This commit is contained in:
tcmofashi
2025-06-14 10:24:44 +08:00
198 changed files with 12032 additions and 9277 deletions

View File

@@ -4,19 +4,16 @@ import traceback
from random import random
from typing import List, Optional # 导入 Optional
from maim_message import UserInfo, Seg
from src.common.logger_manager import get_logger
from src.common.logger import get_logger
from src.chat.heart_flow.utils_chat import get_chat_type_and_target_info
from src.manager.mood_manager import mood_manager
from src.chat.message_receive.chat_stream import ChatStream, chat_manager
from src.chat.utils.info_catcher import info_catcher_manager
from src.chat.message_receive.chat_stream import ChatStream, get_chat_manager
from src.chat.utils.timer_calculator import Timer
from src.chat.utils.prompt_builder import global_prompt_manager
from .normal_chat_generator import NormalChatGenerator
from ..message_receive.message import MessageSending, MessageRecv, MessageThinking, MessageSet
from src.chat.message_receive.message_sender import message_manager
from src.chat.utils.utils_image import image_path_to_base64
from src.chat.emoji_system.emoji_manager import emoji_manager
from src.chat.normal_chat.willing.willing_manager import willing_manager
from src.chat.normal_chat.willing.willing_manager import get_willing_manager
from src.chat.normal_chat.normal_chat_utils import get_recent_message_stats
from src.config.config import global_config
from src.chat.focus_chat.planners.action_manager import ActionManager
@@ -25,6 +22,7 @@ from src.chat.normal_chat.normal_chat_action_modifier import NormalChatActionMod
from src.chat.normal_chat.normal_chat_expressor import NormalChatExpressor
from src.chat.focus_chat.replyer.default_replyer import DefaultReplyer
willing_manager = get_willing_manager()
logger = get_logger("normal_chat")
@@ -35,7 +33,7 @@ class NormalChat:
self.chat_stream = chat_stream
self.stream_id = chat_stream.stream_id
self.stream_name = chat_manager.get_stream_name(self.stream_id) or self.stream_id
self.stream_name = get_chat_manager().get_stream_name(self.stream_id) or self.stream_id
# 初始化Normal Chat专用表达器
self.expressor = NormalChatExpressor(self.chat_stream)
@@ -150,50 +148,6 @@ class NormalChat:
return first_bot_msg
# 改为实例方法
async def _handle_emoji(self, message: MessageRecv, response: str):
"""处理表情包"""
if random() < global_config.normal_chat.emoji_chance:
emoji_raw = await emoji_manager.get_emoji_for_text(response)
if emoji_raw:
emoji_path, description, _emotion = emoji_raw
emoji_cq = image_path_to_base64(emoji_path)
thinking_time_point = round(message.message_info.time, 2)
message_segment = Seg(type="emoji", data=emoji_cq)
bot_message = MessageSending(
message_id="mt" + str(thinking_time_point),
chat_stream=self.chat_stream, # 使用 self.chat_stream
bot_user_info=UserInfo(
user_id=global_config.bot.qq_account,
user_nickname=global_config.bot.nickname,
platform=message.message_info.platform,
),
sender_info=message.message_info.user_info,
message_segment=message_segment,
reply=message,
is_head=False,
is_emoji=True,
apply_set_reply_logic=True,
)
await message_manager.add_message(bot_message)
# 改为实例方法 (虽然它只用 message.chat_stream, 但逻辑上属于实例)
# async def _update_relationship(self, message: MessageRecv, response_set):
# """更新关系情绪"""
# ori_response = ",".join(response_set)
# stance, emotion = await self.gpt._get_emotion_tags(ori_response, message.processed_plain_text)
# user_info = message.message_info.user_info
# platform = user_info.platform
# await relationship_manager.calculate_update_relationship_value(
# user_info,
# platform,
# label=emotion,
# stance=stance, # 使用 self.chat_stream
# )
# self.mood_manager.update_mood_from_emotion(emotion, global_config.mood.mood_intensity_factor)
async def _reply_interested_message(self) -> None:
"""
后台任务方法轮询当前实例关联chat的兴趣消息
@@ -298,9 +252,6 @@ class NormalChat:
logger.debug(f"[{self.stream_name}] 创建捕捉器thinking_id:{thinking_id}")
info_catcher = info_catcher_manager.get_info_catcher(thinking_id)
info_catcher.catch_decide_to_response(message)
# 如果启用planner预先修改可用actions避免在并行任务中重复调用
available_actions = None
if self.enable_planner:
@@ -336,13 +287,17 @@ class NormalChat:
try:
# 获取发送者名称(动作修改已在并行执行前完成)
sender_name = self._get_sender_name(message)
no_action = {
"action_result": {"action_type": "no_action", "action_data": {}, "reasoning": "规划器初始化默认", "is_parallel": True},
"action_result": {
"action_type": "no_action",
"action_data": {},
"reasoning": "规划器初始化默认",
"is_parallel": True,
},
"chat_context": "",
"action_prompt": "",
}
# 检查是否应该跳过规划
if self.action_modifier.should_skip_planning():
@@ -357,7 +312,9 @@ class NormalChat:
reasoning = plan_result["action_result"]["reasoning"]
is_parallel = plan_result["action_result"].get("is_parallel", False)
logger.info(f"[{self.stream_name}] Planner决策: {action_type}, 理由: {reasoning}, 并行执行: {is_parallel}")
logger.info(
f"[{self.stream_name}] Planner决策: {action_type}, 理由: {reasoning}, 并行执行: {is_parallel}"
)
self.action_type = action_type # 更新实例属性
self.is_parallel_action = is_parallel # 新增:保存并行执行标志
@@ -376,7 +333,12 @@ class NormalChat:
else:
logger.warning(f"[{self.stream_name}] 额外动作 {action_type} 执行失败")
return {"action_type": action_type, "action_data": action_data, "reasoning": reasoning, "is_parallel": is_parallel}
return {
"action_type": action_type,
"action_data": action_data,
"reasoning": reasoning,
"is_parallel": is_parallel,
}
except Exception as e:
logger.error(f"[{self.stream_name}] Planner执行失败: {e}")
@@ -394,21 +356,25 @@ class NormalChat:
if isinstance(response_set, Exception):
logger.error(f"[{self.stream_name}] 回复生成异常: {response_set}")
response_set = None
elif response_set:
info_catcher.catch_after_generate_response(timing_results["并行生成回复和规划"])
# 处理规划结果(可选,不影响回复)
if isinstance(plan_result, Exception):
logger.error(f"[{self.stream_name}] 动作规划异常: {plan_result}")
elif plan_result:
logger.debug(f"[{self.stream_name}] 额外动作处理完成: {self.action_type}")
if not response_set or (
self.enable_planner and self.action_type not in ["no_action", "change_to_focus_chat"] and not self.is_parallel_action
self.enable_planner
and self.action_type not in ["no_action", "change_to_focus_chat"]
and not self.is_parallel_action
):
if not response_set:
logger.info(f"[{self.stream_name}] 模型未生成回复内容")
elif self.enable_planner and self.action_type not in ["no_action", "change_to_focus_chat"] and not self.is_parallel_action:
elif (
self.enable_planner
and self.action_type not in ["no_action", "change_to_focus_chat"]
and not self.is_parallel_action
):
logger.info(f"[{self.stream_name}] 模型选择其他动作(非并行动作)")
# 如果模型未生成回复,移除思考消息
container = await message_manager.get_container(self.stream_id) # 使用 self.stream_id
@@ -435,8 +401,6 @@ class NormalChat:
# 检查 first_bot_msg 是否为 None (例如思考消息已被移除的情况)
if first_bot_msg:
info_catcher.catch_after_response(timing_results["消息发送"], response_set, first_bot_msg)
# 记录回复信息到最近回复列表中
reply_info = {
"time": time.time(),
@@ -465,14 +429,9 @@ class NormalChat:
logger.warning(f"[{self.stream_name}] 没有设置切换到focus聊天模式的回调函数无法执行切换")
return
else:
# await self._check_switch_to_focus()
await self._check_switch_to_focus()
pass
info_catcher.done_catch()
with Timer("处理表情包", timing_results):
await self._handle_emoji(message, response_set[0])
# with Timer("关系更新", timing_results):
# await self._update_relationship(message, response_set)

View File

@@ -1,7 +1,6 @@
from typing import List, Any, Dict
from src.common.logger_manager import get_logger
from src.common.logger import get_logger
from src.chat.focus_chat.planners.action_manager import ActionManager
from src.chat.focus_chat.planners.actions.base_action import ActionActivationType, ChatMode
from src.chat.utils.chat_message_builder import build_readable_messages, get_raw_msg_before_timestamp_with_chat
from src.config.config import global_config
import random
@@ -35,7 +34,7 @@ class NormalChatActionModifier:
**kwargs: Any,
):
"""为Normal Chat修改可用动作集合
实现动作激活策略:
1. 基于关联类型的动态过滤
2. 基于激活类型的智能判定LLM_JUDGE转为概率激活
@@ -49,7 +48,7 @@ class NormalChatActionModifier:
reasons = []
merged_action_changes = {"add": [], "remove": []}
type_mismatched_actions = [] # 在外层定义避免作用域问题
self.action_manager.restore_default_actions()
# 第一阶段:基于关联类型的动态过滤
@@ -57,7 +56,7 @@ class NormalChatActionModifier:
chat_context = chat_stream.context if hasattr(chat_stream, "context") else None
if chat_context:
# 获取Normal模式下的可用动作已经过滤了mode_enable
current_using_actions = self.action_manager.get_using_actions_for_mode(ChatMode.NORMAL)
current_using_actions = self.action_manager.get_using_actions_for_mode("normal")
# print(f"current_using_actions: {current_using_actions}")
for action_name in current_using_actions.keys():
if action_name in self.all_actions:
@@ -74,7 +73,7 @@ class NormalChatActionModifier:
# 第二阶段:应用激活类型判定
# 构建聊天内容 - 使用与planner一致的方式
chat_content = ""
if chat_stream and hasattr(chat_stream, 'stream_id'):
if chat_stream and hasattr(chat_stream, "stream_id"):
try:
# 获取消息历史使用与normal_chat_planner相同的方法
message_list_before_now = get_raw_msg_before_timestamp_with_chat(
@@ -82,7 +81,7 @@ class NormalChatActionModifier:
timestamp=time.time(),
limit=global_config.focus_chat.observation_context_size, # 使用相同的配置
)
# 构建可读的聊天上下文
chat_content = build_readable_messages(
message_list_before_now,
@@ -92,39 +91,41 @@ class NormalChatActionModifier:
read_mark=0.0,
show_actions=True,
)
logger.debug(f"{self.log_prefix} 成功构建聊天内容,长度: {len(chat_content)}")
except Exception as e:
logger.warning(f"{self.log_prefix} 构建聊天内容失败: {e}")
chat_content = ""
# 获取当前Normal模式下的动作集进行激活判定
current_actions = self.action_manager.get_using_actions_for_mode(ChatMode.NORMAL)
current_actions = self.action_manager.get_using_actions_for_mode("normal")
# print(f"current_actions: {current_actions}")
# print(f"chat_content: {chat_content}")
final_activated_actions = await self._apply_normal_activation_filtering(
current_actions,
chat_content,
message_content
current_actions, chat_content, message_content
)
# print(f"final_activated_actions: {final_activated_actions}")
# 统一处理所有需要移除的动作,避免重复移除
all_actions_to_remove = set() # 使用set避免重复
# 添加关联类型不匹配的动作
if type_mismatched_actions:
all_actions_to_remove.update(type_mismatched_actions)
# 添加激活类型判定未通过的动作
for action_name in current_actions.keys():
if action_name not in final_activated_actions:
all_actions_to_remove.add(action_name)
# 统计移除原因(避免重复)
activation_failed_actions = [name for name in current_actions.keys() if name not in final_activated_actions and name not in type_mismatched_actions]
activation_failed_actions = [
name
for name in current_actions.keys()
if name not in final_activated_actions and name not in type_mismatched_actions
]
if activation_failed_actions:
reasons.append(f"移除{activation_failed_actions}(激活类型判定未通过)")
@@ -146,9 +147,9 @@ class NormalChatActionModifier:
# 记录变更原因
if reasons:
logger.info(f"{self.log_prefix} 动作调整完成: {' | '.join(reasons)}")
# 获取最终的Normal模式可用动作并记录
final_actions = self.action_manager.get_using_actions_for_mode(ChatMode.NORMAL)
final_actions = self.action_manager.get_using_actions_for_mode("normal")
logger.debug(f"{self.log_prefix} 当前Normal模式可用动作: {list(final_actions.keys())}")
async def _apply_normal_activation_filtering(
@@ -159,73 +160,69 @@ class NormalChatActionModifier:
) -> Dict[str, Any]:
"""
应用Normal模式的激活类型过滤逻辑
与Focus模式的区别
1. LLM_JUDGE类型转换为概率激活避免LLM调用
2. RANDOM类型保持概率激活
3. KEYWORD类型保持关键词匹配
4. ALWAYS类型直接激活
Args:
actions_with_info: 带完整信息的动作字典
chat_content: 聊天内容
Returns:
Dict[str, Any]: 过滤后激活的actions字典
"""
activated_actions = {}
# 分类处理不同激活类型的actions
always_actions = {}
random_actions = {}
keyword_actions = {}
for action_name, action_info in actions_with_info.items():
# 使用normal_activation_type
activation_type = action_info.get("normal_activation_type", ActionActivationType.ALWAYS)
if activation_type == ActionActivationType.ALWAYS:
activation_type = action_info.get("normal_activation_type", "always")
# 现在统一是字符串格式的激活类型值
if activation_type == "always":
always_actions[action_name] = action_info
elif activation_type == ActionActivationType.RANDOM or activation_type == ActionActivationType.LLM_JUDGE:
elif activation_type == "random" or activation_type == "llm_judge":
random_actions[action_name] = action_info
elif activation_type == ActionActivationType.KEYWORD:
elif activation_type == "keyword":
keyword_actions[action_name] = action_info
else:
logger.warning(f"{self.log_prefix}未知的激活类型: {activation_type},跳过处理")
# 1. 处理ALWAYS类型直接激活
for action_name, action_info in always_actions.items():
activated_actions[action_name] = action_info
logger.debug(f"{self.log_prefix}激活动作: {action_name},原因: ALWAYS类型直接激活")
# 2. 处理RANDOM类型概率激活
for action_name, action_info in random_actions.items():
probability = action_info.get("random_probability", 0.3)
should_activate = random.random() < probability
if should_activate:
activated_actions[action_name] = action_info
logger.info(f"{self.log_prefix}激活动作: {action_name},原因: RANDOM类型触发概率{probability}")
logger.debug(f"{self.log_prefix}激活动作: {action_name},原因: RANDOM类型触发概率{probability}")
else:
logger.debug(f"{self.log_prefix}未激活动作: {action_name},原因: RANDOM类型未触发概率{probability}")
# 3. 处理KEYWORD类型关键词匹配
for action_name, action_info in keyword_actions.items():
should_activate = self._check_keyword_activation(
action_name,
action_info,
chat_content,
message_content
)
should_activate = self._check_keyword_activation(action_name, action_info, chat_content, message_content)
if should_activate:
activated_actions[action_name] = action_info
keywords = action_info.get("activation_keywords", [])
logger.info(f"{self.log_prefix}激活动作: {action_name},原因: KEYWORD类型匹配关键词{keywords}")
logger.debug(f"{self.log_prefix}激活动作: {action_name},原因: KEYWORD类型匹配关键词{keywords}")
else:
keywords = action_info.get("activation_keywords", [])
logger.info(f"{self.log_prefix}未激活动作: {action_name},原因: KEYWORD类型未匹配关键词{keywords}")
logger.debug(f"{self.log_prefix}未激活动作: {action_name},原因: KEYWORD类型未匹配关键词{keywords}")
# print(f"keywords: {keywords}")
# print(f"chat_content: {chat_content}")
logger.debug(f"{self.log_prefix}Normal模式激活类型过滤完成: {list(activated_actions.keys())}")
return activated_actions
@@ -238,51 +235,50 @@ class NormalChatActionModifier:
) -> bool:
"""
检查是否匹配关键词触发条件
Args:
action_name: 动作名称
action_info: 动作信息
chat_content: 聊天内容(已经是格式化后的可读消息)
Returns:
bool: 是否应该激活此action
"""
activation_keywords = action_info.get("activation_keywords", [])
case_sensitive = action_info.get("keyword_case_sensitive", False)
if not activation_keywords:
logger.warning(f"{self.log_prefix}动作 {action_name} 设置为关键词触发但未配置关键词")
return False
# 使用构建好的聊天内容作为检索文本
search_text = chat_content +message_content
search_text = chat_content + message_content
# 如果不区分大小写,转换为小写
if not case_sensitive:
search_text = search_text.lower()
# 检查每个关键词
matched_keywords = []
for keyword in activation_keywords:
check_keyword = keyword if case_sensitive else keyword.lower()
if check_keyword in search_text:
matched_keywords.append(keyword)
# print(f"search_text: {search_text}")
# print(f"activation_keywords: {activation_keywords}")
if matched_keywords:
logger.info(f"{self.log_prefix}动作 {action_name} 匹配到关键词: {matched_keywords}")
logger.debug(f"{self.log_prefix}动作 {action_name} 匹配到关键词: {matched_keywords}")
return True
else:
logger.info(f"{self.log_prefix}动作 {action_name} 未匹配到任何关键词: {activation_keywords}")
logger.debug(f"{self.log_prefix}动作 {action_name} 未匹配到任何关键词: {activation_keywords}")
return False
def get_available_actions_count(self) -> int:
"""获取当前可用动作数量排除默认的no_action"""
current_actions = self.action_manager.get_using_actions_for_mode(ChatMode.NORMAL)
current_actions = self.action_manager.get_using_actions_for_mode("normal")
# 排除no_action如果存在
filtered_actions = {k: v for k, v in current_actions.items() if k != "no_action"}
return len(filtered_actions)

View File

@@ -1,258 +1,262 @@
"""
Normal Chat Expressor
为Normal Chat专门设计的表达器不需要经过LLM风格化处理
直接发送消息,主要用于插件动作中需要发送消息的场景。
"""
import time
from typing import List, Optional, Tuple, Dict, Any
from src.chat.message_receive.message import MessageRecv, MessageSending, MessageThinking, Seg
from src.chat.message_receive.message import UserInfo
from src.chat.message_receive.chat_stream import ChatStream,chat_manager
from src.chat.message_receive.message_sender import message_manager
from src.config.config import global_config
from src.common.logger_manager import get_logger
logger = get_logger("normal_chat_expressor")
class NormalChatExpressor:
"""Normal Chat专用表达器
特点:
1. 不经过LLM风格化直接发送消息
2. 支持文本和表情包发送
3. 为插件动作提供简化的消息发送接口
4. 保持与focus_chat expressor相似的API但去掉复杂的风格化流程
"""
def __init__(self, chat_stream: ChatStream):
"""初始化Normal Chat表达器
Args:
chat_stream: 聊天流对象
stream_name: 流名称
"""
self.chat_stream = chat_stream
self.stream_name = chat_manager.get_stream_name(self.chat_stream.stream_id) or self.chat_stream.stream_id
self.log_prefix = f"[{self.stream_name}]Normal表达器"
logger.debug(f"{self.log_prefix} 初始化完成")
async def create_thinking_message(
self, anchor_message: Optional[MessageRecv], thinking_id: str
) -> Optional[MessageThinking]:
"""创建思考消息
Args:
anchor_message: 锚点消息
thinking_id: 思考ID
Returns:
MessageThinking: 创建的思考消息如果失败返回None
"""
if not anchor_message or not anchor_message.chat_stream:
logger.error(f"{self.log_prefix} 无法创建思考消息,缺少有效的锚点消息或聊天流")
return None
messageinfo = anchor_message.message_info
thinking_time_point = time.time()
bot_user_info = UserInfo(
user_id=global_config.bot.qq_account,
user_nickname=global_config.bot.nickname,
platform=messageinfo.platform,
)
thinking_message = MessageThinking(
message_id=thinking_id,
chat_stream=self.chat_stream,
bot_user_info=bot_user_info,
reply=anchor_message,
thinking_start_time=thinking_time_point,
)
await message_manager.add_message(thinking_message)
logger.debug(f"{self.log_prefix} 创建思考消息: {thinking_id}")
return thinking_message
async def send_response_messages(
self,
anchor_message: Optional[MessageRecv],
response_set: List[Tuple[str, str]],
thinking_id: str = "",
display_message: str = "",
) -> Optional[MessageSending]:
"""发送回复消息
Args:
anchor_message: 锚点消息
response_set: 回复内容集合,格式为 [(type, content), ...]
thinking_id: 思考ID
display_message: 显示消息
Returns:
MessageSending: 发送的第一条消息如果失败返回None
"""
try:
if not response_set:
logger.warning(f"{self.log_prefix} 回复内容为空")
return None
# 如果没有thinking_id生成一个
if not thinking_id:
thinking_time_point = round(time.time(), 2)
thinking_id = "mt" + str(thinking_time_point)
# 创建思考消息
if anchor_message:
await self.create_thinking_message(anchor_message, thinking_id)
# 创建消息集
first_bot_msg = None
mark_head = False
is_emoji = False
if len(response_set) == 0:
return None
message_id = f"{thinking_id}_{len(response_set)}"
response_type, content = response_set[0]
if len(response_set) > 1:
message_segment = Seg(type="seglist", data=[Seg(type=t, data=c) for t, c in response_set])
else:
message_segment = Seg(type=response_type, data=content)
if response_type == "emoji":
is_emoji = True
bot_msg = await self._build_sending_message(
message_id=message_id,
message_segment=message_segment,
thinking_id=thinking_id,
anchor_message=anchor_message,
thinking_start_time=time.time(),
reply_to=mark_head,
is_emoji=is_emoji,
)
logger.debug(f"{self.log_prefix} 添加{response_type}类型消息: {content}")
# 提交消息集
if bot_msg:
await message_manager.add_message(bot_msg)
logger.info(f"{self.log_prefix} 成功发送 {response_type}类型消息: {content}")
container = await message_manager.get_container(self.chat_stream.stream_id) # 使用 self.stream_id
for msg in container.messages[:]:
if isinstance(msg, MessageThinking) and msg.message_info.message_id == thinking_id:
container.messages.remove(msg)
logger.debug(f"[{self.stream_name}] 已移除未产生回复的思考消息 {thinking_id}")
break
return first_bot_msg
else:
logger.warning(f"{self.log_prefix} 没有有效的消息被创建")
return None
except Exception as e:
logger.error(f"{self.log_prefix} 发送消息失败: {e}")
import traceback
traceback.print_exc()
return None
async def _build_sending_message(
self,
message_id: str,
message_segment: Seg,
thinking_id: str,
anchor_message: Optional[MessageRecv],
thinking_start_time: float,
reply_to: bool = False,
is_emoji: bool = False,
) -> MessageSending:
"""构建发送消息
Args:
message_id: 消息ID
message_segment: 消息段
thinking_id: 思考ID
anchor_message: 锚点消息
thinking_start_time: 思考开始时间
reply_to: 是否回复
is_emoji: 是否为表情包
Returns:
MessageSending: 构建的发送消息
"""
bot_user_info = UserInfo(
user_id=global_config.bot.qq_account,
user_nickname=global_config.bot.nickname,
platform=anchor_message.message_info.platform if anchor_message else "unknown",
)
message_sending = MessageSending(
message_id=message_id,
chat_stream=self.chat_stream,
bot_user_info=bot_user_info,
message_segment=message_segment,
sender_info=self.chat_stream.user_info,
reply=anchor_message if reply_to else None,
thinking_start_time=thinking_start_time,
is_emoji=is_emoji,
)
return message_sending
async def deal_reply(
self,
cycle_timers: dict,
action_data: Dict[str, Any],
reasoning: str,
anchor_message: MessageRecv,
thinking_id: str,
) -> Tuple[bool, Optional[str]]:
"""处理回复动作 - 兼容focus_chat expressor API
Args:
cycle_timers: 周期计时器normal_chat中不使用
action_data: 动作数据包含text、target、emojis等
reasoning: 推理说明
anchor_message: 锚点消息
thinking_id: 思考ID
Returns:
Tuple[bool, Optional[str]]: (是否成功, 回复文本)
"""
try:
response_set = []
# 处理文本内容
text_content = action_data.get("text", "")
if text_content:
response_set.append(("text", text_content))
# 处理表情包
emoji_content = action_data.get("emojis", "")
if emoji_content:
response_set.append(("emoji", emoji_content))
if not response_set:
logger.warning(f"{self.log_prefix} deal_reply: 没有有效的回复内容")
return False, None
# 发送消息
result = await self.send_response_messages(
anchor_message=anchor_message,
response_set=response_set,
thinking_id=thinking_id,
)
if result:
return True, text_content if text_content else "发送成功"
else:
return False, None
except Exception as e:
logger.error(f"{self.log_prefix} deal_reply执行失败: {e}")
import traceback
traceback.print_exc()
return False, None
"""
Normal Chat Expressor
为Normal Chat专门设计的表达器不需要经过LLM风格化处理
直接发送消息,主要用于插件动作中需要发送消息的场景。
"""
import time
from typing import List, Optional, Tuple, Dict, Any
from src.chat.message_receive.message import MessageRecv, MessageSending, MessageThinking, Seg
from src.chat.message_receive.message import UserInfo
from src.chat.message_receive.chat_stream import ChatStream, get_chat_manager
from src.chat.message_receive.message_sender import message_manager
from src.config.config import global_config
from src.common.logger import get_logger
logger = get_logger("normal_chat_expressor")
class NormalChatExpressor:
"""Normal Chat专用表达器
特点:
1. 不经过LLM风格化直接发送消息
2. 支持文本和表情包发送
3. 为插件动作提供简化的消息发送接口
4. 保持与focus_chat expressor相似的API但去掉复杂的风格化流程
"""
def __init__(self, chat_stream: ChatStream):
"""初始化Normal Chat表达器
Args:
chat_stream: 聊天流对象
stream_name: 流名称
"""
self.chat_stream = chat_stream
self.stream_name = get_chat_manager().get_stream_name(self.chat_stream.stream_id) or self.chat_stream.stream_id
self.log_prefix = f"[{self.stream_name}]Normal表达器"
logger.debug(f"{self.log_prefix} 初始化完成")
async def create_thinking_message(
self, anchor_message: Optional[MessageRecv], thinking_id: str
) -> Optional[MessageThinking]:
"""创建思考消息
Args:
anchor_message: 锚点消息
thinking_id: 思考ID
Returns:
MessageThinking: 创建的思考消息如果失败返回None
"""
if not anchor_message or not anchor_message.chat_stream:
logger.error(f"{self.log_prefix} 无法创建思考消息,缺少有效的锚点消息或聊天流")
return None
messageinfo = anchor_message.message_info
thinking_time_point = time.time()
bot_user_info = UserInfo(
user_id=global_config.bot.qq_account,
user_nickname=global_config.bot.nickname,
platform=messageinfo.platform,
)
thinking_message = MessageThinking(
message_id=thinking_id,
chat_stream=self.chat_stream,
bot_user_info=bot_user_info,
reply=anchor_message,
thinking_start_time=thinking_time_point,
)
await message_manager.add_message(thinking_message)
logger.debug(f"{self.log_prefix} 创建思考消息: {thinking_id}")
return thinking_message
async def send_response_messages(
self,
anchor_message: Optional[MessageRecv],
response_set: List[Tuple[str, str]],
thinking_id: str = "",
display_message: str = "",
) -> Optional[MessageSending]:
"""发送回复消息
Args:
anchor_message: 锚点消息
response_set: 回复内容集合,格式为 [(type, content), ...]
thinking_id: 思考ID
display_message: 显示消息
Returns:
MessageSending: 发送的第一条消息如果失败返回None
"""
try:
if not response_set:
logger.warning(f"{self.log_prefix} 回复内容为空")
return None
# 如果没有thinking_id生成一个
if not thinking_id:
thinking_time_point = round(time.time(), 2)
thinking_id = "mt" + str(thinking_time_point)
# 创建思考消息
if anchor_message:
await self.create_thinking_message(anchor_message, thinking_id)
# 创建消息集
mark_head = False
is_emoji = False
if len(response_set) == 0:
return None
message_id = f"{thinking_id}_{len(response_set)}"
response_type, content = response_set[0]
if len(response_set) > 1:
message_segment = Seg(type="seglist", data=[Seg(type=t, data=c) for t, c in response_set])
else:
message_segment = Seg(type=response_type, data=content)
if response_type == "emoji":
is_emoji = True
bot_msg = await self._build_sending_message(
message_id=message_id,
message_segment=message_segment,
thinking_id=thinking_id,
anchor_message=anchor_message,
thinking_start_time=time.time(),
reply_to=mark_head,
is_emoji=is_emoji,
display_message=display_message,
)
logger.debug(f"{self.log_prefix} 添加{response_type}类型消息: {content}")
# 提交消息集
if bot_msg:
await message_manager.add_message(bot_msg)
logger.info(
f"{self.log_prefix} 成功发送 {response_type}类型消息: {str(content)[:200] + '...' if len(str(content)) > 200 else content}"
)
container = await message_manager.get_container(self.chat_stream.stream_id) # 使用 self.stream_id
for msg in container.messages[:]:
if isinstance(msg, MessageThinking) and msg.message_info.message_id == thinking_id:
container.messages.remove(msg)
logger.debug(f"[{self.stream_name}] 已移除未产生回复的思考消息 {thinking_id}")
break
return bot_msg
else:
logger.warning(f"{self.log_prefix} 没有有效的消息被创建")
return None
except Exception as e:
logger.error(f"{self.log_prefix} 发送消息失败: {e}")
import traceback
traceback.print_exc()
return None
async def _build_sending_message(
self,
message_id: str,
message_segment: Seg,
thinking_id: str,
anchor_message: Optional[MessageRecv],
thinking_start_time: float,
reply_to: bool = False,
is_emoji: bool = False,
display_message: str = "",
) -> MessageSending:
"""构建发送消息
Args:
message_id: 消息ID
message_segment: 消息段
thinking_id: 思考ID
anchor_message: 锚点消息
thinking_start_time: 思考开始时间
reply_to: 是否回复
is_emoji: 是否为表情包
Returns:
MessageSending: 构建的发送消息
"""
bot_user_info = UserInfo(
user_id=global_config.bot.qq_account,
user_nickname=global_config.bot.nickname,
platform=anchor_message.message_info.platform if anchor_message else "unknown",
)
message_sending = MessageSending(
message_id=message_id,
chat_stream=self.chat_stream,
bot_user_info=bot_user_info,
message_segment=message_segment,
sender_info=self.chat_stream.user_info,
reply=anchor_message if reply_to else None,
thinking_start_time=thinking_start_time,
is_emoji=is_emoji,
display_message=display_message,
)
return message_sending
async def deal_reply(
self,
cycle_timers: dict,
action_data: Dict[str, Any],
reasoning: str,
anchor_message: MessageRecv,
thinking_id: str,
) -> Tuple[bool, Optional[str]]:
"""处理回复动作 - 兼容focus_chat expressor API
Args:
cycle_timers: 周期计时器normal_chat中不使用
action_data: 动作数据包含text、target、emojis等
reasoning: 推理说明
anchor_message: 锚点消息
thinking_id: 思考ID
Returns:
Tuple[bool, Optional[str]]: (是否成功, 回复文本)
"""
try:
response_set = []
# 处理文本内容
text_content = action_data.get("text", "")
if text_content:
response_set.append(("text", text_content))
# 处理表情包
emoji_content = action_data.get("emojis", "")
if emoji_content:
response_set.append(("emoji", emoji_content))
if not response_set:
logger.warning(f"{self.log_prefix} deal_reply: 没有有效的回复内容")
return False, None
# 发送消息
result = await self.send_response_messages(
anchor_message=anchor_message,
response_set=response_set,
thinking_id=thinking_id,
)
if result:
return True, text_content if text_content else "发送成功"
else:
return False, None
except Exception as e:
logger.error(f"{self.log_prefix} deal_reply执行失败: {e}")
import traceback
traceback.print_exc()
return False, None

View File

@@ -5,9 +5,8 @@ from src.config.config import global_config
from src.chat.message_receive.message import MessageThinking
from src.chat.normal_chat.normal_prompt import prompt_builder
from src.chat.utils.timer_calculator import Timer
from src.common.logger_manager import get_logger
from src.chat.utils.info_catcher import info_catcher_manager
from src.person_info.person_info import person_info_manager
from src.common.logger import get_logger
from src.person_info.person_info import PersonInfoManager, get_person_info_manager
from src.chat.utils.utils import process_llm_response
@@ -26,9 +25,7 @@ class NormalChatGenerator:
request_type="normal.chat_2",
)
self.model_sum = LLMRequest(
model=global_config.model.memory_summary, temperature=0.7, request_type="relation"
)
self.model_sum = LLMRequest(model=global_config.model.memory_summary, temperature=0.7, request_type="relation")
self.current_model_type = "r1" # 默认使用 R1
self.current_model_name = "unknown model"
@@ -69,12 +66,10 @@ class NormalChatGenerator:
enable_planner: bool = False,
available_actions=None,
):
info_catcher = info_catcher_manager.get_info_catcher(thinking_id)
person_id = person_info_manager.get_person_id(
person_id = PersonInfoManager.get_person_id(
message.chat_stream.user_info.platform, message.chat_stream.user_info.user_id
)
person_info_manager = get_person_info_manager()
person_name = await person_info_manager.get_value(person_id, "person_name")
if message.chat_stream.user_info.user_cardname and message.chat_stream.user_info.user_nickname:
@@ -105,10 +100,6 @@ class NormalChatGenerator:
logger.info(f"{message.processed_plain_text} 的回复:{content}")
info_catcher.catch_after_llm_generated(
prompt=prompt, response=content, reasoning_content=reasoning_content, model_name=self.current_model_name
)
except Exception:
logger.exception("生成回复时出错")
return None

View File

@@ -3,11 +3,10 @@ from typing import Dict, Any
from rich.traceback import install
from src.llm_models.utils_model import LLMRequest
from src.config.config import global_config
from src.common.logger_manager import get_logger
from src.common.logger import get_logger
from src.chat.utils.prompt_builder import Prompt, global_prompt_manager
from src.individuality.individuality import individuality
from src.individuality.individuality import get_individuality
from src.chat.focus_chat.planners.action_manager import ActionManager
from src.chat.focus_chat.planners.actions.base_action import ChatMode
from src.chat.message_receive.message import MessageThinking
from json_repair import repair_json
from src.chat.utils.chat_message_builder import build_readable_messages, get_raw_msg_before_timestamp_with_chat
@@ -26,6 +25,11 @@ def init_prompt():
{self_info_block}
请记住你的性格,身份和特点。
你是群内的一员,你现在正在参与群内的闲聊,以下是群内的聊天内容:
{chat_context}
基于以上聊天上下文和用户的最新消息选择最合适的action。
注意除了下面动作选项之外你在聊天中不能做其他任何事情这是你能力的边界现在请你选择合适的action:
{action_options_text}
@@ -38,11 +42,6 @@ def init_prompt():
你必须从上面列出的可用action中选择一个并说明原因。
{moderation_prompt}
你是群内的一员,你现在正在参与群内的闲聊,以下是群内的聊天内容:
{chat_context}
基于以上聊天上下文和用户的最新消息选择最合适的action。
请以动作的输出要求,以严格的 JSON 格式输出,且仅包含 JSON 内容。不要有任何其他文字或解释:
""",
"normal_chat_planner_prompt",
@@ -94,14 +93,14 @@ class NormalChatPlanner:
nickname_str += f"{nicknames},"
name_block = f"你的名字是{global_config.bot.nickname},你的昵称有{nickname_str},有人也会用这些昵称称呼你。"
personality_block = individuality.get_personality_prompt(x_person=2, level=2)
identity_block = individuality.get_identity_prompt(x_person=2, level=2)
personality_block = get_individuality().get_personality_prompt(x_person=2, level=2)
identity_block = get_individuality().get_identity_prompt(x_person=2, level=2)
self_info = name_block + personality_block + identity_block
# 获取当前可用的动作使用Normal模式过滤
current_available_actions = self.action_manager.get_using_actions_for_mode(ChatMode.NORMAL)
current_available_actions = self.action_manager.get_using_actions_for_mode("normal")
# 注意:动作的激活判定现在在 normal_chat_action_modifier 中完成
# 这里直接使用经过 action_modifier 处理后的最终动作集
# 符合职责分离原则ActionModifier负责动作管理Planner专注于决策
@@ -110,7 +109,12 @@ class NormalChatPlanner:
if not current_available_actions:
logger.debug(f"{self.log_prefix}规划器: 没有可用动作返回no_action")
return {
"action_result": {"action_type": action, "action_data": action_data, "reasoning": reasoning, "is_parallel": True},
"action_result": {
"action_type": action,
"action_data": action_data,
"reasoning": reasoning,
"is_parallel": True,
},
"chat_context": "",
"action_prompt": "",
}
@@ -121,7 +125,7 @@ class NormalChatPlanner:
timestamp=time.time(),
limit=global_config.focus_chat.observation_context_size,
)
chat_context = build_readable_messages(
message_list_before_now,
replace_bot_name=True,
@@ -130,7 +134,7 @@ class NormalChatPlanner:
read_mark=0.0,
show_actions=True,
)
# 构建planner的prompt
prompt = await self.build_planner_prompt(
self_info_block=self_info,
@@ -141,7 +145,12 @@ class NormalChatPlanner:
if not prompt:
logger.warning(f"{self.log_prefix}规划器: 构建提示词失败")
return {
"action_result": {"action_type": action, "action_data": action_data, "reasoning": reasoning, "is_parallel": False},
"action_result": {
"action_type": action,
"action_data": action_data,
"reasoning": reasoning,
"is_parallel": False,
},
"chat_context": chat_context,
"action_prompt": "",
}
@@ -149,8 +158,8 @@ class NormalChatPlanner:
# 使用LLM生成动作决策
try:
content, (reasoning_content, model_name) = await self.planner_llm.generate_response_async(prompt)
logger.info(f"{self.log_prefix}规划器原始提示词: {prompt}")
# logger.info(f"{self.log_prefix}规划器原始提示词: {prompt}")
logger.info(f"{self.log_prefix}规划器原始响应: {content}")
logger.info(f"{self.log_prefix}规划器推理: {reasoning_content}")
logger.info(f"{self.log_prefix}规划器模型: {model_name}")
@@ -201,8 +210,10 @@ class NormalChatPlanner:
if action in current_available_actions:
action_info = current_available_actions[action]
is_parallel = action_info.get("parallel_action", False)
logger.debug(f"{self.log_prefix}规划器决策动作:{action}, 动作信息: '{action_data}', 理由: {reasoning}, 并行执行: {is_parallel}")
logger.debug(
f"{self.log_prefix}规划器决策动作:{action}, 动作信息: '{action_data}', 理由: {reasoning}, 并行执行: {is_parallel}"
)
# 恢复到默认动作集
self.action_manager.restore_actions()
@@ -216,15 +227,15 @@ class NormalChatPlanner:
"action_data": action_data,
"reasoning": reasoning,
"timestamp": time.time(),
"model_name": model_name if 'model_name' in locals() else None
"model_name": model_name if "model_name" in locals() else None,
}
action_result = {
"action_type": action,
"action_data": action_data,
"action_type": action,
"action_data": action_data,
"reasoning": reasoning,
"is_parallel": is_parallel,
"action_record": json.dumps(action_record, ensure_ascii=False)
"action_record": json.dumps(action_record, ensure_ascii=False),
}
plan_result = {
@@ -248,24 +259,19 @@ class NormalChatPlanner:
# 添加特殊的change_to_focus_chat动作
action_options_text += "动作change_to_focus_chat\n"
action_options_text += (
"该动作的描述当聊天变得热烈、自己回复条数很多或需要深入交流时使用正常回复消息并切换到focus_chat模式\n"
)
action_options_text += "该动作的描述当聊天变得热烈、自己回复条数很多或需要深入交流时使用正常回复消息并切换到focus_chat模式\n"
action_options_text += "使用该动作的场景:\n"
action_options_text += "- 聊天上下文中自己的回复条数较多超过3-4条\n"
action_options_text += "- 对话进行得非常热烈活跃\n"
action_options_text += "- 用户表现出深入交流的意图\n"
action_options_text += "- 话题需要更专注和深入的讨论\n\n"
action_options_text += "输出要求:\n"
action_options_text += "{{"
action_options_text += " \"action\": \"change_to_focus_chat\""
action_options_text += ' "action": "change_to_focus_chat"'
action_options_text += "}}\n\n"
for action_name, action_info in current_available_actions.items():
action_description = action_info.get("description", "")
action_parameters = action_info.get("parameters", {})
@@ -276,15 +282,14 @@ class NormalChatPlanner:
print(action_parameters)
for param_name, param_description in action_parameters.items():
param_text += f' "{param_name}":"{param_description}"\n'
param_text = param_text.rstrip('\n')
param_text = param_text.rstrip("\n")
else:
param_text = ""
require_text = ""
for require_item in action_require:
require_text += f"- {require_item}\n"
require_text = require_text.rstrip('\n')
require_text = require_text.rstrip("\n")
# 构建单个动作的提示
action_prompt = await global_prompt_manager.format_prompt(
@@ -316,6 +321,4 @@ class NormalChatPlanner:
return ""
init_prompt()

View File

@@ -1,18 +1,18 @@
from src.chat.focus_chat.expressors.exprssion_learner import get_expression_learner
from src.config.config import global_config
from src.common.logger_manager import get_logger
from src.individuality.individuality import individuality
from src.common.logger import get_logger
from src.individuality.individuality import get_individuality
from src.chat.utils.prompt_builder import Prompt, global_prompt_manager
from src.chat.utils.chat_message_builder import build_readable_messages, get_raw_msg_before_timestamp_with_chat
from src.person_info.relationship_manager import relationship_manager
import time
from src.chat.utils.utils import get_recent_group_speaker
from src.manager.mood_manager import mood_manager
from src.chat.memory_system.Hippocampus import HippocampusManager
from src.chat.memory_system.Hippocampus import hippocampus_manager
from src.chat.knowledge.knowledge_lib import qa_manager
from src.chat.focus_chat.expressors.exprssion_learner import expression_learner
import random
import re
from src.person_info.relationship_manager import get_relationship_manager
logger = get_logger("prompt")
@@ -96,7 +96,7 @@ class PromptBuilder:
enable_planner: bool = False,
available_actions=None,
) -> str:
prompt_personality = individuality.get_prompt(x_person=2, level=2)
prompt_personality = get_individuality().get_prompt(x_person=2, level=2)
is_group_chat = bool(chat_stream.group_info)
who_chat_in_group = []
@@ -112,11 +112,13 @@ class PromptBuilder:
)
relation_prompt = ""
for person in who_chat_in_group:
relation_prompt += await relationship_manager.build_relationship_info(person)
if global_config.relationship.enable_relationship:
for person in who_chat_in_group:
relationship_manager = get_relationship_manager()
relation_prompt += await relationship_manager.build_relationship_info(person)
mood_prompt = mood_manager.get_mood_prompt()
expression_learner = get_expression_learner()
(
learnt_style_expressions,
learnt_grammar_expressions,
@@ -159,18 +161,19 @@ class PromptBuilder:
)[0]
memory_prompt = ""
related_memory = await HippocampusManager.get_instance().get_memory_from_text(
text=message_txt, max_memory_num=2, max_memory_length=2, max_depth=3, fast_retrieval=False
)
related_memory_info = ""
if related_memory:
for memory in related_memory:
related_memory_info += memory[1]
memory_prompt = await global_prompt_manager.format_prompt(
"memory_prompt", related_memory_info=related_memory_info
if global_config.memory.enable_memory:
related_memory = await hippocampus_manager.get_memory_from_text(
text=message_txt, max_memory_num=2, max_memory_length=2, max_depth=3, fast_retrieval=False
)
related_memory_info = ""
if related_memory:
for memory in related_memory:
related_memory_info += memory[1]
memory_prompt = await global_prompt_manager.format_prompt(
"memory_prompt", related_memory_info=related_memory_info
)
message_list_before_now = get_raw_msg_before_timestamp_with_chat(
chat_id=chat_stream.stream_id,
timestamp=time.time(),
@@ -212,7 +215,6 @@ class PromptBuilder:
except Exception as e:
logger.error(f"关键词检测与反应时发生异常: {str(e)}", exc_info=True)
moderation_prompt_block = "请不要输出违法违规内容,不要输出色情,暴力,政治相关内容,如有敏感内容,请规避。"
# 构建action描述 (如果启用planner)

View File

@@ -42,9 +42,7 @@ class ClassicalWillingManager(BaseWillingManager):
self.chat_reply_willing[chat_id] = min(current_willing, 3.0)
reply_probability = min(
max((current_willing - 0.5), 0.01) * 2, 1
)
reply_probability = min(max((current_willing - 0.5), 0.01) * 2, 1)
# 检查群组权限(如果是群聊)
if (

View File

@@ -1,9 +1,9 @@
from src.common.logger import LogConfig, WILLING_STYLE_CONFIG, LoguruLogger, get_module_logger
from src.common.logger import get_logger
from dataclasses import dataclass
from src.config.config import global_config
from src.chat.message_receive.chat_stream import ChatStream, GroupInfo
from src.chat.message_receive.message import MessageRecv
from src.person_info.person_info import person_info_manager, PersonInfoManager
from src.person_info.person_info import PersonInfoManager, get_person_info_manager
from abc import ABC, abstractmethod
import importlib
from typing import Dict, Optional
@@ -33,12 +33,8 @@ set_willing 设置某聊天流意愿
示例: 在 `mode_aggressive.py` 中,类名应为 `AggressiveWillingManager`
"""
willing_config = LogConfig(
# 使用消息发送专用样式
console_format=WILLING_STYLE_CONFIG["console_format"],
file_format=WILLING_STYLE_CONFIG["file_format"],
)
logger = get_module_logger("willing", config=willing_config)
logger = get_logger("willing")
@dataclass
@@ -93,14 +89,14 @@ class BaseWillingManager(ABC):
self.chat_reply_willing: Dict[str, float] = {} # 存储每个聊天流的回复意愿(chat_id)
self.ongoing_messages: Dict[str, WillingInfo] = {} # 当前正在进行的消息(message_id)
self.lock = asyncio.Lock()
self.logger: LoguruLogger = logger
self.logger = logger
def setup(self, message: MessageRecv, chat: ChatStream, is_mentioned_bot: bool, interested_rate: float):
person_id = person_info_manager.get_person_id(chat.platform, chat.user_info.user_id)
person_id = PersonInfoManager.get_person_id(chat.platform, chat.user_info.user_id)
self.ongoing_messages[message.message_info.message_id] = WillingInfo(
message=message,
chat=chat,
person_info_manager=person_info_manager,
person_info_manager=get_person_info_manager(),
chat_id=chat.stream_id,
person_id=person_id,
group_info=chat.group_info,
@@ -177,4 +173,11 @@ def init_willing_manager() -> BaseWillingManager:
# 全局willing_manager对象
willing_manager = init_willing_manager()
willing_manager = None
def get_willing_manager():
global willing_manager
if willing_manager is None:
willing_manager = init_willing_manager()
return willing_manager