new_messages_cursor)
new_messages.reverse() # 反转列表,使消息按时间正序排列
latest_time_doc = next(latest_message_time_cursor, None)
if latest_time_doc:
# 确保只在严格大于时更新,避免因并发查询导致时间戳回退
if latest_time_doc["time"] > self.last_observe_time:
self.last_observe_time = latest_time_doc["time"]
return # 返回,因为我们只关心限制内的最新消息
if not new_messages:
# 如果没有获取到限制数量内的较新消息,可能仍然有更早的消息,但我们只关注最近的
# 检查是否有任何新消息(即使超出限制),以决定是否更新 last_observe_time
# 注意:这里的查询也可能与其他并发 observe 冲突,但锁保护了状态更新
any_new_message = db.messages.find_one(
{"chat_id": self.chat_id, "time": {"$gt": self.last_observe_time}}
)
if not any_new_message:
return # 确实没有新消息
# 如果有超过限制的更早的新消息,仍然需要更新时间戳,防止重复获取旧消息
# 但不将它们加入 talking_message
latest_message_time_cursor = (
db.messages.find({"chat_id": self.chat_id, "time": {"$gt": self.last_observe_time}})
.sort("time", -1)
.limit(1)
)
latest_time_doc = next(latest_message_time_cursor, None)
if latest_time_doc:
# 确保只在严格大于时更新,避免因并发查询导致时间戳回退
if latest_time_doc["time"] > self.last_observe_time:
self.last_observe_time = latest_time_doc["time"]
return # 返回,因为我们只关心限制内的最新消息
self.last_observe_time = new_messages[-1]["time"]
self.talking_message.extend(new_messages)
# 在持有锁的情况下,再次过滤,确保只处理真正新的消息
# 防止处理在等待锁期间已被其他协程处理的消息
truly_new_messages = [msg for msg in new_messages if msg["time"] > self.last_observe_time]
if not truly_new_messages:
logger.debug(
f"Chat {self.chat_id}: Fetched messages, but already processed by another concurrent observe call."
)
return # 所有获取的消息都已被处理
if len(self.talking_message) > self.max_now_obs_len:
try: # 使用 try...finally 仅用于可能的LLM调用错误处理
# 计算需要移除的消息数量,保留最新的 max_now_obs_len 条
messages_to_remove_count = len(self.talking_message) - self.max_now_obs_len
oldest_messages = self.talking_message[:messages_to_remove_count]
self.talking_message = self.talking_message[messages_to_remove_count:] # 保留后半部分,即最新的
oldest_messages_str = "\n".join(
[msg["detailed_plain_text"] for msg in oldest_messages if "detailed_plain_text" in msg]
) # 增加检查
oldest_timestamps = [msg["time"] for msg in oldest_messages]
# 如果获取到了 truly_new_messages (在限制内且时间戳大于上次记录)
self.last_observe_time = truly_new_messages[-1]["time"] # 更新时间戳为获取到的最新消息的时间
# 调用 LLM 总结主题
prompt = f"请总结以下聊天记录的主题:\n{oldest_messages_str}\n主题,用一句话概括包括人物事件和主要信息,不要分点:"
summary = "无法总结主题" # 默认值
try:
summary_result, _ = await self.llm_summary.generate_response_async(prompt)
if summary_result: # 确保结果不为空
summary = summary_result
except Exception as e:
logger.error(f"总结主题失败 for chat {self.chat_id}: {e}")
# 保留默认总结 "无法总结主题"
self.talking_message.extend(truly_new_messages)
mid_memory = {
"id": str(int(datetime.now().timestamp())),
"theme": summary,
"messages": oldest_messages, # 存储原始消息对象
"timestamps": oldest_timestamps,
"chat_id": self.chat_id,
"created_at": datetime.now().timestamp(),
}
# print(f"mid_memory{mid_memory}")
# 存入内存中的 mid_memorys
self.mid_memorys.append(mid_memory)
if len(self.mid_memorys) > self.max_mid_memory_len:
self.mid_memorys.pop(0) # 移除最旧的
# 将新消息转换为字符串格式 (此变量似乎未使用,暂时注释掉)
# new_messages_str = ""
# for msg in truly_new_messages:
# if "detailed_plain_text" in msg:
# new_messages_str += f"{msg['detailed_plain_text']}"
mid_memory_str = "之前聊天的内容概括是:\n"
for mid_memory_item in self.mid_memorys: # 重命名循环变量以示区分
time_diff = int((datetime.now().timestamp() - mid_memory_item["created_at"]) / 60)
mid_memory_str += f"距离现在{time_diff}分钟前(聊天记录id:{mid_memory_item['id']}){mid_memory_item['theme']}\n"
self.mid_memory_info = mid_memory_str
except Exception as e: # 将异常处理移至此处以覆盖整个总结过程
logger.error(f"处理和总结旧消息时出错 for chat {self.chat_id}: {e}")
traceback.print_exc() # 记录详细堆栈
# print(f"new_messages_str{new_messages_str}")
# print(f"处理后self.talking_message{self.talking_message}")
# 锁保证了这部分逻辑的原子性
if len(self.talking_message) > self.max_now_obs_len:
try: # 使用 try...finally 仅用于可能的LLM调用错误处理
# 计算需要移除的消息数量,保留最新的 max_now_obs_len 条
messages_to_remove_count = len(self.talking_message) - self.max_now_obs_len
oldest_messages = self.talking_message[:messages_to_remove_count]
self.talking_message = self.talking_message[messages_to_remove_count:] # 保留后半部分,即最新的
oldest_messages_str = "\n".join(
[msg["detailed_plain_text"] for msg in oldest_messages if "detailed_plain_text" in msg]
) # 增加检查
oldest_timestamps = [msg["time"] for msg in oldest_messages]
now_message_str = ""
# 使用 self.translate_message_list_to_str 更新当前聊天内容
now_message_str += self.translate_message_list_to_str(talking_message=self.talking_message)
self.now_message_info = now_message_str
# 调用 LLM 总结主题
prompt = f"请总结以下聊天记录的主题:\n{oldest_messages_str}\n主题,用一句话概括包括人物事件和主要信息,不要分点:"
summary = "无法总结主题" # 默认值
try:
summary_result, _ = await self.llm_summary.generate_response_async(prompt)
if summary_result: # 确保结果不为空
summary = summary_result
except Exception as e:
logger.error(f"总结主题失败 for chat {self.chat_id}: {e}")
# 保留默认总结 "无法总结主题"
mid_memory = {
"id": str(int(datetime.now().timestamp())),
"theme": summary,
"messages": oldest_messages, # 存储原始消息对象
"timestamps": oldest_timestamps,
"chat_id": self.chat_id,
"created_at": datetime.now().timestamp(),
}
# print(f"mid_memory{mid_memory}")
# 存入内存中的 mid_memorys
self.mid_memorys.append(mid_memory)
if len(self.mid_memorys) > self.max_mid_memory_len:
self.mid_memorys.pop(0) # 移除最旧的
mid_memory_str = "之前聊天的内容概括是:\n"
for mid_memory_item in self.mid_memorys: # 重命名循环变量以示区分
time_diff = int((datetime.now().timestamp() - mid_memory_item["created_at"]) / 60)
mid_memory_str += f"距离现在{time_diff}分钟前(聊天记录id:{mid_memory_item['id']}){mid_memory_item['theme']}\n"
self.mid_memory_info = mid_memory_str
except Exception as e: # 将异常处理移至此处以覆盖整个总结过程
logger.error(f"处理和总结旧消息时出错 for chat {self.chat_id}: {e}")
traceback.print_exc() # 记录详细堆栈
# print(f"处理后self.talking_message{self.talking_message}")
now_message_str = ""
# 使用 self.translate_message_list_to_str 更新当前聊天内容
now_message_str += self.translate_message_list_to_str(talking_message=self.talking_message)
self.now_message_info = now_message_str
logger.debug(
f"Chat {self.chat_id} - 压缩早期记忆:{self.mid_memory_info}\n现在聊天内容:{self.now_message_info}"
)
# 锁在退出 async with 块时自动释放
async def update_talking_summary(self, new_messages_str):
prompt = ""
# prompt += f"{personality_info}"
prompt += f"你的名字叫:{self.name}\n,标识'{self.name}'的都是你自己说的话"
prompt += f"你正在参与一个qq群聊的讨论你记得这个群之前在聊的内容是{self.observe_info}\n"
prompt += f"现在群里的群友们产生了新的讨论,有了新的发言,具体内容如下:{new_messages_str}\n"
prompt += """以上是群里在进行的聊天,请你对这个聊天内容进行总结,总结内容要包含聊天的大致内容,目前最新讨论的话题
以及聊天中的一些重要信息,记得不要分点,精简的概括成一段文本\n"""
prompt += "总结概括:"
try:
updated_observe_info, reasoning_content = await self.llm_summary.generate_response_async(prompt)
except Exception as e:
print(f"获取总结失败: {e}")
updated_observe_info = ""
return updated_observe_info
# print(f"prompt{prompt}")
# print(f"self.observe_info{self.observe_info}")
logger.debug(
f"Chat {self.chat_id} - 压缩早期记忆:{self.mid_memory_info}\n现在聊天内容:{self.now_message_info}"
)
@staticmethod
def translate_message_list_to_str(talking_message):