This commit is contained in:
tt-P607
2025-09-12 20:36:20 +08:00
11 changed files with 314 additions and 142 deletions

9
bot.py
View File

@@ -7,17 +7,9 @@ import time
import platform import platform
import traceback import traceback
from pathlib import Path from pathlib import Path
from dotenv import load_dotenv
from rich.traceback import install from rich.traceback import install
from colorama import init, Fore from colorama import init, Fore
if os.path.exists(".env"):
load_dotenv(".env", override=True)
print("成功加载环境变量配置")
else:
print("未找到.env文件请确保程序所需的环境变量被正确设置")
raise FileNotFoundError(".env 文件不存在,请创建并配置所需的环境变量")
# maim_message imports for console input # maim_message imports for console input
# 最早期初始化日志系统,确保所有后续模块都使用正确的日志格式 # 最早期初始化日志系统,确保所有后续模块都使用正确的日志格式
@@ -45,7 +37,6 @@ logger.info(f"已设置工作目录为: {script_dir}")
confirm_logger = get_logger("confirm") confirm_logger = get_logger("confirm")
# 获取没有加载env时的环境变量 # 获取没有加载env时的环境变量
env_mask = {key: os.getenv(key) for key in os.environ}
uvicorn_server = None uvicorn_server = None
driver = None driver = None

View File

@@ -5,6 +5,7 @@ from src.person_info.relationship_builder_manager import RelationshipBuilder
from src.chat.express.expression_learner import ExpressionLearner from src.chat.express.expression_learner import ExpressionLearner
from src.chat.planner_actions.action_manager import ActionManager from src.chat.planner_actions.action_manager import ActionManager
from src.chat.chat_loop.hfc_utils import CycleDetail from src.chat.chat_loop.hfc_utils import CycleDetail
from src.config.config import global_config
if TYPE_CHECKING: if TYPE_CHECKING:
from .sleep_manager.wakeup_manager import WakeUpManager from .sleep_manager.wakeup_manager import WakeUpManager
@@ -64,7 +65,8 @@ class HfcContext:
self.energy_manager: Optional["EnergyManager"] = None self.energy_manager: Optional["EnergyManager"] = None
self.sleep_manager: Optional["SleepManager"] = None self.sleep_manager: Optional["SleepManager"] = None
self.focus_energy = 1 # 从聊天流获取focus_energy,如果没有则使用配置文件中的值
self.focus_energy = getattr(self.chat_stream, "focus_energy", global_config.chat.focus_value)
self.no_reply_consecutive = 0 self.no_reply_consecutive = 0
self.total_interest = 0.0 self.total_interest = 0.0
# breaking形式下的累积兴趣值 # breaking形式下的累积兴趣值

View File

@@ -83,7 +83,8 @@ class ChatStream:
self.sleep_pressure = data.get("sleep_pressure", 0.0) if data else 0.0 self.sleep_pressure = data.get("sleep_pressure", 0.0) if data else 0.0
self.saved = False self.saved = False
self.context: ChatMessageContext = None # type: ignore # 用于存储该聊天的上下文信息 self.context: ChatMessageContext = None # type: ignore # 用于存储该聊天的上下文信息
self.focus_energy = 1 # 从配置文件中读取focus_value如果没有则使用默认值1.0
self.focus_energy = data.get("focus_energy", global_config.chat.focus_value) if data else global_config.chat.focus_value
self.no_reply_consecutive = 0 self.no_reply_consecutive = 0
self.breaking_accumulated_interest = 0.0 self.breaking_accumulated_interest = 0.0
@@ -98,6 +99,7 @@ class ChatStream:
"last_active_time": self.last_active_time, "last_active_time": self.last_active_time,
"energy_value": self.energy_value, "energy_value": self.energy_value,
"sleep_pressure": self.sleep_pressure, "sleep_pressure": self.sleep_pressure,
"focus_energy": self.focus_energy,
"breaking_accumulated_interest": self.breaking_accumulated_interest, "breaking_accumulated_interest": self.breaking_accumulated_interest,
} }
@@ -360,6 +362,7 @@ class ChatManager:
"group_name": group_info_d["group_name"] if group_info_d else "", "group_name": group_info_d["group_name"] if group_info_d else "",
"energy_value": s_data_dict.get("energy_value", 5.0), "energy_value": s_data_dict.get("energy_value", 5.0),
"sleep_pressure": s_data_dict.get("sleep_pressure", 0.0), "sleep_pressure": s_data_dict.get("sleep_pressure", 0.0),
"focus_energy": s_data_dict.get("focus_energy", global_config.chat.focus_value),
} }
# 根据数据库类型选择插入语句 # 根据数据库类型选择插入语句
@@ -421,6 +424,7 @@ class ChatManager:
"last_active_time": model_instance.last_active_time, "last_active_time": model_instance.last_active_time,
"energy_value": model_instance.energy_value, "energy_value": model_instance.energy_value,
"sleep_pressure": model_instance.sleep_pressure, "sleep_pressure": model_instance.sleep_pressure,
"focus_energy": getattr(model_instance, "focus_energy", global_config.chat.focus_value),
} }
loaded_streams_data.append(data_for_from_dict) loaded_streams_data.append(data_for_from_dict)
session.commit() session.commit()

View File

@@ -140,8 +140,6 @@ def init_prompt():
-------------------------------- --------------------------------
{time_block} {time_block}
{reply_target_block}
注意不要复读你前面发过的内容,意思相近也不行。 注意不要复读你前面发过的内容,意思相近也不行。
请注意不要输出多余内容(包括前后缀冒号和引号at或 @等 )。只输出回复内容。 请注意不要输出多余内容(包括前后缀冒号和引号at或 @等 )。只输出回复内容。
@@ -833,16 +831,22 @@ class DefaultReplyer:
reply_message.get("user_id"), # type: ignore reply_message.get("user_id"), # type: ignore
) )
person_name = await person_info_manager.get_value(person_id, "person_name") person_name = await person_info_manager.get_value(person_id, "person_name")
sender = person_name
# 检查是否是bot自己的名字如果是则替换为"(你)"
bot_user_id = str(global_config.bot.qq_account)
current_user_id = person_info_manager.get_value_sync(person_id, "user_id")
current_platform = reply_message.get("chat_info_platform")
if current_user_id == bot_user_id and current_platform == global_config.bot.platform:
sender = f"{person_name}(你)"
else:
# 如果不是bot自己直接使用person_name
sender = person_name
target = reply_message.get("processed_plain_text") target = reply_message.get("processed_plain_text")
person_info_manager = get_person_info_manager() person_info_manager = get_person_info_manager()
person_id = person_info_manager.get_person_id_by_person_name(sender) person_id = person_info_manager.get_person_id_by_person_name(sender)
user_id = person_info_manager.get_value_sync(person_id, "user_id")
platform = chat_stream.platform platform = chat_stream.platform
if user_id == global_config.bot.qq_account and platform == global_config.bot.platform:
logger.warning("选取了自身作为回复对象跳过构建prompt")
return ""
target = replace_user_references_sync(target, chat_stream.platform, replace_bot_name=True) target = replace_user_references_sync(target, chat_stream.platform, replace_bot_name=True)
@@ -1061,10 +1065,8 @@ class DefaultReplyer:
**任务**: 请结合你的智慧和人设,自然地决定是否需要分段。如果需要,请在最恰当的位置插入 `[SPLIT]` 标记。 **任务**: 请结合你的智慧和人设,自然地决定是否需要分段。如果需要,请在最恰当的位置插入 `[SPLIT]` 标记。
""" """
# 在 "现在,你说:" 之前插入 # 将分段指令添加到提示词顶部
parts = prompt_text.rsplit("现在,你说:", 1) prompt_text = f"{split_instruction}\n{prompt_text}"
if len(parts) == 2:
prompt_text = f"{parts[0]}{split_instruction}\n现在,你说:{parts[1]}"
return prompt_text return prompt_text

View File

@@ -312,16 +312,15 @@ class Prompt:
except asyncio.TimeoutError as e: except asyncio.TimeoutError as e:
logger.error(f"构建Prompt超时: {e}") logger.error(f"构建Prompt超时: {e}")
raise TimeoutError(f"构建Prompt超时: {e}") raise TimeoutError(f"构建Prompt超时: {e}") from e
except Exception as e: except Exception as e:
logger.error(f"构建Prompt失败: {e}") logger.error(f"构建Prompt失败: {e}")
raise RuntimeError(f"构建Prompt失败: {e}") raise RuntimeError(f"构建Prompt失败: {e}") from e
async def _build_context_data(self) -> Dict[str, Any]: async def _build_context_data(self) -> Dict[str, Any]:
"""构建智能上下文数据""" """构建智能上下文数据"""
# 并行执行所有构建任务 # 并行执行所有构建任务
start_time = time.time() start_time = time.time()
timing_logs = {}
try: try:
# 准备构建任务 # 准备构建任务
@@ -381,7 +380,6 @@ class Prompt:
results = [] results = []
for i in range(0, len(tasks), max_concurrent_tasks): for i in range(0, len(tasks), max_concurrent_tasks):
batch_tasks = tasks[i : i + max_concurrent_tasks] batch_tasks = tasks[i : i + max_concurrent_tasks]
batch_names = task_names[i : i + max_concurrent_tasks]
batch_results = await asyncio.wait_for( batch_results = await asyncio.wait_for(
asyncio.gather(*batch_tasks, return_exceptions=True), timeout=timeout_seconds asyncio.gather(*batch_tasks, return_exceptions=True), timeout=timeout_seconds
@@ -520,13 +518,99 @@ class Prompt:
async def _build_expression_habits(self) -> Dict[str, Any]: async def _build_expression_habits(self) -> Dict[str, Any]:
"""构建表达习惯""" """构建表达习惯"""
# 简化的实现,完整实现需要导入相关模块 if not global_config.expression.enable_expression:
return {"expression_habits_block": ""} return {"expression_habits_block": ""}
try:
from src.chat.express.expression_selector import ExpressionSelector
# 获取聊天历史用于表情选择
chat_history = ""
if self.parameters.message_list_before_now_long:
recent_messages = self.parameters.message_list_before_now_long[-10:]
chat_history = build_readable_messages(
recent_messages,
replace_bot_name=True,
timestamp_mode="normal",
truncate=True
)
# 创建表情选择器
expression_selector = ExpressionSelector(self.parameters.chat_id)
# 选择合适的表情
selected_expressions = await expression_selector.select_suitable_expressions_llm(
chat_history=chat_history,
current_message=self.parameters.target,
emotional_tone="neutral",
topic_type="general"
)
# 构建表达习惯块
if selected_expressions:
style_habits_str = "\n".join([f"- {expr}" for expr in selected_expressions])
expression_habits_block = f"你可以参考以下的语言习惯,当情景合适就使用,但不要生硬使用,以合理的方式结合到你的回复中:\n{style_habits_str}"
else:
expression_habits_block = ""
return {"expression_habits_block": expression_habits_block}
except Exception as e:
logger.error(f"构建表达习惯失败: {e}")
return {"expression_habits_block": ""}
async def _build_memory_block(self) -> Dict[str, Any]: async def _build_memory_block(self) -> Dict[str, Any]:
"""构建记忆块""" """构建记忆块"""
# 简化的实现 if not global_config.memory.enable_memory:
return {"memory_block": ""} return {"memory_block": ""}
try:
from src.chat.memory_system.memory_activator import MemoryActivator
from src.chat.memory_system.async_instant_memory_wrapper import async_memory
# 获取聊天历史
chat_history = ""
if self.parameters.message_list_before_now_long:
recent_messages = self.parameters.message_list_before_now_long[-20:]
chat_history = build_readable_messages(
recent_messages,
replace_bot_name=True,
timestamp_mode="normal",
truncate=True
)
# 激活长期记忆
memory_activator = MemoryActivator()
running_memories = await memory_activator.activate_memory_with_chat_history(
chat_history=chat_history,
target_user=self.parameters.sender,
chat_id=self.parameters.chat_id
)
# 获取即时记忆
instant_memory = await async_memory.get_memory_with_fallback(
chat_id=self.parameters.chat_id,
target_user=self.parameters.sender
)
# 构建记忆块
memory_parts = []
if running_memories:
memory_parts.append("以下是当前在聊天中,你回忆起的记忆:")
for memory in running_memories:
memory_parts.append(f"- {memory['content']}")
if instant_memory:
memory_parts.append(f"- {instant_memory}")
memory_block = "\n".join(memory_parts) if memory_parts else ""
return {"memory_block": memory_block}
except Exception as e:
logger.error(f"构建记忆块失败: {e}")
return {"memory_block": ""}
async def _build_relation_info(self) -> Dict[str, Any]: async def _build_relation_info(self) -> Dict[str, Any]:
"""构建关系信息""" """构建关系信息"""
@@ -539,13 +623,106 @@ class Prompt:
async def _build_tool_info(self) -> Dict[str, Any]: async def _build_tool_info(self) -> Dict[str, Any]:
"""构建工具信息""" """构建工具信息"""
# 简化的实现 if not global_config.tool.enable_tool:
return {"tool_info_block": ""} return {"tool_info_block": ""}
try:
from src.plugin_system.core.tool_use import ToolExecutor
# 获取聊天历史
chat_history = ""
if self.parameters.message_list_before_now_long:
recent_messages = self.parameters.message_list_before_now_long[-15:]
chat_history = build_readable_messages(
recent_messages,
replace_bot_name=True,
timestamp_mode="normal",
truncate=True
)
# 创建工具执行器
tool_executor = ToolExecutor()
# 执行工具获取信息
tool_results, _, _ = await tool_executor.execute_from_chat_message(
sender=self.parameters.sender,
target_message=self.parameters.target,
chat_history=chat_history,
return_details=False
)
# 构建工具信息块
if tool_results:
tool_info_parts = ["以下是你通过工具获取到的实时信息:"]
for tool_result in tool_results:
tool_name = tool_result.get("tool_name", "unknown")
content = tool_result.get("content", "")
result_type = tool_result.get("type", "tool_result")
tool_info_parts.append(f"- 【{tool_name}{result_type}: {content}")
tool_info_parts.append("以上是你获取到的实时信息,请在回复时参考这些信息。")
tool_info_block = "\n".join(tool_info_parts)
else:
tool_info_block = ""
return {"tool_info_block": tool_info_block}
except Exception as e:
logger.error(f"构建工具信息失败: {e}")
return {"tool_info_block": ""}
async def _build_knowledge_info(self) -> Dict[str, Any]: async def _build_knowledge_info(self) -> Dict[str, Any]:
"""构建知识信息""" """构建知识信息"""
# 简化的实现 if not global_config.lpmm_knowledge.enable:
return {"knowledge_prompt": ""} return {"knowledge_prompt": ""}
try:
from src.chat.knowledge.knowledge_lib import QAManager
# 获取问题文本(当前消息)
question = self.parameters.target or ""
if not question:
return {"knowledge_prompt": ""}
# 创建QA管理器
qa_manager = QAManager()
# 搜索相关知识
knowledge_results = await qa_manager.get_knowledge(
question=question,
chat_id=self.parameters.chat_id,
max_results=5,
min_similarity=0.5
)
# 构建知识块
if knowledge_results and knowledge_results.get("knowledge_items"):
knowledge_parts = ["以下是与你当前对话相关的知识信息:"]
for item in knowledge_results["knowledge_items"]:
content = item.get("content", "")
source = item.get("source", "")
relevance = item.get("relevance", 0.0)
if content:
if source:
knowledge_parts.append(f"- [{relevance:.2f}] {content} (来源: {source})")
else:
knowledge_parts.append(f"- [{relevance:.2f}] {content}")
if knowledge_results.get("summary"):
knowledge_parts.append(f"\n知识总结: {knowledge_results['summary']}")
knowledge_prompt = "\n".join(knowledge_parts)
else:
knowledge_prompt = ""
return {"knowledge_prompt": knowledge_prompt}
except Exception as e:
logger.error(f"构建知识信息失败: {e}")
return {"knowledge_prompt": ""}
async def _build_cross_context(self) -> Dict[str, Any]: async def _build_cross_context(self) -> Dict[str, Any]:
"""构建跨群上下文""" """构建跨群上下文"""

View File

@@ -24,8 +24,8 @@ def get_global_api() -> MessageServer: # sourcery skip: extract-method
# 设置基本参数 # 设置基本参数
kwargs = { kwargs = {
"host": os.environ["HOST"], "host": global_config.server.host,
"port": int(os.environ["PORT"]), "port": int(global_config.server.port),
"app": get_global_server().get_app(), "app": get_global_server().get_app(),
} }

View File

@@ -2,7 +2,7 @@ from fastapi import FastAPI, APIRouter
from fastapi.middleware.cors import CORSMiddleware # 新增导入 from fastapi.middleware.cors import CORSMiddleware # 新增导入
from typing import Optional from typing import Optional
from uvicorn import Config, Server as UvicornServer from uvicorn import Config, Server as UvicornServer
import os from src.config.config import global_config
from rich.traceback import install from rich.traceback import install
install(extra_lines=3) install(extra_lines=3)
@@ -98,5 +98,5 @@ def get_global_server() -> Server:
"""获取全局服务器实例""" """获取全局服务器实例"""
global global_server global global_server
if global_server is None: if global_server is None:
global_server = Server(host=os.environ["HOST"], port=int(os.environ["PORT"])) global_server = Server(host=global_config.server.host,port=int(global_config.server.port),)
return global_server return global_server

View File

@@ -43,8 +43,8 @@ from src.config.official_configs import (
CrossContextConfig, CrossContextConfig,
PermissionConfig, PermissionConfig,
CommandConfig, CommandConfig,
MaizoneIntercomConfig,
PlanningSystemConfig, PlanningSystemConfig,
ServerConfig,
) )
from .api_ada_configs import ( from .api_ada_configs import (
@@ -399,9 +399,7 @@ class Config(ValidatedConfigBase):
cross_context: CrossContextConfig = Field( cross_context: CrossContextConfig = Field(
default_factory=lambda: CrossContextConfig(), description="跨群聊上下文共享配置" default_factory=lambda: CrossContextConfig(), description="跨群聊上下文共享配置"
) )
maizone_intercom: MaizoneIntercomConfig = Field( server: ServerConfig = Field(default_factory=lambda: ServerConfig(), description="主服务器配置")
default_factory=lambda: MaizoneIntercomConfig(), description="Maizone互通组配置"
)
class APIAdapterConfig(ValidatedConfigBase): class APIAdapterConfig(ValidatedConfigBase):

View File

@@ -496,6 +496,13 @@ class ExperimentalConfig(ValidatedConfigBase):
pfc_chatting: bool = Field(default=False, description="启用PFC聊天") pfc_chatting: bool = Field(default=False, description="启用PFC聊天")
class ServerConfig(ValidatedConfigBase):
"""主服务器配置类"""
host: str = Field(default="127.0.0.1", description="主服务器监听地址")
port: int = Field(default=8080, description="主服务器监听端口")
class MaimMessageConfig(ValidatedConfigBase): class MaimMessageConfig(ValidatedConfigBase):
"""maim_message配置类""" """maim_message配置类"""
@@ -678,15 +685,6 @@ class CrossContextConfig(ValidatedConfigBase):
enable: bool = Field(default=False, description="是否启用跨群聊上下文共享功能") enable: bool = Field(default=False, description="是否启用跨群聊上下文共享功能")
groups: List[ContextGroup] = Field(default_factory=list, description="上下文共享组列表") groups: List[ContextGroup] = Field(default_factory=list, description="上下文共享组列表")
class MaizoneIntercomConfig(ValidatedConfigBase):
"""Maizone互通组配置"""
enable: bool = Field(default=False, description="是否启用Maizone互通组功能")
groups: List[ContextGroup] = Field(default_factory=list, description="Maizone互通组列表")
class CommandConfig(ValidatedConfigBase): class CommandConfig(ValidatedConfigBase):
"""命令系统配置类""" """命令系统配置类"""

View File

@@ -1,7 +1,5 @@
import random import random
from typing import Tuple from typing import Tuple
from collections import deque
import json
# 导入新插件系统 # 导入新插件系统
from src.plugin_system import BaseAction, ActionActivationType, ChatMode from src.plugin_system import BaseAction, ActionActivationType, ChatMode
@@ -22,7 +20,6 @@ logger = get_logger("emoji")
class EmojiAction(BaseAction): class EmojiAction(BaseAction):
"""表情动作 - 发送表情包""" """表情动作 - 发送表情包"""
# --- 类级别属性 ---
# 激活设置 # 激活设置
if global_config.emoji.emoji_activate_type == "llm": if global_config.emoji.emoji_activate_type == "llm":
activation_type = ActionActivationType.LLM_JUDGE activation_type = ActionActivationType.LLM_JUDGE
@@ -36,9 +33,6 @@ class EmojiAction(BaseAction):
# 动作基本信息 # 动作基本信息
action_name = "emoji" action_name = "emoji"
action_description = "发送表情包辅助表达情绪" action_description = "发送表情包辅助表达情绪"
# 最近发送表情的历史记录
_sent_emoji_history = deque(maxlen=4)
# LLM判断提示词 # LLM判断提示词
llm_judge_prompt = """ llm_judge_prompt = """
@@ -80,99 +74,102 @@ class EmojiAction(BaseAction):
logger.warning(f"{self.log_prefix} 无法获取任何带有描述的有效表情包") logger.warning(f"{self.log_prefix} 无法获取任何带有描述的有效表情包")
return False, "无法获取任何带有描述的有效表情包" return False, "无法获取任何带有描述的有效表情包"
# 3. 根据新配置项决定抽样数量 # 3. 准备情感数据和后备列表
sample_size = global_config.emoji.max_context_emojis emotion_map = {}
if sample_size > 0 and len(all_emojis_obj) > sample_size: all_emojis_data = []
sampled_emojis = random.sample(all_emojis_obj, sample_size)
else:
sampled_emojis = all_emojis_obj # 0表示全部
# 4. 为抽样的表情包创建带编号的描述列表
prompt_emoji_list = []
for i, emoji in enumerate(sampled_emojis):
prompt_emoji_list.append(f"{i + 1}. {emoji.description}")
prompt_emoji_str = "\n".join(prompt_emoji_list) for emoji in all_emojis_obj:
chosen_emoji_obj: MaiEmoji = None b64 = image_path_to_base64(emoji.full_path)
if not b64:
continue
desc = emoji.description
emotions = emoji.emotion
all_emojis_data.append((b64, desc))
# 5. 获取最近的5条消息内容用于判断 for emo in emotions:
recent_messages = message_api.get_recent_messages(chat_id=self.chat_id, limit=5) if emo not in emotion_map:
messages_text = "" emotion_map[emo] = []
if recent_messages: emotion_map[emo].append((b64, desc))
messages_text = message_api.build_readable_messages(
messages=recent_messages, if not all_emojis_data:
timestamp_mode="normal_no_YMD", logger.warning(f"{self.log_prefix} 无法加载任何有效的表情包数据")
truncate=False, return False, "无法加载任何有效的表情包数据"
show_actions=False,
available_emotions = list(emotion_map.keys())
emoji_base64, emoji_description = "", ""
if not available_emotions:
logger.warning(f"{self.log_prefix} 获取到的表情包均无情感标签, 将随机发送")
emoji_base64, emoji_description = random.choice(all_emojis_data)
else:
# 获取最近的5条消息内容用于判断
recent_messages = message_api.get_recent_messages(chat_id=self.chat_id, limit=5)
messages_text = ""
if recent_messages:
messages_text = message_api.build_readable_messages(
messages=recent_messages,
timestamp_mode="normal_no_YMD",
truncate=False,
show_actions=False,
)
# 4. 构建prompt让LLM选择情感
prompt = f"""
你是一个正在进行聊天的网友,你需要根据一个理由和最近的聊天记录,从一个情感标签列表中选择最匹配的一个。
这是最近的聊天记录:
{messages_text}
这是理由:“{reason}
这里是可用的情感标签:{available_emotions}
请直接返回最匹配的那个情感标签,不要进行任何解释或添加其他多余的文字。
"""
if global_config.debug.show_prompt:
logger.info(f"{self.log_prefix} 生成的LLM Prompt: {prompt}")
else:
logger.debug(f"{self.log_prefix} 生成的LLM Prompt: {prompt}")
# 5. 调用LLM
models = llm_api.get_available_models()
chat_model_config = models.get("planner")
if not chat_model_config:
logger.error(f"{self.log_prefix} 未找到'utils_small'模型配置无法调用LLM")
return False, "未找到'utils_small'模型配置"
success, chosen_emotion, _, _ = await llm_api.generate_with_model(
prompt, model_config=chat_model_config, request_type="emoji"
) )
# 6. 构建prompt让LLM选择编号
prompt = f"""
你是一个正在进行聊天的网友,你需要根据一个理由和最近的聊天记录,从一个带编号的表情包描述列表中选择最匹配的 **3个** 表情包,并按匹配度从高到低返回它们的编号。
这是最近的聊天记录:
{messages_text}
这是理由:“{reason}
这里是可用的表情包详细描述列表:
{prompt_emoji_str}
请直接返回一个包含3个最匹配表情包编号的有序JSON列表例如[10, 2, 5],不要进行任何解释或添加其他多余的文字。
"""
# 7. 调用LLM
models = llm_api.get_available_models()
chat_model_config = models.get("planner")
if not chat_model_config:
logger.error(f"{self.log_prefix} 未找到 'planner' 模型配置无法调用LLM")
return False, "未找到 'planner' 模型配置"
success, chosen_indices_str, _, _ = await llm_api.generate_with_model(
prompt, model_config=chat_model_config, request_type="emoji_selection"
)
selected_emoji_obj = None
if success:
try:
chosen_indices = json.loads(chosen_indices_str)
if isinstance(chosen_indices, list):
logger.info(f"{self.log_prefix} LLM选择的表情编号候选项: {chosen_indices}")
for index in chosen_indices:
if isinstance(index, int) and 1 <= index <= len(sampled_emojis):
candidate_emoji = sampled_emojis[index - 1]
if candidate_emoji.hash not in self._sent_emoji_history:
selected_emoji_obj = candidate_emoji
break
else:
logger.warning(f"{self.log_prefix} LLM返回的不是一个列表: {chosen_indices_str}")
except (json.JSONDecodeError, TypeError):
logger.warning(f"{self.log_prefix} 解析LLM返回的编号列表失败: {chosen_indices_str}")
if selected_emoji_obj:
chosen_emoji_obj = selected_emoji_obj
logger.info(f"{self.log_prefix} 从候选项中选择表情: {chosen_emoji_obj.description}")
else:
if not success: if not success:
logger.warning(f"{self.log_prefix} LLM调用失败, 将随机选择一个表情包") logger.warning(f"{self.log_prefix} LLM调用失败: {chosen_emotion}, 将随机选择一个表情包")
emoji_base64, emoji_description = random.choice(all_emojis_data)
else: else:
logger.warning(f"{self.log_prefix} 所有候选项均在最近发送历史中, 将随机选择") chosen_emotion = chosen_emotion.strip().replace('"', "").replace("'", "")
logger.info(f"{self.log_prefix} LLM选择的情感: {chosen_emotion}")
selectable_emojis = [e for e in all_emojis_obj if e.hash not in self._sent_emoji_history]
if not selectable_emojis:
selectable_emojis = all_emojis_obj
chosen_emoji_obj = random.choice(selectable_emojis)
# 8. 发送表情包并更新历史记录 # 使用模糊匹配来查找最相关的情感标签
if chosen_emoji_obj: matched_key = next((key for key in emotion_map if chosen_emotion in key), None)
emoji_base64 = image_path_to_base64(chosen_emoji_obj.full_path)
if emoji_base64: if matched_key:
send_success = await self.send_emoji(emoji_base64) emoji_base64, emoji_description = random.choice(emotion_map[matched_key])
if send_success: logger.info(f"{self.log_prefix} 找到匹配情感 '{chosen_emotion}' (匹配到: '{matched_key}') 的表情包: {emoji_description}")
self._sent_emoji_history.append(chosen_emoji_obj.hash) else:
logger.info(f"{self.log_prefix} 表情包发送成功: {chosen_emoji_obj.description}") logger.warning(
logger.debug(f"{self.log_prefix} 最近表情历史: {list(self._sent_emoji_history)}") f"{self.log_prefix} LLM选择的情感 '{chosen_emotion}' 不在可用列表中, 将随机选择一个表情包"
return True, f"发送表情包: {chosen_emoji_obj.description}" )
emoji_base64, emoji_description = random.choice(all_emojis_data)
logger.error(f"{self.log_prefix} 表情包发送失败") # 7. 发送表情包
return False, "表情包发送失败" success = await self.send_emoji(emoji_base64)
if not success:
logger.error(f"{self.log_prefix} 表情包发送失败")
await self.store_action_info(action_build_into_prompt = True,action_prompt_display =f"发送了一个{chosen_emotion}的表情包,但失败了",action_done= False)
return False, "表情包发送失败"
await self.store_action_info(action_build_into_prompt = True,action_prompt_display =f"发送了一个{chosen_emotion}的表情包",action_done= True)
return True, f"发送表情包: {emoji_description}"
except Exception as e: except Exception as e:
logger.error(f"{self.log_prefix} 表情动作执行失败: {e}", exc_info=True) logger.error(f"{self.log_prefix} 表情动作执行失败: {e}", exc_info=True)

View File

@@ -493,6 +493,9 @@ insomnia_duration_minutes = [30, 60] # 单次失眠状态的持续时间范围
# 入睡后,经过一段延迟后触发失眠判定的延迟时间(分钟),设置为范围以增加随机性 # 入睡后,经过一段延迟后触发失眠判定的延迟时间(分钟),设置为范围以增加随机性
insomnia_trigger_delay_minutes = [15, 45] insomnia_trigger_delay_minutes = [15, 45]
[server]
host = "127.0.0.1"
port = 8080
[cross_context] # 跨群聊/私聊上下文共享配置 [cross_context] # 跨群聊/私聊上下文共享配置
# 这是总开关,用于一键启用或禁用此功能 # 这是总开关,用于一键启用或禁用此功能