This commit is contained in:
tcmofashi
2025-06-14 10:24:44 +08:00
198 changed files with 12032 additions and 9277 deletions

View File

@@ -3,13 +3,13 @@ MaiBot模块系统
包含聊天、情绪、记忆、日程等功能模块
"""
from src.chat.message_receive.chat_stream import chat_manager
from src.chat.emoji_system.emoji_manager import emoji_manager
from src.chat.normal_chat.willing.willing_manager import willing_manager
from src.chat.message_receive.chat_stream import get_chat_manager
from src.chat.emoji_system.emoji_manager import get_emoji_manager
from src.chat.normal_chat.willing.willing_manager import get_willing_manager
# 导出主要组件供外部使用
__all__ = [
"chat_manager",
"emoji_manager",
"willing_manager",
"get_chat_manager",
"get_emoji_manager",
"get_willing_manager",
]

View File

@@ -15,9 +15,9 @@ import re
from src.common.database.database_model import Emoji
from src.common.database.database import db as peewee_db
from src.config.config import global_config
from src.chat.utils.utils_image import image_path_to_base64, image_manager
from src.chat.utils.utils_image import image_path_to_base64, get_image_manager
from src.llm_models.utils_model import LLMRequest
from src.common.logger_manager import get_logger
from src.common.logger import get_logger
from rich.traceback import install
install(extra_lines=3)
@@ -163,7 +163,7 @@ class MaiEmoji:
last_used_time=self.last_used_time,
)
logger.success(f"[注册] 表情包信息保存到数据库: {self.filename} ({self.emotion})")
logger.info(f"[注册] 表情包信息保存到数据库: {self.filename} ({self.emotion})")
return True
@@ -317,7 +317,7 @@ async def clear_temp_emoji() -> None:
os.remove(file_path)
logger.debug(f"[清理] 删除: {filename}")
logger.success("[清理] 完成")
logger.info("[清理] 完成")
async def clean_unused_emojis(emoji_dir: str, emoji_objects: List["MaiEmoji"]) -> None:
@@ -349,7 +349,7 @@ async def clean_unused_emojis(emoji_dir: str, emoji_objects: List["MaiEmoji"]) -
logger.error(f"[错误] 删除文件时出错 ({file_full_path}): {str(e)}")
if cleaned_count > 0:
logger.success(f"[清理] 在目录 {emoji_dir} 中清理了 {cleaned_count} 个破损表情包。")
logger.info(f"[清理] 在目录 {emoji_dir} 中清理了 {cleaned_count} 个破损表情包。")
else:
logger.info(f"[清理] 目录 {emoji_dir} 中没有需要清理的。")
@@ -568,7 +568,7 @@ class EmojiManager:
# 输出清理结果
if removed_count > 0:
logger.success(f"[清理] 已清理 {removed_count} 个失效/文件丢失的表情包记录")
logger.info(f"[清理] 已清理 {removed_count} 个失效/文件丢失的表情包记录")
logger.info(f"[统计] 清理前记录数: {total_count} | 清理后有效记录数: {len(self.emoji_objects)}")
else:
logger.info(f"[检查] 已检查 {total_count} 个表情包记录,全部完好")
@@ -645,7 +645,7 @@ class EmojiManager:
self.emoji_objects = emoji_objects
self.emoji_num = len(emoji_objects)
logger.success(f"[数据库] 加载完成: 共加载 {self.emoji_num} 个表情包记录。")
logger.info(f"[数据库] 加载完成: 共加载 {self.emoji_num} 个表情包记录。")
if load_errors > 0:
logger.warning(f"[数据库] 加载过程中出现 {load_errors} 个错误。")
@@ -808,7 +808,7 @@ class EmojiManager:
if register_success:
self.emoji_objects.append(new_emoji)
self.emoji_num += 1
logger.success(f"[成功] 注册: {new_emoji.filename}")
logger.info(f"[成功] 注册: {new_emoji.filename}")
return True
else:
logger.error(f"[错误] 注册表情包到数据库失败: {new_emoji.filename}")
@@ -844,7 +844,7 @@ class EmojiManager:
# 调用AI获取描述
if image_format == "gif" or image_format == "GIF":
image_base64 = image_manager.transform_gif(image_base64)
image_base64 = get_image_manager().transform_gif(image_base64)
prompt = "这是一个动态图表情包,每一张图代表了动态图的某一帧,黑色背景代表透明,描述一下表情包表达的情感和内容,描述细节,从互联网梗,meme的角度去分析"
description, _ = await self.vlm.generate_response_for_image(prompt, image_base64, "jpg")
else:
@@ -973,7 +973,7 @@ class EmojiManager:
# 注册成功后,添加到内存列表
self.emoji_objects.append(new_emoji)
self.emoji_num += 1
logger.success(f"[成功] 注册新表情包: {filename} (当前: {self.emoji_num}/{self.emoji_num_max})")
logger.info(f"[成功] 注册新表情包: {filename} (当前: {self.emoji_num}/{self.emoji_num_max})")
return True
else:
logger.error(f"[注册失败] 保存表情包到数据库/移动文件失败: {filename}")
@@ -1000,5 +1000,11 @@ class EmojiManager:
return False
# 创建全局单例
emoji_manager = EmojiManager()
emoji_manager = None
def get_emoji_manager():
global emoji_manager
if emoji_manager is None:
emoji_manager = EmojiManager()
return emoji_manager

View File

@@ -1,25 +1,25 @@
import traceback
from typing import List, Optional, Dict, Any, Tuple
from src.chat.focus_chat.expressors.exprssion_learner import get_expression_learner
from src.chat.message_receive.message import MessageRecv, MessageThinking, MessageSending
from src.chat.message_receive.message import Seg # Local import needed after move
from src.chat.message_receive.message import UserInfo
from src.chat.message_receive.chat_stream import chat_manager
from src.common.logger_manager import get_logger
from src.chat.message_receive.chat_stream import get_chat_manager
from src.common.logger import get_logger
from src.llm_models.utils_model import LLMRequest
from src.config.config import global_config
from src.chat.utils.utils_image import image_path_to_base64 # Local import needed after move
from src.chat.utils.timer_calculator import Timer # <--- Import Timer
from src.chat.emoji_system.emoji_manager import emoji_manager
from src.chat.emoji_system.emoji_manager import get_emoji_manager
from src.chat.focus_chat.heartFC_sender import HeartFCSender
from src.chat.utils.utils import process_llm_response
from src.chat.utils.info_catcher import info_catcher_manager
from src.chat.heart_flow.utils_chat import get_chat_type_and_target_info
from src.chat.message_receive.chat_stream import ChatStream
from src.chat.focus_chat.hfc_utils import parse_thinking_id_to_timestamp
from src.chat.utils.prompt_builder import Prompt, global_prompt_manager
from src.chat.utils.chat_message_builder import build_readable_messages, get_raw_msg_before_timestamp_with_chat
import time
from src.chat.focus_chat.expressors.exprssion_learner import expression_learner
import random
logger = get_logger("expressor")
@@ -110,6 +110,7 @@ class DefaultExpressor:
# logger.debug(f"创建思考消息thinking_message{thinking_message}")
await self.heart_fc_sender.register_thinking(thinking_message)
return None
async def deal_reply(
self,
@@ -181,14 +182,6 @@ class DefaultExpressor:
(已整合原 HeartFCGenerator 的功能)
"""
try:
# 1. 获取情绪影响因子并调整模型温度
# arousal_multiplier = mood_manager.get_arousal_multiplier()
# current_temp = float(global_config.model.normal["temp"]) * arousal_multiplier
# self.express_model.params["temperature"] = current_temp # 动态调整温度
# 2. 获取信息捕捉器
info_catcher = info_catcher_manager.get_info_catcher(thinking_id)
# --- Determine sender_name for private chat ---
sender_name_for_prompt = "某人" # Default for group or if info unavailable
if not self.is_group_chat and self.chat_target_info:
@@ -227,15 +220,9 @@ class DefaultExpressor:
# logger.info(f"{self.log_prefix}[Replier-{thinking_id}]\nPrompt:\n{prompt}\n")
content, (reasoning_content, model_name) = await self.express_model.generate_response_async(prompt)
# logger.info(f"{self.log_prefix}\nPrompt:\n{prompt}\n---------------------------\n")
logger.info(f"想要表达:{in_mind_reply}||理由:{reason}")
logger.info(f"最终回复: {content}\n")
info_catcher.catch_after_llm_generated(
prompt=prompt, response=content, reasoning_content=reasoning_content, model_name=model_name
)
except Exception as llm_e:
# 精简报错信息
logger.error(f"{self.log_prefix}LLM 生成失败: {llm_e}")
@@ -288,6 +275,7 @@ class DefaultExpressor:
truncate=True,
)
expression_learner = get_expression_learner()
(
learnt_style_expressions,
learnt_grammar_expressions,
@@ -379,7 +367,7 @@ class DefaultExpressor:
logger.error(f"{self.log_prefix} 无法发送回复anchor_message 为空。")
return None
stream_name = chat_manager.get_stream_name(chat_id) or chat_id # 获取流名称用于日志
stream_name = get_chat_manager().get_stream_name(chat_id) or chat_id # 获取流名称用于日志
# 检查思考过程是否仍在进行,并获取开始时间
if thinking_id:
@@ -468,7 +456,7 @@ class DefaultExpressor:
选择表情根据send_emoji文本选择表情返回表情base64
"""
emoji_base64 = ""
emoji_raw = await emoji_manager.get_emoji_for_text(send_emoji)
emoji_raw = await get_emoji_manager().get_emoji_for_text(send_emoji)
if emoji_raw:
emoji_path, _description, _emotion = emoji_raw
emoji_base64 = image_path_to_base64(emoji_path)

View File

@@ -1,13 +1,13 @@
import time
import random
from typing import List, Dict, Optional, Any, Tuple
from src.common.logger_manager import get_logger
from src.common.logger import get_logger
from src.llm_models.utils_model import LLMRequest
from src.config.config import global_config
from src.chat.utils.chat_message_builder import get_raw_msg_by_timestamp_random, build_anonymous_messages
from src.chat.utils.prompt_builder import Prompt, global_prompt_manager
import os
from src.chat.message_receive.chat_stream import chat_manager
from src.chat.message_receive.chat_stream import get_chat_manager
import json
@@ -113,25 +113,25 @@ class ExpressionLearner:
同时对所有已存储的表达方式进行全局衰减
"""
current_time = time.time()
# 全局衰减所有已存储的表达方式
for type in ["style", "grammar"]:
base_dir = os.path.join("data", "expression", f"learnt_{type}")
if not os.path.exists(base_dir):
continue
for chat_id in os.listdir(base_dir):
file_path = os.path.join(base_dir, chat_id, "expressions.json")
if not os.path.exists(file_path):
continue
try:
with open(file_path, "r", encoding="utf-8") as f:
expressions = json.load(f)
# 应用全局衰减
decayed_expressions = self.apply_decay_to_expressions(expressions, current_time)
# 保存衰减后的结果
with open(file_path, "w", encoding="utf-8") as f:
json.dump(decayed_expressions, f, ensure_ascii=False, indent=2)
@@ -140,12 +140,12 @@ class ExpressionLearner:
continue
# 学习新的表达方式(这里会进行局部衰减)
for i in range(3):
for _ in range(3):
learnt_style: Optional[List[Tuple[str, str, str]]] = await self.learn_and_store(type="style", num=25)
if not learnt_style:
return []
for j in range(1):
for _ in range(1):
learnt_grammar: Optional[List[Tuple[str, str, str]]] = await self.learn_and_store(type="grammar", num=10)
if not learnt_grammar:
return []
@@ -162,23 +162,25 @@ class ExpressionLearner:
"""
if time_diff_days <= 0 or time_diff_days >= DECAY_DAYS:
return 0.001
# 使用二次函数进行插值
# 将7天作为顶点0天和30天作为两个端点
# 使用顶点式y = a(x-h)^2 + k其中(h,k)为顶点
h = 7.0 # 顶点x坐标
k = 0.001 # 顶点y坐标
# 计算a值使得x=0和x=30时y=0.001
# 0.001 = a(0-7)^2 + 0.001
# 解得a = 0
a = 0
# 计算衰减值
decay = a * (time_diff_days - h) ** 2 + k
return min(0.001, decay)
def apply_decay_to_expressions(self, expressions: List[Dict[str, Any]], current_time: float) -> List[Dict[str, Any]]:
def apply_decay_to_expressions(
self, expressions: List[Dict[str, Any]], current_time: float
) -> List[Dict[str, Any]]:
"""
对表达式列表应用衰减
返回衰减后的表达式列表移除count小于0的项
@@ -188,16 +190,16 @@ class ExpressionLearner:
# 确保last_active_time存在如果不存在则使用current_time
if "last_active_time" not in expr:
expr["last_active_time"] = current_time
last_active = expr["last_active_time"]
time_diff_days = (current_time - last_active) / (24 * 3600) # 转换为天
decay_value = self.calculate_decay_factor(time_diff_days)
expr["count"] = max(0.01, expr.get("count", 1) - decay_value)
if expr["count"] > 0:
result.append(expr)
return result
async def learn_and_store(self, type: str, num: int = 10) -> List[Tuple[str, str, str]]:
@@ -211,14 +213,14 @@ class ExpressionLearner:
type_str = "句法特点"
else:
raise ValueError(f"Invalid type: {type}")
res = await self.learn_expression(type, num)
if res is None:
return []
learnt_expressions, chat_id = res
chat_stream = chat_manager.get_stream(chat_id)
chat_stream = get_chat_manager().get_stream(chat_id)
if chat_stream.group_info:
group_name = chat_stream.group_info.group_name
else:
@@ -238,15 +240,15 @@ class ExpressionLearner:
if chat_id not in chat_dict:
chat_dict[chat_id] = []
chat_dict[chat_id].append({"situation": situation, "style": style})
current_time = time.time()
# 存储到/data/expression/对应chat_id/expressions.json
for chat_id, expr_list in chat_dict.items():
dir_path = os.path.join("data", "expression", f"learnt_{type}", str(chat_id))
os.makedirs(dir_path, exist_ok=True)
file_path = os.path.join(dir_path, "expressions.json")
# 若已存在,先读出合并
old_data: List[Dict[str, Any]] = []
if os.path.exists(file_path):
@@ -255,10 +257,10 @@ class ExpressionLearner:
old_data = json.load(f)
except Exception:
old_data = []
# 应用衰减
# old_data = self.apply_decay_to_expressions(old_data, current_time)
# 合并逻辑
for new_expr in expr_list:
found = False
@@ -278,43 +280,43 @@ class ExpressionLearner:
new_expr["count"] = 1
new_expr["last_active_time"] = current_time
old_data.append(new_expr)
# 处理超限问题
if len(old_data) > MAX_EXPRESSION_COUNT:
# 计算每个表达方式的权重count的倒数这样count越小的越容易被选中
weights = [1 / (expr.get("count", 1) + 0.1) for expr in old_data]
# 随机选择要移除的表达方式,避免重复索引
remove_count = len(old_data) - MAX_EXPRESSION_COUNT
# 使用一种不会选到重复索引的方法
indices = list(range(len(old_data)))
# 方法1使用numpy.random.choice
# 把列表转成一个映射字典,保证不会有重复
remove_set = set()
total_attempts = 0
# 尝试按权重随机选择,直到选够数量
while len(remove_set) < remove_count and total_attempts < len(old_data) * 2:
idx = random.choices(indices, weights=weights, k=1)[0]
remove_set.add(idx)
total_attempts += 1
# 如果没选够,随机补充
if len(remove_set) < remove_count:
remaining = set(indices) - remove_set
remove_set.update(random.sample(list(remaining), remove_count - len(remove_set)))
remove_indices = list(remove_set)
# 从后往前删除,避免索引变化
for idx in sorted(remove_indices, reverse=True):
old_data.pop(idx)
with open(file_path, "w", encoding="utf-8") as f:
json.dump(old_data, f, ensure_ascii=False, indent=2)
return learnt_expressions
async def learn_expression(self, type: str, num: int = 10) -> Optional[Tuple[List[Tuple[str, str, str]], str]]:
@@ -397,4 +399,11 @@ class ExpressionLearner:
init_prompt()
expression_learner = ExpressionLearner()
expression_learner = None
def get_expression_learner():
global expression_learner
if expression_learner is None:
expression_learner = ExpressionLearner()
return expression_learner

View File

@@ -1,7 +1,7 @@
import time
import os
from typing import Optional, Dict, Any
from src.common.logger_manager import get_logger
from src.common.logger import get_logger
import json
logger = get_logger("hfc") # Logger Name Changed
@@ -97,7 +97,7 @@ class CycleDetail:
)
# current_time_minute = time.strftime("%Y%m%d_%H%M", time.localtime())
# try:
# self.log_cycle_to_file(
# log_dir + self.prefix + f"/{current_time_minute}_cycle_" + str(self.cycle_id) + ".json"
@@ -117,7 +117,6 @@ class CycleDetail:
if dir_name and not os.path.exists(dir_name):
os.makedirs(dir_name, exist_ok=True)
# 写入文件
file_path = os.path.join(dir_name, os.path.basename(file_path))
# print("file_path:", file_path)

View File

@@ -4,20 +4,17 @@ import time
import traceback
from collections import deque
from typing import List, Optional, Dict, Any, Deque, Callable, Awaitable
from src.chat.message_receive.chat_stream import chat_manager
from src.chat.message_receive.chat_stream import get_chat_manager
from rich.traceback import install
from src.chat.utils.prompt_builder import global_prompt_manager
from src.common.logger_manager import get_logger
from src.common.logger import get_logger
from src.chat.utils.timer_calculator import Timer
from src.chat.heart_flow.observation.observation import Observation
from src.chat.focus_chat.heartFC_Cycleinfo import CycleDetail
from src.chat.focus_chat.info.info_base import InfoBase
from src.chat.focus_chat.info_processors.chattinginfo_processor import ChattingInfoProcessor
from src.chat.focus_chat.info_processors.relationship_processor import RelationshipProcessor
from src.chat.focus_chat.info_processors.mind_processor import MindProcessor
from src.chat.focus_chat.info_processors.working_memory_processor import WorkingMemoryProcessor
# from src.chat.focus_chat.info_processors.action_processor import ActionProcessor
from src.chat.heart_flow.observation.hfcloop_observation import HFCloopObservation
from src.chat.heart_flow.observation.working_observation import WorkingMemoryObservation
from src.chat.heart_flow.observation.chatting_observation import ChattingObservation
@@ -47,11 +44,10 @@ OBSERVATION_CLASSES = {
# 定义处理器映射:键是处理器名称,值是 (处理器类, 可选的配置键名)
PROCESSOR_CLASSES = {
"ChattingInfoProcessor": (ChattingInfoProcessor, None),
"MindProcessor": (MindProcessor, "mind_processor"),
"ToolProcessor": (ToolProcessor, "tool_use_processor"),
"WorkingMemoryProcessor": (WorkingMemoryProcessor, "working_memory_processor"),
"SelfProcessor": (SelfProcessor, "self_identify_processor"),
"RelationshipProcessor": (RelationshipProcessor, "relationship_processor"),
"RelationshipProcessor": (RelationshipProcessor, "relation_processor"),
}
logger = get_logger("hfc") # Logger Name Changed
@@ -97,31 +93,39 @@ class HeartFChatting:
"""
# 基础属性
self.stream_id: str = chat_id # 聊天流ID
self.chat_stream = chat_manager.get_stream(self.stream_id)
self.log_prefix = f"[{chat_manager.get_stream_name(self.stream_id) or self.stream_id}]"
self.chat_stream = get_chat_manager().get_stream(self.stream_id)
self.log_prefix = f"[{get_chat_manager().get_stream_name(self.stream_id) or self.stream_id}]"
self.memory_activator = MemoryActivator()
# 初始化观察器
self.observations: List[Observation] = []
self._register_observations()
# 根据配置文件和默认规则确定启用的处理器
config_processor_settings = global_config.focus_chat_processor
self.enabled_processor_names = [
proc_name for proc_name, (_proc_class, config_key) in PROCESSOR_CLASSES.items()
if not config_key or getattr(config_processor_settings, config_key, True)
]
self.enabled_processor_names = []
for proc_name, (_proc_class, config_key) in PROCESSOR_CLASSES.items():
# 对于关系处理器,需要同时检查两个配置项
if proc_name == "RelationshipProcessor":
if global_config.relationship.enable_relationship and getattr(
config_processor_settings, config_key, True
):
self.enabled_processor_names.append(proc_name)
else:
# 其他处理器的原有逻辑
if not config_key or getattr(config_processor_settings, config_key, True):
self.enabled_processor_names.append(proc_name)
# logger.info(f"{self.log_prefix} 将启用的处理器: {self.enabled_processor_names}")
self.processors: List[BaseProcessor] = []
self._register_default_processors()
self.expressor = DefaultExpressor(chat_stream=self.chat_stream)
self.replyer = DefaultReplyer(chat_stream=self.chat_stream)
self.action_manager = ActionManager()
self.action_planner = PlannerFactory.create_planner(
log_prefix=self.log_prefix, action_manager=self.action_manager
@@ -130,7 +134,6 @@ class HeartFChatting:
self.action_observation = ActionObservation(observe_id=self.stream_id)
self.action_observation.set_action_manager(self.action_manager)
self._processing_lock = asyncio.Lock()
# 循环控制内部状态
@@ -152,6 +155,13 @@ class HeartFChatting:
for name, (observation_class, param_name) in OBSERVATION_CLASSES.items():
try:
# 检查是否需要跳过WorkingMemoryObservation
if name == "WorkingMemoryObservation":
# 如果工作记忆处理器被禁用则跳过WorkingMemoryObservation
if not global_config.focus_chat_processor.working_memory_processor:
logger.debug(f"{self.log_prefix} 工作记忆处理器已禁用,跳过注册观察器 {name}")
continue
# 根据参数名使用正确的参数
kwargs = {param_name: self.stream_id}
observation = observation_class(**kwargs)
@@ -174,7 +184,12 @@ class HeartFChatting:
if processor_info:
processor_actual_class = processor_info[0] # 获取实际的类定义
# 根据处理器类名判断是否需要 subheartflow_id
if name in ["MindProcessor", "ToolProcessor", "WorkingMemoryProcessor", "SelfProcessor", "RelationshipProcessor"]:
if name in [
"ToolProcessor",
"WorkingMemoryProcessor",
"SelfProcessor",
"RelationshipProcessor",
]:
self.processors.append(processor_actual_class(subheartflow_id=self.stream_id))
elif name == "ChattingInfoProcessor":
self.processors.append(processor_actual_class())
@@ -195,9 +210,7 @@ class HeartFChatting:
)
if self.processors:
logger.info(
f"{self.log_prefix} 已注册处理器: {[p.__class__.__name__ for p in self.processors]}"
)
logger.info(f"{self.log_prefix} 已注册处理器: {[p.__class__.__name__ for p in self.processors]}")
else:
logger.warning(f"{self.log_prefix} 没有注册任何处理器。这可能是由于配置错误或所有处理器都被禁用了。")
@@ -284,7 +297,9 @@ class HeartFChatting:
self._current_cycle_detail.set_loop_info(loop_info)
# 从observations列表中获取HFCloopObservation
hfcloop_observation = next((obs for obs in self.observations if isinstance(obs, HFCloopObservation)), None)
hfcloop_observation = next(
(obs for obs in self.observations if isinstance(obs, HFCloopObservation)), None
)
if hfcloop_observation:
hfcloop_observation.add_loop_info(self._current_cycle_detail)
else:
@@ -356,9 +371,7 @@ class HeartFChatting:
if acquired and self._processing_lock.locked():
self._processing_lock.release()
async def _process_processors(
self, observations: List[Observation], running_memorys: List[Dict[str, Any]]
) -> tuple[List[InfoBase], Dict[str, float]]:
async def _process_processors(self, observations: List[Observation]) -> tuple[List[InfoBase], Dict[str, float]]:
# 记录并行任务开始时间
parallel_start_time = time.time()
logger.debug(f"{self.log_prefix} 开始信息处理器并行任务")
@@ -372,7 +385,7 @@ class HeartFChatting:
async def run_with_timeout(proc=processor):
return await asyncio.wait_for(
proc.process_info(observations=observations, running_memorys=running_memorys),
proc.process_info(observations=observations),
timeout=global_config.focus_chat.processor_max_time,
)
@@ -443,32 +456,29 @@ class HeartFChatting:
# 根据配置决定是否并行执行调整动作、回忆和处理器阶段
# 并行执行调整动作、回忆和处理器阶段
# 并行执行调整动作、回忆和处理器阶段
with Timer("并行调整动作、处理", cycle_timers):
# 创建并行任务
async def modify_actions_task():
async def modify_actions_task():
# 调用完整的动作修改流程
await self.action_modifier.modify_actions(
observations=self.observations,
)
await self.action_observation.observe()
self.observations.append(self.action_observation)
return True
# 创建三个并行任务
action_modify_task = asyncio.create_task(modify_actions_task())
memory_task = asyncio.create_task(self.memory_activator.activate_memory(self.observations))
processor_task = asyncio.create_task(self._process_processors(self.observations, []))
processor_task = asyncio.create_task(self._process_processors(self.observations))
# 等待三个任务完成
_, running_memorys, (all_plan_info, processor_time_costs) = await asyncio.gather(
action_modify_task, memory_task, processor_task
)
loop_processor_info = {
"all_plan_info": all_plan_info,
"processor_time_costs": processor_time_costs,
@@ -479,7 +489,6 @@ class HeartFChatting:
loop_plan_info = {
"action_result": plan_result.get("action_result", {}),
"current_mind": plan_result.get("current_mind", ""),
"observed_messages": plan_result.get("observed_messages", ""),
}
@@ -552,9 +561,6 @@ class HeartFChatting:
tuple[bool, str, str]: (是否执行了动作, 思考消息ID, 命令)
"""
try:
action_time = time.time()
action_id = f"{action_time}_{thinking_id}"
# 使用工厂创建动作处理器实例
try:
action_handler = self.action_manager.create_action(
@@ -586,9 +592,13 @@ class HeartFChatting:
else:
success, reply_text = result
command = ""
logger.debug(
f"{self.log_prefix} 麦麦执行了'{action}', 返回结果'{success}', '{reply_text}', '{command}'"
)
# 检查action_data中是否有系统命令优先使用系统命令
if "_system_command" in action_data:
command = action_data["_system_command"]
logger.debug(f"{self.log_prefix} 从action_data中获取系统命令: {command}")
logger.debug(f"{self.log_prefix} 麦麦执行了'{action}', 返回结果'{success}', '{reply_text}', '{command}'")
return success, reply_text, command

View File

@@ -1,10 +1,10 @@
import asyncio
from typing import Dict, Optional # 重新导入类型
from src.chat.message_receive.message import MessageSending, MessageThinking
from src.common.message.api import global_api
from src.common.message.api import get_global_api
from src.chat.message_receive.storage import MessageStorage
from src.chat.utils.utils import truncate_message
from src.common.logger_manager import get_logger
from src.common.logger import get_logger
from src.chat.utils.utils import calculate_typing_time
from rich.traceback import install
import traceback
@@ -21,8 +21,8 @@ async def send_message(message: MessageSending) -> str:
try:
# 直接调用API发送消息
await global_api.send_message(message)
logger.success(f"已将消息 '{message_preview}' 发往平台'{message.message_info.platform}'")
await get_global_api().send_message(message)
logger.info(f"已将消息 '{message_preview}' 发往平台'{message.message_info.platform}'")
return message.processed_plain_text
except Exception as e:
@@ -88,10 +88,10 @@ class HeartFCSender:
"""
if not message.chat_stream:
logger.error("消息缺少 chat_stream无法发送")
return
raise Exception("消息缺少 chat_stream无法发送")
if not message.message_info or not message.message_info.message_id:
logger.error("消息缺少 message_info 或 message_id无法发送")
return
raise Exception("消息缺少 message_info 或 message_id无法发送")
chat_id = message.chat_stream.stream_id
message_id = message.message_info.message_id
@@ -110,7 +110,9 @@ class HeartFCSender:
message.set_reply()
logger.debug(f"[{chat_id}] 应用 set_reply 逻辑: {message.processed_plain_text[:20]}...")
# print(f"message.display_message: {message.display_message}")
await message.process()
# print(f"message.display_message: {message.display_message}")
if typing:
if has_thinking:

View File

@@ -1,13 +1,12 @@
from src.chat.memory_system.Hippocampus import HippocampusManager
from src.chat.memory_system.Hippocampus import hippocampus_manager
from src.config.config import global_config
from src.chat.message_receive.message import MessageRecv
from src.chat.message_receive.storage import MessageStorage
from src.chat.heart_flow.heartflow import heartflow
from src.chat.message_receive.chat_stream import chat_manager, ChatStream
from src.chat.message_receive.chat_stream import get_chat_manager, ChatStream
from src.chat.utils.utils import is_mentioned_bot_in_message
from src.chat.utils.timer_calculator import Timer
from src.common.logger_manager import get_logger
from src.person_info.relationship_manager import relationship_manager
from src.common.logger import get_logger
import math
import re
@@ -15,6 +14,8 @@ import traceback
from typing import Optional, Tuple, Dict, Any
from maim_message import UserInfo
from src.person_info.relationship_manager import get_relationship_manager
# from ..message_receive.message_buffer import message_buffer
logger = get_logger("chat")
@@ -45,14 +46,15 @@ async def _process_relationship(message: MessageRecv) -> None:
nickname = message.message_info.user_info.user_nickname
cardname = message.message_info.user_info.user_cardname or nickname
relationship_manager = get_relationship_manager()
is_known = await relationship_manager.is_known_some_one(platform, user_id)
if not is_known:
logger.info(f"首次认识用户: {nickname}")
await relationship_manager.first_knowing_some_one(platform, user_id, nickname, cardname)
# elif not await relationship_manager.is_qved_name(platform, user_id):
# logger.info(f"给用户({nickname},{cardname})取名: {nickname}")
# await relationship_manager.first_knowing_some_one(platform, user_id, nickname, cardname, "")
# logger.info(f"给用户({nickname},{cardname})取名: {nickname}")
# await relationship_manager.first_knowing_some_one(platform, user_id, nickname, cardname, "")
async def _calculate_interest(message: MessageRecv) -> Tuple[float, bool]:
@@ -67,21 +69,22 @@ async def _calculate_interest(message: MessageRecv) -> Tuple[float, bool]:
is_mentioned, _ = is_mentioned_bot_in_message(message)
interested_rate = 0.0
with Timer("记忆激活"):
interested_rate = await HippocampusManager.get_instance().get_activate_from_text(
message.processed_plain_text,
fast_retrieval=True,
)
text_len = len(message.processed_plain_text)
# 根据文本长度调整兴趣度长度越大兴趣度越高但增长率递减最低0.01最高0.05
# 采用对数函数实现递减增长
if global_config.memory.enable_memory:
with Timer("记忆激活"):
interested_rate = await hippocampus_manager.get_activate_from_text(
message.processed_plain_text,
fast_retrieval=True,
)
logger.debug(f"记忆激活率: {interested_rate:.2f}")
base_interest = 0.01 + (0.05 - 0.01) * (math.log10(text_len + 1) / math.log10(1000 + 1))
base_interest = min(max(base_interest, 0.01), 0.05)
text_len = len(message.processed_plain_text)
# 根据文本长度调整兴趣度长度越大兴趣度越高但增长率递减最低0.01,最高0.05
# 采用对数函数实现递减增长
interested_rate += base_interest
base_interest = 0.01 + (0.05 - 0.01) * (math.log10(text_len + 1) / math.log10(1000 + 1))
base_interest = min(max(base_interest, 0.01), 0.05)
logger.trace(f"记忆激活率: {interested_rate:.2f}")
interested_rate += base_interest
if is_mentioned:
interest_increase_on_mention = 1
@@ -180,8 +183,7 @@ class HeartFCMessageReceiver:
userinfo = message.message_info.user_info
messageinfo = message.message_info
chat = await chat_manager.get_or_create_stream(
chat = await get_chat_manager().get_or_create_stream(
platform=messageinfo.platform,
user_info=userinfo,
group_info=groupinfo,
@@ -210,7 +212,7 @@ class HeartFCMessageReceiver:
logger.info(f"[{mes_name}]{userinfo.user_nickname}:{message.processed_plain_text}")
# 8. 关系处理
if global_config.relationship.give_name:
if global_config.relationship.enable_relationship and global_config.relationship.give_name:
await _process_relationship(message)
except Exception as e:

View File

@@ -3,7 +3,7 @@ from typing import Optional
from src.chat.message_receive.message import MessageRecv, BaseMessageInfo
from src.chat.message_receive.chat_stream import ChatStream
from src.chat.message_receive.message import UserInfo
from src.common.logger_manager import get_logger
from src.common.logger import get_logger
import json
logger = get_logger(__name__)

View File

@@ -1,8 +1,8 @@
from abc import ABC, abstractmethod
from typing import List, Any, Optional, Dict
from typing import List, Any
from src.chat.focus_chat.info.info_base import InfoBase
from src.chat.heart_flow.observation.observation import Observation
from src.common.logger_manager import get_logger
from src.common.logger import get_logger
logger = get_logger("base_processor")
@@ -23,8 +23,7 @@ class BaseProcessor(ABC):
@abstractmethod
async def process_info(
self,
observations: Optional[List[Observation]] = None,
running_memorys: Optional[List[Dict]] = None,
observations: List[Observation] = None,
**kwargs: Any,
) -> List[InfoBase]:
"""处理信息对象的抽象方法

View File

@@ -1,17 +1,15 @@
from typing import List, Optional, Any
from typing import List, Any
from src.chat.focus_chat.info.obs_info import ObsInfo
from src.chat.heart_flow.observation.observation import Observation
from src.chat.focus_chat.info.info_base import InfoBase
from .base_processor import BaseProcessor
from src.common.logger_manager import get_logger
from src.common.logger import get_logger
from src.chat.heart_flow.observation.chatting_observation import ChattingObservation
from src.chat.heart_flow.observation.hfcloop_observation import HFCloopObservation
from src.chat.focus_chat.info.cycle_info import CycleInfo
from datetime import datetime
from typing import Dict
from src.llm_models.utils_model import LLMRequest
from src.config.config import global_config
import asyncio
logger = get_logger("processor")
@@ -36,8 +34,7 @@ class ChattingInfoProcessor(BaseProcessor):
async def process_info(
self,
observations: Optional[List[Observation]] = None,
running_memorys: Optional[List[Dict]] = None,
observations: List[Observation] = None,
**kwargs: Any,
) -> List[InfoBase]:
"""处理Observation对象

View File

@@ -4,18 +4,17 @@ from src.llm_models.utils_model import LLMRequest
from src.config.config import global_config
import time
import traceback
from src.common.logger_manager import get_logger
from src.individuality.individuality import individuality
from src.common.logger import get_logger
from src.individuality.individuality import get_individuality
from src.chat.utils.prompt_builder import Prompt, global_prompt_manager
from src.chat.utils.json_utils import safe_json_dumps
from src.chat.message_receive.chat_stream import chat_manager
from src.person_info.relationship_manager import relationship_manager
from src.chat.message_receive.chat_stream import get_chat_manager
from src.person_info.relationship_manager import get_relationship_manager
from .base_processor import BaseProcessor
from src.chat.focus_chat.info.mind_info import MindInfo
from typing import List, Optional
from typing import List
from src.chat.heart_flow.observation.hfcloop_observation import HFCloopObservation
from src.chat.heart_flow.observation.actions_observation import ActionObservation
from typing import Dict
from src.chat.focus_chat.info.info_base import InfoBase
logger = get_logger("processor")
@@ -77,7 +76,7 @@ class MindProcessor(BaseProcessor):
self.structured_info = []
self.structured_info_str = ""
name = chat_manager.get_stream_name(self.subheartflow_id)
name = get_chat_manager().get_stream_name(self.subheartflow_id)
self.log_prefix = f"[{name}] "
self._update_structured_info_str()
@@ -110,7 +109,8 @@ class MindProcessor(BaseProcessor):
logger.debug(f"{self.log_prefix} 更新 structured_info_str: \n{self.structured_info_str}")
async def process_info(
self, observations: Optional[List[Observation]] = None, running_memorys: Optional[List[Dict]] = None, *infos
self,
observations: List[Observation] = None,
) -> List[InfoBase]:
"""处理信息对象
@@ -120,16 +120,14 @@ class MindProcessor(BaseProcessor):
Returns:
List[InfoBase]: 处理后的结构化信息列表
"""
current_mind = await self.do_thinking_before_reply(observations, running_memorys)
current_mind = await self.do_thinking_before_reply(observations)
mind_info = MindInfo()
mind_info.set_current_mind(current_mind)
return [mind_info]
async def do_thinking_before_reply(
self, observations: Optional[List[Observation]] = None, running_memorys: Optional[List[Dict]] = None
):
async def do_thinking_before_reply(self, observations: List[Observation] = None):
"""
在回复前进行思考生成内心想法并收集工具调用结果
@@ -157,13 +155,6 @@ class MindProcessor(BaseProcessor):
logger.debug(
f"{self.log_prefix} 当前完整的 structured_info: {safe_json_dumps(self.structured_info, ensure_ascii=False)}"
)
memory_str = ""
if running_memorys:
memory_str = "以下是当前在聊天中,你回忆起的记忆:\n"
for running_memory in running_memorys:
memory_str += f"{running_memory['topic']}: {running_memory['content']}\n"
# ---------- 1. 准备基础数据 ----------
# 获取现有想法和情绪状态
previous_mind = self.current_mind if self.current_mind else ""
@@ -193,15 +184,16 @@ class MindProcessor(BaseProcessor):
# 获取个性化信息
relation_prompt = ""
for person in person_list:
relation_prompt += await relationship_manager.build_relationship_info(person, is_id=True)
if global_config.relationship.enable_relationship:
for person in person_list:
relationship_manager = get_relationship_manager()
relation_prompt += await relationship_manager.build_relationship_info(person, is_id=True)
template_name = "sub_heartflow_prompt_before" if is_group_chat else "sub_heartflow_prompt_private_before"
logger.debug(f"{self.log_prefix} 使用{'群聊' if is_group_chat else '私聊'}思考模板")
prompt = (await global_prompt_manager.get_prompt_async(template_name)).format(
bot_name=individuality.name,
memory_str=memory_str,
bot_name=get_individuality().name,
extra_info=self.structured_info_str,
relation_prompt=relation_prompt,
time_now=time.strftime("%Y-%m-%d %H:%M:%S", time.localtime()),

View File

@@ -4,21 +4,27 @@ from src.llm_models.utils_model import LLMRequest
from src.config.config import global_config
import time
import traceback
from src.common.logger_manager import get_logger
from src.common.logger import get_logger
from src.chat.utils.prompt_builder import Prompt, global_prompt_manager
from src.chat.message_receive.chat_stream import chat_manager
from src.person_info.relationship_manager import relationship_manager
from src.chat.message_receive.chat_stream import get_chat_manager
from src.person_info.relationship_manager import get_relationship_manager
from .base_processor import BaseProcessor
from typing import List, Optional
from typing import List
from typing import Dict
from src.chat.focus_chat.info.info_base import InfoBase
from src.chat.focus_chat.info.relation_info import RelationInfo
from json_repair import repair_json
from src.person_info.person_info import person_info_manager
from src.person_info.person_info import get_person_info_manager
import json
import asyncio
from src.chat.utils.chat_message_builder import get_raw_msg_by_timestamp_with_chat
# 配置常量:是否启用小模型即时信息提取
# 开启时:使用小模型并行即时提取,速度更快,但精度可能略低
# 关闭时:使用原来的异步模式,精度更高但速度较慢
ENABLE_INSTANT_INFO_EXTRACTION = True
logger = get_logger("processor")
@@ -58,7 +64,7 @@ def init_prompt():
"""
Prompt(relationship_prompt, "relationship_prompt")
fetch_info_prompt = """
{name_block}
@@ -79,7 +85,6 @@ def init_prompt():
Prompt(fetch_info_prompt, "fetch_info_prompt")
class RelationshipProcessor(BaseProcessor):
log_prefix = "关系"
@@ -87,8 +92,10 @@ class RelationshipProcessor(BaseProcessor):
super().__init__()
self.subheartflow_id = subheartflow_id
self.info_fetching_cache: List[Dict[str, any]] = []
self.info_fetched_cache: Dict[str, Dict[str, any]] = {} # {person_id: {"info": str, "ttl": int, "start_time": float}}
self.info_fetching_cache: List[Dict[str, any]] = []
self.info_fetched_cache: Dict[
str, Dict[str, any]
] = {} # {person_id: {"info": str, "ttl": int, "start_time": float}}
self.person_engaged_cache: List[Dict[str, any]] = [] # [{person_id: str, start_time: float, rounds: int}]
self.grace_period_rounds = 5
@@ -97,12 +104,17 @@ class RelationshipProcessor(BaseProcessor):
request_type="focus.relationship",
)
name = chat_manager.get_stream_name(self.subheartflow_id)
# 小模型用于即时信息提取
if ENABLE_INSTANT_INFO_EXTRACTION:
self.instant_llm_model = LLMRequest(
model=global_config.model.utils_small,
request_type="focus.relationship.instant",
)
name = get_chat_manager().get_stream_name(self.subheartflow_id)
self.log_prefix = f"[{name}] "
async def process_info(
self, observations: Optional[List[Observation]] = None, running_memorys: Optional[List[Dict]] = None, *infos
) -> List[InfoBase]:
async def process_info(self, observations: List[Observation] = None, *infos) -> List[InfoBase]:
"""处理信息对象
Args:
@@ -124,7 +136,7 @@ class RelationshipProcessor(BaseProcessor):
async def relation_identify(
self,
observations: Optional[List[Observation]] = None,
observations: List[Observation] = None,
):
"""
在回复前进行思考,生成内心想法并收集工具调用结果
@@ -144,18 +156,27 @@ class RelationshipProcessor(BaseProcessor):
for record in list(self.person_engaged_cache):
record["rounds"] += 1
time_elapsed = current_time - record["start_time"]
message_count = len(get_raw_msg_by_timestamp_with_chat(self.subheartflow_id, record["start_time"], current_time))
if (record["rounds"] > 50 or
time_elapsed > 1800 or # 30分钟
message_count > 75):
logger.info(f"{self.log_prefix} 用户 {record['person_id']} 满足关系构建条件,开始构建关系。")
message_count = len(
get_raw_msg_by_timestamp_with_chat(self.subheartflow_id, record["start_time"], current_time)
)
print(record)
# 根据消息数量和时间设置不同的触发条件
should_trigger = (
message_count >= 50 # 50条消息必定满足
or (message_count >= 35 and time_elapsed >= 300) # 35条且10分钟
or (message_count >= 25 and time_elapsed >= 900) # 25条且30分钟
or (message_count >= 10 and time_elapsed >= 2000) # 10条且1小时
)
if should_trigger:
logger.info(
f"{self.log_prefix} 用户 {record['person_id']} 满足关系构建条件,开始构建关系。消息数:{message_count},时长:{time_elapsed:.0f}"
)
asyncio.create_task(
self.update_impression_on_cache_expiry(
record["person_id"],
self.subheartflow_id,
record["start_time"],
current_time
record["person_id"], self.subheartflow_id, record["start_time"], current_time
)
)
self.person_engaged_cache.remove(record)
@@ -167,20 +188,24 @@ class RelationshipProcessor(BaseProcessor):
if self.info_fetched_cache[person_id][info_type]["ttl"] <= 0:
# 在删除前查找匹配的info_fetching_cache记录
matched_record = None
min_time_diff = float('inf')
min_time_diff = float("inf")
for record in self.info_fetching_cache:
if (record["person_id"] == person_id and
record["info_type"] == info_type and
not record["forget"]):
time_diff = abs(record["start_time"] - self.info_fetched_cache[person_id][info_type]["start_time"])
if (
record["person_id"] == person_id
and record["info_type"] == info_type
and not record["forget"]
):
time_diff = abs(
record["start_time"] - self.info_fetched_cache[person_id][info_type]["start_time"]
)
if time_diff < min_time_diff:
min_time_diff = time_diff
matched_record = record
if matched_record:
matched_record["forget"] = True
logger.info(f"{self.log_prefix} 用户 {person_id}{info_type} 信息已过期,标记为遗忘。")
del self.info_fetched_cache[person_id][info_type]
if not self.info_fetched_cache[person_id]:
del self.info_fetched_cache[person_id]
@@ -188,7 +213,7 @@ class RelationshipProcessor(BaseProcessor):
# 5. 为需要处理的人员准备LLM prompt
nickname_str = ",".join(global_config.bot.alias_names)
name_block = f"你的名字是{global_config.bot.nickname},你的昵称有{nickname_str},有人也会用这些昵称称呼你。"
info_cache_block = ""
if self.info_fetching_cache:
for info_fetching in self.info_fetching_cache:
@@ -203,37 +228,63 @@ class RelationshipProcessor(BaseProcessor):
chat_observe_info=chat_observe_info,
info_cache_block=info_cache_block,
)
try:
logger.info(f"{self.log_prefix} 人物信息prompt: \n{prompt}\n")
logger.debug(f"{self.log_prefix} 人物信息prompt: \n{prompt}\n")
content, _ = await self.llm_model.generate_response_async(prompt=prompt)
if content:
print(f"content: {content}")
content_json = json.loads(repair_json(content))
# 收集即时提取任务
instant_tasks = []
async_tasks = []
person_info_manager = get_person_info_manager()
for person_name, info_type in content_json.items():
person_id = person_info_manager.get_person_id_by_person_name(person_name)
if person_id:
self.info_fetching_cache.append({
"person_id": person_id,
"person_name": person_name,
"info_type": info_type,
"start_time": time.time(),
"forget": False,
})
self.info_fetching_cache.append(
{
"person_id": person_id,
"person_name": person_name,
"info_type": info_type,
"start_time": time.time(),
"forget": False,
}
)
if len(self.info_fetching_cache) > 20:
self.info_fetching_cache.pop(0)
else:
logger.warning(f"{self.log_prefix} 未找到用户 {person_name} 的ID跳过调取信息。")
continue
logger.info(f"{self.log_prefix} 调取用户 {person_name}{info_type} 信息。")
self.person_engaged_cache.append({
"person_id": person_id,
"start_time": time.time(),
"rounds": 0
})
asyncio.create_task(self.fetch_person_info(person_id, [info_type], start_time=time.time()))
# 检查person_engaged_cache中是否已存在该person_id
person_exists = any(record["person_id"] == person_id for record in self.person_engaged_cache)
if not person_exists:
self.person_engaged_cache.append(
{"person_id": person_id, "start_time": time.time(), "rounds": 0}
)
if ENABLE_INSTANT_INFO_EXTRACTION:
# 收集即时提取任务
instant_tasks.append((person_id, info_type, time.time()))
else:
# 使用原来的异步模式
async_tasks.append(
asyncio.create_task(self.fetch_person_info(person_id, [info_type], start_time=time.time()))
)
# 执行即时提取任务
if ENABLE_INSTANT_INFO_EXTRACTION and instant_tasks:
await self._execute_instant_extraction_batch(instant_tasks)
# 启动异步任务(如果不是即时模式)
if async_tasks:
# 异步任务不需要等待完成
pass
else:
logger.warning(f"{self.log_prefix} LLM返回空结果关系识别失败。")
@@ -254,86 +305,179 @@ class RelationshipProcessor(BaseProcessor):
info_content = self.info_fetched_cache[person_id][info_type]["info"]
person_infos_str += f"[{info_type}]{info_content}"
else:
person_infos_str += f"你不了解{person_name}有关[{info_type}]的信息,不要胡乱回答;"
person_infos_str += f"你不了解{person_name}有关[{info_type}]的信息,不要胡乱回答,你可以直接说你不知道,或者你忘记了"
if person_infos_str:
persons_infos_str += f"你对 {person_name} 的了解:{person_infos_str}\n"
# 处理正在调取但还没有结果的项目
pending_info_dict = {}
for record in self.info_fetching_cache:
if not record["forget"]:
current_time = time.time()
# 只处理不超过2分钟的调取请求避免过期请求一直显示
if current_time - record["start_time"] <= 120: # 10分钟内的请求
person_id = record["person_id"]
person_name = record["person_name"]
info_type = record["info_type"]
# 检查是否已经在info_fetched_cache中有结果
if (person_id in self.info_fetched_cache and
info_type in self.info_fetched_cache[person_id]):
continue
# 按人物组织正在调取的信息
if person_name not in pending_info_dict:
pending_info_dict[person_name] = []
pending_info_dict[person_name].append(info_type)
# 添加正在调取的信息到返回字符串
for person_name, info_types in pending_info_dict.items():
info_types_str = "".join(info_types)
persons_infos_str += f"你正在识图回忆有关 {person_name}{info_types_str} 信息,稍等一下再回答...\n"
# 处理正在调取但还没有结果的项目(只在非即时提取模式下显示)
if not ENABLE_INSTANT_INFO_EXTRACTION:
pending_info_dict = {}
for record in self.info_fetching_cache:
if not record["forget"]:
current_time = time.time()
# 只处理不超过2分钟的调取请求避免过期请求一直显示
if current_time - record["start_time"] <= 120: # 10分钟内的请求
person_id = record["person_id"]
person_name = record["person_name"]
info_type = record["info_type"]
# 检查是否已经在info_fetched_cache中有结果
if person_id in self.info_fetched_cache and info_type in self.info_fetched_cache[person_id]:
continue
# 按人物组织正在调取的信息
if person_name not in pending_info_dict:
pending_info_dict[person_name] = []
pending_info_dict[person_name].append(info_type)
# 添加正在调取的信息到返回字符串
for person_name, info_types in pending_info_dict.items():
info_types_str = "".join(info_types)
persons_infos_str += f"你正在识图回忆有关 {person_name}{info_types_str} 信息,稍等一下再回答...\n"
return persons_infos_str
async def _execute_instant_extraction_batch(self, instant_tasks: list):
"""
批量执行即时提取任务
"""
if not instant_tasks:
return
logger.info(f"{self.log_prefix} [即时提取] 开始批量提取 {len(instant_tasks)} 个信息")
# 创建所有提取任务
extraction_tasks = []
for person_id, info_type, start_time in instant_tasks:
# 检查缓存中是否已存在且未过期的信息
if person_id in self.info_fetched_cache and info_type in self.info_fetched_cache[person_id]:
logger.info(f"{self.log_prefix} 用户 {person_id}{info_type} 信息已存在且未过期,跳过调取。")
continue
task = asyncio.create_task(self._fetch_single_info_instant(person_id, info_type, start_time))
extraction_tasks.append(task)
# 并行执行所有提取任务并等待完成
if extraction_tasks:
await asyncio.gather(*extraction_tasks, return_exceptions=True)
logger.info(f"{self.log_prefix} [即时提取] 批量提取完成")
async def _fetch_single_info_instant(self, person_id: str, info_type: str, start_time: float):
"""
使用小模型提取单个信息类型
"""
person_info_manager = get_person_info_manager()
nickname_str = ",".join(global_config.bot.alias_names)
name_block = f"你的名字是{global_config.bot.nickname},你的昵称有{nickname_str},有人也会用这些昵称称呼你。"
person_name = await person_info_manager.get_value(person_id, "person_name")
person_impression = await person_info_manager.get_value(person_id, "impression")
if not person_impression:
impression_block = "你对ta没有什么深刻的印象"
else:
impression_block = f"{person_impression}"
points = await person_info_manager.get_value(person_id, "points")
if points:
points_text = "\n".join([f"{point[2]}:{point[0]}" for point in points])
else:
points_text = "你不记得ta最近发生了什么"
prompt = (await global_prompt_manager.get_prompt_async("fetch_info_prompt")).format(
name_block=name_block,
info_type=info_type,
person_impression=impression_block,
person_name=person_name,
info_json_str=f'"{info_type}": "信息内容"',
points_text=points_text,
)
try:
# 使用小模型进行即时提取
content, _ = await self.instant_llm_model.generate_response_async(prompt=prompt)
logger.info(f"{self.log_prefix} [即时提取] {person_name}{info_type} 结果: {content}")
if content:
content_json = json.loads(repair_json(content))
if info_type in content_json:
info_content = content_json[info_type]
if info_content != "none" and info_content:
if person_id not in self.info_fetched_cache:
self.info_fetched_cache[person_id] = {}
self.info_fetched_cache[person_id][info_type] = {
"info": info_content,
"ttl": 8, # 小模型提取的信息TTL稍短
"start_time": start_time,
"person_name": person_name,
"unknow": False,
}
logger.info(
f"{self.log_prefix} [即时提取] 成功获取 {person_name}{info_type}: {info_content}"
)
else:
if person_id not in self.info_fetched_cache:
self.info_fetched_cache[person_id] = {}
self.info_fetched_cache[person_id][info_type] = {
"info": "unknow",
"ttl": 8,
"start_time": start_time,
"person_name": person_name,
"unknow": True,
}
logger.info(f"{self.log_prefix} [即时提取] {person_name}{info_type} 信息不明确")
else:
logger.warning(
f"{self.log_prefix} [即时提取] 小模型返回空结果,获取 {person_name}{info_type} 信息失败。"
)
except Exception as e:
logger.error(f"{self.log_prefix} [即时提取] 执行小模型请求获取用户信息时出错: {e}")
logger.error(traceback.format_exc())
async def fetch_person_info(self, person_id: str, info_types: list[str], start_time: float):
"""
获取某个人的信息
"""
# 检查缓存中是否已存在且未过期的信息
info_types_to_fetch = []
for info_type in info_types:
if (person_id in self.info_fetched_cache and
info_type in self.info_fetched_cache[person_id]):
if person_id in self.info_fetched_cache and info_type in self.info_fetched_cache[person_id]:
logger.info(f"{self.log_prefix} 用户 {person_id}{info_type} 信息已存在且未过期,跳过调取。")
continue
info_types_to_fetch.append(info_type)
if not info_types_to_fetch:
return
nickname_str = ",".join(global_config.bot.alias_names)
name_block = f"你的名字是{global_config.bot.nickname},你的昵称有{nickname_str},有人也会用这些昵称称呼你。"
person_info_manager = get_person_info_manager()
person_name = await person_info_manager.get_value(person_id, "person_name")
info_type_str = ""
info_json_str = ""
for info_type in info_types_to_fetch:
info_type_str += f"{info_type},"
info_json_str += f"\"{info_type}\": \"信息内容\","
info_json_str += f'"{info_type}": "信息内容",'
info_type_str = info_type_str[:-1]
info_json_str = info_json_str[:-1]
person_impression = await person_info_manager.get_value(person_id, "impression")
if not person_impression:
impression_block = "你对ta没有什么深刻的印象"
else:
impression_block = f"{person_impression}"
points = await person_info_manager.get_value(person_id, "points")
if points:
points_text = "\n".join([
f"{point[2]}:{point[0]}"
for point in points
])
points_text = "\n".join([f"{point[2]}:{point[0]}" for point in points])
else:
points_text = "你不记得ta最近发生了什么"
prompt = (await global_prompt_manager.get_prompt_async("fetch_info_prompt")).format(
name_block=name_block,
info_type=info_type_str,
@@ -345,10 +489,10 @@ class RelationshipProcessor(BaseProcessor):
try:
content, _ = await self.llm_model.generate_response_async(prompt=prompt)
# logger.info(f"{self.log_prefix} fetch_person_info prompt: \n{prompt}\n")
logger.info(f"{self.log_prefix} fetch_person_info 结果: {content}")
if content:
try:
content_json = json.loads(repair_json(content))
@@ -366,9 +510,9 @@ class RelationshipProcessor(BaseProcessor):
else:
if person_id not in self.info_fetched_cache:
self.info_fetched_cache[person_id] = {}
self.info_fetched_cache[person_id][info_type] = {
"info":"unknow",
"info": "unknow",
"ttl": 10,
"start_time": start_time,
"person_name": person_name,
@@ -383,19 +527,16 @@ class RelationshipProcessor(BaseProcessor):
logger.error(f"{self.log_prefix} 执行LLM请求获取用户信息时出错: {e}")
logger.error(traceback.format_exc())
async def update_impression_on_cache_expiry(
self, person_id: str, chat_id: str, start_time: float, end_time: float
):
async def update_impression_on_cache_expiry(self, person_id: str, chat_id: str, start_time: float, end_time: float):
"""
在缓存过期时,获取聊天记录并更新用户印象
"""
logger.info(f"缓存过期,开始为 {person_id} 更新印象。时间范围:{start_time} -> {end_time}")
try:
impression_messages = get_raw_msg_by_timestamp_with_chat(chat_id, start_time, end_time)
if impression_messages:
logger.info(f"{person_id} 获取到 {len(impression_messages)} 条消息用于印象更新。")
relationship_manager = get_relationship_manager()
await relationship_manager.update_person_impression(
person_id=person_id, timestamp=end_time, bot_engaged_messages=impression_messages
)

View File

@@ -4,14 +4,13 @@ from src.llm_models.utils_model import LLMRequest
from src.config.config import global_config
import time
import traceback
from src.common.logger_manager import get_logger
from src.individuality.individuality import individuality
from src.common.logger import get_logger
from src.individuality.individuality import get_individuality
from src.chat.utils.prompt_builder import Prompt, global_prompt_manager
from src.chat.message_receive.chat_stream import chat_manager
from src.chat.message_receive.chat_stream import get_chat_manager
from .base_processor import BaseProcessor
from typing import List, Optional
from typing import List
from src.chat.heart_flow.observation.hfcloop_observation import HFCloopObservation
from typing import Dict
from src.chat.focus_chat.info.info_base import InfoBase
from src.chat.focus_chat.info.self_info import SelfInfo
@@ -59,12 +58,10 @@ class SelfProcessor(BaseProcessor):
request_type="focus.processor.self_identify",
)
name = chat_manager.get_stream_name(self.subheartflow_id)
name = get_chat_manager().get_stream_name(self.subheartflow_id)
self.log_prefix = f"[{name}] "
async def process_info(
self, observations: Optional[List[Observation]] = None, running_memorys: Optional[List[Dict]] = None, *infos
) -> List[InfoBase]:
async def process_info(self, observations: List[Observation] = None, *infos) -> List[InfoBase]:
"""处理信息对象
Args:
@@ -73,7 +70,7 @@ class SelfProcessor(BaseProcessor):
Returns:
List[InfoBase]: 处理后的结构化信息列表
"""
self_info_str = await self.self_indentify(observations, running_memorys)
self_info_str = await self.self_indentify(observations)
if self_info_str:
self_info = SelfInfo()
@@ -85,7 +82,8 @@ class SelfProcessor(BaseProcessor):
return [self_info]
async def self_indentify(
self, observations: Optional[List[Observation]] = None, running_memorys: Optional[List[Dict]] = None
self,
observations: List[Observation] = None,
):
"""
在回复前进行思考,生成内心想法并收集工具调用结果
@@ -100,13 +98,6 @@ class SelfProcessor(BaseProcessor):
tuple: (current_mind, past_mind, prompt) 当前想法、过去的想法列表和使用的prompt
"""
for observation in observations:
if isinstance(observation, ChattingObservation):
is_group_chat = observation.is_group_chat
chat_target_info = observation.chat_target_info
chat_target_name = "对方" # 私聊默认名称
person_list = observation.person_list
if observations is None:
observations = []
for observation in observations:
@@ -122,9 +113,7 @@ class SelfProcessor(BaseProcessor):
)
# 获取聊天内容
chat_observe_info = observation.get_observe_info()
person_list = observation.person_list
if isinstance(observation, HFCloopObservation):
# hfcloop_observe_info = observation.get_observe_info()
pass
nickname_str = ""
@@ -132,8 +121,9 @@ class SelfProcessor(BaseProcessor):
nickname_str += f"{nicknames},"
name_block = f"你的名字是{global_config.bot.nickname},你的昵称有{nickname_str},有人也会用这些昵称称呼你。"
personality_block = individuality.get_personality_prompt(x_person=2, level=2)
identity_block = individuality.get_identity_prompt(x_person=2, level=2)
personality_block = get_individuality().get_personality_prompt(x_person=2, level=2)
identity_block = get_individuality().get_identity_prompt(x_person=2, level=2)
prompt = (await global_prompt_manager.get_prompt_async("indentify_prompt")).format(
name_block=name_block,

View File

@@ -2,13 +2,13 @@ from src.chat.heart_flow.observation.chatting_observation import ChattingObserva
from src.llm_models.utils_model import LLMRequest
from src.config.config import global_config
import time
from src.common.logger_manager import get_logger
from src.individuality.individuality import individuality
from src.common.logger import get_logger
from src.individuality.individuality import get_individuality
from src.chat.utils.prompt_builder import Prompt, global_prompt_manager
from src.tools.tool_use import ToolUser
from src.chat.utils.json_utils import process_llm_tool_calls
from .base_processor import BaseProcessor
from typing import List, Optional, Dict
from typing import List, Optional
from src.chat.heart_flow.observation.observation import Observation
from src.chat.focus_chat.info.structured_info import StructuredInfo
from src.chat.heart_flow.observation.structure_observation import StructureObservation
@@ -47,12 +47,12 @@ class ToolProcessor(BaseProcessor):
)
self.structured_info = []
async def process_info(
self, observations: Optional[List[Observation]] = None, running_memorys: Optional[List[Dict]] = None, *infos
) -> List[dict]:
async def process_info(self, observations: Optional[List[Observation]] = None) -> List[StructuredInfo]:
"""处理信息对象
Args:
observations: 可选的观察列表包含ChattingObservation和StructureObservation类型
running_memories: 可选的运行时记忆列表,包含字典类型的记忆信息
*infos: 可变数量的InfoBase类型的信息对象
Returns:
@@ -60,15 +60,15 @@ class ToolProcessor(BaseProcessor):
"""
working_infos = []
result = []
if observations:
for observation in observations:
if isinstance(observation, ChattingObservation):
result, used_tools, prompt = await self.execute_tools(observation, running_memorys)
result, used_tools, prompt = await self.execute_tools(observation)
# 更新WorkingObservation中的结构化信息
logger.debug(f"工具调用结果: {result}")
# 更新WorkingObservation中的结构化信息
for observation in observations:
if isinstance(observation, StructureObservation):
for structured_info in result:
@@ -81,16 +81,11 @@ class ToolProcessor(BaseProcessor):
structured_info = StructuredInfo()
if working_infos:
for working_info in working_infos:
# print(f"working_info: {working_info}")
# print(f"working_info.get('type'): {working_info.get('type')}")
# print(f"working_info.get('content'): {working_info.get('content')}")
structured_info.set_info(key=working_info.get("type"), value=working_info.get("content"))
# info = structured_info.get_processed_info()
# print(f"info: {info}")
return [structured_info]
async def execute_tools(self, observation: ChattingObservation, running_memorys: Optional[List[Dict]] = None):
async def execute_tools(self, observation: ChattingObservation):
"""
并行执行工具,返回结构化信息
@@ -118,13 +113,7 @@ class ToolProcessor(BaseProcessor):
is_group_chat = observation.is_group_chat
chat_observe_info = observation.get_observe_info()
person_list = observation.person_list
memory_str = ""
if running_memorys:
memory_str = "以下是当前在聊天中,你回忆起的记忆:\n"
for running_memory in running_memorys:
memory_str += f"{running_memory['topic']}: {running_memory['content']}\n"
# person_list = observation.person_list
# 获取时间信息
time_now = time.strftime("%Y-%m-%d %H:%M:%S", time.localtime())
@@ -132,18 +121,15 @@ class ToolProcessor(BaseProcessor):
# 构建专用于工具调用的提示词
prompt = await global_prompt_manager.format_prompt(
"tool_executor_prompt",
memory_str=memory_str,
chat_observe_info=chat_observe_info,
is_group_chat=is_group_chat,
bot_name=individuality.name,
bot_name=get_individuality().name,
time_now=time_now,
)
# 调用LLM专注于工具使用
# logger.info(f"开始执行工具调用{prompt}")
response, other_info = await self.llm_model.generate_response_async(
prompt=prompt, tools=tools
)
response, other_info = await self.llm_model.generate_response_async(prompt=prompt, tools=tools)
if len(other_info) == 3:
reasoning_content, model_name, tool_calls = other_info

View File

@@ -4,15 +4,14 @@ from src.llm_models.utils_model import LLMRequest
from src.config.config import global_config
import time
import traceback
from src.common.logger_manager import get_logger
from src.common.logger import get_logger
from src.chat.utils.prompt_builder import Prompt, global_prompt_manager
from src.chat.message_receive.chat_stream import chat_manager
from src.chat.message_receive.chat_stream import get_chat_manager
from .base_processor import BaseProcessor
from src.chat.focus_chat.info.mind_info import MindInfo
from typing import List, Optional
from typing import List
from src.chat.heart_flow.observation.working_observation import WorkingMemoryObservation
from src.chat.focus_chat.working_memory.working_memory import WorkingMemory
from typing import Dict
from src.chat.focus_chat.info.info_base import InfoBase
from json_repair import repair_json
from src.chat.focus_chat.info.workingmemory_info import WorkingMemoryInfo
@@ -64,12 +63,10 @@ class WorkingMemoryProcessor(BaseProcessor):
request_type="focus.processor.working_memory",
)
name = chat_manager.get_stream_name(self.subheartflow_id)
name = get_chat_manager().get_stream_name(self.subheartflow_id)
self.log_prefix = f"[{name}] "
async def process_info(
self, observations: Optional[List[Observation]] = None, running_memorys: Optional[List[Dict]] = None, *infos
) -> List[InfoBase]:
async def process_info(self, observations: List[Observation] = None, *infos) -> List[InfoBase]:
"""处理信息对象
Args:
@@ -118,9 +115,7 @@ class WorkingMemoryProcessor(BaseProcessor):
memory_str=memory_choose_str,
)
# print(f"prompt: {prompt}")
# 调用LLM处理记忆
content = ""

View File

@@ -3,10 +3,10 @@ from src.chat.heart_flow.observation.structure_observation import StructureObser
from src.chat.heart_flow.observation.hfcloop_observation import HFCloopObservation
from src.llm_models.utils_model import LLMRequest
from src.config.config import global_config
from src.common.logger_manager import get_logger
from src.common.logger import get_logger
from src.chat.utils.prompt_builder import Prompt, global_prompt_manager
from datetime import datetime
from src.chat.memory_system.Hippocampus import HippocampusManager
from src.chat.memory_system.Hippocampus import hippocampus_manager
from typing import List, Dict
import difflib
import json
@@ -87,6 +87,10 @@ class MemoryActivator:
Returns:
List[Dict]: 激活的记忆列表
"""
# 如果记忆系统被禁用,直接返回空列表
if not global_config.memory.enable_memory:
return []
obs_info_text = ""
for observation in observations:
if isinstance(observation, ChattingObservation):
@@ -128,10 +132,10 @@ class MemoryActivator:
logger.debug(f"当前激活的记忆关键词: {self.cached_keywords}")
# 调用记忆系统获取相关记忆
related_memory = await HippocampusManager.get_instance().get_memory_from_topic(
related_memory = await hippocampus_manager.get_memory_from_topic(
valid_keywords=keywords, max_memory_num=3, max_memory_length=2, max_depth=3
)
# related_memory = await HippocampusManager.get_instance().get_memory_from_text(
# related_memory = await hippocampus_manager.get_memory_from_text(
# text=obs_info_text, max_memory_num=5, max_memory_length=2, max_depth=3, fast_retrieval=False
# )

View File

@@ -1,16 +1,13 @@
from typing import Dict, List, Optional, Type, Any
from src.chat.focus_chat.planners.actions.base_action import BaseAction, _ACTION_REGISTRY
from src.plugin_system.base.base_action import BaseAction
from src.chat.heart_flow.observation.observation import Observation
from src.chat.focus_chat.replyer.default_replyer import DefaultReplyer
from src.chat.focus_chat.expressors.default_expressor import DefaultExpressor
from src.chat.message_receive.chat_stream import ChatStream
from src.common.logger_manager import get_logger
import importlib
import pkgutil
import os
from src.common.logger import get_logger
# 导入动作类,确保装饰器被执行
import src.chat.focus_chat.planners.actions # noqa
# 不再需要导入动作类,因为已经在main.py中导入
# import src.chat.actions.default_actions # noqa
logger = get_logger("action_manager")
@@ -18,6 +15,84 @@ logger = get_logger("action_manager")
ActionInfo = Dict[str, Any]
class PluginActionWrapper(BaseAction):
"""
新插件系统Action组件的兼容性包装器
将新插件系统的Action组件包装为旧系统兼容的BaseAction接口
"""
def __init__(
self, plugin_action, action_name: str, action_data: dict, reasoning: str, cycle_timers: dict, thinking_id: str
):
"""初始化包装器"""
# 调用旧系统BaseAction初始化只传递它能接受的参数
super().__init__(
action_data=action_data, reasoning=reasoning, cycle_timers=cycle_timers, thinking_id=thinking_id
)
# 存储插件Action实例它已经包含了所有必要的服务对象
self.plugin_action = plugin_action
self.action_name = action_name
# 从插件Action实例复制属性到包装器
self._sync_attributes_from_plugin_action()
def _sync_attributes_from_plugin_action(self):
"""从插件Action实例同步属性到包装器"""
# 基本属性
self.action_name = getattr(self.plugin_action, "action_name", self.action_name)
# 设置兼容的默认值
self.action_description = f"插件Action: {self.action_name}"
self.action_parameters = {}
self.action_require = []
# 激活类型属性(从新插件系统转换)
plugin_focus_type = getattr(self.plugin_action, "focus_activation_type", None)
plugin_normal_type = getattr(self.plugin_action, "normal_activation_type", None)
if plugin_focus_type:
self.focus_activation_type = (
plugin_focus_type.value if hasattr(plugin_focus_type, "value") else str(plugin_focus_type)
)
if plugin_normal_type:
self.normal_activation_type = (
plugin_normal_type.value if hasattr(plugin_normal_type, "value") else str(plugin_normal_type)
)
# 其他属性
self.random_activation_probability = getattr(self.plugin_action, "random_activation_probability", 0.0)
self.llm_judge_prompt = getattr(self.plugin_action, "llm_judge_prompt", "")
self.activation_keywords = getattr(self.plugin_action, "activation_keywords", [])
self.keyword_case_sensitive = getattr(self.plugin_action, "keyword_case_sensitive", False)
# 模式和并行设置
plugin_mode = getattr(self.plugin_action, "mode_enable", None)
if plugin_mode:
self.mode_enable = plugin_mode.value if hasattr(plugin_mode, "value") else str(plugin_mode)
self.parallel_action = getattr(self.plugin_action, "parallel_action", True)
self.enable_plugin = True
async def execute(self) -> tuple[bool, str]:
"""实现抽象方法execute委托给插件Action的execute方法"""
try:
# 调用插件Action的execute方法
success, response = await self.plugin_action.execute()
logger.debug(f"插件Action {self.action_name} 执行{'成功' if success else '失败'}: {response}")
return success, response
except Exception as e:
logger.error(f"插件Action {self.action_name} 执行异常: {e}")
return False, f"插件Action执行失败: {str(e)}"
async def handle_action(self) -> tuple[bool, str]:
"""兼容旧系统的动作处理接口委托给execute方法"""
return await self.execute()
class ActionManager:
"""
动作管理器,用于管理各种类型的动作
@@ -41,7 +116,7 @@ class ActionManager:
# 初始化时将默认动作加载到使用中的动作
self._using_actions = self._default_actions.copy()
# 添加系统核心动作
self._add_system_core_actions()
@@ -50,8 +125,13 @@ class ActionManager:
加载所有通过装饰器注册的动作
"""
try:
# 从_ACTION_REGISTRY获取所有已注册动作
for action_name, action_class in _ACTION_REGISTRY.items():
# 从组件注册中心获取所有已注册的action
from src.plugin_system.core.component_registry import component_registry
action_registry = component_registry.get_action_registry()
# 从action_registry获取所有已注册动作
for action_name, action_class in action_registry.items():
# 获取动作相关信息
# 不读取插件动作和基类
@@ -63,19 +143,33 @@ class ActionManager:
action_require: list[str] = getattr(action_class, "action_require", [])
associated_types: list[str] = getattr(action_class, "associated_types", [])
is_enabled: bool = getattr(action_class, "enable_plugin", True)
# 获取激活类型相关属性
focus_activation_type: str = getattr(action_class, "focus_activation_type", "always")
normal_activation_type: str = getattr(action_class, "normal_activation_type", "always")
focus_activation_type_attr = getattr(action_class, "focus_activation_type", "always")
normal_activation_type_attr = getattr(action_class, "normal_activation_type", "always")
# 处理枚举值,提取.value
focus_activation_type = (
focus_activation_type_attr.value
if hasattr(focus_activation_type_attr, "value")
else str(focus_activation_type_attr)
)
normal_activation_type = (
normal_activation_type_attr.value
if hasattr(normal_activation_type_attr, "value")
else str(normal_activation_type_attr)
)
# 其他属性
random_probability: float = getattr(action_class, "random_activation_probability", 0.3)
llm_judge_prompt: str = getattr(action_class, "llm_judge_prompt", "")
activation_keywords: list[str] = getattr(action_class, "activation_keywords", [])
keyword_case_sensitive: bool = getattr(action_class, "keyword_case_sensitive", False)
# 获取模式启用属性
mode_enable: str = getattr(action_class, "mode_enable", "all")
# 处理模式启用属性
mode_enable_attr = getattr(action_class, "mode_enable", "all")
mode_enable = mode_enable_attr.value if hasattr(mode_enable_attr, "value") else str(mode_enable_attr)
# 获取并行执行属性
parallel_action: bool = getattr(action_class, "parallel_action", False)
@@ -114,45 +208,76 @@ class ActionManager:
def _load_plugin_actions(self) -> None:
"""
加载所有插件目录中的动作
注意插件动作的实际导入已经在main.py中完成这里只需要从action_registry获取
同时也从新插件系统的component_registry获取Action组件
"""
try:
# 检查插件目录是否存在
plugin_path = "src.plugins"
plugin_dir = plugin_path.replace(".", os.path.sep)
if not os.path.exists(plugin_dir):
logger.info(f"插件目录 {plugin_dir} 不存在,跳过插件动作加载")
return
# 导入插件包
try:
plugins_package = importlib.import_module(plugin_path)
except ImportError as e:
logger.error(f"导入插件包失败: {e}")
return
# 遍历插件包中的所有子包
for _, plugin_name, is_pkg in pkgutil.iter_modules(
plugins_package.__path__, plugins_package.__name__ + "."
):
if not is_pkg:
continue
# 检查插件是否有actions子包
plugin_actions_path = f"{plugin_name}.actions"
try:
# 尝试导入插件的actions包
importlib.import_module(plugin_actions_path)
logger.info(f"成功加载插件动作模块: {plugin_actions_path}")
except ImportError as e:
logger.debug(f"插件 {plugin_name} 没有actions子包或导入失败: {e}")
continue
# 再次从_ACTION_REGISTRY获取所有动作包括刚刚从插件加载的
# 从旧的action_registry获取插件动作
self._load_registered_actions()
logger.debug("从旧注册表加载插件动作成功")
# 从新插件系统获取Action组件
self._load_plugin_system_actions()
logger.debug("从新插件系统加载Action组件成功")
except Exception as e:
logger.error(f"加载插件动作失败: {e}")
def _load_plugin_system_actions(self) -> None:
"""从新插件系统的component_registry加载Action组件"""
try:
from src.plugin_system.core.component_registry import component_registry
from src.plugin_system.base.component_types import ComponentType
# 获取所有Action组件
action_components = component_registry.get_components_by_type(ComponentType.ACTION)
for action_name, action_info in action_components.items():
if action_name in self._registered_actions:
logger.debug(f"Action组件 {action_name} 已存在,跳过")
continue
# 将新插件系统的ActionInfo转换为旧系统格式
converted_action_info = {
"description": action_info.description,
"parameters": getattr(action_info, "action_parameters", {}),
"require": getattr(action_info, "action_require", []),
"associated_types": getattr(action_info, "associated_types", []),
"enable_plugin": action_info.enabled,
# 激活类型相关
"focus_activation_type": action_info.focus_activation_type.value,
"normal_activation_type": action_info.normal_activation_type.value,
"random_activation_probability": action_info.random_activation_probability,
"llm_judge_prompt": action_info.llm_judge_prompt,
"activation_keywords": action_info.activation_keywords,
"keyword_case_sensitive": action_info.keyword_case_sensitive,
# 模式和并行设置
"mode_enable": action_info.mode_enable.value,
"parallel_action": action_info.parallel_action,
# 标记这是来自新插件系统的组件
"_plugin_system_component": True,
"_plugin_name": getattr(action_info, "plugin_name", ""),
}
self._registered_actions[action_name] = converted_action_info
# 如果启用,也添加到默认动作集
if action_info.enabled:
self._default_actions[action_name] = converted_action_info
logger.debug(
f"从插件系统加载Action组件: {action_name} (插件: {getattr(action_info, 'plugin_name', 'unknown')})"
)
logger.info(f"从新插件系统加载了 {len(action_components)} 个Action组件")
except Exception as e:
logger.error(f"从插件系统加载Action组件失败: {e}")
import traceback
logger.error(traceback.format_exc())
def create_action(
self,
action_name: str,
@@ -191,7 +316,28 @@ class ActionManager:
# logger.warning(f"当前不可用的动作类型: {action_name}")
# return None
handler_class = _ACTION_REGISTRY.get(action_name)
# 检查是否是新插件系统的Action组件
action_info = self._registered_actions.get(action_name)
if action_info and action_info.get("_plugin_system_component", False):
return self._create_plugin_system_action(
action_name,
action_data,
reasoning,
cycle_timers,
thinking_id,
observations,
chat_stream,
log_prefix,
shutting_down,
expressor,
replyer,
)
# 旧系统的动作创建逻辑
from src.plugin_system.core.component_registry import component_registry
action_registry = component_registry.get_action_registry()
handler_class = action_registry.get(action_name)
if not handler_class:
logger.warning(f"未注册的动作类型: {action_name}")
return None
@@ -217,6 +363,75 @@ class ActionManager:
logger.error(f"创建动作处理器实例失败: {e}")
return None
def _create_plugin_system_action(
self,
action_name: str,
action_data: dict,
reasoning: str,
cycle_timers: dict,
thinking_id: str,
observations: List[Observation],
chat_stream: ChatStream,
log_prefix: str,
shutting_down: bool = False,
expressor: DefaultExpressor = None,
replyer: DefaultReplyer = None,
) -> Optional["PluginActionWrapper"]:
"""
创建新插件系统的Action组件实例并包装为兼容旧系统的接口
Returns:
Optional[PluginActionWrapper]: 包装后的Action实例
"""
try:
from src.plugin_system.core.component_registry import component_registry
# 获取组件类
component_class = component_registry.get_component_class(action_name)
if not component_class:
logger.error(f"未找到插件Action组件类: {action_name}")
return None
# 获取插件配置
component_info = component_registry.get_component_info(action_name)
plugin_config = None
if component_info and component_info.plugin_name:
plugin_config = component_registry.get_plugin_config(component_info.plugin_name)
# 创建插件Action实例
plugin_action_instance = component_class(
action_data=action_data,
reasoning=reasoning,
cycle_timers=cycle_timers,
thinking_id=thinking_id,
chat_stream=chat_stream,
expressor=expressor,
replyer=replyer,
observations=observations,
log_prefix=log_prefix,
plugin_config=plugin_config,
)
# 创建兼容性包装器
wrapper = PluginActionWrapper(
plugin_action=plugin_action_instance,
action_name=action_name,
action_data=action_data,
reasoning=reasoning,
cycle_timers=cycle_timers,
thinking_id=thinking_id,
)
logger.debug(f"创建插件Action实例成功: {action_name}")
return wrapper
except Exception as e:
logger.error(f"创建插件Action实例失败 {action_name}: {e}")
import traceback
logger.error(traceback.format_exc())
return None
def get_registered_actions(self) -> Dict[str, ActionInfo]:
"""获取所有已注册的动作集"""
return self._registered_actions.copy()
@@ -232,26 +447,30 @@ class ActionManager:
def get_using_actions_for_mode(self, mode: str) -> Dict[str, ActionInfo]:
"""
根据聊天模式获取可用的动作集合
Args:
mode: 聊天模式 ("focus", "normal", "all")
Returns:
Dict[str, ActionInfo]: 在指定模式下可用的动作集合
"""
filtered_actions = {}
# print(self._using_actions)
for action_name, action_info in self._using_actions.items():
# print(f"action_info: {action_info}")
# print(f"action_name: {action_name}")
action_mode = action_info.get("mode_enable", "all")
# 检查动作是否在当前模式下启用
if action_mode == "all" or action_mode == mode:
filtered_actions[action_name] = action_info
logger.debug(f"动作 {action_name} 在模式 {mode} 下可用 (mode_enable: {action_mode})")
else:
logger.debug(f"动作 {action_name} 在模式 {mode} 下不可用 (mode_enable: {action_mode})")
logger.info(f"模式 {mode} 下可用动作: {list(filtered_actions.keys())}")
logger.debug(f"模式 {mode} 下可用动作: {list(filtered_actions.keys())}")
return filtered_actions
def add_action_to_using(self, action_name: str) -> bool:
@@ -291,7 +510,7 @@ class ActionManager:
return False
del self._using_actions[action_name]
logger.info(f"已从使用集中移除动作 {action_name}")
logger.debug(f"已从使用集中移除动作 {action_name}")
return True
def add_action(self, action_name: str, description: str, parameters: Dict = None, require: List = None) -> bool:
@@ -354,19 +573,19 @@ class ActionManager:
系统核心动作是那些enable_plugin为False但是系统必需的动作
"""
system_core_actions = ["exit_focus_chat"] # 可以根据需要扩展
for action_name in system_core_actions:
if action_name in self._registered_actions and action_name not in self._using_actions:
self._using_actions[action_name] = self._registered_actions[action_name]
logger.info(f"添加系统核心动作到使用集: {action_name}")
logger.debug(f"添加系统核心动作到使用集: {action_name}")
def add_system_action_if_needed(self, action_name: str) -> bool:
"""
根据需要添加系统动作到使用集
Args:
action_name: 动作名称
Returns:
bool: 是否成功添加
"""
@@ -386,4 +605,7 @@ class ActionManager:
Returns:
Optional[Type[BaseAction]]: 动作处理器类如果不存在则返回None
"""
return _ACTION_REGISTRY.get(action_name)
from src.plugin_system.core.component_registry import component_registry
action_registry = component_registry.get_action_registry()
return action_registry.get(action_name)

View File

@@ -1,7 +0,0 @@
# 导入所有动作模块以确保装饰器被执行
from . import reply_action # noqa
from . import no_reply_action # noqa
from . import exit_focus_chat_action # noqa
from . import emoji_action # noqa
# 在此处添加更多动作模块导入

View File

@@ -1,124 +0,0 @@
from abc import ABC, abstractmethod
from typing import Tuple, Dict, Type
from src.common.logger_manager import get_logger
logger = get_logger("base_action")
# 全局动作注册表
_ACTION_REGISTRY: Dict[str, Type["BaseAction"]] = {}
_DEFAULT_ACTIONS: Dict[str, str] = {}
# 动作激活类型枚举
class ActionActivationType:
ALWAYS = "always" # 默认参与到planner
LLM_JUDGE = "llm_judge" # LLM判定是否启动该action到planner
RANDOM = "random" # 随机启用action到planner
KEYWORD = "keyword" # 关键词触发启用action到planner
# 聊天模式枚举
class ChatMode:
FOCUS = "focus" # Focus聊天模式
NORMAL = "normal" # Normal聊天模式
ALL = "all" # 所有聊天模式
def register_action(cls):
"""
动作注册装饰器
用法:
@register_action
class MyAction(BaseAction):
action_name = "my_action"
action_description = "我的动作"
focus_activation_type = ActionActivationType.ALWAYS
normal_activation_type = ActionActivationType.ALWAYS
mode_enable = ChatMode.ALL
parallel_action = False
...
"""
# 检查类是否有必要的属性
if not hasattr(cls, "action_name") or not hasattr(cls, "action_description"):
logger.error(f"动作类 {cls.__name__} 缺少必要的属性: action_name 或 action_description")
return cls
action_name = cls.action_name
action_description = cls.action_description
is_enabled = getattr(cls, "enable_plugin", True) # 默认启用插件
if not action_name or not action_description:
logger.error(f"动作类 {cls.__name__} 的 action_name 或 action_description 为空")
return cls
# 将动作类注册到全局注册表
_ACTION_REGISTRY[action_name] = cls
# 如果启用插件,添加到默认动作集
if is_enabled:
_DEFAULT_ACTIONS[action_name] = action_description
logger.info(f"已注册动作: {action_name} -> {cls.__name__},插件启用: {is_enabled}")
return cls
class BaseAction(ABC):
"""动作基类接口
所有具体的动作类都应该继承这个基类并实现handle_action方法。
"""
def __init__(self, action_data: dict, reasoning: str, cycle_timers: dict, thinking_id: str):
"""初始化动作
Args:
action_name: 动作名称
action_data: 动作数据
reasoning: 执行该动作的理由
cycle_timers: 计时器字典
thinking_id: 思考ID
"""
# 每个动作必须实现
self.action_name: str = "base_action"
self.action_description: str = "基础动作"
self.action_parameters: dict = {}
self.action_require: list[str] = []
# 动作激活类型设置
# Focus模式下的激活类型默认为always
self.focus_activation_type: str = ActionActivationType.ALWAYS
# Normal模式下的激活类型默认为always
self.normal_activation_type: str = ActionActivationType.ALWAYS
# 随机激活的概率(0.0-1.0)用于RANDOM激活类型
self.random_activation_probability: float = 0.3
# LLM判定的提示词用于LLM_JUDGE激活类型
self.llm_judge_prompt: str = ""
# 关键词触发列表用于KEYWORD激活类型
self.activation_keywords: list[str] = []
# 关键词匹配是否区分大小写
self.keyword_case_sensitive: bool = False
# 模式启用设置:指定在哪些聊天模式下启用此动作
# 可选值: "focus"(仅Focus模式), "normal"(仅Normal模式), "all"(所有模式)
self.mode_enable: str = ChatMode.ALL
# 并行执行设置仅在Normal模式下生效设置为True的动作可以与回复动作并行执行
# 而不是替代回复动作适用于图片生成、TTS、禁言等不需要覆盖回复的动作
self.parallel_action: bool = False
self.associated_types: list[str] = []
self.enable_plugin: bool = True # 是否启用插件,默认启用
self.action_data = action_data
self.reasoning = reasoning
self.cycle_timers = cycle_timers
self.thinking_id = thinking_id
@abstractmethod
async def handle_action(self) -> Tuple[bool, str]:
"""处理动作的抽象方法,需要被子类实现
Returns:
Tuple[bool, str]: (是否执行成功, 回复文本)
"""
pass

View File

@@ -1,150 +0,0 @@
from src.common.logger_manager import get_logger
from src.chat.focus_chat.planners.actions.base_action import BaseAction, register_action, ActionActivationType, ChatMode
from typing import Tuple, List
from src.chat.heart_flow.observation.observation import Observation
from src.chat.focus_chat.replyer.default_replyer import DefaultReplyer
from src.chat.message_receive.chat_stream import ChatStream
from src.chat.focus_chat.hfc_utils import create_empty_anchor_message
from src.config.config import global_config
logger = get_logger("action_taken")
@register_action
class EmojiAction(BaseAction):
"""表情动作处理类
处理构建和发送消息表情的动作。
"""
action_name: str = "emoji"
action_description: str = "当你想单独发送一个表情包辅助你的回复表达"
action_parameters: dict[str:str] = {
"description": "文字描述你想要发送的表情包内容",
}
action_require: list[str] = [
"表达情绪时可以选择使用",
"重点:不要连续发,如果你已经发过[表情包],就不要选择此动作"]
associated_types: list[str] = ["emoji"]
enable_plugin = True
focus_activation_type = ActionActivationType.LLM_JUDGE
normal_activation_type = ActionActivationType.RANDOM
random_activation_probability = global_config.normal_chat.emoji_chance
parallel_action = True
llm_judge_prompt = """
判定是否需要使用表情动作的条件:
1. 用户明确要求使用表情包
2. 这是一个适合表达强烈情绪的场合
3. 不要发送太多表情包,如果你已经发送过多个表情包
"""
# 模式启用设置 - 表情动作只在Focus模式下使用
mode_enable = ChatMode.ALL
def __init__(
self,
action_data: dict,
reasoning: str,
cycle_timers: dict,
thinking_id: str,
observations: List[Observation],
chat_stream: ChatStream,
log_prefix: str,
replyer: DefaultReplyer,
**kwargs,
):
"""初始化回复动作处理器
Args:
action_name: 动作名称
action_data: 动作数据,包含 message, emojis, target 等
reasoning: 执行该动作的理由
cycle_timers: 计时器字典
thinking_id: 思考ID
observations: 观察列表
replyer: 回复器
chat_stream: 聊天流
log_prefix: 日志前缀
"""
super().__init__(action_data, reasoning, cycle_timers, thinking_id)
self.observations = observations
self.replyer = replyer
self.chat_stream = chat_stream
self.log_prefix = log_prefix
async def handle_action(self) -> Tuple[bool, str]:
"""
处理回复动作
Returns:
Tuple[bool, str]: (是否执行成功, 回复文本)
"""
# 注意: 此处可能会使用不同的expressor实现根据任务类型切换不同的回复策略
return await self._handle_reply(
reasoning=self.reasoning,
reply_data=self.action_data,
cycle_timers=self.cycle_timers,
thinking_id=self.thinking_id,
)
async def _handle_reply(
self, reasoning: str, reply_data: dict, cycle_timers: dict, thinking_id: str
) -> tuple[bool, str]:
"""
处理统一的回复动作 - 可包含文本和表情,顺序任意
reply_data格式:
{
"description": "描述你想要发送的表情"
}
"""
logger.info(f"{self.log_prefix} 决定发送表情")
# 从聊天观察获取锚定消息
# chatting_observation: ChattingObservation = next(
# obs for obs in self.observations if isinstance(obs, ChattingObservation)
# )
# if reply_data.get("target"):
# anchor_message = chatting_observation.search_message_by_text(reply_data["target"])
# else:
# anchor_message = None
# 如果没有找到锚点消息,创建一个占位符
# if not anchor_message:
# logger.info(f"{self.log_prefix} 未找到锚点消息,创建占位符")
# anchor_message = await create_empty_anchor_message(
# self.chat_stream.platform, self.chat_stream.group_info, self.chat_stream
# )
# else:
# anchor_message.update_chat_stream(self.chat_stream)
logger.info(f"{self.log_prefix} 为了表情包创建占位符")
anchor_message = await create_empty_anchor_message(
self.chat_stream.platform, self.chat_stream.group_info, self.chat_stream
)
success, reply_set = await self.replyer.deal_emoji(
cycle_timers=cycle_timers,
action_data=reply_data,
anchor_message=anchor_message,
# reasoning=reasoning,
thinking_id=thinking_id,
)
reply_text = ""
if reply_set:
for reply in reply_set:
type = reply[0]
data = reply[1]
if type == "text":
reply_text += data
elif type == "emoji":
reply_text += data
return success, reply_text

View File

@@ -1,88 +0,0 @@
import asyncio
import traceback
from src.common.logger_manager import get_logger
from src.chat.focus_chat.planners.actions.base_action import BaseAction, register_action, ChatMode
from typing import Tuple, List
from src.chat.heart_flow.observation.observation import Observation
from src.chat.message_receive.chat_stream import ChatStream
logger = get_logger("action_taken")
@register_action
class ExitFocusChatAction(BaseAction):
"""退出专注聊天动作处理类
处理决定退出专注聊天的动作。
执行后会将所属的sub heartflow转变为normal_chat状态。
"""
action_name = "exit_focus_chat"
action_description = "退出专注聊天,转为普通聊天模式"
action_parameters = {}
action_require = [
"很长时间没有回复,你决定退出专注聊天",
"当前内容不需要持续专注关注,你决定退出专注聊天",
"聊天内容已经完成,你决定退出专注聊天",
]
# 退出专注聊天是系统核心功能,不是插件,但默认不启用(需要特定条件触发)
enable_plugin = False
# 模式启用设置 - 退出专注聊天动作只在Focus模式下使用
mode_enable = ChatMode.FOCUS
def __init__(
self,
action_data: dict,
reasoning: str,
cycle_timers: dict,
thinking_id: str,
observations: List[Observation],
log_prefix: str,
chat_stream: ChatStream,
shutting_down: bool = False,
**kwargs,
):
"""初始化退出专注聊天动作处理器
Args:
action_data: 动作数据
reasoning: 执行该动作的理由
cycle_timers: 计时器字典
thinking_id: 思考ID
observations: 观察列表
log_prefix: 日志前缀
shutting_down: 是否正在关闭
"""
super().__init__(action_data, reasoning, cycle_timers, thinking_id)
self.observations = observations
self.log_prefix = log_prefix
self._shutting_down = shutting_down
async def handle_action(self) -> Tuple[bool, str]:
"""
处理退出专注聊天的情况
工作流程:
1. 将sub heartflow转换为normal_chat状态
2. 等待新消息、超时或关闭信号
3. 根据等待结果更新连续不回复计数
4. 如果达到阈值,触发回调
Returns:
Tuple[bool, str]: (是否执行成功, 状态转换消息)
"""
try:
# 转换状态
status_message = ""
command = "stop_focus_chat"
return True, status_message, command
except asyncio.CancelledError:
logger.info(f"{self.log_prefix} 处理 'exit_focus_chat' 时等待被中断 (CancelledError)")
raise
except Exception as e:
error_msg = f"处理 'exit_focus_chat' 时发生错误: {str(e)}"
logger.error(f"{self.log_prefix} {error_msg}")
logger.error(traceback.format_exc())
return False, "", ""

View File

@@ -1,139 +0,0 @@
import asyncio
import traceback
from src.common.logger_manager import get_logger
from src.chat.utils.timer_calculator import Timer
from src.chat.focus_chat.planners.actions.base_action import BaseAction, register_action, ActionActivationType, ChatMode
from typing import Tuple, List
from src.chat.heart_flow.observation.observation import Observation
from src.chat.heart_flow.observation.chatting_observation import ChattingObservation
from src.chat.focus_chat.hfc_utils import parse_thinking_id_to_timestamp
logger = get_logger("action_taken")
# 常量定义
WAITING_TIME_THRESHOLD = 1200 # 等待新消息时间阈值,单位秒
@register_action
class NoReplyAction(BaseAction):
"""不回复动作处理类
处理决定不回复的动作。
"""
action_name = "no_reply"
action_description = "暂时不回复消息"
action_parameters = {}
action_require = [
"你连续发送了太多消息,且无人回复",
"想要休息一下",
]
enable_plugin = True
# 激活类型设置
focus_activation_type = ActionActivationType.ALWAYS
# 模式启用设置 - no_reply动作只在Focus模式下使用
mode_enable = ChatMode.FOCUS
def __init__(
self,
action_data: dict,
reasoning: str,
cycle_timers: dict,
thinking_id: str,
observations: List[Observation],
log_prefix: str,
shutting_down: bool = False,
**kwargs,
):
"""初始化不回复动作处理器
Args:
action_name: 动作名称
action_data: 动作数据
reasoning: 执行该动作的理由
cycle_timers: 计时器字典
thinking_id: 思考ID
observations: 观察列表
log_prefix: 日志前缀
shutting_down: 是否正在关闭
"""
super().__init__(action_data, reasoning, cycle_timers, thinking_id)
self.observations = observations
self.log_prefix = log_prefix
self._shutting_down = shutting_down
async def handle_action(self) -> Tuple[bool, str]:
"""
处理不回复的情况
工作流程:
1. 等待新消息、超时或关闭信号
2. 根据等待结果更新连续不回复计数
3. 如果达到阈值,触发回调
Returns:
Tuple[bool, str]: (是否执行成功, 空字符串)
"""
logger.info(f"{self.log_prefix} 决定不回复: {self.reasoning}")
observation = self.observations[0] if self.observations else None
try:
with Timer("等待新消息", self.cycle_timers):
# 等待新消息、超时或关闭信号,并获取结果
await self._wait_for_new_message(observation, self.thinking_id, self.log_prefix)
return True, "" # 不回复动作没有回复文本
except asyncio.CancelledError:
logger.info(f"{self.log_prefix} 处理 'no_reply' 时等待被中断 (CancelledError)")
raise
except Exception as e: # 捕获调用管理器或其他地方可能发生的错误
logger.error(f"{self.log_prefix} 处理 'no_reply' 时发生错误: {e}")
logger.error(traceback.format_exc())
return False, ""
async def _wait_for_new_message(self, observation: ChattingObservation, thinking_id: str, log_prefix: str) -> bool:
"""
等待新消息 或 检测到关闭信号
参数:
observation: 观察实例
thinking_id: 思考ID
log_prefix: 日志前缀
返回:
bool: 是否检测到新消息 (如果因关闭信号退出则返回 False)
"""
wait_start_time = asyncio.get_event_loop().time()
while True:
# --- 在每次循环开始时检查关闭标志 ---
if self._shutting_down:
logger.info(f"{log_prefix} 等待新消息时检测到关闭信号,中断等待。")
return False # 表示因为关闭而退出
# -----------------------------------
thinking_id_timestamp = parse_thinking_id_to_timestamp(thinking_id)
# 检查新消息
if await observation.has_new_messages_since(thinking_id_timestamp):
logger.info(f"{log_prefix} 检测到新消息")
return True
# 检查超时 (放在检查新消息和关闭之后)
if asyncio.get_event_loop().time() - wait_start_time > WAITING_TIME_THRESHOLD:
logger.warning(f"{log_prefix} 等待新消息超时({WAITING_TIME_THRESHOLD}秒)")
return False
try:
# 短暂休眠,让其他任务有机会运行,并能更快响应取消或关闭
await asyncio.sleep(0.5) # 缩短休眠时间
except asyncio.CancelledError:
# 如果在休眠时被取消,再次检查关闭标志
# 如果是正常关闭,则不需要警告
if not self._shutting_down:
logger.warning(f"{log_prefix} _wait_for_new_message 的休眠被意外取消")
# 无论如何,重新抛出异常,让上层处理
raise

View File

@@ -1,779 +0,0 @@
import traceback
from typing import Tuple, Dict, List, Any, Optional, Union, Type
from src.chat.focus_chat.planners.actions.base_action import BaseAction, register_action, ActionActivationType, ChatMode # noqa F401
from src.chat.heart_flow.observation.chatting_observation import ChattingObservation
from src.chat.focus_chat.hfc_utils import create_empty_anchor_message
from src.common.logger_manager import get_logger
from src.llm_models.utils_model import LLMRequest
from src.person_info.person_info import person_info_manager
from abc import abstractmethod
from src.config.config import global_config
import os
import inspect
import toml # 导入 toml 库
from src.common.database.database_model import ActionRecords
from src.common.database.database import db
from peewee import Model, DoesNotExist
import json
import time
# 以下为类型注解需要
from src.chat.message_receive.chat_stream import ChatStream
from src.chat.focus_chat.expressors.default_expressor import DefaultExpressor
from src.chat.focus_chat.replyer.default_replyer import DefaultReplyer
from src.chat.focus_chat.info.obs_info import ObsInfo
logger = get_logger("plugin_action")
class PluginAction(BaseAction):
"""插件动作基类
封装了主程序内部依赖提供简化的API接口给插件开发者
"""
action_config_file_name: Optional[str] = None # 插件可以覆盖此属性来指定配置文件名
# 默认激活类型设置,插件可以覆盖
focus_activation_type = ActionActivationType.ALWAYS
normal_activation_type = ActionActivationType.ALWAYS
random_activation_probability: float = 0.3
llm_judge_prompt: str = ""
activation_keywords: list[str] = []
keyword_case_sensitive: bool = False
# 默认模式启用设置 - 插件动作默认在所有模式下可用,插件可以覆盖
mode_enable = ChatMode.ALL
def __init__(
self,
action_data: dict,
reasoning: str,
cycle_timers: dict,
thinking_id: str,
global_config: Optional[dict] = None,
**kwargs,
):
"""初始化插件动作基类"""
super().__init__(action_data, reasoning, cycle_timers, thinking_id)
# 存储内部服务和对象引用
self._services = {}
self.config: Dict[str, Any] = {} # 用于存储插件自身的配置
# 从kwargs提取必要的内部服务
if "observations" in kwargs:
self._services["observations"] = kwargs["observations"]
if "expressor" in kwargs:
self._services["expressor"] = kwargs["expressor"]
if "chat_stream" in kwargs:
self._services["chat_stream"] = kwargs["chat_stream"]
if "replyer" in kwargs:
self._services["replyer"] = kwargs["replyer"]
self.log_prefix = kwargs.get("log_prefix", "")
self._load_plugin_config() # 初始化时加载插件配置
def _load_plugin_config(self):
"""
加载插件自身的配置文件。
配置文件应与插件模块在同一目录下。
插件可以通过覆盖 `action_config_file_name` 类属性来指定文件名。
如果 `action_config_file_name` 未指定,则不加载配置。
仅支持 TOML (.toml) 格式。
"""
if not self.action_config_file_name:
logger.debug(
f"{self.log_prefix} 插件 {self.__class__.__name__} 未指定 action_config_file_name不加载插件配置。"
)
return
try:
plugin_module_path = inspect.getfile(self.__class__)
plugin_dir = os.path.dirname(plugin_module_path)
config_file_path = os.path.join(plugin_dir, self.action_config_file_name)
if not os.path.exists(config_file_path):
logger.warning(
f"{self.log_prefix} 插件 {self.__class__.__name__} 的配置文件 {config_file_path} 不存在。"
)
return
file_ext = os.path.splitext(self.action_config_file_name)[1].lower()
if file_ext == ".toml":
with open(config_file_path, "r", encoding="utf-8") as f:
self.config = toml.load(f) or {}
logger.info(f"{self.log_prefix} 插件 {self.__class__.__name__} 的配置已从 {config_file_path} 加载。")
else:
logger.warning(
f"{self.log_prefix} 不支持的插件配置文件格式: {file_ext}。仅支持 .toml。插件配置未加载。"
)
self.config = {} # 确保未加载时为空字典
return
except Exception as e:
logger.error(
f"{self.log_prefix} 加载插件 {self.__class__.__name__} 的配置文件 {self.action_config_file_name} 时出错: {e}"
)
self.config = {} # 出错时确保 config 是一个空字典
def get_global_config(self, key: str, default: Any = None) -> Any:
"""
安全地从全局配置中获取一个值。
插件应使用此方法读取全局配置,以保证只读和隔离性。
"""
return global_config.get(key, default)
async def get_user_id_by_person_name(self, person_name: str) -> Tuple[str, str]:
"""根据用户名获取用户ID"""
person_id = person_info_manager.get_person_id_by_person_name(person_name)
user_id = await person_info_manager.get_value(person_id, "user_id")
platform = await person_info_manager.get_value(person_id, "platform")
return platform, user_id
# 提供简化的API方法
async def send_message(self, type: str, data: str, target: Optional[str] = "", display_message: str = "") -> bool:
"""发送消息的简化方法
Args:
text: 要发送的消息文本
target: 目标消息(可选)
Returns:
bool: 是否发送成功
"""
try:
expressor: DefaultExpressor = self._services.get("expressor")
chat_stream: ChatStream = self._services.get("chat_stream")
if not expressor or not chat_stream:
logger.error(f"{self.log_prefix} 无法发送消息:缺少必要的内部服务")
return False
# 构造简化的动作数据
# reply_data = {"text": text, "target": target or "", "emojis": []}
# 获取锚定消息(如果有)
observations = self._services.get("observations", [])
if len(observations) > 0:
chatting_observation: ChattingObservation = next(
obs for obs in observations if isinstance(obs, ChattingObservation)
)
anchor_message = chatting_observation.search_message_by_text(target)
else:
anchor_message = None
# 如果没有找到锚点消息,创建一个占位符
if not anchor_message:
logger.info(f"{self.log_prefix} 未找到锚点消息,创建占位符")
anchor_message = await create_empty_anchor_message(
chat_stream.platform, chat_stream.group_info, chat_stream
)
else:
anchor_message.update_chat_stream(chat_stream)
response_set = [
(type, data),
]
# 调用内部方法发送消息
success = await expressor.send_response_messages(
anchor_message=anchor_message,
response_set=response_set,
display_message=display_message,
)
return success
except Exception as e:
logger.error(f"{self.log_prefix} 发送消息时出错: {e}")
traceback.print_exc()
return False
async def send_message_by_expressor(self, text: str, target: Optional[str] = None) -> bool:
"""发送消息的简化方法
Args:
text: 要发送的消息文本
target: 目标消息(可选)
Returns:
bool: 是否发送成功
"""
expressor: DefaultExpressor = self._services.get("expressor")
chat_stream: ChatStream = self._services.get("chat_stream")
if not expressor or not chat_stream:
logger.error(f"{self.log_prefix} 无法发送消息:缺少必要的内部服务")
return False
# 构造简化的动作数据
reply_data = {"text": text, "target": target or "", "emojis": []}
# 获取锚定消息(如果有)
observations = self._services.get("observations", [])
# 查找 ChattingObservation 实例
chatting_observation = None
for obs in observations:
if isinstance(obs, ChattingObservation):
chatting_observation = obs
break
if not chatting_observation:
logger.warning(f"{self.log_prefix} 未找到 ChattingObservation 实例,创建占位符")
anchor_message = await create_empty_anchor_message(
chat_stream.platform, chat_stream.group_info, chat_stream
)
else:
anchor_message = chatting_observation.search_message_by_text(reply_data["target"])
if not anchor_message:
logger.info(f"{self.log_prefix} 未找到锚点消息,创建占位符")
anchor_message = await create_empty_anchor_message(
chat_stream.platform, chat_stream.group_info, chat_stream
)
else:
anchor_message.update_chat_stream(chat_stream)
# 调用内部方法发送消息
success, _ = await expressor.deal_reply(
cycle_timers=self.cycle_timers,
action_data=reply_data,
anchor_message=anchor_message,
reasoning=self.reasoning,
thinking_id=self.thinking_id,
)
return success
async def send_message_by_replyer(self, target: Optional[str] = None, extra_info_block: Optional[str] = None) -> bool:
"""通过 replyer 发送消息的简化方法
Args:
text: 要发送的消息文本
target: 目标消息(可选)
Returns:
bool: 是否发送成功
"""
replyer: DefaultReplyer = self._services.get("replyer")
chat_stream: ChatStream = self._services.get("chat_stream")
if not replyer or not chat_stream:
logger.error(f"{self.log_prefix} 无法发送消息:缺少必要的内部服务")
return False
# 构造简化的动作数据
reply_data = {"target": target or "", "extra_info_block": extra_info_block}
# 获取锚定消息(如果有)
observations = self._services.get("observations", [])
# 查找 ChattingObservation 实例
chatting_observation = None
for obs in observations:
if isinstance(obs, ChattingObservation):
chatting_observation = obs
break
if not chatting_observation:
logger.warning(f"{self.log_prefix} 未找到 ChattingObservation 实例,创建占位符")
anchor_message = await create_empty_anchor_message(
chat_stream.platform, chat_stream.group_info, chat_stream
)
else:
anchor_message = chatting_observation.search_message_by_text(reply_data["target"])
if not anchor_message:
logger.info(f"{self.log_prefix} 未找到锚点消息,创建占位符")
anchor_message = await create_empty_anchor_message(
chat_stream.platform, chat_stream.group_info, chat_stream
)
else:
anchor_message.update_chat_stream(chat_stream)
# 调用内部方法发送消息
success, _ = await replyer.deal_reply(
cycle_timers=self.cycle_timers,
action_data=reply_data,
anchor_message=anchor_message,
reasoning=self.reasoning,
thinking_id=self.thinking_id,
)
return success
def get_chat_type(self) -> str:
"""获取当前聊天类型
Returns:
str: 聊天类型 ("group""private")
"""
chat_stream: ChatStream = self._services.get("chat_stream")
if chat_stream and hasattr(chat_stream, "group_info"):
return "group" if chat_stream.group_info else "private"
return "unknown"
def get_recent_messages(self, count: int = 5) -> List[Dict[str, Any]]:
"""获取最近的消息
Args:
count: 要获取的消息数量
Returns:
List[Dict]: 消息列表,每个消息包含发送者、内容等信息
"""
messages = []
observations = self._services.get("observations", [])
if observations and len(observations) > 0:
obs = observations[0]
if hasattr(obs, "get_talking_message"):
obs: ObsInfo
raw_messages = obs.get_talking_message()
# 转换为简化格式
for msg in raw_messages[-count:]:
simple_msg = {
"sender": msg.get("sender", "未知"),
"content": msg.get("content", ""),
"timestamp": msg.get("timestamp", 0),
}
messages.append(simple_msg)
return messages
def get_available_models(self) -> Dict[str, Any]:
"""获取所有可用的模型配置
Returns:
Dict[str, Any]: 模型配置字典key为模型名称value为模型配置
"""
if not hasattr(global_config, "model"):
logger.error(f"{self.log_prefix} 无法获取模型列表:全局配置中未找到 model 配置")
return {}
models = global_config.model
return models
async def generate_with_model(
self,
prompt: str,
model_config: Dict[str, Any],
request_type: str = "plugin.generate",
**kwargs
) -> Tuple[bool, str]:
"""使用指定模型生成内容
Args:
prompt: 提示词
model_config: 模型配置(从 get_available_models 获取的模型配置)
temperature: 温度参数,控制随机性 (0-1)
max_tokens: 最大生成token数
request_type: 请求类型标识
**kwargs: 其他模型特定参数
Returns:
Tuple[bool, str]: (是否成功, 生成的内容或错误信息)
"""
try:
logger.info(f"prompt: {prompt}")
llm_request = LLMRequest(
model=model_config,
request_type=request_type,
**kwargs
)
response,(resoning , model_name) = await llm_request.generate_response_async(prompt)
return True, response, resoning, model_name
except Exception as e:
error_msg = f"生成内容时出错: {str(e)}"
logger.error(f"{self.log_prefix} {error_msg}")
return False, error_msg
@abstractmethod
async def process(self) -> Tuple[bool, str]:
"""插件处理逻辑,子类必须实现此方法
Returns:
Tuple[bool, str]: (是否执行成功, 回复文本)
"""
pass
async def handle_action(self) -> Tuple[bool, str]:
"""实现BaseAction的抽象方法调用子类的process方法
Returns:
Tuple[bool, str]: (是否执行成功, 回复文本)
"""
return await self.process()
async def store_action_info(self, action_build_into_prompt: bool = False, action_prompt_display: str = "", action_done: bool = True) -> None:
"""存储action执行信息到数据库
Args:
action_build_into_prompt: 是否构建到提示中
action_prompt_display: 动作显示内容
"""
try:
chat_stream: ChatStream = self._services.get("chat_stream")
if not chat_stream:
logger.error(f"{self.log_prefix} 无法存储action信息缺少chat_stream服务")
return
action_time = time.time()
action_id = f"{action_time}_{self.thinking_id}"
ActionRecords.create(
action_id=action_id,
time=action_time,
action_name=self.__class__.__name__,
action_data=str(self.action_data),
action_done=action_done,
action_build_into_prompt=action_build_into_prompt,
action_prompt_display=action_prompt_display,
chat_id=chat_stream.stream_id,
chat_info_stream_id=chat_stream.stream_id,
chat_info_platform=chat_stream.platform,
user_id=chat_stream.user_info.user_id if chat_stream.user_info else "",
user_nickname=chat_stream.user_info.user_nickname if chat_stream.user_info else "",
user_cardname=chat_stream.user_info.user_cardname if chat_stream.user_info else ""
)
logger.debug(f"{self.log_prefix} 已存储action信息: {action_prompt_display}")
except Exception as e:
logger.error(f"{self.log_prefix} 存储action信息时出错: {e}")
traceback.print_exc()
async def db_query(
self,
model_class: Type[Model],
query_type: str = "get",
filters: Dict[str, Any] = None,
data: Dict[str, Any] = None,
limit: int = None,
order_by: List[str] = None,
single_result: bool = False
) -> Union[List[Dict[str, Any]], Dict[str, Any], None]:
"""执行数据库查询操作
这个方法提供了一个通用接口来执行数据库操作,包括查询、创建、更新和删除记录。
Args:
model_class: Peewee 模型类,例如 ActionRecords, Messages 等
query_type: 查询类型,可选值: "get", "create", "update", "delete", "count"
filters: 过滤条件字典,键为字段名,值为要匹配的值
data: 用于创建或更新的数据字典
limit: 限制结果数量
order_by: 排序字段列表,使用字段名,前缀'-'表示降序
single_result: 是否只返回单个结果
Returns:
根据查询类型返回不同的结果:
- "get": 返回查询结果列表或单个结果(如果 single_result=True
- "create": 返回创建的记录
- "update": 返回受影响的行数
- "delete": 返回受影响的行数
- "count": 返回记录数量
示例:
# 查询最近10条消息
messages = await self.db_query(
Messages,
query_type="get",
filters={"chat_id": chat_stream.stream_id},
limit=10,
order_by=["-time"]
)
# 创建一条记录
new_record = await self.db_query(
ActionRecords,
query_type="create",
data={"action_id": "123", "time": time.time(), "action_name": "TestAction"}
)
# 更新记录
updated_count = await self.db_query(
ActionRecords,
query_type="update",
filters={"action_id": "123"},
data={"action_done": True}
)
# 删除记录
deleted_count = await self.db_query(
ActionRecords,
query_type="delete",
filters={"action_id": "123"}
)
# 计数
count = await self.db_query(
Messages,
query_type="count",
filters={"chat_id": chat_stream.stream_id}
)
"""
try:
# 构建基本查询
if query_type in ["get", "update", "delete", "count"]:
query = model_class.select()
# 应用过滤条件
if filters:
for field, value in filters.items():
query = query.where(getattr(model_class, field) == value)
# 执行查询
if query_type == "get":
# 应用排序
if order_by:
for field in order_by:
if field.startswith("-"):
query = query.order_by(getattr(model_class, field[1:]).desc())
else:
query = query.order_by(getattr(model_class, field))
# 应用限制
if limit:
query = query.limit(limit)
# 执行查询
results = list(query.dicts())
# 返回结果
if single_result:
return results[0] if results else None
return results
elif query_type == "create":
if not data:
raise ValueError("创建记录需要提供data参数")
# 创建记录
record = model_class.create(**data)
# 返回创建的记录
return model_class.select().where(model_class.id == record.id).dicts().get()
elif query_type == "update":
if not data:
raise ValueError("更新记录需要提供data参数")
# 更新记录
return query.update(**data).execute()
elif query_type == "delete":
# 删除记录
return query.delete().execute()
elif query_type == "count":
# 计数
return query.count()
else:
raise ValueError(f"不支持的查询类型: {query_type}")
except DoesNotExist:
# 记录不存在
if query_type == "get" and single_result:
return None
return []
except Exception as e:
logger.error(f"{self.log_prefix} 数据库操作出错: {e}")
traceback.print_exc()
# 根据查询类型返回合适的默认值
if query_type == "get":
return None if single_result else []
elif query_type in ["create", "update", "delete", "count"]:
return None
async def db_raw_query(
self,
sql: str,
params: List[Any] = None,
fetch_results: bool = True
) -> Union[List[Dict[str, Any]], int, None]:
"""执行原始SQL查询
警告: 使用此方法需要小心确保SQL语句已正确构造以避免SQL注入风险。
Args:
sql: 原始SQL查询字符串
params: 查询参数列表用于替换SQL中的占位符
fetch_results: 是否获取查询结果对于SELECT查询设为True对于
UPDATE/INSERT/DELETE等操作设为False
Returns:
如果fetch_results为True返回查询结果列表
如果fetch_results为False返回受影响的行数
如果出错返回None
"""
try:
cursor = db.execute_sql(sql, params or [])
if fetch_results:
# 获取列名
columns = [col[0] for col in cursor.description]
# 构建结果字典列表
results = []
for row in cursor.fetchall():
results.append(dict(zip(columns, row)))
return results
else:
# 返回受影响的行数
return cursor.rowcount
except Exception as e:
logger.error(f"{self.log_prefix} 执行原始SQL查询出错: {e}")
traceback.print_exc()
return None
async def db_save(
self,
model_class: Type[Model],
data: Dict[str, Any],
key_field: str = None,
key_value: Any = None
) -> Union[Dict[str, Any], None]:
"""保存数据到数据库(创建或更新)
如果提供了key_field和key_value会先尝试查找匹配的记录进行更新
如果没有找到匹配记录或未提供key_field和key_value则创建新记录。
Args:
model_class: Peewee模型类如ActionRecords, Messages等
data: 要保存的数据字典
key_field: 用于查找现有记录的字段名,例如"action_id"
key_value: 用于查找现有记录的字段值
Returns:
Dict[str, Any]: 保存后的记录数据
None: 如果操作失败
示例:
# 创建或更新一条记录
record = await self.db_save(
ActionRecords,
{
"action_id": "123",
"time": time.time(),
"action_name": "TestAction",
"action_done": True
},
key_field="action_id",
key_value="123"
)
"""
try:
# 如果提供了key_field和key_value尝试更新现有记录
if key_field and key_value is not None:
# 查找现有记录
existing_records = list(model_class.select().where(
getattr(model_class, key_field) == key_value
).limit(1))
if existing_records:
# 更新现有记录
existing_record = existing_records[0]
for field, value in data.items():
setattr(existing_record, field, value)
existing_record.save()
# 返回更新后的记录
updated_record = model_class.select().where(
model_class.id == existing_record.id
).dicts().get()
return updated_record
# 如果没有找到现有记录或未提供key_field和key_value创建新记录
new_record = model_class.create(**data)
# 返回创建的记录
created_record = model_class.select().where(
model_class.id == new_record.id
).dicts().get()
return created_record
except Exception as e:
logger.error(f"{self.log_prefix} 保存数据库记录出错: {e}")
traceback.print_exc()
return None
async def db_get(
self,
model_class: Type[Model],
filters: Dict[str, Any] = None,
order_by: str = None,
limit: int = None
) -> Union[List[Dict[str, Any]], Dict[str, Any], None]:
"""从数据库获取记录
这是db_query方法的简化版本专注于数据检索操作。
Args:
model_class: Peewee模型类
filters: 过滤条件,字段名和值的字典
order_by: 排序字段,前缀'-'表示降序,例如'-time'表示按时间降序
limit: 结果数量限制如果为1则返回单个记录而不是列表
Returns:
如果limit=1返回单个记录字典或None
否则返回记录字典列表或空列表。
示例:
# 获取单个记录
record = await self.db_get(
ActionRecords,
filters={"action_id": "123"},
limit=1
)
# 获取最近10条记录
records = await self.db_get(
Messages,
filters={"chat_id": chat_stream.stream_id},
order_by="-time",
limit=10
)
"""
try:
# 构建查询
query = model_class.select()
# 应用过滤条件
if filters:
for field, value in filters.items():
query = query.where(getattr(model_class, field) == value)
# 应用排序
if order_by:
if order_by.startswith("-"):
query = query.order_by(getattr(model_class, order_by[1:]).desc())
else:
query = query.order_by(getattr(model_class, order_by))
# 应用限制
if limit:
query = query.limit(limit)
# 执行查询
results = list(query.dicts())
# 返回结果
if limit == 1:
return results[0] if results else None
return results
except Exception as e:
logger.error(f"{self.log_prefix} 获取数据库记录出错: {e}")
traceback.print_exc()
return None if limit == 1 else []

View File

@@ -1,196 +0,0 @@
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
from src.common.logger_manager import get_logger
from src.chat.focus_chat.planners.actions.base_action import BaseAction, register_action, ActionActivationType, ChatMode
from typing import Tuple, List
from src.chat.heart_flow.observation.observation import Observation
from src.chat.focus_chat.replyer.default_replyer import DefaultReplyer
from src.chat.message_receive.chat_stream import ChatStream
from src.chat.heart_flow.observation.chatting_observation import ChattingObservation
from src.chat.focus_chat.hfc_utils import create_empty_anchor_message
import time
import traceback
from src.common.database.database_model import ActionRecords
import re
logger = get_logger("action_taken")
@register_action
class ReplyAction(BaseAction):
"""回复动作处理类
处理构建和发送消息回复的动作。
"""
action_name: str = "reply"
action_description: str = "当你想要参与回复或者聊天"
action_parameters: dict[str:str] = {
"reply_to": "如果是明确回复某个人的发言请在reply_to参数中指定格式用户名:发言内容如果不是reply_to的值设为none"
}
action_require: list[str] = [
"你想要闲聊或者随便附和",
"有人提到你",
"如果你刚刚进行了回复,不要对同一个话题重复回应"
]
associated_types: list[str] = ["text"]
enable_plugin = True
# 激活类型设置
focus_activation_type = ActionActivationType.ALWAYS
# 模式启用设置 - 回复动作只在Focus模式下使用
mode_enable = ChatMode.FOCUS
def __init__(
self,
action_data: dict,
reasoning: str,
cycle_timers: dict,
thinking_id: str,
observations: List[Observation],
chat_stream: ChatStream,
log_prefix: str,
replyer: DefaultReplyer,
**kwargs,
):
"""初始化回复动作处理器
Args:
action_name: 动作名称
action_data: 动作数据,包含 message, emojis, target 等
reasoning: 执行该动作的理由
cycle_timers: 计时器字典
thinking_id: 思考ID
observations: 观察列表
replyer: 回复器
chat_stream: 聊天流
log_prefix: 日志前缀
"""
super().__init__(action_data, reasoning, cycle_timers, thinking_id)
self.observations = observations
self.replyer = replyer
self.chat_stream = chat_stream
self.log_prefix = log_prefix
async def handle_action(self) -> Tuple[bool, str]:
"""
处理回复动作
Returns:
Tuple[bool, str]: (是否执行成功, 回复文本)
"""
# 注意: 此处可能会使用不同的expressor实现根据任务类型切换不同的回复策略
success, reply_text = await self._handle_reply(
reasoning=self.reasoning,
reply_data=self.action_data,
cycle_timers=self.cycle_timers,
thinking_id=self.thinking_id,
)
await self.store_action_info(
action_build_into_prompt=False,
action_prompt_display=f"{reply_text}",
)
return success, reply_text
async def _handle_reply(
self, reasoning: str, reply_data: dict, cycle_timers: dict, thinking_id: str
) -> tuple[bool, str]:
"""
处理统一的回复动作 - 可包含文本和表情,顺序任意
reply_data格式:
{
"text": "你好啊" # 文本内容列表(可选)
"target": "锚定消息", # 锚定消息的文本内容
}
"""
logger.info(f"{self.log_prefix} 决定回复: {self.reasoning}")
# 从聊天观察获取锚定消息
chatting_observation: ChattingObservation = next(
obs for obs in self.observations if isinstance(obs, ChattingObservation)
)
reply_to = reply_data.get("reply_to", "none")
# sender = ""
target = ""
if ":" in reply_to or "" in reply_to:
# 使用正则表达式匹配中文或英文冒号
parts = re.split(pattern=r'[:]', string=reply_to, maxsplit=1)
if len(parts) == 2:
# sender = parts[0].strip()
target = parts[1].strip()
anchor_message = chatting_observation.search_message_by_text(target)
else:
anchor_message = None
if anchor_message:
anchor_message.update_chat_stream(self.chat_stream)
else:
logger.info(f"{self.log_prefix} 未找到锚点消息,创建占位符")
anchor_message = await create_empty_anchor_message(
self.chat_stream.platform, self.chat_stream.group_info, self.chat_stream
)
success, reply_set = await self.replyer.deal_reply(
cycle_timers=cycle_timers,
action_data=reply_data,
anchor_message=anchor_message,
reasoning=reasoning,
thinking_id=thinking_id,
)
reply_text = ""
for reply in reply_set:
type = reply[0]
data = reply[1]
if type == "text":
reply_text += data
elif type == "emoji":
reply_text += data
return success, reply_text
async def store_action_info(self, action_build_into_prompt: bool = False, action_prompt_display: str = "", action_done: bool = True) -> None:
"""存储action执行信息到数据库
Args:
action_build_into_prompt: 是否构建到提示中
action_prompt_display: 动作显示内容
"""
try:
chat_stream = self.chat_stream
if not chat_stream:
logger.error(f"{self.log_prefix} 无法存储action信息缺少chat_stream服务")
return
action_time = time.time()
action_id = f"{action_time}_{self.thinking_id}"
ActionRecords.create(
action_id=action_id,
time=action_time,
action_name=self.__class__.__name__,
action_data=str(self.action_data),
action_done=action_done,
action_build_into_prompt=action_build_into_prompt,
action_prompt_display=action_prompt_display,
chat_id=chat_stream.stream_id,
chat_info_stream_id=chat_stream.stream_id,
chat_info_platform=chat_stream.platform,
user_id=chat_stream.user_info.user_id if chat_stream.user_info else "",
user_nickname=chat_stream.user_info.user_nickname if chat_stream.user_info else "",
user_cardname=chat_stream.user_info.user_cardname if chat_stream.user_info else ""
)
logger.debug(f"{self.log_prefix} 已存储action信息: {action_prompt_display}")
except Exception as e:
logger.error(f"{self.log_prefix} 存储action信息时出错: {e}")
traceback.print_exc()

View File

@@ -1,12 +1,11 @@
from typing import List, Optional, Any, Dict
from src.chat.heart_flow.observation.observation import Observation
from src.common.logger_manager import get_logger
from src.common.logger import get_logger
from src.chat.heart_flow.observation.hfcloop_observation import HFCloopObservation
from src.chat.heart_flow.observation.chatting_observation import ChattingObservation
from src.chat.message_receive.chat_stream import chat_manager
from src.chat.message_receive.chat_stream import get_chat_manager
from src.config.config import global_config
from src.llm_models.utils_model import LLMRequest
from src.chat.focus_chat.planners.actions.base_action import ActionActivationType, ChatMode
import random
import asyncio
import hashlib
@@ -29,14 +28,14 @@ class ActionModifier:
def __init__(self, action_manager: ActionManager):
"""初始化动作处理器"""
self.action_manager = action_manager
self.all_actions = self.action_manager.get_using_actions_for_mode(ChatMode.FOCUS)
self.all_actions = self.action_manager.get_using_actions_for_mode("focus")
# 用于LLM判定的小模型
self.llm_judge = LLMRequest(
model=global_config.model.utils_small,
request_type="action.judge",
)
# 缓存相关属性
self._llm_judge_cache = {} # 缓存LLM判定结果
self._cache_expiry_time = 30 # 缓存过期时间(秒)
@@ -49,15 +48,15 @@ class ActionModifier:
):
"""
完整的动作修改流程,整合传统观察处理和新的激活类型判定
这个方法处理完整的动作管理流程:
1. 基于观察的传统动作修改(循环历史分析、类型匹配等)
2. 基于激活类型的智能动作判定,最终确定可用动作集
处理后ActionManager 将包含最终的可用动作集,供规划器直接使用
"""
logger.debug(f"{self.log_prefix}开始完整动作修改流程")
# === 第一阶段:传统观察处理 ===
if observations:
hfc_obs = None
@@ -79,14 +78,17 @@ class ActionModifier:
if hfc_obs:
obs = hfc_obs
# 获取适用于FOCUS模式的动作
all_actions = self.action_manager.get_using_actions_for_mode(ChatMode.FOCUS)
all_actions = self.action_manager.get_using_actions_for_mode("focus")
# print("=======================")
# print(all_actions)
# print("=======================")
action_changes = await self.analyze_loop_actions(obs)
if action_changes["add"] or action_changes["remove"]:
# 合并动作变更
merged_action_changes["add"].extend(action_changes["add"])
merged_action_changes["remove"].extend(action_changes["remove"])
reasons.append("基于循环历史分析")
# 详细记录循环历史分析的变更原因
for action_name in action_changes["add"]:
logger.info(f"{self.log_prefix}添加动作: {action_name},原因: 循环历史分析建议添加")
@@ -97,7 +99,7 @@ class ActionModifier:
if chat_obs:
obs = chat_obs
# 检查动作的关联类型
chat_context = chat_manager.get_stream(obs.chat_id).context
chat_context = get_chat_manager().get_stream(obs.chat_id).context
type_mismatched_actions = []
for action_name in all_actions.keys():
@@ -106,7 +108,9 @@ class ActionModifier:
if not chat_context.check_types(data["associated_types"]):
type_mismatched_actions.append(action_name)
associated_types_str = ", ".join(data["associated_types"])
logger.info(f"{self.log_prefix}移除动作: {action_name},原因: 关联类型不匹配(需要: {associated_types_str}")
logger.info(
f"{self.log_prefix}移除动作: {action_name},原因: 关联类型不匹配(需要: {associated_types_str}"
)
if type_mismatched_actions:
# 合并到移除列表中
@@ -123,17 +127,19 @@ class ActionModifier:
self.action_manager.remove_action_from_using(action_name)
logger.debug(f"{self.log_prefix}应用移除动作: {action_name},原因集合: {reasons}")
logger.info(f"{self.log_prefix}传统动作修改完成,当前使用动作: {list(self.action_manager.get_using_actions().keys())}")
logger.info(
f"{self.log_prefix}传统动作修改完成,当前使用动作: {list(self.action_manager.get_using_actions().keys())}"
)
# === 第二阶段:激活类型判定 ===
# 如果提供了聊天上下文,则进行激活类型判定
if chat_content is not None:
logger.debug(f"{self.log_prefix}开始激活类型判定阶段")
# 获取当前使用的动作集经过第一阶段处理且适用于FOCUS模式
current_using_actions = self.action_manager.get_using_actions()
all_registered_actions = self.action_manager.get_using_actions_for_mode(ChatMode.FOCUS)
all_registered_actions = self.action_manager.get_registered_actions()
# 构建完整的动作信息
current_actions_with_info = {}
for action_name in current_using_actions.keys():
@@ -141,46 +147,49 @@ class ActionModifier:
current_actions_with_info[action_name] = all_registered_actions[action_name]
else:
logger.warning(f"{self.log_prefix}使用中的动作 {action_name} 未在已注册动作中找到")
# 应用激活类型判定
final_activated_actions = await self._apply_activation_type_filtering(
current_actions_with_info,
chat_content,
)
# 更新ActionManager移除未激活的动作
actions_to_remove = []
removal_reasons = {}
for action_name in current_using_actions.keys():
if action_name not in final_activated_actions:
actions_to_remove.append(action_name)
# 确定移除原因
if action_name in all_registered_actions:
action_info = all_registered_actions[action_name]
activation_type = action_info.get("focus_activation_type", ActionActivationType.ALWAYS)
if activation_type == ActionActivationType.RANDOM:
activation_type = action_info.get("focus_activation_type", "always")
# 处理字符串格式的激活类型值
if activation_type == "random":
probability = action_info.get("random_probability", 0.3)
removal_reasons[action_name] = f"RANDOM类型未触发概率{probability}"
elif activation_type == ActionActivationType.LLM_JUDGE:
elif activation_type == "llm_judge":
removal_reasons[action_name] = "LLM判定未激活"
elif activation_type == ActionActivationType.KEYWORD:
elif activation_type == "keyword":
keywords = action_info.get("activation_keywords", [])
removal_reasons[action_name] = f"关键词未匹配(关键词: {keywords}"
else:
removal_reasons[action_name] = "激活判定未通过"
else:
removal_reasons[action_name] = "动作信息不完整"
for action_name in actions_to_remove:
self.action_manager.remove_action_from_using(action_name)
reason = removal_reasons.get(action_name, "未知原因")
logger.info(f"{self.log_prefix}移除动作: {action_name},原因: {reason}")
logger.info(f"{self.log_prefix}激活类型判定完成,最终可用动作: {list(final_activated_actions.keys())}")
logger.info(f"{self.log_prefix}完整动作修改流程结束,最终动作集: {list(self.action_manager.get_using_actions().keys())}")
logger.info(
f"{self.log_prefix}完整动作修改流程结束,最终动作集: {list(self.action_manager.get_using_actions().keys())}"
)
async def _apply_activation_type_filtering(
self,
@@ -189,43 +198,42 @@ class ActionModifier:
) -> Dict[str, Any]:
"""
应用激活类型过滤逻辑,支持四种激活类型的并行处理
Args:
actions_with_info: 带完整信息的动作字典
observed_messages_str: 观察到的聊天消息
chat_context: 聊天上下文信息
extra_context: 额外的上下文信息
chat_content: 聊天内容
Returns:
Dict[str, Any]: 过滤后激活的actions字典
"""
activated_actions = {}
# 分类处理不同激活类型的actions
always_actions = {}
random_actions = {}
llm_judge_actions = {}
keyword_actions = {}
for action_name, action_info in actions_with_info.items():
activation_type = action_info.get("focus_activation_type", ActionActivationType.ALWAYS)
if activation_type == ActionActivationType.ALWAYS:
activation_type = action_info.get("focus_activation_type", "always")
# 现在统一是字符串格式的激活类型值
if activation_type == "always":
always_actions[action_name] = action_info
elif activation_type == ActionActivationType.RANDOM:
elif activation_type == "random":
random_actions[action_name] = action_info
elif activation_type == ActionActivationType.LLM_JUDGE:
elif activation_type == "llm_judge":
llm_judge_actions[action_name] = action_info
elif activation_type == ActionActivationType.KEYWORD:
elif activation_type == "keyword":
keyword_actions[action_name] = action_info
else:
logger.warning(f"{self.log_prefix}未知的激活类型: {activation_type},跳过处理")
# 1. 处理ALWAYS类型直接激活
for action_name, action_info in always_actions.items():
activated_actions[action_name] = action_info
logger.debug(f"{self.log_prefix}激活动作: {action_name},原因: ALWAYS类型直接激活")
# 2. 处理RANDOM类型
for action_name, action_info in random_actions.items():
probability = action_info.get("random_probability", 0.3)
@@ -235,7 +243,7 @@ class ActionModifier:
logger.debug(f"{self.log_prefix}激活动作: {action_name},原因: RANDOM类型触发概率{probability}")
else:
logger.debug(f"{self.log_prefix}未激活动作: {action_name},原因: RANDOM类型未触发概率{probability}")
# 3. 处理KEYWORD类型快速判定
for action_name, action_info in keyword_actions.items():
should_activate = self._check_keyword_activation(
@@ -250,7 +258,7 @@ class ActionModifier:
else:
keywords = action_info.get("activation_keywords", [])
logger.debug(f"{self.log_prefix}未激活动作: {action_name},原因: KEYWORD类型未匹配关键词{keywords}")
# 4. 处理LLM_JUDGE类型并行判定
if llm_judge_actions:
# 直接并行处理所有LLM判定actions
@@ -258,7 +266,7 @@ class ActionModifier:
llm_judge_actions,
chat_content,
)
# 添加激活的LLM判定actions
for action_name, should_activate in llm_results.items():
if should_activate:
@@ -266,46 +274,43 @@ class ActionModifier:
logger.debug(f"{self.log_prefix}激活动作: {action_name},原因: LLM_JUDGE类型判定通过")
else:
logger.debug(f"{self.log_prefix}未激活动作: {action_name},原因: LLM_JUDGE类型判定未通过")
logger.debug(f"{self.log_prefix}激活类型过滤完成: {list(activated_actions.keys())}")
return activated_actions
async def process_actions_for_planner(
self,
observed_messages_str: str = "",
chat_context: Optional[str] = None,
extra_context: Optional[str] = None
self, observed_messages_str: str = "", chat_context: Optional[str] = None, extra_context: Optional[str] = None
) -> Dict[str, Any]:
"""
[已废弃] 此方法现在已被整合到 modify_actions() 中
为了保持向后兼容性而保留,但建议直接使用 ActionManager.get_using_actions()
规划器应该直接从 ActionManager 获取最终的可用动作集,而不是调用此方法
新的架构:
1. 主循环调用 modify_actions() 处理完整的动作管理流程
2. 规划器直接使用 ActionManager.get_using_actions() 获取最终动作集
"""
logger.warning(f"{self.log_prefix}process_actions_for_planner() 已废弃,建议规划器直接使用 ActionManager.get_using_actions()")
logger.warning(
f"{self.log_prefix}process_actions_for_planner() 已废弃,建议规划器直接使用 ActionManager.get_using_actions()"
)
# 为了向后兼容,仍然返回当前使用的动作集
current_using_actions = self.action_manager.get_using_actions()
all_registered_actions = self.action_manager.get_registered_actions()
# 构建完整的动作信息
result = {}
for action_name in current_using_actions.keys():
if action_name in all_registered_actions:
result[action_name] = all_registered_actions[action_name]
return result
def _generate_context_hash(self, chat_content: str) -> str:
"""生成上下文的哈希值用于缓存"""
context_content = f"{chat_content}"
return hashlib.md5(context_content.encode('utf-8')).hexdigest()
return hashlib.md5(context_content.encode("utf-8")).hexdigest()
async def _process_llm_judge_actions_parallel(
self,
@@ -314,85 +319,83 @@ class ActionModifier:
) -> Dict[str, bool]:
"""
并行处理LLM判定actions支持智能缓存
Args:
llm_judge_actions: 需要LLM判定的actions
observed_messages_str: 观察到的聊天消息
chat_context: 聊天上下文
extra_context: 额外上下文
chat_content: 聊天内容
Returns:
Dict[str, bool]: action名称到激活结果的映射
"""
# 生成当前上下文的哈希值
current_context_hash = self._generate_context_hash(chat_content)
current_time = time.time()
results = {}
tasks_to_run = {}
# 检查缓存
for action_name, action_info in llm_judge_actions.items():
cache_key = f"{action_name}_{current_context_hash}"
# 检查是否有有效的缓存
if (cache_key in self._llm_judge_cache and
current_time - self._llm_judge_cache[cache_key]["timestamp"] < self._cache_expiry_time):
if (
cache_key in self._llm_judge_cache
and current_time - self._llm_judge_cache[cache_key]["timestamp"] < self._cache_expiry_time
):
results[action_name] = self._llm_judge_cache[cache_key]["result"]
logger.debug(f"{self.log_prefix}使用缓存结果 {action_name}: {'激活' if results[action_name] else '未激活'}")
logger.debug(
f"{self.log_prefix}使用缓存结果 {action_name}: {'激活' if results[action_name] else '未激活'}"
)
else:
# 需要进行LLM判定
tasks_to_run[action_name] = action_info
# 如果有需要运行的任务,并行执行
if tasks_to_run:
logger.debug(f"{self.log_prefix}并行执行LLM判定任务数: {len(tasks_to_run)}")
# 创建并行任务
tasks = []
task_names = []
for action_name, action_info in tasks_to_run.items():
task = self._llm_judge_action(
action_name,
action_info,
chat_content,
action_name,
action_info,
chat_content,
)
tasks.append(task)
task_names.append(action_name)
# 并行执行所有任务
try:
task_results = await asyncio.gather(*tasks, return_exceptions=True)
# 处理结果并更新缓存
for i, (action_name, result) in enumerate(zip(task_names, task_results)):
for _, (action_name, result) in enumerate(zip(task_names, task_results)):
if isinstance(result, Exception):
logger.error(f"{self.log_prefix}LLM判定action {action_name} 时出错: {result}")
results[action_name] = False
else:
results[action_name] = result
# 更新缓存
cache_key = f"{action_name}_{current_context_hash}"
self._llm_judge_cache[cache_key] = {
"result": result,
"timestamp": current_time
}
self._llm_judge_cache[cache_key] = {"result": result, "timestamp": current_time}
logger.debug(f"{self.log_prefix}并行LLM判定完成耗时: {time.time() - current_time:.2f}s")
except Exception as e:
logger.error(f"{self.log_prefix}并行LLM判定失败: {e}")
# 如果并行执行失败为所有任务返回False
for action_name in tasks_to_run.keys():
results[action_name] = False
# 清理过期缓存
self._cleanup_expired_cache(current_time)
return results
def _cleanup_expired_cache(self, current_time: float):
@@ -401,40 +404,39 @@ class ActionModifier:
for cache_key, cache_data in self._llm_judge_cache.items():
if current_time - cache_data["timestamp"] > self._cache_expiry_time:
expired_keys.append(cache_key)
for key in expired_keys:
del self._llm_judge_cache[key]
if expired_keys:
logger.debug(f"{self.log_prefix}清理了 {len(expired_keys)} 个过期缓存条目")
async def _llm_judge_action(
self,
action_name: str,
self,
action_name: str,
action_info: Dict[str, Any],
chat_content: str = "",
) -> bool:
"""
使用LLM判定是否应该激活某个action
Args:
action_name: 动作名称
action_info: 动作信息
observed_messages_str: 观察到的聊天消息
chat_context: 聊天上下文
extra_context: 额外上下文
Returns:
bool: 是否应该激活此action
"""
try:
# 构建判定提示词
action_description = action_info.get("description", "")
action_require = action_info.get("require", [])
custom_prompt = action_info.get("llm_judge_prompt", "")
# 构建基础判定提示词
base_prompt = f"""
你需要判断在当前聊天情况下,是否应该激活名为"{action_name}"的动作。
@@ -445,34 +447,34 @@ class ActionModifier:
"""
for req in action_require:
base_prompt += f"- {req}\n"
if custom_prompt:
base_prompt += f"\n额外判定条件:\n{custom_prompt}\n"
if chat_content:
base_prompt += f"\n当前聊天记录:\n{chat_content}\n"
base_prompt += """
请根据以上信息判断是否应该激活这个动作。
只需要回答"""",不要有其他内容。
"""
# 调用LLM进行判定
response, _ = await self.llm_judge.generate_response_async(prompt=base_prompt)
# 解析响应
response = response.strip().lower()
# print(base_prompt)
print(f"LLM判定动作 {action_name}:响应='{response}'")
should_activate = "" in response or "yes" in response or "true" in response
logger.debug(f"{self.log_prefix}LLM判定动作 {action_name}:响应='{response}',结果={'激活' if should_activate else '不激活'}")
logger.debug(
f"{self.log_prefix}LLM判定动作 {action_name}:响应='{response}',结果={'激活' if should_activate else '不激活'}"
)
return should_activate
except Exception as e:
logger.error(f"{self.log_prefix}LLM判定动作 {action_name} 时出错: {e}")
# 出错时默认不激活
@@ -486,45 +488,45 @@ class ActionModifier:
) -> bool:
"""
检查是否匹配关键词触发条件
Args:
action_name: 动作名称
action_info: 动作信息
observed_messages_str: 观察到的聊天消息
chat_context: 聊天上下文
extra_context: 额外上下文
Returns:
bool: 是否应该激活此action
"""
activation_keywords = action_info.get("activation_keywords", [])
case_sensitive = action_info.get("keyword_case_sensitive", False)
if not activation_keywords:
logger.warning(f"{self.log_prefix}动作 {action_name} 设置为关键词触发但未配置关键词")
return False
# 构建检索文本
search_text = ""
if chat_content:
search_text += chat_content
# if chat_context:
# search_text += f" {chat_context}"
# search_text += f" {chat_context}"
# if extra_context:
# search_text += f" {extra_context}"
# search_text += f" {extra_context}"
# 如果不区分大小写,转换为小写
if not case_sensitive:
search_text = search_text.lower()
# 检查每个关键词
matched_keywords = []
for keyword in activation_keywords:
check_keyword = keyword if case_sensitive else keyword.lower()
if check_keyword in search_text:
matched_keywords.append(keyword)
if matched_keywords:
logger.debug(f"{self.log_prefix}动作 {action_name} 匹配到关键词: {matched_keywords}")
return True
@@ -560,15 +562,17 @@ class ActionModifier:
reply_sequence.append(action_type == "reply")
# 检查no_reply比例
if len(recent_cycles) >= (5 * global_config.chat.exit_focus_threshold) and (
if len(recent_cycles) >= (4 * global_config.chat.exit_focus_threshold) and (
no_reply_count / len(recent_cycles)
) >= (0.8 * global_config.chat.exit_focus_threshold):
) >= (0.7 * global_config.chat.exit_focus_threshold):
if global_config.chat.chat_mode == "auto":
result["add"].append("exit_focus_chat")
result["remove"].append("no_reply")
result["remove"].append("reply")
no_reply_ratio = no_reply_count / len(recent_cycles)
logger.info(f"{self.log_prefix}检测到高no_reply比例: {no_reply_ratio:.2f}达到退出聊天阈值将添加exit_focus_chat并移除no_reply/reply动作")
logger.info(
f"{self.log_prefix}检测到高no_reply比例: {no_reply_ratio:.2f}达到退出聊天阈值将添加exit_focus_chat并移除no_reply/reply动作"
)
# 计算连续回复的相关阈值
@@ -593,7 +597,7 @@ class ActionModifier:
if len(last_max_reply_num) >= max_reply_num and all(last_max_reply_num):
# 如果最近max_reply_num次都是reply直接移除
result["remove"].append("reply")
reply_count = len(last_max_reply_num) - no_reply_count
# reply_count = len(last_max_reply_num) - no_reply_count
logger.info(
f"{self.log_prefix}移除reply动作原因: 连续回复过多(最近{len(last_max_reply_num)}次全是reply超过阈值{max_reply_num}"
)
@@ -622,8 +626,6 @@ class ActionModifier:
f"{self.log_prefix}连续回复检测:最近{one_thres_reply_num}次全是reply{removal_probability:.2f}概率移除,未触发"
)
else:
logger.debug(
f"{self.log_prefix}连续回复检测无需移除reply动作最近回复模式正常"
)
logger.debug(f"{self.log_prefix}连续回复检测无需移除reply动作最近回复模式正常")
return result

View File

@@ -2,8 +2,7 @@ from typing import Dict, Type
from src.chat.focus_chat.planners.base_planner import BasePlanner
from src.chat.focus_chat.planners.planner_simple import ActionPlanner as SimpleActionPlanner
from src.chat.focus_chat.planners.action_manager import ActionManager
from src.config.config import global_config
from src.common.logger_manager import get_logger
from src.common.logger import get_logger
logger = get_logger("planner_factory")
@@ -40,12 +39,7 @@ class PlannerFactory:
Returns:
BasePlanner: 规划器实例
"""
planner_type = global_config.focus_chat.planner_type
if planner_type not in cls._planner_types:
logger.warning(f"{log_prefix} 未知的规划器类型: {planner_type},使用默认规划器")
planner_type = "complex"
planner_class = cls._planner_types[planner_type]
logger.info(f"{log_prefix} 使用{planner_type}规划器")
planner_class = cls._planner_types["simple"]
logger.info(f"{log_prefix} 使用simple规划器")
return planner_class(log_prefix=log_prefix, action_manager=action_manager)

View File

@@ -11,12 +11,10 @@ from src.chat.focus_chat.info.action_info import ActionInfo
from src.chat.focus_chat.info.structured_info import StructuredInfo
from src.chat.focus_chat.info.self_info import SelfInfo
from src.chat.focus_chat.info.relation_info import RelationInfo
from src.common.logger_manager import get_logger
from src.common.logger import get_logger
from src.chat.utils.prompt_builder import Prompt, global_prompt_manager
from src.individuality.individuality import individuality
from src.individuality.individuality import get_individuality
from src.chat.focus_chat.planners.action_manager import ActionManager
from src.chat.focus_chat.planners.modify_actions import ActionModifier
from src.chat.focus_chat.planners.actions.base_action import ChatMode
from json_repair import repair_json
from src.chat.focus_chat.planners.base_planner import BasePlanner
from datetime import datetime
@@ -110,8 +108,8 @@ class ActionPlanner(BasePlanner):
nickname_str += f"{nicknames},"
name_block = f"你的名字是{global_config.bot.nickname},你的昵称有{nickname_str},有人也会用这些昵称称呼你。"
personality_block = individuality.get_personality_prompt(x_person=2, level=2)
identity_block = individuality.get_identity_prompt(x_person=2, level=2)
personality_block = get_individuality().get_personality_prompt(x_person=2, level=2)
identity_block = get_individuality().get_identity_prompt(x_person=2, level=2)
self_info = name_block + personality_block + identity_block
current_mind = "你思考了很久,没有想清晰要做什么"
@@ -146,8 +144,8 @@ class ActionPlanner(BasePlanner):
# 获取经过modify_actions处理后的最终可用动作集
# 注意动作的激活判定现在在主循环的modify_actions中完成
# 使用Focus模式过滤动作
current_available_actions_dict = self.action_manager.get_using_actions_for_mode(ChatMode.FOCUS)
current_available_actions_dict = self.action_manager.get_using_actions_for_mode("focus")
# 获取完整的动作信息
all_registered_actions = self.action_manager.get_registered_actions()
current_available_actions = {}
@@ -166,7 +164,7 @@ class ActionPlanner(BasePlanner):
logger.info(f"{self.log_prefix}{reasoning}")
self.action_manager.restore_actions()
logger.debug(
f"{self.log_prefix}沉默后恢复到默认动作集, 当前可用: {list(self.action_manager.get_using_actions().keys())}"
f"{self.log_prefix}[focus]沉默后恢复到默认动作集, 当前可用: {list(self.action_manager.get_using_actions().keys())}"
)
return {
"action_result": {"action_type": action, "action_data": action_data, "reasoning": reasoning},
@@ -193,12 +191,11 @@ class ActionPlanner(BasePlanner):
try:
prompt = f"{prompt}"
llm_content, (reasoning_content, _) = await self.planner_llm.generate_response_async(prompt=prompt)
# logger.info(f"{self.log_prefix}规划器原始提示词: {prompt}")
logger.info(f"{self.log_prefix}规划器原始提示词: {prompt}")
logger.info(f"{self.log_prefix}规划器原始响应: {llm_content}")
logger.info(f"{self.log_prefix}规划器推理: {reasoning_content}")
except Exception as req_e:
logger.error(f"{self.log_prefix}LLM 请求执行失败: {req_e}")
reasoning = f"LLM 请求失败,你的模型出现问题: {req_e}"
@@ -219,7 +216,6 @@ class ActionPlanner(BasePlanner):
# 提取决策,提供默认值
extracted_action = parsed_json.get("action", "no_reply")
# extracted_reasoning = parsed_json.get("reasoning", "LLM未提供理由")
extracted_reasoning = ""
# 将所有其他属性添加到action_data
@@ -238,10 +234,10 @@ class ActionPlanner(BasePlanner):
extra_info_block = ""
action_data["extra_info_block"] = extra_info_block
if relation_info:
action_data["relation_info_block"] = relation_info
# 对于reply动作不需要额外处理因为相关字段已经在上面的循环中添加到action_data
if extracted_action not in current_available_actions:
@@ -267,10 +263,6 @@ class ActionPlanner(BasePlanner):
action = "no_reply"
reasoning = f"Planner 内部处理错误: {outer_e}"
# logger.debug(
# f"{self.log_prefix}规划器Prompt:\n{prompt}\n\n决策动作:{action},\n动作信息: '{action_data}'\n理由: {reasoning}"
# )
# 恢复到默认动作集
self.action_manager.restore_actions()
logger.debug(
@@ -304,12 +296,11 @@ class ActionPlanner(BasePlanner):
) -> str:
"""构建 Planner LLM 的提示词 (获取模板并填充数据)"""
try:
if relation_info_block:
relation_info_block = f"以下是你和别人的关系描述:\n{relation_info_block}"
else:
relation_info_block = ""
memory_str = ""
if running_memorys:
memory_str = "以下是当前在聊天中,你回忆起的记忆:\n"
@@ -332,11 +323,11 @@ class ActionPlanner(BasePlanner):
# mind_info_block = ""
# if current_mind:
# mind_info_block = f"对聊天的规划:{current_mind}"
# mind_info_block = f"对聊天的规划:{current_mind}"
# else:
# mind_info_block = "你刚参与聊天"
# mind_info_block = "你刚参与聊天"
personality_block = individuality.get_prompt(x_person=2, level=2)
personality_block = get_individuality().get_prompt(x_person=2, level=2)
action_options_block = ""
for using_actions_name, using_actions_info in current_available_actions.items():
@@ -352,16 +343,14 @@ class ActionPlanner(BasePlanner):
param_text = "\n"
for param_name, param_description in using_actions_info["parameters"].items():
param_text += f' "{param_name}":"{param_description}"\n'
param_text = param_text.rstrip('\n')
param_text = param_text.rstrip("\n")
else:
param_text = ""
require_text = ""
for require_item in using_actions_info["require"]:
require_text += f"- {require_item}\n"
require_text = require_text.rstrip('\n')
require_text = require_text.rstrip("\n")
using_action_prompt = using_action_prompt.format(
action_name=using_actions_name,

View File

@@ -1,25 +1,25 @@
import traceback
from typing import List, Optional, Dict, Any, Tuple
from src.chat.focus_chat.expressors.exprssion_learner import get_expression_learner
from src.chat.message_receive.message import MessageRecv, MessageThinking, MessageSending
from src.chat.message_receive.message import Seg # Local import needed after move
from src.chat.message_receive.message import UserInfo
from src.chat.message_receive.chat_stream import chat_manager
from src.common.logger_manager import get_logger
from src.chat.message_receive.chat_stream import get_chat_manager
from src.common.logger import get_logger
from src.llm_models.utils_model import LLMRequest
from src.config.config import global_config
from src.chat.utils.utils_image import image_path_to_base64 # Local import needed after move
from src.chat.utils.timer_calculator import Timer # <--- Import Timer
from src.chat.emoji_system.emoji_manager import emoji_manager
from src.chat.emoji_system.emoji_manager import get_emoji_manager
from src.chat.focus_chat.heartFC_sender import HeartFCSender
from src.chat.utils.utils import process_llm_response
from src.chat.utils.info_catcher import info_catcher_manager
from src.chat.heart_flow.utils_chat import get_chat_type_and_target_info
from src.chat.message_receive.chat_stream import ChatStream
from src.chat.focus_chat.hfc_utils import parse_thinking_id_to_timestamp
from src.chat.utils.prompt_builder import Prompt, global_prompt_manager
from src.chat.utils.chat_message_builder import build_readable_messages, get_raw_msg_before_timestamp_with_chat
import time
from src.chat.focus_chat.expressors.exprssion_learner import expression_learner
import random
from datetime import datetime
import re
@@ -94,7 +94,7 @@ class DefaultReplyer:
self.chat_id = chat_stream.stream_id
self.chat_stream = chat_stream
self.is_group_chat, self.chat_target_info = get_chat_type_and_target_info(self.chat_id)
self.is_group_chat, self.chat_target_info = get_chat_type_and_target_info(self.chat_id)
async def _create_thinking_message(self, anchor_message: Optional[MessageRecv], thinking_id: str):
"""创建思考消息 (尝试锚定到 anchor_message)"""
@@ -121,6 +121,7 @@ class DefaultReplyer:
# logger.debug(f"创建思考消息thinking_message{thinking_message}")
await self.heart_fc_sender.register_thinking(thinking_message)
return None
async def deal_reply(
self,
@@ -140,6 +141,8 @@ class DefaultReplyer:
# 处理文本部分
# text_part = action_data.get("text", [])
# if text_part:
sent_msg_list = []
with Timer("生成回复", cycle_timers):
# 可以保留原有的文本处理逻辑或进行适当调整
reply = await self.reply(
@@ -238,24 +241,21 @@ class DefaultReplyer:
# current_temp = float(global_config.model.normal["temp"]) * arousal_multiplier
# self.express_model.params["temperature"] = current_temp # 动态调整温度
# 2. 获取信息捕捉器
info_catcher = info_catcher_manager.get_info_catcher(thinking_id)
reply_to = action_data.get("reply_to", "none")
sender = ""
targer = ""
if ":" in reply_to or "" in reply_to:
# 使用正则表达式匹配中文或英文冒号
parts = re.split(pattern=r'[:]', string=reply_to, maxsplit=1)
parts = re.split(pattern=r"[:]", string=reply_to, maxsplit=1)
if len(parts) == 2:
sender = parts[0].strip()
targer = parts[1].strip()
identity = action_data.get("identity", "")
extra_info_block = action_data.get("extra_info_block", "")
relation_info_block = action_data.get("relation_info_block", "")
# 3. 构建 Prompt
with Timer("构建Prompt", {}): # 内部计时器,可选保留
prompt = await self.build_prompt_focus(
@@ -286,10 +286,6 @@ class DefaultReplyer:
# logger.info(f"prompt: {prompt}")
logger.info(f"最终回复: {content}")
info_catcher.catch_after_llm_generated(
prompt=prompt, response=content, reasoning_content=reasoning_content, model_name=model_name
)
except Exception as llm_e:
# 精简报错信息
logger.error(f"{self.log_prefix}LLM 生成失败: {llm_e}")
@@ -340,13 +336,14 @@ class DefaultReplyer:
chat_talking_prompt = build_readable_messages(
message_list_before_now,
replace_bot_name=True,
merge_messages=True,
merge_messages=False,
timestamp_mode="normal_no_YMD",
read_mark=0.0,
truncate=True,
show_actions=True,
)
expression_learner = get_expression_learner()
(
learnt_style_expressions,
learnt_grammar_expressions,
@@ -378,8 +375,6 @@ class DefaultReplyer:
style_habbits_str = "\n".join(style_habbits)
grammar_habbits_str = "\n".join(grammar_habbits)
# 关键词检测与反应
keywords_reaction_prompt = ""
@@ -411,16 +406,15 @@ class DefaultReplyer:
time_block = f"当前时间:{datetime.now().strftime('%Y-%m-%d %H:%M:%S')}"
# logger.debug("开始构建 focus prompt")
if sender_name:
reply_target_block = f"现在{sender_name}说的:{target_message}。引起了你的注意,你想要在群里发言或者回复这条消息。"
reply_target_block = (
f"现在{sender_name}说的:{target_message}。引起了你的注意,你想要在群里发言或者回复这条消息。"
)
elif target_message:
reply_target_block = f"现在{target_message}引起了你的注意,你想要在群里发言或者回复这条消息。"
else:
reply_target_block = "现在,你想要在群里发言或者回复消息。"
# --- Choose template based on chat type ---
if is_group_chat:
@@ -494,7 +488,7 @@ class DefaultReplyer:
logger.error(f"{self.log_prefix} 无法发送回复anchor_message 为空。")
return None
stream_name = chat_manager.get_stream_name(chat_id) or chat_id # 获取流名称用于日志
stream_name = get_chat_manager().get_stream_name(chat_id) or chat_id # 获取流名称用于日志
# 检查思考过程是否仍在进行,并获取开始时间
if thinking_id:
@@ -586,7 +580,7 @@ class DefaultReplyer:
"""
emoji_base64 = ""
description = ""
emoji_raw = await emoji_manager.get_emoji_for_text(send_emoji)
emoji_raw = await get_emoji_manager().get_emoji_for_text(send_emoji)
if emoji_raw:
emoji_path, description, _emotion = emoji_raw
emoji_base64 = image_path_to_base64(emoji_path)
@@ -669,30 +663,30 @@ def find_similar_expressions(input_text: str, expressions: List[Dict], top_k: in
"""使用TF-IDF和余弦相似度找出与输入文本最相似的top_k个表达方式"""
if not expressions:
return []
# 准备文本数据
texts = [expr['situation'] for expr in expressions]
texts = [expr["situation"] for expr in expressions]
texts.append(input_text) # 添加输入文本
# 使用TF-IDF向量化
vectorizer = TfidfVectorizer()
tfidf_matrix = vectorizer.fit_transform(texts)
# 计算余弦相似度
similarity_matrix = cosine_similarity(tfidf_matrix)
# 获取输入文本的相似度分数(最后一行)
scores = similarity_matrix[-1][:-1] # 排除与自身的相似度
# 获取top_k的索引
top_indices = np.argsort(scores)[::-1][:top_k]
# 获取相似表达
similar_exprs = []
for idx in top_indices:
if scores[idx] > 0: # 只保留有相似度的
similar_exprs.append(expressions[idx])
return similar_exprs

View File

@@ -2,7 +2,7 @@ from typing import Dict, Any, Type, TypeVar, List, Optional
import traceback
from json_repair import repair_json
from rich.traceback import install
from src.common.logger_manager import get_logger
from src.common.logger import get_logger
from src.llm_models.utils_model import LLMRequest
from src.config.config import global_config
from src.chat.focus_chat.working_memory.memory_item import MemoryItem

View File

@@ -1,7 +1,8 @@
from typing import List, Any, Optional
import asyncio
from src.common.logger_manager import get_logger
from src.common.logger import get_logger
from src.chat.focus_chat.working_memory.memory_manager import MemoryManager, MemoryItem
from src.config.config import global_config
logger = get_logger(__name__)
@@ -33,8 +34,11 @@ class WorkingMemory:
# 衰减任务
self.decay_task = None
# 启动自动衰减任务
self._start_auto_decay()
# 只有在工作记忆处理器启用时才启动自动衰减任务
if global_config.focus_chat_processor.working_memory_processor:
self._start_auto_decay()
else:
logger.debug(f"工作记忆处理器已禁用,跳过启动自动衰减任务 (chat_id: {chat_id})")
def _start_auto_decay(self):
"""启动自动衰减任务"""

View File

@@ -1,7 +1,7 @@
import asyncio
import traceback
from typing import Optional, Coroutine, Callable, Any, List
from src.common.logger_manager import get_logger
from src.common.logger import get_logger
from src.chat.heart_flow.subheartflow_manager import SubHeartflowManager
from src.config.config import global_config

View File

@@ -1,5 +1,5 @@
from src.chat.heart_flow.sub_heartflow import SubHeartflow, ChatState
from src.common.logger_manager import get_logger
from src.common.logger import get_logger
from typing import Any, Optional, List
from src.chat.heart_flow.subheartflow_manager import SubHeartflowManager
from src.chat.heart_flow.background_tasks import BackgroundTaskManager # Import BackgroundTaskManager

View File

@@ -1,7 +1,7 @@
# 定义了来自外部世界的信息
# 外部世界可以是某个聊天 不同平台的聊天 也可以是任意媒体
from datetime import datetime
from src.common.logger_manager import get_logger
from src.common.logger import get_logger
from src.chat.focus_chat.planners.action_manager import ActionManager
logger = get_logger("observation")

View File

@@ -14,7 +14,7 @@ import difflib
from src.chat.message_receive.message import MessageRecv # 添加 MessageRecv 导入
from src.chat.heart_flow.observation.observation import Observation
from src.common.logger_manager import get_logger
from src.common.logger import get_logger
from src.chat.heart_flow.utils_chat import get_chat_type_and_target_info
from src.chat.utils.prompt_builder import Prompt
@@ -62,13 +62,12 @@ class ChattingObservation(Observation):
self.oldest_messages = []
self.oldest_messages_str = ""
self.compressor_prompt = ""
initial_messages = get_raw_msg_before_timestamp_with_chat(self.chat_id, self.last_observe_time, 10)
self.last_observe_time = initial_messages[-1]["time"] if initial_messages else self.last_observe_time
self.talking_message = initial_messages
self.talking_message_str = build_readable_messages(self.talking_message, show_actions=True)
def to_dict(self) -> dict:
"""将观察对象转换为可序列化的字典"""
return {
@@ -283,12 +282,12 @@ class ChattingObservation(Observation):
show_actions=True,
)
# print(f"构建中self.talking_message_str_truncate: {self.talking_message_str_truncate}")
self.person_list = await get_person_id_list(self.talking_message)
# print(f"构建中self.person_list: {self.person_list}")
logger.trace(
logger.debug(
f"Chat {self.chat_id} - 压缩早期记忆:{self.mid_memory_info}\n现在聊天内容:{self.talking_message_str}"
)

View File

@@ -1,7 +1,7 @@
# 定义了来自外部世界的信息
# 外部世界可以是某个聊天 不同平台的聊天 也可以是任意媒体
from datetime import datetime
from src.common.logger_manager import get_logger
from src.common.logger import get_logger
from src.chat.focus_chat.heartFC_Cycleinfo import CycleDetail
from typing import List
# Import the new utility function

View File

@@ -1,7 +1,7 @@
# 定义了来自外部世界的信息
# 外部世界可以是某个聊天 不同平台的聊天 也可以是任意媒体
from datetime import datetime
from src.common.logger_manager import get_logger
from src.common.logger import get_logger
logger = get_logger("observation")

View File

@@ -1,5 +1,5 @@
from datetime import datetime
from src.common.logger_manager import get_logger
from src.common.logger import get_logger
# Import the new utility function

View File

@@ -1,7 +1,7 @@
# 定义了来自外部世界的信息
# 外部世界可以是某个聊天 不同平台的聊天 也可以是任意媒体
from datetime import datetime
from src.common.logger_manager import get_logger
from src.common.logger import get_logger
from src.chat.focus_chat.working_memory.working_memory import WorkingMemory
from src.chat.focus_chat.working_memory.memory_item import MemoryItem
from typing import List

View File

@@ -4,9 +4,9 @@ import asyncio
import time
from typing import Optional, List, Dict, Tuple
import traceback
from src.common.logger_manager import get_logger
from src.common.logger import get_logger
from src.chat.message_receive.message import MessageRecv
from src.chat.message_receive.chat_stream import chat_manager
from src.chat.message_receive.chat_stream import get_chat_manager
from src.chat.focus_chat.heartFC_chat import HeartFChatting
from src.chat.normal_chat.normal_chat import NormalChat
from src.chat.heart_flow.chat_state_info import ChatState, ChatStateInfo
@@ -42,9 +42,7 @@ class SubHeartflow:
self.history_chat_state: List[Tuple[ChatState, float]] = []
self.is_group_chat, self.chat_target_info = get_chat_type_and_target_info(self.chat_id)
self.log_prefix = (
chat_manager.get_stream_name(self.subheartflow_id) or self.subheartflow_id
)
self.log_prefix = get_chat_manager().get_stream_name(self.subheartflow_id) or self.subheartflow_id
# 兴趣消息集合
self.interest_dict: Dict[str, tuple[MessageRecv, float, bool]] = {}
@@ -105,7 +103,7 @@ class SubHeartflow:
log_prefix = self.log_prefix
try:
# 获取聊天流并创建 NormalChat 实例 (同步部分)
chat_stream = chat_manager.get_stream(self.chat_id)
chat_stream = get_chat_manager().get_stream(self.chat_id)
if not chat_stream:
logger.error(f"{log_prefix} 无法获取 chat_stream无法启动 NormalChat。")
return False
@@ -199,7 +197,6 @@ class SubHeartflow:
# 如果实例不存在,则创建并启动
logger.info(f"{log_prefix} 麦麦准备开始专注聊天...")
try:
self.heart_fc_instance = HeartFChatting(
chat_id=self.subheartflow_id,
# observations=self.observations,

View File

@@ -1,8 +1,8 @@
import asyncio
import time
from typing import Dict, Any, Optional, List
from src.common.logger_manager import get_logger
from src.chat.message_receive.chat_stream import chat_manager
from src.common.logger import get_logger
from src.chat.message_receive.chat_stream import get_chat_manager
from src.chat.heart_flow.sub_heartflow import SubHeartflow, ChatState
@@ -27,7 +27,7 @@ async def _try_set_subflow_absent_internal(subflow: "SubHeartflow", log_prefix:
bool: 如果状态成功变为 ABSENT 或原本就是 ABSENT返回 True否则返回 False。
"""
flow_id = subflow.subheartflow_id
stream_name = chat_manager.get_stream_name(flow_id) or flow_id
stream_name = get_chat_manager().get_stream_name(flow_id) or flow_id
if subflow.chat_state.chat_status != ChatState.ABSENT:
logger.debug(f"{log_prefix} 设置 {stream_name} 状态为 ABSENT")
@@ -106,7 +106,7 @@ class SubHeartflowManager:
# 注册子心流
self.subheartflows[subheartflow_id] = new_subflow
heartflow_name = chat_manager.get_stream_name(subheartflow_id) or subheartflow_id
heartflow_name = get_chat_manager().get_stream_name(subheartflow_id) or subheartflow_id
logger.info(f"[{heartflow_name}] 开始接收消息")
return new_subflow
@@ -120,7 +120,7 @@ class SubHeartflowManager:
async with self._lock: # 加锁以安全访问字典
subheartflow = self.subheartflows.get(subheartflow_id)
stream_name = chat_manager.get_stream_name(subheartflow_id) or subheartflow_id
stream_name = get_chat_manager().get_stream_name(subheartflow_id) or subheartflow_id
logger.info(f"{log_prefix} 正在停止 {stream_name}, 原因: {reason}")
# 调用内部方法处理状态变更
@@ -170,7 +170,9 @@ class SubHeartflowManager:
changed_count += 1
else:
# 这种情况理论上不应发生,如果内部方法返回 True 的话
stream_name = chat_manager.get_stream_name(subflow.subheartflow_id) or subflow.subheartflow_id
stream_name = (
get_chat_manager().get_stream_name(subflow.subheartflow_id) or subflow.subheartflow_id
)
logger.warning(f"{log_prefix} 内部方法声称成功但 {stream_name} 状态未变为 ABSENT。")
# 锁在此处自动释放
@@ -183,7 +185,7 @@ class SubHeartflowManager:
# try:
# for sub_hf in list(self.subheartflows.values()):
# flow_id = sub_hf.subheartflow_id
# stream_name = chat_manager.get_stream_name(flow_id) or flow_id
# stream_name = get_chat_manager().get_stream_name(flow_id) or flow_id
# # 跳过已经是FOCUSED状态的子心流
# if sub_hf.chat_state.chat_status == ChatState.FOCUSED:
@@ -229,7 +231,7 @@ class SubHeartflowManager:
logger.warning(f"[状态转换请求] 尝试转换不存在的子心流 {subflow_id} 到 NORMAL")
return
stream_name = chat_manager.get_stream_name(subflow_id) or subflow_id
stream_name = get_chat_manager().get_stream_name(subflow_id) or subflow_id
current_state = subflow.chat_state.chat_status
if current_state == ChatState.FOCUSED:
@@ -298,7 +300,7 @@ class SubHeartflowManager:
# --- 遍历评估每个符合条件的私聊 --- #
for sub_hf in eligible_subflows:
flow_id = sub_hf.subheartflow_id
stream_name = chat_manager.get_stream_name(flow_id) or flow_id
stream_name = get_chat_manager().get_stream_name(flow_id) or flow_id
log_prefix = f"[{stream_name}]({log_prefix_task})"
try:

View File

@@ -1,7 +1,7 @@
from typing import Optional, Tuple, Dict
from src.common.logger_manager import get_logger
from src.chat.message_receive.chat_stream import chat_manager
from src.person_info.person_info import person_info_manager
from src.common.logger import get_logger
from src.chat.message_receive.chat_stream import get_chat_manager
from src.person_info.person_info import PersonInfoManager, get_person_info_manager
logger = get_logger("heartflow_utils")
@@ -23,7 +23,7 @@ def get_chat_type_and_target_info(chat_id: str) -> Tuple[bool, Optional[Dict]]:
chat_target_info = None
try:
chat_stream = chat_manager.get_stream(chat_id)
chat_stream = get_chat_manager().get_stream(chat_id)
if chat_stream:
if chat_stream.group_info:
@@ -47,10 +47,11 @@ def get_chat_type_and_target_info(chat_id: str) -> Tuple[bool, Optional[Dict]]:
# Try to fetch person info
try:
# Assume get_person_id is sync (as per original code), keep using to_thread
person_id = person_info_manager.get_person_id(platform, user_id)
person_id = PersonInfoManager.get_person_id(platform, user_id)
person_name = None
if person_id:
# get_value is async, so await it directly
person_info_manager = get_person_info_manager()
person_name = person_info_manager.get_value_sync(person_id, "person_name")
target_info["person_id"] = person_id

View File

@@ -1,5 +1,5 @@
# Configure logger
from src.common.logger_manager import get_logger
from src.common.logger import get_logger
logger = get_logger("lpmm")

View File

@@ -132,9 +132,6 @@ global_config = dict(
}
)
# _load_config(global_config, parser.parse_args().config_path)
# file_path = os.path.abspath(__file__)
# dir_path = os.path.dirname(file_path)
ROOT_PATH = os.path.abspath(os.path.join(os.path.dirname(__file__), "..", "..", ".."))
config_path = os.path.join(ROOT_PATH, "config", "lpmm_config.toml")
_load_config(global_config, config_path)

View File

@@ -3,7 +3,7 @@ import os
from .global_logger import logger
from .lpmmconfig import global_config
from src.chat.knowledge.utils import get_sha256
from src.chat.knowledge.utils.hash import get_sha256
def load_raw_data(path: str = None) -> tuple[list[str], list[str]]:
@@ -25,10 +25,10 @@ def load_raw_data(path: str = None) -> tuple[list[str], list[str]]:
import_json = json.loads(f.read())
else:
raise Exception(f"原始数据文件读取失败: {json_path}")
# import_json内容示例
# import_json = [
# "The capital of China is Beijing. The capital of France is Paris.",
# ]
"""
import_json 内容示例:
import_json = ["The capital of China is Beijing. The capital of France is Paris.",]
"""
raw_data = []
sha256_list = []
sha256_set = set()

View File

@@ -12,7 +12,7 @@ import networkx as nx
import numpy as np
from collections import Counter
from ...llm_models.utils_model import LLMRequest
from src.common.logger_manager import get_logger
from src.common.logger import get_logger
from src.chat.memory_system.sample_distribution import MemoryBuildScheduler # 分布生成器
from ..utils.chat_message_builder import (
get_raw_msg_by_timestamp,
@@ -346,7 +346,9 @@ class Hippocampus:
# 使用LLM提取关键词
topic_num = min(5, max(1, int(len(text) * 0.1))) # 根据文本长度动态调整关键词数量
# logger.info(f"提取关键词数量: {topic_num}")
topics_response, (reasoning_content, model_name) = await self.model_summary.generate_response_async(self.find_topic_llm(text, topic_num))
topics_response, (reasoning_content, model_name) = await self.model_summary.generate_response_async(
self.find_topic_llm(text, topic_num)
)
# 提取关键词
keywords = re.findall(r"<([^>]+)>", topics_response)
@@ -407,9 +409,9 @@ class Hippocampus:
activation_values[neighbor] = new_activation
visited_nodes.add(neighbor)
nodes_to_process.append((neighbor, new_activation, current_depth + 1))
logger.trace(
f"节点 '{neighbor}' 被激活,激活值: {new_activation:.2f} (通过 '{current_node}' 连接,强度: {strength}, 深度: {current_depth + 1})"
) # noqa: E501
# logger.debug(
# f"节点 '{neighbor}' 被激活,激活值: {new_activation:.2f} (通过 '{current_node}' 连接,强度: {strength}, 深度: {current_depth + 1})"
# ) # noqa: E501
# 更新激活映射
for node, activation_value in activation_values.items():
@@ -578,9 +580,9 @@ class Hippocampus:
activation_values[neighbor] = new_activation
visited_nodes.add(neighbor)
nodes_to_process.append((neighbor, new_activation, current_depth + 1))
logger.trace(
f"节点 '{neighbor}' 被激活,激活值: {new_activation:.2f} (通过 '{current_node}' 连接,强度: {strength}, 深度: {current_depth + 1})"
) # noqa: E501
# logger.debug(
# f"节点 '{neighbor}' 被激活,激活值: {new_activation:.2f} (通过 '{current_node}' 连接,强度: {strength}, 深度: {current_depth + 1})"
# ) # noqa: E501
# 更新激活映射
for node, activation_value in activation_values.items():
@@ -701,7 +703,9 @@ class Hippocampus:
# 使用LLM提取关键词
topic_num = min(5, max(1, int(len(text) * 0.1))) # 根据文本长度动态调整关键词数量
# logger.info(f"提取关键词数量: {topic_num}")
topics_response, (reasoning_content, model_name) = await self.model_summary.generate_response_async(self.find_topic_llm(text, topic_num))
topics_response, (reasoning_content, model_name) = await self.model_summary.generate_response_async(
self.find_topic_llm(text, topic_num)
)
# 提取关键词
keywords = re.findall(r"<([^>]+)>", topics_response)
@@ -729,7 +733,7 @@ class Hippocampus:
# 对每个关键词进行扩散式检索
for keyword in valid_keywords:
logger.trace(f"开始以关键词 '{keyword}' 为中心进行扩散检索 (最大深度: {max_depth}):")
logger.debug(f"开始以关键词 '{keyword}' 为中心进行扩散检索 (最大深度: {max_depth}):")
# 初始化激活值
activation_values = {keyword: 1.0}
# 记录已访问的节点
@@ -780,7 +784,7 @@ class Hippocampus:
# 计算激活节点数与总节点数的比值
total_activation = sum(activate_map.values())
logger.trace(f"总激活值: {total_activation:.2f}")
logger.debug(f"总激活值: {total_activation:.2f}")
total_nodes = len(self.memory_graph.G.nodes())
# activated_nodes = len(activate_map)
activation_ratio = total_activation / total_nodes if total_nodes > 0 else 0
@@ -825,7 +829,7 @@ class EntorhinalCortex:
)
if messages:
time_diff = (datetime.datetime.now().timestamp() - timestamp) / 3600
logger.success(f"成功抽取 {time_diff:.1f} 小时前的消息样本,共{len(messages)}")
logger.info(f"成功抽取 {time_diff:.1f} 小时前的消息样本,共{len(messages)}")
chat_samples.append(messages)
else:
logger.debug(f"时间戳 {timestamp} 的消息无需记忆")
@@ -893,7 +897,7 @@ class EntorhinalCortex:
# 获取数据库中所有节点和内存中所有节点
db_nodes = {node.concept: node for node in GraphNodes.select()}
memory_nodes = list(self.memory_graph.G.nodes(data=True))
# 批量准备节点数据
nodes_to_create = []
nodes_to_update = []
@@ -929,22 +933,26 @@ class EntorhinalCortex:
continue
if concept not in db_nodes:
nodes_to_create.append({
"concept": concept,
"memory_items": memory_items_json,
"hash": memory_hash,
"created_time": created_time,
"last_modified": last_modified,
})
else:
db_node = db_nodes[concept]
if db_node.hash != memory_hash:
nodes_to_update.append({
nodes_to_create.append(
{
"concept": concept,
"memory_items": memory_items_json,
"hash": memory_hash,
"created_time": created_time,
"last_modified": last_modified,
})
}
)
else:
db_node = db_nodes[concept]
if db_node.hash != memory_hash:
nodes_to_update.append(
{
"concept": concept,
"memory_items": memory_items_json,
"hash": memory_hash,
"last_modified": last_modified,
}
)
# 计算需要删除的节点
memory_concepts = {concept for concept, _ in memory_nodes}
@@ -954,13 +962,13 @@ class EntorhinalCortex:
if nodes_to_create:
batch_size = 100
for i in range(0, len(nodes_to_create), batch_size):
batch = nodes_to_create[i:i + batch_size]
batch = nodes_to_create[i : i + batch_size]
GraphNodes.insert_many(batch).execute()
if nodes_to_update:
batch_size = 100
for i in range(0, len(nodes_to_update), batch_size):
batch = nodes_to_update[i:i + batch_size]
batch = nodes_to_update[i : i + batch_size]
for node_data in batch:
GraphNodes.update(**{k: v for k, v in node_data.items() if k != "concept"}).where(
GraphNodes.concept == node_data["concept"]
@@ -992,22 +1000,26 @@ class EntorhinalCortex:
last_modified = data.get("last_modified", current_time)
if edge_key not in db_edge_dict:
edges_to_create.append({
"source": source,
"target": target,
"strength": strength,
"hash": edge_hash,
"created_time": created_time,
"last_modified": last_modified,
})
edges_to_create.append(
{
"source": source,
"target": target,
"strength": strength,
"hash": edge_hash,
"created_time": created_time,
"last_modified": last_modified,
}
)
elif db_edge_dict[edge_key]["hash"] != edge_hash:
edges_to_update.append({
"source": source,
"target": target,
"strength": strength,
"hash": edge_hash,
"last_modified": last_modified,
})
edges_to_update.append(
{
"source": source,
"target": target,
"strength": strength,
"hash": edge_hash,
"last_modified": last_modified,
}
)
# 计算需要删除的边
memory_edge_keys = {(source, target) for source, target, _ in memory_edges}
@@ -1017,13 +1029,13 @@ class EntorhinalCortex:
if edges_to_create:
batch_size = 100
for i in range(0, len(edges_to_create), batch_size):
batch = edges_to_create[i:i + batch_size]
batch = edges_to_create[i : i + batch_size]
GraphEdges.insert_many(batch).execute()
if edges_to_update:
batch_size = 100
for i in range(0, len(edges_to_update), batch_size):
batch = edges_to_update[i:i + batch_size]
batch = edges_to_update[i : i + batch_size]
for edge_data in batch:
GraphEdges.update(**{k: v for k, v in edge_data.items() if k not in ["source", "target"]}).where(
(GraphEdges.source == edge_data["source"]) & (GraphEdges.target == edge_data["target"])
@@ -1031,13 +1043,11 @@ class EntorhinalCortex:
if edges_to_delete:
for source, target in edges_to_delete:
GraphEdges.delete().where(
(GraphEdges.source == source) & (GraphEdges.target == target)
).execute()
GraphEdges.delete().where((GraphEdges.source == source) & (GraphEdges.target == target)).execute()
end_time = time.time()
logger.success(f"[同步] 总耗时: {end_time - start_time:.2f}")
logger.success(f"[同步] 同步了 {len(memory_nodes)} 个节点和 {len(memory_edges)} 条边")
logger.info(f"[同步] 总耗时: {end_time - start_time:.2f}")
logger.info(f"[同步] 同步了 {len(memory_nodes)} 个节点和 {len(memory_edges)} 条边")
async def resync_memory_to_db(self):
"""清空数据库并重新同步所有记忆数据"""
@@ -1069,13 +1079,15 @@ class EntorhinalCortex:
if not memory_items_json:
continue
nodes_data.append({
"concept": concept,
"memory_items": memory_items_json,
"hash": self.hippocampus.calculate_node_hash(concept, memory_items),
"created_time": data.get("created_time", current_time),
"last_modified": data.get("last_modified", current_time),
})
nodes_data.append(
{
"concept": concept,
"memory_items": memory_items_json,
"hash": self.hippocampus.calculate_node_hash(concept, memory_items),
"created_time": data.get("created_time", current_time),
"last_modified": data.get("last_modified", current_time),
}
)
except Exception as e:
logger.error(f"准备节点 {concept} 数据时发生错误: {e}")
continue
@@ -1084,14 +1096,16 @@ class EntorhinalCortex:
edges_data = []
for source, target, data in memory_edges:
try:
edges_data.append({
"source": source,
"target": target,
"strength": data.get("strength", 1),
"hash": self.hippocampus.calculate_edge_hash(source, target),
"created_time": data.get("created_time", current_time),
"last_modified": data.get("last_modified", current_time),
})
edges_data.append(
{
"source": source,
"target": target,
"strength": data.get("strength", 1),
"hash": self.hippocampus.calculate_edge_hash(source, target),
"created_time": data.get("created_time", current_time),
"last_modified": data.get("last_modified", current_time),
}
)
except Exception as e:
logger.error(f"准备边 {source}-{target} 数据时发生错误: {e}")
continue
@@ -1102,7 +1116,7 @@ class EntorhinalCortex:
batch_size = 500 # 增加批量大小
with GraphNodes._meta.database.atomic():
for i in range(0, len(nodes_data), batch_size):
batch = nodes_data[i:i + batch_size]
batch = nodes_data[i : i + batch_size]
GraphNodes.insert_many(batch).execute()
node_end = time.time()
logger.info(f"[数据库] 写入 {len(nodes_data)} 个节点耗时: {node_end - node_start:.2f}")
@@ -1113,14 +1127,14 @@ class EntorhinalCortex:
batch_size = 500 # 增加批量大小
with GraphEdges._meta.database.atomic():
for i in range(0, len(edges_data), batch_size):
batch = edges_data[i:i + batch_size]
batch = edges_data[i : i + batch_size]
GraphEdges.insert_many(batch).execute()
edge_end = time.time()
logger.info(f"[数据库] 写入 {len(edges_data)} 条边耗时: {edge_end - edge_start:.2f}")
end_time = time.time()
logger.success(f"[数据库] 重新同步完成,总耗时: {end_time - start_time:.2f}")
logger.success(f"[数据库] 同步了 {len(nodes_data)} 个节点和 {len(edges_data)} 条边")
logger.info(f"[数据库] 重新同步完成,总耗时: {end_time - start_time:.2f}")
logger.info(f"[数据库] 同步了 {len(nodes_data)} 个节点和 {len(edges_data)} 条边")
def sync_memory_from_db(self):
"""从数据库同步数据到内存中的图结构"""
@@ -1195,7 +1209,7 @@ class EntorhinalCortex:
)
if need_update:
logger.success("[数据库] 已为缺失的时间字段进行补充")
logger.info("[数据库] 已为缺失的时间字段进行补充")
# 负责整合,遗忘,合并记忆
@@ -1240,9 +1254,8 @@ class ParahippocampalGyrus:
logger.warning("无法从提供的消息生成可读文本,跳过记忆压缩。")
return set(), {}
current_YMD_time = datetime.datetime.now().strftime("%Y-%m-%d")
current_YMD_time_str = f"当前日期: {current_YMD_time}"
input_text = f"{current_YMD_time_str}\n{input_text}"
current_date = f"当前日期: {datetime.datetime.now().isoformat()}"
input_text = f"{current_date}\n{input_text}"
logger.debug(f"记忆来源:\n{input_text}")
@@ -1374,7 +1387,7 @@ class ParahippocampalGyrus:
logger.debug(f"进度: [{bar}] {progress:.1f}% ({i}/{len(memory_samples)})")
if all_added_nodes:
logger.success(f"更新记忆: {', '.join(all_added_nodes)}")
logger.info(f"更新记忆: {', '.join(all_added_nodes)}")
if all_added_edges:
logger.debug(f"强化连接: {', '.join(all_added_edges)}")
if all_connected_nodes:
@@ -1383,7 +1396,7 @@ class ParahippocampalGyrus:
await self.hippocampus.entorhinal_cortex.sync_memory_to_db()
end_time = time.time()
logger.success(f"---------------------记忆构建耗时: {end_time - start_time:.2f} 秒---------------------")
logger.info(f"---------------------记忆构建耗时: {end_time - start_time:.2f} 秒---------------------")
async def operation_forget_topic(self, percentage=0.005):
start_time = time.time()
@@ -1592,8 +1605,8 @@ class ParahippocampalGyrus:
if similarity >= similarity_threshold:
logger.debug(f"[整合] 节点 '{node}' 中发现相似项 (相似度: {similarity:.2f}):")
logger.trace(f" - '{item1}'")
logger.trace(f" - '{item2}'")
logger.debug(f" - '{item1}'")
logger.debug(f" - '{item2}'")
# 比较信息量
info1 = calculate_information_content(item1)
@@ -1655,21 +1668,9 @@ class ParahippocampalGyrus:
class HippocampusManager:
_instance = None
_hippocampus = None
_initialized = False
@classmethod
def get_instance(cls):
if cls._instance is None:
cls._instance = cls()
return cls._instance
@classmethod
def get_hippocampus(cls):
if not cls._initialized:
raise RuntimeError("HippocampusManager 尚未初始化,请先调用 initialize 方法")
return cls._hippocampus
def __init__(self):
self._hippocampus = None
self._initialized = False
def initialize(self):
"""初始化海马体实例"""
@@ -1685,7 +1686,7 @@ class HippocampusManager:
node_count = len(memory_graph.nodes())
edge_count = len(memory_graph.edges())
logger.success(f"""--------------------------------
logger.info(f"""--------------------------------
记忆系统参数配置:
构建间隔: {global_config.memory.memory_build_interval}秒|样本数: {global_config.memory.memory_build_sample_num},长度: {global_config.memory.memory_build_sample_length}|压缩率: {global_config.memory.memory_compress_rate}
记忆构建分布: {global_config.memory.memory_build_distribution}
@@ -1695,6 +1696,11 @@ class HippocampusManager:
return self._hippocampus
def get_hippocampus(self):
if not self._initialized:
raise RuntimeError("HippocampusManager 尚未初始化,请先调用 initialize 方法")
return self._hippocampus
async def build_memory(self):
"""构建记忆的公共接口"""
if not self._initialized:
@@ -1772,3 +1778,7 @@ class HippocampusManager:
if not self._initialized:
raise RuntimeError("HippocampusManager 尚未初始化,请先调用 initialize 方法")
return self._hippocampus.get_all_node_names()
# 创建全局实例
hippocampus_manager = HippocampusManager()

View File

@@ -1,12 +1,12 @@
from src.chat.emoji_system.emoji_manager import emoji_manager
from src.chat.message_receive.chat_stream import chat_manager
from src.chat.emoji_system.emoji_manager import get_emoji_manager
from src.chat.message_receive.chat_stream import get_chat_manager
from src.chat.message_receive.message_sender import message_manager
from src.chat.message_receive.storage import MessageStorage
__all__ = [
"emoji_manager",
"chat_manager",
"get_emoji_manager",
"get_chat_manager",
"message_manager",
"MessageStorage",
]

View File

@@ -1,15 +1,16 @@
import traceback
from typing import Dict, Any
from src.common.logger_manager import get_logger
from src.common.logger import get_logger
from src.manager.mood_manager import mood_manager # 导入情绪管理器
from src.chat.message_receive.chat_stream import chat_manager
from src.chat.message_receive.chat_stream import get_chat_manager
from src.chat.message_receive.message import MessageRecv
from src.experimental.only_message_process import MessageProcessor
from src.experimental.PFC.pfc_manager import PFCManager
from src.chat.focus_chat.heartflow_message_processor import HeartFCMessageReceiver
from src.chat.utils.prompt_builder import Prompt, global_prompt_manager
from src.config.config import global_config
from src.plugin_system.core.component_registry import component_registry # 导入新插件系统
# 定义日志配置
@@ -32,7 +33,7 @@ class ChatBot:
async def _ensure_started(self):
"""确保所有任务已启动"""
if not self._started:
logger.trace("确保ChatBot所有任务已启动")
logger.debug("确保ChatBot所有任务已启动")
self._started = True
@@ -47,6 +48,60 @@ class ChatBot:
except Exception as e:
logger.error(f"创建PFC聊天失败: {e}")
async def _process_commands_with_new_system(self, message: MessageRecv):
"""使用新插件系统处理命令"""
try:
if not message.processed_plain_text:
await message.process()
text = message.processed_plain_text
# 使用新的组件注册中心查找命令
command_result = component_registry.find_command_by_text(text)
if command_result:
command_class, matched_groups, intercept_message, plugin_name = command_result
# 获取插件配置
plugin_config = component_registry.get_plugin_config(plugin_name)
# 创建命令实例
command_instance = command_class(message, plugin_config)
command_instance.set_matched_groups(matched_groups)
try:
# 执行命令
success, response = await command_instance.execute()
# 记录命令执行结果
if success:
logger.info(f"命令执行成功: {command_class.__name__} (拦截: {intercept_message})")
else:
logger.warning(f"命令执行失败: {command_class.__name__} - {response}")
# 根据命令的拦截设置决定是否继续处理消息
return True, response, not intercept_message # 找到命令根据intercept_message决定是否继续
except Exception as e:
logger.error(f"执行命令时出错: {command_class.__name__} - {e}")
import traceback
logger.error(traceback.format_exc())
try:
await command_instance.send_reply(f"命令执行出错: {str(e)}")
except Exception as send_error:
logger.error(f"发送错误消息失败: {send_error}")
# 命令出错时,根据命令的拦截设置决定是否继续处理消息
return True, str(e), not intercept_message
# 没有找到命令,继续处理消息
return False, None, True
except Exception as e:
logger.error(f"处理命令时出错: {e}")
return False, None, True # 出错时继续处理消息
async def message_process(self, message_data: Dict[str, Any]) -> None:
"""处理转化后的统一格式消息
这个函数本质是预处理一些数据,根据配置信息和消息内容,预处理消息,并分发到合适的消息处理器中
@@ -73,11 +128,30 @@ class ChatBot:
message_data["message_info"]["user_info"]["user_id"]
)
# print(message_data)
logger.trace(f"处理消息:{str(message_data)[:120]}...")
# logger.debug(str(message_data))
message = MessageRecv(message_data)
group_info = message.message_info.group_info
user_info = message.message_info.user_info
chat_manager.register_message(message)
get_chat_manager().register_message(message)
# 创建聊天流
chat = await get_chat_manager().get_or_create_stream(
platform=message.message_info.platform,
user_info=user_info,
group_info=group_info,
)
message.update_chat_stream(chat)
# 处理消息内容,生成纯文本
await message.process()
# 命令处理 - 使用新插件系统检查并处理命令
is_command, cmd_result, continue_process = await self._process_commands_with_new_system(message)
# 如果是命令且不需要继续处理,则直接返回
if is_command and not continue_process:
logger.info(f"命令处理完成,跳过后续消息处理: {cmd_result}")
return
# 确认从接口发来的message是否有自定义的prompt模板信息
if message.message_info.template_info and not message.message_info.template_info.template_default:
@@ -92,29 +166,23 @@ class ChatBot:
template_group_name = None
async def preprocess():
logger.trace("开始预处理消息...")
logger.debug("开始预处理消息...")
# 如果在私聊中
if group_info is None:
logger.trace("检测到私聊消息")
logger.debug("检测到私聊消息")
if global_config.experimental.pfc_chatting:
logger.trace("进入PFC私聊处理流程")
logger.debug("进入PFC私聊处理流程")
# 创建聊天流
logger.trace(f"{user_info.user_id}创建/获取聊天流")
chat = await chat_manager.get_or_create_stream(
platform=message.message_info.platform,
user_info=user_info,
group_info=group_info,
)
message.update_chat_stream(chat)
logger.debug(f"{user_info.user_id}创建/获取聊天流")
await self.only_process_chat.process_message(message)
await self._create_pfc_chat(message)
# 禁止PFC进入普通的心流消息处理逻辑
else:
logger.trace("进入普通心流私聊处理")
logger.debug("进入普通心流私聊处理")
await self.heartflow_message_receiver.process_message(message_data)
# 群聊默认进入心流消息处理逻辑
else:
logger.trace(f"检测到群聊消息群ID: {group_info.group_id}")
logger.debug(f"检测到群聊消息群ID: {group_info.group_id}")
await self.heartflow_message_receiver.process_message(message_data)
if template_group_name:

View File

@@ -13,7 +13,7 @@ from maim_message import GroupInfo, UserInfo
if TYPE_CHECKING:
from .message import MessageRecv
from src.common.logger_manager import get_logger
from src.common.logger import get_logger
from rich.traceback import install
install(extra_lines=3)
@@ -135,7 +135,7 @@ class ChatManager:
"""异步初始化"""
try:
await self.load_all_streams()
logger.success(f"聊天管理器已启动,已加载 {len(self.streams)} 个聊天流")
logger.info(f"聊天管理器已启动,已加载 {len(self.streams)} 个聊天流")
except Exception as e:
logger.error(f"聊天管理器启动失败: {str(e)}")
@@ -377,5 +377,11 @@ class ChatManager:
logger.error(f"从数据库加载所有聊天流失败 (Peewee): {e}", exc_info=True)
# 创建全局单例
chat_manager = ChatManager()
chat_manager = None
def get_chat_manager():
global chat_manager
if chat_manager is None:
chat_manager = ChatManager()
return chat_manager

View File

@@ -5,11 +5,11 @@ from typing import Optional, Any, TYPE_CHECKING
import urllib3
from src.common.logger_manager import get_logger
from src.common.logger import get_logger
if TYPE_CHECKING:
from .chat_stream import ChatStream
from ..utils.utils_image import image_manager
from ..utils.utils_image import get_image_manager
from maim_message import Seg, UserInfo, BaseMessageInfo, MessageBase
from rich.traceback import install
@@ -138,12 +138,12 @@ class MessageRecv(Message):
elif seg.type == "image":
# 如果是base64图片数据
if isinstance(seg.data, str):
return await image_manager.get_image_description(seg.data)
return await get_image_manager().get_image_description(seg.data)
return "[发了一张图片,网卡了加载不出来]"
elif seg.type == "emoji":
self.is_emoji = True
if isinstance(seg.data, str):
return await image_manager.get_emoji_description(seg.data)
return await get_image_manager().get_emoji_description(seg.data)
return "[发了一个表情包,网卡了加载不出来]"
else:
return f"[{seg.type}:{str(seg.data)}]"
@@ -207,11 +207,11 @@ class MessageProcessBase(Message):
elif seg.type == "image":
# 如果是base64图片数据
if isinstance(seg.data, str):
return await image_manager.get_image_description(seg.data)
return await get_image_manager().get_image_description(seg.data)
return "[图片,网卡了加载不出来]"
elif seg.type == "emoji":
if isinstance(seg.data, str):
return await image_manager.get_emoji_description(seg.data)
return await get_image_manager().get_emoji_description(seg.data)
return "[表情,网卡了加载不出来]"
elif seg.type == "at":
return f"[@{seg.data}]"

View File

@@ -3,7 +3,7 @@ import asyncio
import time
from asyncio import Task
from typing import Union
from src.common.message.api import global_api
from src.common.message.api import get_global_api
# from ...common.database import db # 数据库依赖似乎不需要了,注释掉
from .message import MessageSending, MessageThinking, MessageSet
@@ -12,7 +12,7 @@ from .storage import MessageStorage
from ...config.config import global_config
from ..utils.utils import truncate_message, calculate_typing_time, count_messages_between
from src.common.logger_manager import get_logger
from src.common.logger import get_logger
from rich.traceback import install
install(extra_lines=3)
@@ -24,7 +24,7 @@ logger = get_logger("sender")
async def send_via_ws(message: MessageSending) -> None:
"""通过 WebSocket 发送消息"""
try:
await global_api.send_message(message)
await get_global_api().send_message(message)
except Exception as e:
logger.error(f"WS发送失败: {e}")
raise ValueError(f"未找到平台:{message.message_info.platform} 的url配置请检查配置文件") from e
@@ -41,16 +41,16 @@ async def send_message(
thinking_start_time=message.thinking_start_time,
is_emoji=message.is_emoji,
)
# logger.trace(f"{message.processed_plain_text},{typing_time},计算输入时间结束") # 减少日志
# logger.debug(f"{message.processed_plain_text},{typing_time},计算输入时间结束") # 减少日志
await asyncio.sleep(typing_time)
# logger.trace(f"{message.processed_plain_text},{typing_time},等待输入时间结束") # 减少日志
# logger.debug(f"{message.processed_plain_text},{typing_time},等待输入时间结束") # 减少日志
# --- 结束打字延迟 ---
message_preview = truncate_message(message.processed_plain_text)
try:
await send_via_ws(message)
logger.success(f"发送消息 '{message_preview}' 成功") # 调整日志格式
logger.info(f"发送消息 '{message_preview}' 成功") # 调整日志格式
except Exception as e:
logger.error(f"发送消息 '{message_preview}' 失败: {str(e)}")

View File

@@ -5,9 +5,9 @@ from typing import Union
from .message import MessageSending, MessageRecv
from .chat_stream import ChatStream
from ...common.database.database_model import Messages, RecalledMessages # Import Peewee models
from src.common.logger import get_module_logger
from src.common.logger import get_logger
logger = get_module_logger("message_storage")
logger = get_logger("message_storage")
class MessageStorage:

View File

@@ -4,19 +4,16 @@ import traceback
from random import random
from typing import List, Optional # 导入 Optional
from maim_message import UserInfo, Seg
from src.common.logger_manager import get_logger
from src.common.logger import get_logger
from src.chat.heart_flow.utils_chat import get_chat_type_and_target_info
from src.manager.mood_manager import mood_manager
from src.chat.message_receive.chat_stream import ChatStream, chat_manager
from src.chat.utils.info_catcher import info_catcher_manager
from src.chat.message_receive.chat_stream import ChatStream, get_chat_manager
from src.chat.utils.timer_calculator import Timer
from src.chat.utils.prompt_builder import global_prompt_manager
from .normal_chat_generator import NormalChatGenerator
from ..message_receive.message import MessageSending, MessageRecv, MessageThinking, MessageSet
from src.chat.message_receive.message_sender import message_manager
from src.chat.utils.utils_image import image_path_to_base64
from src.chat.emoji_system.emoji_manager import emoji_manager
from src.chat.normal_chat.willing.willing_manager import willing_manager
from src.chat.normal_chat.willing.willing_manager import get_willing_manager
from src.chat.normal_chat.normal_chat_utils import get_recent_message_stats
from src.config.config import global_config
from src.chat.focus_chat.planners.action_manager import ActionManager
@@ -25,6 +22,7 @@ from src.chat.normal_chat.normal_chat_action_modifier import NormalChatActionMod
from src.chat.normal_chat.normal_chat_expressor import NormalChatExpressor
from src.chat.focus_chat.replyer.default_replyer import DefaultReplyer
willing_manager = get_willing_manager()
logger = get_logger("normal_chat")
@@ -35,7 +33,7 @@ class NormalChat:
self.chat_stream = chat_stream
self.stream_id = chat_stream.stream_id
self.stream_name = chat_manager.get_stream_name(self.stream_id) or self.stream_id
self.stream_name = get_chat_manager().get_stream_name(self.stream_id) or self.stream_id
# 初始化Normal Chat专用表达器
self.expressor = NormalChatExpressor(self.chat_stream)
@@ -150,50 +148,6 @@ class NormalChat:
return first_bot_msg
# 改为实例方法
async def _handle_emoji(self, message: MessageRecv, response: str):
"""处理表情包"""
if random() < global_config.normal_chat.emoji_chance:
emoji_raw = await emoji_manager.get_emoji_for_text(response)
if emoji_raw:
emoji_path, description, _emotion = emoji_raw
emoji_cq = image_path_to_base64(emoji_path)
thinking_time_point = round(message.message_info.time, 2)
message_segment = Seg(type="emoji", data=emoji_cq)
bot_message = MessageSending(
message_id="mt" + str(thinking_time_point),
chat_stream=self.chat_stream, # 使用 self.chat_stream
bot_user_info=UserInfo(
user_id=global_config.bot.qq_account,
user_nickname=global_config.bot.nickname,
platform=message.message_info.platform,
),
sender_info=message.message_info.user_info,
message_segment=message_segment,
reply=message,
is_head=False,
is_emoji=True,
apply_set_reply_logic=True,
)
await message_manager.add_message(bot_message)
# 改为实例方法 (虽然它只用 message.chat_stream, 但逻辑上属于实例)
# async def _update_relationship(self, message: MessageRecv, response_set):
# """更新关系情绪"""
# ori_response = ",".join(response_set)
# stance, emotion = await self.gpt._get_emotion_tags(ori_response, message.processed_plain_text)
# user_info = message.message_info.user_info
# platform = user_info.platform
# await relationship_manager.calculate_update_relationship_value(
# user_info,
# platform,
# label=emotion,
# stance=stance, # 使用 self.chat_stream
# )
# self.mood_manager.update_mood_from_emotion(emotion, global_config.mood.mood_intensity_factor)
async def _reply_interested_message(self) -> None:
"""
后台任务方法轮询当前实例关联chat的兴趣消息
@@ -298,9 +252,6 @@ class NormalChat:
logger.debug(f"[{self.stream_name}] 创建捕捉器thinking_id:{thinking_id}")
info_catcher = info_catcher_manager.get_info_catcher(thinking_id)
info_catcher.catch_decide_to_response(message)
# 如果启用planner预先修改可用actions避免在并行任务中重复调用
available_actions = None
if self.enable_planner:
@@ -336,13 +287,17 @@ class NormalChat:
try:
# 获取发送者名称(动作修改已在并行执行前完成)
sender_name = self._get_sender_name(message)
no_action = {
"action_result": {"action_type": "no_action", "action_data": {}, "reasoning": "规划器初始化默认", "is_parallel": True},
"action_result": {
"action_type": "no_action",
"action_data": {},
"reasoning": "规划器初始化默认",
"is_parallel": True,
},
"chat_context": "",
"action_prompt": "",
}
# 检查是否应该跳过规划
if self.action_modifier.should_skip_planning():
@@ -357,7 +312,9 @@ class NormalChat:
reasoning = plan_result["action_result"]["reasoning"]
is_parallel = plan_result["action_result"].get("is_parallel", False)
logger.info(f"[{self.stream_name}] Planner决策: {action_type}, 理由: {reasoning}, 并行执行: {is_parallel}")
logger.info(
f"[{self.stream_name}] Planner决策: {action_type}, 理由: {reasoning}, 并行执行: {is_parallel}"
)
self.action_type = action_type # 更新实例属性
self.is_parallel_action = is_parallel # 新增:保存并行执行标志
@@ -376,7 +333,12 @@ class NormalChat:
else:
logger.warning(f"[{self.stream_name}] 额外动作 {action_type} 执行失败")
return {"action_type": action_type, "action_data": action_data, "reasoning": reasoning, "is_parallel": is_parallel}
return {
"action_type": action_type,
"action_data": action_data,
"reasoning": reasoning,
"is_parallel": is_parallel,
}
except Exception as e:
logger.error(f"[{self.stream_name}] Planner执行失败: {e}")
@@ -394,21 +356,25 @@ class NormalChat:
if isinstance(response_set, Exception):
logger.error(f"[{self.stream_name}] 回复生成异常: {response_set}")
response_set = None
elif response_set:
info_catcher.catch_after_generate_response(timing_results["并行生成回复和规划"])
# 处理规划结果(可选,不影响回复)
if isinstance(plan_result, Exception):
logger.error(f"[{self.stream_name}] 动作规划异常: {plan_result}")
elif plan_result:
logger.debug(f"[{self.stream_name}] 额外动作处理完成: {self.action_type}")
if not response_set or (
self.enable_planner and self.action_type not in ["no_action", "change_to_focus_chat"] and not self.is_parallel_action
self.enable_planner
and self.action_type not in ["no_action", "change_to_focus_chat"]
and not self.is_parallel_action
):
if not response_set:
logger.info(f"[{self.stream_name}] 模型未生成回复内容")
elif self.enable_planner and self.action_type not in ["no_action", "change_to_focus_chat"] and not self.is_parallel_action:
elif (
self.enable_planner
and self.action_type not in ["no_action", "change_to_focus_chat"]
and not self.is_parallel_action
):
logger.info(f"[{self.stream_name}] 模型选择其他动作(非并行动作)")
# 如果模型未生成回复,移除思考消息
container = await message_manager.get_container(self.stream_id) # 使用 self.stream_id
@@ -435,8 +401,6 @@ class NormalChat:
# 检查 first_bot_msg 是否为 None (例如思考消息已被移除的情况)
if first_bot_msg:
info_catcher.catch_after_response(timing_results["消息发送"], response_set, first_bot_msg)
# 记录回复信息到最近回复列表中
reply_info = {
"time": time.time(),
@@ -465,14 +429,9 @@ class NormalChat:
logger.warning(f"[{self.stream_name}] 没有设置切换到focus聊天模式的回调函数无法执行切换")
return
else:
# await self._check_switch_to_focus()
await self._check_switch_to_focus()
pass
info_catcher.done_catch()
with Timer("处理表情包", timing_results):
await self._handle_emoji(message, response_set[0])
# with Timer("关系更新", timing_results):
# await self._update_relationship(message, response_set)

View File

@@ -1,7 +1,6 @@
from typing import List, Any, Dict
from src.common.logger_manager import get_logger
from src.common.logger import get_logger
from src.chat.focus_chat.planners.action_manager import ActionManager
from src.chat.focus_chat.planners.actions.base_action import ActionActivationType, ChatMode
from src.chat.utils.chat_message_builder import build_readable_messages, get_raw_msg_before_timestamp_with_chat
from src.config.config import global_config
import random
@@ -35,7 +34,7 @@ class NormalChatActionModifier:
**kwargs: Any,
):
"""为Normal Chat修改可用动作集合
实现动作激活策略:
1. 基于关联类型的动态过滤
2. 基于激活类型的智能判定LLM_JUDGE转为概率激活
@@ -49,7 +48,7 @@ class NormalChatActionModifier:
reasons = []
merged_action_changes = {"add": [], "remove": []}
type_mismatched_actions = [] # 在外层定义避免作用域问题
self.action_manager.restore_default_actions()
# 第一阶段:基于关联类型的动态过滤
@@ -57,7 +56,7 @@ class NormalChatActionModifier:
chat_context = chat_stream.context if hasattr(chat_stream, "context") else None
if chat_context:
# 获取Normal模式下的可用动作已经过滤了mode_enable
current_using_actions = self.action_manager.get_using_actions_for_mode(ChatMode.NORMAL)
current_using_actions = self.action_manager.get_using_actions_for_mode("normal")
# print(f"current_using_actions: {current_using_actions}")
for action_name in current_using_actions.keys():
if action_name in self.all_actions:
@@ -74,7 +73,7 @@ class NormalChatActionModifier:
# 第二阶段:应用激活类型判定
# 构建聊天内容 - 使用与planner一致的方式
chat_content = ""
if chat_stream and hasattr(chat_stream, 'stream_id'):
if chat_stream and hasattr(chat_stream, "stream_id"):
try:
# 获取消息历史使用与normal_chat_planner相同的方法
message_list_before_now = get_raw_msg_before_timestamp_with_chat(
@@ -82,7 +81,7 @@ class NormalChatActionModifier:
timestamp=time.time(),
limit=global_config.focus_chat.observation_context_size, # 使用相同的配置
)
# 构建可读的聊天上下文
chat_content = build_readable_messages(
message_list_before_now,
@@ -92,39 +91,41 @@ class NormalChatActionModifier:
read_mark=0.0,
show_actions=True,
)
logger.debug(f"{self.log_prefix} 成功构建聊天内容,长度: {len(chat_content)}")
except Exception as e:
logger.warning(f"{self.log_prefix} 构建聊天内容失败: {e}")
chat_content = ""
# 获取当前Normal模式下的动作集进行激活判定
current_actions = self.action_manager.get_using_actions_for_mode(ChatMode.NORMAL)
current_actions = self.action_manager.get_using_actions_for_mode("normal")
# print(f"current_actions: {current_actions}")
# print(f"chat_content: {chat_content}")
final_activated_actions = await self._apply_normal_activation_filtering(
current_actions,
chat_content,
message_content
current_actions, chat_content, message_content
)
# print(f"final_activated_actions: {final_activated_actions}")
# 统一处理所有需要移除的动作,避免重复移除
all_actions_to_remove = set() # 使用set避免重复
# 添加关联类型不匹配的动作
if type_mismatched_actions:
all_actions_to_remove.update(type_mismatched_actions)
# 添加激活类型判定未通过的动作
for action_name in current_actions.keys():
if action_name not in final_activated_actions:
all_actions_to_remove.add(action_name)
# 统计移除原因(避免重复)
activation_failed_actions = [name for name in current_actions.keys() if name not in final_activated_actions and name not in type_mismatched_actions]
activation_failed_actions = [
name
for name in current_actions.keys()
if name not in final_activated_actions and name not in type_mismatched_actions
]
if activation_failed_actions:
reasons.append(f"移除{activation_failed_actions}(激活类型判定未通过)")
@@ -146,9 +147,9 @@ class NormalChatActionModifier:
# 记录变更原因
if reasons:
logger.info(f"{self.log_prefix} 动作调整完成: {' | '.join(reasons)}")
# 获取最终的Normal模式可用动作并记录
final_actions = self.action_manager.get_using_actions_for_mode(ChatMode.NORMAL)
final_actions = self.action_manager.get_using_actions_for_mode("normal")
logger.debug(f"{self.log_prefix} 当前Normal模式可用动作: {list(final_actions.keys())}")
async def _apply_normal_activation_filtering(
@@ -159,73 +160,69 @@ class NormalChatActionModifier:
) -> Dict[str, Any]:
"""
应用Normal模式的激活类型过滤逻辑
与Focus模式的区别
1. LLM_JUDGE类型转换为概率激活避免LLM调用
2. RANDOM类型保持概率激活
3. KEYWORD类型保持关键词匹配
4. ALWAYS类型直接激活
Args:
actions_with_info: 带完整信息的动作字典
chat_content: 聊天内容
Returns:
Dict[str, Any]: 过滤后激活的actions字典
"""
activated_actions = {}
# 分类处理不同激活类型的actions
always_actions = {}
random_actions = {}
keyword_actions = {}
for action_name, action_info in actions_with_info.items():
# 使用normal_activation_type
activation_type = action_info.get("normal_activation_type", ActionActivationType.ALWAYS)
if activation_type == ActionActivationType.ALWAYS:
activation_type = action_info.get("normal_activation_type", "always")
# 现在统一是字符串格式的激活类型值
if activation_type == "always":
always_actions[action_name] = action_info
elif activation_type == ActionActivationType.RANDOM or activation_type == ActionActivationType.LLM_JUDGE:
elif activation_type == "random" or activation_type == "llm_judge":
random_actions[action_name] = action_info
elif activation_type == ActionActivationType.KEYWORD:
elif activation_type == "keyword":
keyword_actions[action_name] = action_info
else:
logger.warning(f"{self.log_prefix}未知的激活类型: {activation_type},跳过处理")
# 1. 处理ALWAYS类型直接激活
for action_name, action_info in always_actions.items():
activated_actions[action_name] = action_info
logger.debug(f"{self.log_prefix}激活动作: {action_name},原因: ALWAYS类型直接激活")
# 2. 处理RANDOM类型概率激活
for action_name, action_info in random_actions.items():
probability = action_info.get("random_probability", 0.3)
should_activate = random.random() < probability
if should_activate:
activated_actions[action_name] = action_info
logger.info(f"{self.log_prefix}激活动作: {action_name},原因: RANDOM类型触发概率{probability}")
logger.debug(f"{self.log_prefix}激活动作: {action_name},原因: RANDOM类型触发概率{probability}")
else:
logger.debug(f"{self.log_prefix}未激活动作: {action_name},原因: RANDOM类型未触发概率{probability}")
# 3. 处理KEYWORD类型关键词匹配
for action_name, action_info in keyword_actions.items():
should_activate = self._check_keyword_activation(
action_name,
action_info,
chat_content,
message_content
)
should_activate = self._check_keyword_activation(action_name, action_info, chat_content, message_content)
if should_activate:
activated_actions[action_name] = action_info
keywords = action_info.get("activation_keywords", [])
logger.info(f"{self.log_prefix}激活动作: {action_name},原因: KEYWORD类型匹配关键词{keywords}")
logger.debug(f"{self.log_prefix}激活动作: {action_name},原因: KEYWORD类型匹配关键词{keywords}")
else:
keywords = action_info.get("activation_keywords", [])
logger.info(f"{self.log_prefix}未激活动作: {action_name},原因: KEYWORD类型未匹配关键词{keywords}")
logger.debug(f"{self.log_prefix}未激活动作: {action_name},原因: KEYWORD类型未匹配关键词{keywords}")
# print(f"keywords: {keywords}")
# print(f"chat_content: {chat_content}")
logger.debug(f"{self.log_prefix}Normal模式激活类型过滤完成: {list(activated_actions.keys())}")
return activated_actions
@@ -238,51 +235,50 @@ class NormalChatActionModifier:
) -> bool:
"""
检查是否匹配关键词触发条件
Args:
action_name: 动作名称
action_info: 动作信息
chat_content: 聊天内容(已经是格式化后的可读消息)
Returns:
bool: 是否应该激活此action
"""
activation_keywords = action_info.get("activation_keywords", [])
case_sensitive = action_info.get("keyword_case_sensitive", False)
if not activation_keywords:
logger.warning(f"{self.log_prefix}动作 {action_name} 设置为关键词触发但未配置关键词")
return False
# 使用构建好的聊天内容作为检索文本
search_text = chat_content +message_content
search_text = chat_content + message_content
# 如果不区分大小写,转换为小写
if not case_sensitive:
search_text = search_text.lower()
# 检查每个关键词
matched_keywords = []
for keyword in activation_keywords:
check_keyword = keyword if case_sensitive else keyword.lower()
if check_keyword in search_text:
matched_keywords.append(keyword)
# print(f"search_text: {search_text}")
# print(f"activation_keywords: {activation_keywords}")
if matched_keywords:
logger.info(f"{self.log_prefix}动作 {action_name} 匹配到关键词: {matched_keywords}")
logger.debug(f"{self.log_prefix}动作 {action_name} 匹配到关键词: {matched_keywords}")
return True
else:
logger.info(f"{self.log_prefix}动作 {action_name} 未匹配到任何关键词: {activation_keywords}")
logger.debug(f"{self.log_prefix}动作 {action_name} 未匹配到任何关键词: {activation_keywords}")
return False
def get_available_actions_count(self) -> int:
"""获取当前可用动作数量排除默认的no_action"""
current_actions = self.action_manager.get_using_actions_for_mode(ChatMode.NORMAL)
current_actions = self.action_manager.get_using_actions_for_mode("normal")
# 排除no_action如果存在
filtered_actions = {k: v for k, v in current_actions.items() if k != "no_action"}
return len(filtered_actions)

View File

@@ -1,258 +1,262 @@
"""
Normal Chat Expressor
为Normal Chat专门设计的表达器不需要经过LLM风格化处理
直接发送消息,主要用于插件动作中需要发送消息的场景。
"""
import time
from typing import List, Optional, Tuple, Dict, Any
from src.chat.message_receive.message import MessageRecv, MessageSending, MessageThinking, Seg
from src.chat.message_receive.message import UserInfo
from src.chat.message_receive.chat_stream import ChatStream,chat_manager
from src.chat.message_receive.message_sender import message_manager
from src.config.config import global_config
from src.common.logger_manager import get_logger
logger = get_logger("normal_chat_expressor")
class NormalChatExpressor:
"""Normal Chat专用表达器
特点:
1. 不经过LLM风格化直接发送消息
2. 支持文本和表情包发送
3. 为插件动作提供简化的消息发送接口
4. 保持与focus_chat expressor相似的API但去掉复杂的风格化流程
"""
def __init__(self, chat_stream: ChatStream):
"""初始化Normal Chat表达器
Args:
chat_stream: 聊天流对象
stream_name: 流名称
"""
self.chat_stream = chat_stream
self.stream_name = chat_manager.get_stream_name(self.chat_stream.stream_id) or self.chat_stream.stream_id
self.log_prefix = f"[{self.stream_name}]Normal表达器"
logger.debug(f"{self.log_prefix} 初始化完成")
async def create_thinking_message(
self, anchor_message: Optional[MessageRecv], thinking_id: str
) -> Optional[MessageThinking]:
"""创建思考消息
Args:
anchor_message: 锚点消息
thinking_id: 思考ID
Returns:
MessageThinking: 创建的思考消息如果失败返回None
"""
if not anchor_message or not anchor_message.chat_stream:
logger.error(f"{self.log_prefix} 无法创建思考消息,缺少有效的锚点消息或聊天流")
return None
messageinfo = anchor_message.message_info
thinking_time_point = time.time()
bot_user_info = UserInfo(
user_id=global_config.bot.qq_account,
user_nickname=global_config.bot.nickname,
platform=messageinfo.platform,
)
thinking_message = MessageThinking(
message_id=thinking_id,
chat_stream=self.chat_stream,
bot_user_info=bot_user_info,
reply=anchor_message,
thinking_start_time=thinking_time_point,
)
await message_manager.add_message(thinking_message)
logger.debug(f"{self.log_prefix} 创建思考消息: {thinking_id}")
return thinking_message
async def send_response_messages(
self,
anchor_message: Optional[MessageRecv],
response_set: List[Tuple[str, str]],
thinking_id: str = "",
display_message: str = "",
) -> Optional[MessageSending]:
"""发送回复消息
Args:
anchor_message: 锚点消息
response_set: 回复内容集合,格式为 [(type, content), ...]
thinking_id: 思考ID
display_message: 显示消息
Returns:
MessageSending: 发送的第一条消息如果失败返回None
"""
try:
if not response_set:
logger.warning(f"{self.log_prefix} 回复内容为空")
return None
# 如果没有thinking_id生成一个
if not thinking_id:
thinking_time_point = round(time.time(), 2)
thinking_id = "mt" + str(thinking_time_point)
# 创建思考消息
if anchor_message:
await self.create_thinking_message(anchor_message, thinking_id)
# 创建消息集
first_bot_msg = None
mark_head = False
is_emoji = False
if len(response_set) == 0:
return None
message_id = f"{thinking_id}_{len(response_set)}"
response_type, content = response_set[0]
if len(response_set) > 1:
message_segment = Seg(type="seglist", data=[Seg(type=t, data=c) for t, c in response_set])
else:
message_segment = Seg(type=response_type, data=content)
if response_type == "emoji":
is_emoji = True
bot_msg = await self._build_sending_message(
message_id=message_id,
message_segment=message_segment,
thinking_id=thinking_id,
anchor_message=anchor_message,
thinking_start_time=time.time(),
reply_to=mark_head,
is_emoji=is_emoji,
)
logger.debug(f"{self.log_prefix} 添加{response_type}类型消息: {content}")
# 提交消息集
if bot_msg:
await message_manager.add_message(bot_msg)
logger.info(f"{self.log_prefix} 成功发送 {response_type}类型消息: {content}")
container = await message_manager.get_container(self.chat_stream.stream_id) # 使用 self.stream_id
for msg in container.messages[:]:
if isinstance(msg, MessageThinking) and msg.message_info.message_id == thinking_id:
container.messages.remove(msg)
logger.debug(f"[{self.stream_name}] 已移除未产生回复的思考消息 {thinking_id}")
break
return first_bot_msg
else:
logger.warning(f"{self.log_prefix} 没有有效的消息被创建")
return None
except Exception as e:
logger.error(f"{self.log_prefix} 发送消息失败: {e}")
import traceback
traceback.print_exc()
return None
async def _build_sending_message(
self,
message_id: str,
message_segment: Seg,
thinking_id: str,
anchor_message: Optional[MessageRecv],
thinking_start_time: float,
reply_to: bool = False,
is_emoji: bool = False,
) -> MessageSending:
"""构建发送消息
Args:
message_id: 消息ID
message_segment: 消息段
thinking_id: 思考ID
anchor_message: 锚点消息
thinking_start_time: 思考开始时间
reply_to: 是否回复
is_emoji: 是否为表情包
Returns:
MessageSending: 构建的发送消息
"""
bot_user_info = UserInfo(
user_id=global_config.bot.qq_account,
user_nickname=global_config.bot.nickname,
platform=anchor_message.message_info.platform if anchor_message else "unknown",
)
message_sending = MessageSending(
message_id=message_id,
chat_stream=self.chat_stream,
bot_user_info=bot_user_info,
message_segment=message_segment,
sender_info=self.chat_stream.user_info,
reply=anchor_message if reply_to else None,
thinking_start_time=thinking_start_time,
is_emoji=is_emoji,
)
return message_sending
async def deal_reply(
self,
cycle_timers: dict,
action_data: Dict[str, Any],
reasoning: str,
anchor_message: MessageRecv,
thinking_id: str,
) -> Tuple[bool, Optional[str]]:
"""处理回复动作 - 兼容focus_chat expressor API
Args:
cycle_timers: 周期计时器normal_chat中不使用
action_data: 动作数据包含text、target、emojis等
reasoning: 推理说明
anchor_message: 锚点消息
thinking_id: 思考ID
Returns:
Tuple[bool, Optional[str]]: (是否成功, 回复文本)
"""
try:
response_set = []
# 处理文本内容
text_content = action_data.get("text", "")
if text_content:
response_set.append(("text", text_content))
# 处理表情包
emoji_content = action_data.get("emojis", "")
if emoji_content:
response_set.append(("emoji", emoji_content))
if not response_set:
logger.warning(f"{self.log_prefix} deal_reply: 没有有效的回复内容")
return False, None
# 发送消息
result = await self.send_response_messages(
anchor_message=anchor_message,
response_set=response_set,
thinking_id=thinking_id,
)
if result:
return True, text_content if text_content else "发送成功"
else:
return False, None
except Exception as e:
logger.error(f"{self.log_prefix} deal_reply执行失败: {e}")
import traceback
traceback.print_exc()
return False, None
"""
Normal Chat Expressor
为Normal Chat专门设计的表达器不需要经过LLM风格化处理
直接发送消息,主要用于插件动作中需要发送消息的场景。
"""
import time
from typing import List, Optional, Tuple, Dict, Any
from src.chat.message_receive.message import MessageRecv, MessageSending, MessageThinking, Seg
from src.chat.message_receive.message import UserInfo
from src.chat.message_receive.chat_stream import ChatStream, get_chat_manager
from src.chat.message_receive.message_sender import message_manager
from src.config.config import global_config
from src.common.logger import get_logger
logger = get_logger("normal_chat_expressor")
class NormalChatExpressor:
"""Normal Chat专用表达器
特点:
1. 不经过LLM风格化直接发送消息
2. 支持文本和表情包发送
3. 为插件动作提供简化的消息发送接口
4. 保持与focus_chat expressor相似的API但去掉复杂的风格化流程
"""
def __init__(self, chat_stream: ChatStream):
"""初始化Normal Chat表达器
Args:
chat_stream: 聊天流对象
stream_name: 流名称
"""
self.chat_stream = chat_stream
self.stream_name = get_chat_manager().get_stream_name(self.chat_stream.stream_id) or self.chat_stream.stream_id
self.log_prefix = f"[{self.stream_name}]Normal表达器"
logger.debug(f"{self.log_prefix} 初始化完成")
async def create_thinking_message(
self, anchor_message: Optional[MessageRecv], thinking_id: str
) -> Optional[MessageThinking]:
"""创建思考消息
Args:
anchor_message: 锚点消息
thinking_id: 思考ID
Returns:
MessageThinking: 创建的思考消息如果失败返回None
"""
if not anchor_message or not anchor_message.chat_stream:
logger.error(f"{self.log_prefix} 无法创建思考消息,缺少有效的锚点消息或聊天流")
return None
messageinfo = anchor_message.message_info
thinking_time_point = time.time()
bot_user_info = UserInfo(
user_id=global_config.bot.qq_account,
user_nickname=global_config.bot.nickname,
platform=messageinfo.platform,
)
thinking_message = MessageThinking(
message_id=thinking_id,
chat_stream=self.chat_stream,
bot_user_info=bot_user_info,
reply=anchor_message,
thinking_start_time=thinking_time_point,
)
await message_manager.add_message(thinking_message)
logger.debug(f"{self.log_prefix} 创建思考消息: {thinking_id}")
return thinking_message
async def send_response_messages(
self,
anchor_message: Optional[MessageRecv],
response_set: List[Tuple[str, str]],
thinking_id: str = "",
display_message: str = "",
) -> Optional[MessageSending]:
"""发送回复消息
Args:
anchor_message: 锚点消息
response_set: 回复内容集合,格式为 [(type, content), ...]
thinking_id: 思考ID
display_message: 显示消息
Returns:
MessageSending: 发送的第一条消息如果失败返回None
"""
try:
if not response_set:
logger.warning(f"{self.log_prefix} 回复内容为空")
return None
# 如果没有thinking_id生成一个
if not thinking_id:
thinking_time_point = round(time.time(), 2)
thinking_id = "mt" + str(thinking_time_point)
# 创建思考消息
if anchor_message:
await self.create_thinking_message(anchor_message, thinking_id)
# 创建消息集
mark_head = False
is_emoji = False
if len(response_set) == 0:
return None
message_id = f"{thinking_id}_{len(response_set)}"
response_type, content = response_set[0]
if len(response_set) > 1:
message_segment = Seg(type="seglist", data=[Seg(type=t, data=c) for t, c in response_set])
else:
message_segment = Seg(type=response_type, data=content)
if response_type == "emoji":
is_emoji = True
bot_msg = await self._build_sending_message(
message_id=message_id,
message_segment=message_segment,
thinking_id=thinking_id,
anchor_message=anchor_message,
thinking_start_time=time.time(),
reply_to=mark_head,
is_emoji=is_emoji,
display_message=display_message,
)
logger.debug(f"{self.log_prefix} 添加{response_type}类型消息: {content}")
# 提交消息集
if bot_msg:
await message_manager.add_message(bot_msg)
logger.info(
f"{self.log_prefix} 成功发送 {response_type}类型消息: {str(content)[:200] + '...' if len(str(content)) > 200 else content}"
)
container = await message_manager.get_container(self.chat_stream.stream_id) # 使用 self.stream_id
for msg in container.messages[:]:
if isinstance(msg, MessageThinking) and msg.message_info.message_id == thinking_id:
container.messages.remove(msg)
logger.debug(f"[{self.stream_name}] 已移除未产生回复的思考消息 {thinking_id}")
break
return bot_msg
else:
logger.warning(f"{self.log_prefix} 没有有效的消息被创建")
return None
except Exception as e:
logger.error(f"{self.log_prefix} 发送消息失败: {e}")
import traceback
traceback.print_exc()
return None
async def _build_sending_message(
self,
message_id: str,
message_segment: Seg,
thinking_id: str,
anchor_message: Optional[MessageRecv],
thinking_start_time: float,
reply_to: bool = False,
is_emoji: bool = False,
display_message: str = "",
) -> MessageSending:
"""构建发送消息
Args:
message_id: 消息ID
message_segment: 消息段
thinking_id: 思考ID
anchor_message: 锚点消息
thinking_start_time: 思考开始时间
reply_to: 是否回复
is_emoji: 是否为表情包
Returns:
MessageSending: 构建的发送消息
"""
bot_user_info = UserInfo(
user_id=global_config.bot.qq_account,
user_nickname=global_config.bot.nickname,
platform=anchor_message.message_info.platform if anchor_message else "unknown",
)
message_sending = MessageSending(
message_id=message_id,
chat_stream=self.chat_stream,
bot_user_info=bot_user_info,
message_segment=message_segment,
sender_info=self.chat_stream.user_info,
reply=anchor_message if reply_to else None,
thinking_start_time=thinking_start_time,
is_emoji=is_emoji,
display_message=display_message,
)
return message_sending
async def deal_reply(
self,
cycle_timers: dict,
action_data: Dict[str, Any],
reasoning: str,
anchor_message: MessageRecv,
thinking_id: str,
) -> Tuple[bool, Optional[str]]:
"""处理回复动作 - 兼容focus_chat expressor API
Args:
cycle_timers: 周期计时器normal_chat中不使用
action_data: 动作数据包含text、target、emojis等
reasoning: 推理说明
anchor_message: 锚点消息
thinking_id: 思考ID
Returns:
Tuple[bool, Optional[str]]: (是否成功, 回复文本)
"""
try:
response_set = []
# 处理文本内容
text_content = action_data.get("text", "")
if text_content:
response_set.append(("text", text_content))
# 处理表情包
emoji_content = action_data.get("emojis", "")
if emoji_content:
response_set.append(("emoji", emoji_content))
if not response_set:
logger.warning(f"{self.log_prefix} deal_reply: 没有有效的回复内容")
return False, None
# 发送消息
result = await self.send_response_messages(
anchor_message=anchor_message,
response_set=response_set,
thinking_id=thinking_id,
)
if result:
return True, text_content if text_content else "发送成功"
else:
return False, None
except Exception as e:
logger.error(f"{self.log_prefix} deal_reply执行失败: {e}")
import traceback
traceback.print_exc()
return False, None

View File

@@ -5,9 +5,8 @@ from src.config.config import global_config
from src.chat.message_receive.message import MessageThinking
from src.chat.normal_chat.normal_prompt import prompt_builder
from src.chat.utils.timer_calculator import Timer
from src.common.logger_manager import get_logger
from src.chat.utils.info_catcher import info_catcher_manager
from src.person_info.person_info import person_info_manager
from src.common.logger import get_logger
from src.person_info.person_info import PersonInfoManager, get_person_info_manager
from src.chat.utils.utils import process_llm_response
@@ -26,9 +25,7 @@ class NormalChatGenerator:
request_type="normal.chat_2",
)
self.model_sum = LLMRequest(
model=global_config.model.memory_summary, temperature=0.7, request_type="relation"
)
self.model_sum = LLMRequest(model=global_config.model.memory_summary, temperature=0.7, request_type="relation")
self.current_model_type = "r1" # 默认使用 R1
self.current_model_name = "unknown model"
@@ -69,12 +66,10 @@ class NormalChatGenerator:
enable_planner: bool = False,
available_actions=None,
):
info_catcher = info_catcher_manager.get_info_catcher(thinking_id)
person_id = person_info_manager.get_person_id(
person_id = PersonInfoManager.get_person_id(
message.chat_stream.user_info.platform, message.chat_stream.user_info.user_id
)
person_info_manager = get_person_info_manager()
person_name = await person_info_manager.get_value(person_id, "person_name")
if message.chat_stream.user_info.user_cardname and message.chat_stream.user_info.user_nickname:
@@ -105,10 +100,6 @@ class NormalChatGenerator:
logger.info(f"{message.processed_plain_text} 的回复:{content}")
info_catcher.catch_after_llm_generated(
prompt=prompt, response=content, reasoning_content=reasoning_content, model_name=self.current_model_name
)
except Exception:
logger.exception("生成回复时出错")
return None

View File

@@ -3,11 +3,10 @@ from typing import Dict, Any
from rich.traceback import install
from src.llm_models.utils_model import LLMRequest
from src.config.config import global_config
from src.common.logger_manager import get_logger
from src.common.logger import get_logger
from src.chat.utils.prompt_builder import Prompt, global_prompt_manager
from src.individuality.individuality import individuality
from src.individuality.individuality import get_individuality
from src.chat.focus_chat.planners.action_manager import ActionManager
from src.chat.focus_chat.planners.actions.base_action import ChatMode
from src.chat.message_receive.message import MessageThinking
from json_repair import repair_json
from src.chat.utils.chat_message_builder import build_readable_messages, get_raw_msg_before_timestamp_with_chat
@@ -26,6 +25,11 @@ def init_prompt():
{self_info_block}
请记住你的性格,身份和特点。
你是群内的一员,你现在正在参与群内的闲聊,以下是群内的聊天内容:
{chat_context}
基于以上聊天上下文和用户的最新消息选择最合适的action。
注意除了下面动作选项之外你在聊天中不能做其他任何事情这是你能力的边界现在请你选择合适的action:
{action_options_text}
@@ -38,11 +42,6 @@ def init_prompt():
你必须从上面列出的可用action中选择一个并说明原因。
{moderation_prompt}
你是群内的一员,你现在正在参与群内的闲聊,以下是群内的聊天内容:
{chat_context}
基于以上聊天上下文和用户的最新消息选择最合适的action。
请以动作的输出要求,以严格的 JSON 格式输出,且仅包含 JSON 内容。不要有任何其他文字或解释:
""",
"normal_chat_planner_prompt",
@@ -94,14 +93,14 @@ class NormalChatPlanner:
nickname_str += f"{nicknames},"
name_block = f"你的名字是{global_config.bot.nickname},你的昵称有{nickname_str},有人也会用这些昵称称呼你。"
personality_block = individuality.get_personality_prompt(x_person=2, level=2)
identity_block = individuality.get_identity_prompt(x_person=2, level=2)
personality_block = get_individuality().get_personality_prompt(x_person=2, level=2)
identity_block = get_individuality().get_identity_prompt(x_person=2, level=2)
self_info = name_block + personality_block + identity_block
# 获取当前可用的动作使用Normal模式过滤
current_available_actions = self.action_manager.get_using_actions_for_mode(ChatMode.NORMAL)
current_available_actions = self.action_manager.get_using_actions_for_mode("normal")
# 注意:动作的激活判定现在在 normal_chat_action_modifier 中完成
# 这里直接使用经过 action_modifier 处理后的最终动作集
# 符合职责分离原则ActionModifier负责动作管理Planner专注于决策
@@ -110,7 +109,12 @@ class NormalChatPlanner:
if not current_available_actions:
logger.debug(f"{self.log_prefix}规划器: 没有可用动作返回no_action")
return {
"action_result": {"action_type": action, "action_data": action_data, "reasoning": reasoning, "is_parallel": True},
"action_result": {
"action_type": action,
"action_data": action_data,
"reasoning": reasoning,
"is_parallel": True,
},
"chat_context": "",
"action_prompt": "",
}
@@ -121,7 +125,7 @@ class NormalChatPlanner:
timestamp=time.time(),
limit=global_config.focus_chat.observation_context_size,
)
chat_context = build_readable_messages(
message_list_before_now,
replace_bot_name=True,
@@ -130,7 +134,7 @@ class NormalChatPlanner:
read_mark=0.0,
show_actions=True,
)
# 构建planner的prompt
prompt = await self.build_planner_prompt(
self_info_block=self_info,
@@ -141,7 +145,12 @@ class NormalChatPlanner:
if not prompt:
logger.warning(f"{self.log_prefix}规划器: 构建提示词失败")
return {
"action_result": {"action_type": action, "action_data": action_data, "reasoning": reasoning, "is_parallel": False},
"action_result": {
"action_type": action,
"action_data": action_data,
"reasoning": reasoning,
"is_parallel": False,
},
"chat_context": chat_context,
"action_prompt": "",
}
@@ -149,8 +158,8 @@ class NormalChatPlanner:
# 使用LLM生成动作决策
try:
content, (reasoning_content, model_name) = await self.planner_llm.generate_response_async(prompt)
logger.info(f"{self.log_prefix}规划器原始提示词: {prompt}")
# logger.info(f"{self.log_prefix}规划器原始提示词: {prompt}")
logger.info(f"{self.log_prefix}规划器原始响应: {content}")
logger.info(f"{self.log_prefix}规划器推理: {reasoning_content}")
logger.info(f"{self.log_prefix}规划器模型: {model_name}")
@@ -201,8 +210,10 @@ class NormalChatPlanner:
if action in current_available_actions:
action_info = current_available_actions[action]
is_parallel = action_info.get("parallel_action", False)
logger.debug(f"{self.log_prefix}规划器决策动作:{action}, 动作信息: '{action_data}', 理由: {reasoning}, 并行执行: {is_parallel}")
logger.debug(
f"{self.log_prefix}规划器决策动作:{action}, 动作信息: '{action_data}', 理由: {reasoning}, 并行执行: {is_parallel}"
)
# 恢复到默认动作集
self.action_manager.restore_actions()
@@ -216,15 +227,15 @@ class NormalChatPlanner:
"action_data": action_data,
"reasoning": reasoning,
"timestamp": time.time(),
"model_name": model_name if 'model_name' in locals() else None
"model_name": model_name if "model_name" in locals() else None,
}
action_result = {
"action_type": action,
"action_data": action_data,
"action_type": action,
"action_data": action_data,
"reasoning": reasoning,
"is_parallel": is_parallel,
"action_record": json.dumps(action_record, ensure_ascii=False)
"action_record": json.dumps(action_record, ensure_ascii=False),
}
plan_result = {
@@ -248,24 +259,19 @@ class NormalChatPlanner:
# 添加特殊的change_to_focus_chat动作
action_options_text += "动作change_to_focus_chat\n"
action_options_text += (
"该动作的描述当聊天变得热烈、自己回复条数很多或需要深入交流时使用正常回复消息并切换到focus_chat模式\n"
)
action_options_text += "该动作的描述当聊天变得热烈、自己回复条数很多或需要深入交流时使用正常回复消息并切换到focus_chat模式\n"
action_options_text += "使用该动作的场景:\n"
action_options_text += "- 聊天上下文中自己的回复条数较多超过3-4条\n"
action_options_text += "- 对话进行得非常热烈活跃\n"
action_options_text += "- 用户表现出深入交流的意图\n"
action_options_text += "- 话题需要更专注和深入的讨论\n\n"
action_options_text += "输出要求:\n"
action_options_text += "{{"
action_options_text += " \"action\": \"change_to_focus_chat\""
action_options_text += ' "action": "change_to_focus_chat"'
action_options_text += "}}\n\n"
for action_name, action_info in current_available_actions.items():
action_description = action_info.get("description", "")
action_parameters = action_info.get("parameters", {})
@@ -276,15 +282,14 @@ class NormalChatPlanner:
print(action_parameters)
for param_name, param_description in action_parameters.items():
param_text += f' "{param_name}":"{param_description}"\n'
param_text = param_text.rstrip('\n')
param_text = param_text.rstrip("\n")
else:
param_text = ""
require_text = ""
for require_item in action_require:
require_text += f"- {require_item}\n"
require_text = require_text.rstrip('\n')
require_text = require_text.rstrip("\n")
# 构建单个动作的提示
action_prompt = await global_prompt_manager.format_prompt(
@@ -316,6 +321,4 @@ class NormalChatPlanner:
return ""
init_prompt()

View File

@@ -1,18 +1,18 @@
from src.chat.focus_chat.expressors.exprssion_learner import get_expression_learner
from src.config.config import global_config
from src.common.logger_manager import get_logger
from src.individuality.individuality import individuality
from src.common.logger import get_logger
from src.individuality.individuality import get_individuality
from src.chat.utils.prompt_builder import Prompt, global_prompt_manager
from src.chat.utils.chat_message_builder import build_readable_messages, get_raw_msg_before_timestamp_with_chat
from src.person_info.relationship_manager import relationship_manager
import time
from src.chat.utils.utils import get_recent_group_speaker
from src.manager.mood_manager import mood_manager
from src.chat.memory_system.Hippocampus import HippocampusManager
from src.chat.memory_system.Hippocampus import hippocampus_manager
from src.chat.knowledge.knowledge_lib import qa_manager
from src.chat.focus_chat.expressors.exprssion_learner import expression_learner
import random
import re
from src.person_info.relationship_manager import get_relationship_manager
logger = get_logger("prompt")
@@ -96,7 +96,7 @@ class PromptBuilder:
enable_planner: bool = False,
available_actions=None,
) -> str:
prompt_personality = individuality.get_prompt(x_person=2, level=2)
prompt_personality = get_individuality().get_prompt(x_person=2, level=2)
is_group_chat = bool(chat_stream.group_info)
who_chat_in_group = []
@@ -112,11 +112,13 @@ class PromptBuilder:
)
relation_prompt = ""
for person in who_chat_in_group:
relation_prompt += await relationship_manager.build_relationship_info(person)
if global_config.relationship.enable_relationship:
for person in who_chat_in_group:
relationship_manager = get_relationship_manager()
relation_prompt += await relationship_manager.build_relationship_info(person)
mood_prompt = mood_manager.get_mood_prompt()
expression_learner = get_expression_learner()
(
learnt_style_expressions,
learnt_grammar_expressions,
@@ -159,18 +161,19 @@ class PromptBuilder:
)[0]
memory_prompt = ""
related_memory = await HippocampusManager.get_instance().get_memory_from_text(
text=message_txt, max_memory_num=2, max_memory_length=2, max_depth=3, fast_retrieval=False
)
related_memory_info = ""
if related_memory:
for memory in related_memory:
related_memory_info += memory[1]
memory_prompt = await global_prompt_manager.format_prompt(
"memory_prompt", related_memory_info=related_memory_info
if global_config.memory.enable_memory:
related_memory = await hippocampus_manager.get_memory_from_text(
text=message_txt, max_memory_num=2, max_memory_length=2, max_depth=3, fast_retrieval=False
)
related_memory_info = ""
if related_memory:
for memory in related_memory:
related_memory_info += memory[1]
memory_prompt = await global_prompt_manager.format_prompt(
"memory_prompt", related_memory_info=related_memory_info
)
message_list_before_now = get_raw_msg_before_timestamp_with_chat(
chat_id=chat_stream.stream_id,
timestamp=time.time(),
@@ -212,7 +215,6 @@ class PromptBuilder:
except Exception as e:
logger.error(f"关键词检测与反应时发生异常: {str(e)}", exc_info=True)
moderation_prompt_block = "请不要输出违法违规内容,不要输出色情,暴力,政治相关内容,如有敏感内容,请规避。"
# 构建action描述 (如果启用planner)

View File

@@ -42,9 +42,7 @@ class ClassicalWillingManager(BaseWillingManager):
self.chat_reply_willing[chat_id] = min(current_willing, 3.0)
reply_probability = min(
max((current_willing - 0.5), 0.01) * 2, 1
)
reply_probability = min(max((current_willing - 0.5), 0.01) * 2, 1)
# 检查群组权限(如果是群聊)
if (

View File

@@ -1,9 +1,9 @@
from src.common.logger import LogConfig, WILLING_STYLE_CONFIG, LoguruLogger, get_module_logger
from src.common.logger import get_logger
from dataclasses import dataclass
from src.config.config import global_config
from src.chat.message_receive.chat_stream import ChatStream, GroupInfo
from src.chat.message_receive.message import MessageRecv
from src.person_info.person_info import person_info_manager, PersonInfoManager
from src.person_info.person_info import PersonInfoManager, get_person_info_manager
from abc import ABC, abstractmethod
import importlib
from typing import Dict, Optional
@@ -33,12 +33,8 @@ set_willing 设置某聊天流意愿
示例: 在 `mode_aggressive.py` 中,类名应为 `AggressiveWillingManager`
"""
willing_config = LogConfig(
# 使用消息发送专用样式
console_format=WILLING_STYLE_CONFIG["console_format"],
file_format=WILLING_STYLE_CONFIG["file_format"],
)
logger = get_module_logger("willing", config=willing_config)
logger = get_logger("willing")
@dataclass
@@ -93,14 +89,14 @@ class BaseWillingManager(ABC):
self.chat_reply_willing: Dict[str, float] = {} # 存储每个聊天流的回复意愿(chat_id)
self.ongoing_messages: Dict[str, WillingInfo] = {} # 当前正在进行的消息(message_id)
self.lock = asyncio.Lock()
self.logger: LoguruLogger = logger
self.logger = logger
def setup(self, message: MessageRecv, chat: ChatStream, is_mentioned_bot: bool, interested_rate: float):
person_id = person_info_manager.get_person_id(chat.platform, chat.user_info.user_id)
person_id = PersonInfoManager.get_person_id(chat.platform, chat.user_info.user_id)
self.ongoing_messages[message.message_info.message_id] = WillingInfo(
message=message,
chat=chat,
person_info_manager=person_info_manager,
person_info_manager=get_person_info_manager(),
chat_id=chat.stream_id,
person_id=person_id,
group_info=chat.group_info,
@@ -177,4 +173,11 @@ def init_willing_manager() -> BaseWillingManager:
# 全局willing_manager对象
willing_manager = init_willing_manager()
willing_manager = None
def get_willing_manager():
global willing_manager
if willing_manager is None:
willing_manager = init_willing_manager()
return willing_manager

View File

@@ -4,7 +4,7 @@ import time # 导入 time 模块以获取当前时间
import random
import re
from src.common.message_repository import find_messages, count_messages
from src.person_info.person_info import person_info_manager
from src.person_info.person_info import PersonInfoManager, get_person_info_manager
from src.chat.utils.utils import translate_timestamp_to_human_readable
from rich.traceback import install
from src.common.database.database_model import ActionRecords
@@ -219,7 +219,8 @@ def _build_readable_messages_internal(
if not all([platform, user_id, timestamp is not None]):
continue
person_id = person_info_manager.get_person_id(platform, user_id)
person_id = PersonInfoManager.get_person_id(platform, user_id)
person_info_manager = get_person_info_manager()
# 根据 replace_bot_name 参数决定是否替换机器人名称
if replace_bot_name and user_id == global_config.bot.qq_account:
person_name = f"{global_config.bot.nickname}(你)"
@@ -241,7 +242,7 @@ def _build_readable_messages_internal(
if match:
aaa = match.group(1)
bbb = match.group(2)
reply_person_id = person_info_manager.get_person_id(platform, bbb)
reply_person_id = PersonInfoManager.get_person_id(platform, bbb)
reply_person_name = person_info_manager.get_value_sync(reply_person_id, "person_name")
if not reply_person_name:
reply_person_name = aaa
@@ -258,7 +259,7 @@ def _build_readable_messages_internal(
new_content += content[last_end : m.start()]
aaa = m.group(1)
bbb = m.group(2)
at_person_id = person_info_manager.get_person_id(platform, bbb)
at_person_id = PersonInfoManager.get_person_id(platform, bbb)
at_person_name = person_info_manager.get_value_sync(at_person_id, "person_name")
if not at_person_name:
at_person_name = aaa
@@ -286,7 +287,7 @@ def _build_readable_messages_internal(
message_details_with_flags.append((timestamp, name, content, is_action))
# print(f"content:{content}")
# print(f"is_action:{is_action}")
# print(f"message_details_with_flags:{message_details_with_flags}")
# 应用截断逻辑 (如果 truncate 为 True)
@@ -324,7 +325,7 @@ def _build_readable_messages_internal(
else:
# 如果不截断,直接使用原始列表
message_details = message_details_with_flags
# print(f"message_details:{message_details}")
# 3: 合并连续消息 (如果 merge_messages 为 True)
@@ -336,12 +337,12 @@ def _build_readable_messages_internal(
"start_time": message_details[0][0],
"end_time": message_details[0][0],
"content": [message_details[0][2]],
"is_action": message_details[0][3]
"is_action": message_details[0][3],
}
for i in range(1, len(message_details)):
timestamp, name, content, is_action = message_details[i]
# 对于动作记录,不进行合并
if is_action or current_merge["is_action"]:
# 保存当前的合并块
@@ -352,7 +353,7 @@ def _build_readable_messages_internal(
"start_time": timestamp,
"end_time": timestamp,
"content": [content],
"is_action": is_action
"is_action": is_action,
}
continue
@@ -365,11 +366,11 @@ def _build_readable_messages_internal(
merged_messages.append(current_merge)
# 开始新的合并块
current_merge = {
"name": name,
"start_time": timestamp,
"end_time": timestamp,
"name": name,
"start_time": timestamp,
"end_time": timestamp,
"content": [content],
"is_action": is_action
"is_action": is_action,
}
# 添加最后一个合并块
merged_messages.append(current_merge)
@@ -381,10 +382,9 @@ def _build_readable_messages_internal(
"start_time": timestamp, # 起始和结束时间相同
"end_time": timestamp,
"content": [content], # 内容只有一个元素
"is_action": is_action
"is_action": is_action,
}
)
# 4 & 5: 格式化为字符串
output_lines = []
@@ -451,7 +451,7 @@ def build_readable_messages(
将消息列表转换为可读的文本格式。
如果提供了 read_mark则在相应位置插入已读标记。
允许通过参数控制格式化行为。
Args:
messages: 消息列表
replace_bot_name: 是否替换机器人名称为""
@@ -463,22 +463,24 @@ def build_readable_messages(
"""
# 创建messages的深拷贝避免修改原始列表
copy_messages = [msg.copy() for msg in messages]
if show_actions and copy_messages:
# 获取所有消息的时间范围
min_time = min(msg.get("time", 0) for msg in copy_messages)
max_time = max(msg.get("time", 0) for msg in copy_messages)
# 从第一条消息中获取chat_id
chat_id = copy_messages[0].get("chat_id") if copy_messages else None
# 获取这个时间范围内的动作记录并匹配chat_id
actions = ActionRecords.select().where(
(ActionRecords.time >= min_time) &
(ActionRecords.time <= max_time) &
(ActionRecords.chat_id == chat_id)
).order_by(ActionRecords.time)
actions = (
ActionRecords.select()
.where(
(ActionRecords.time >= min_time) & (ActionRecords.time <= max_time) & (ActionRecords.chat_id == chat_id)
)
.order_by(ActionRecords.time)
)
# 将动作记录转换为消息格式
for action in actions:
# 只有当build_into_prompt为True时才添加动作记录
@@ -495,25 +497,22 @@ def build_readable_messages(
"action_name": action.action_name, # 保存动作名称
}
copy_messages.append(action_msg)
# 重新按时间排序
copy_messages.sort(key=lambda x: x.get("time", 0))
if read_mark <= 0:
# 没有有效的 read_mark直接格式化所有消息
# for message in messages:
# print(f"message:{message}")
# print(f"message:{message}")
formatted_string, _ = _build_readable_messages_internal(
copy_messages, replace_bot_name, merge_messages, timestamp_mode, truncate
)
# print(f"formatted_string:{formatted_string}")
return formatted_string
else:
# 按 read_mark 分割消息
@@ -521,10 +520,10 @@ def build_readable_messages(
messages_after_mark = [msg for msg in copy_messages if msg.get("time", 0) > read_mark]
# for message in messages_before_mark:
# print(f"message:{message}")
# print(f"message:{message}")
# for message in messages_after_mark:
# print(f"message:{message}")
# print(f"message:{message}")
# 分别格式化
formatted_before, _ = _build_readable_messages_internal(
@@ -536,7 +535,7 @@ def build_readable_messages(
merge_messages,
timestamp_mode,
)
# print(f"formatted_before:{formatted_before}")
# print(f"formatted_after:{formatted_after}")
@@ -574,7 +573,7 @@ async def build_anonymous_messages(messages: List[Dict[str, Any]]) -> str:
# print("SELF11111111111111")
return "SELF"
try:
person_id = person_info_manager.get_person_id(platform, user_id)
person_id = PersonInfoManager.get_person_id(platform, user_id)
except Exception as _e:
person_id = None
if not person_id:
@@ -587,14 +586,9 @@ async def build_anonymous_messages(messages: List[Dict[str, Any]]) -> str:
for msg in messages:
try:
# user_info = msg.get("user_info", {})
platform = msg.get("chat_info_platform")
user_id = msg.get("user_id")
_timestamp = msg.get("time")
# print(f"msg:{msg}")
# print(f"platform:{platform}")
# print(f"user_id:{user_id}")
# print(f"timestamp:{timestamp}")
if msg.get("display_message"):
content = msg.get("display_message")
else:
@@ -680,7 +674,7 @@ async def get_person_id_list(messages: List[Dict[str, Any]]) -> List[str]:
if not all([platform, user_id]) or user_id == global_config.bot.qq_account:
continue
person_id = person_info_manager.get_person_id(platform, user_id)
person_id = PersonInfoManager.get_person_id(platform, user_id)
# 只有当获取到有效 person_id 时才添加
if person_id:

View File

@@ -1,223 +0,0 @@
from src.config.config import global_config
from src.chat.message_receive.message import MessageRecv, MessageSending, Message
from src.common.database.database_model import Messages, ThinkingLog
import time
import traceback
from typing import List
import json
class InfoCatcher:
def __init__(self):
self.chat_history = [] # 聊天历史,长度为三倍使用的上下文喵~
self.chat_history_in_thinking = [] # 思考期间的聊天内容喵~
self.chat_history_after_response = [] # 回复后的聊天内容,长度为一倍上下文喵~
self.chat_id = ""
self.trigger_response_text = ""
self.response_text = ""
self.trigger_response_time = 0
self.trigger_response_message = None
self.response_time = 0
self.response_messages = []
# 使用字典来存储 heartflow 模式的数据
self.heartflow_data = {
"heart_flow_prompt": "",
"sub_heartflow_before": "",
"sub_heartflow_now": "",
"sub_heartflow_after": "",
"sub_heartflow_model": "",
"prompt": "",
"response": "",
"model": "",
}
# 使用字典来存储 reasoning 模式的数据喵~
self.reasoning_data = {"thinking_log": "", "prompt": "", "response": "", "model": ""}
# 耗时喵~
self.timing_results = {
"interested_rate_time": 0,
"sub_heartflow_observe_time": 0,
"sub_heartflow_step_time": 0,
"make_response_time": 0,
}
def catch_decide_to_response(self, message: MessageRecv):
# 搜集决定回复时的信息
self.trigger_response_message = message
self.trigger_response_text = message.detailed_plain_text
self.trigger_response_time = time.time()
self.chat_id = message.chat_stream.stream_id
self.chat_history = self.get_message_from_db_before_msg(message)
def catch_after_observe(self, obs_duration: float): # 这里可以有更多信息
self.timing_results["sub_heartflow_observe_time"] = obs_duration
def catch_afer_shf_step(self, step_duration: float, past_mind: str, current_mind: str):
self.timing_results["sub_heartflow_step_time"] = step_duration
if len(past_mind) > 1:
self.heartflow_data["sub_heartflow_before"] = past_mind[-1]
self.heartflow_data["sub_heartflow_now"] = current_mind
else:
self.heartflow_data["sub_heartflow_before"] = past_mind[-1]
self.heartflow_data["sub_heartflow_now"] = current_mind
def catch_after_llm_generated(self, prompt: str, response: str, reasoning_content: str = "", model_name: str = ""):
self.reasoning_data["thinking_log"] = reasoning_content
self.reasoning_data["prompt"] = prompt
self.reasoning_data["response"] = response
self.reasoning_data["model"] = model_name
self.response_text = response
def catch_after_generate_response(self, response_duration: float):
self.timing_results["make_response_time"] = response_duration
def catch_after_response(
self, response_duration: float, response_message: List[str], first_bot_msg: MessageSending
):
self.timing_results["make_response_time"] = response_duration
self.response_time = time.time()
self.response_messages = []
for msg in response_message:
self.response_messages.append(msg)
self.chat_history_in_thinking = self.get_message_from_db_between_msgs(
self.trigger_response_message, first_bot_msg
)
@staticmethod
def get_message_from_db_between_msgs(message_start: Message, message_end: Message):
try:
time_start = message_start.message_info.time
time_end = message_end.message_info.time
chat_id = message_start.chat_stream.stream_id
# print(f"查询参数: time_start={time_start}, time_end={time_end}, chat_id={chat_id}")
messages_between_query = (
Messages.select()
.where((Messages.chat_id == chat_id) & (Messages.time > time_start) & (Messages.time < time_end))
.order_by(Messages.time.desc())
)
result = list(messages_between_query)
# print(f"查询结果数量: {len(result)}")
# if result:
# print(f"第一条消息时间: {result[0].time}")
# print(f"最后一条消息时间: {result[-1].time}")
return result
except Exception as e:
print(f"获取消息时出错: {str(e)}")
print(traceback.format_exc())
return []
def get_message_from_db_before_msg(self, message: MessageRecv):
message_id_val = message.message_info.message_id
chat_id_val = message.chat_stream.stream_id
messages_before_query = (
Messages.select()
.where((Messages.chat_id == chat_id_val) & (Messages.message_id < message_id_val))
.order_by(Messages.time.desc())
.limit(global_config.focus_chat.observation_context_size * 3)
)
return list(messages_before_query)
def message_list_to_dict(self, message_list):
result = []
for msg_item in message_list:
processed_msg_item = msg_item
if not isinstance(msg_item, dict):
processed_msg_item = self.message_to_dict(msg_item)
if not processed_msg_item:
continue
lite_message = {
"time": processed_msg_item.get("time"),
"user_nickname": processed_msg_item.get("user_nickname"),
"processed_plain_text": processed_msg_item.get("processed_plain_text"),
}
result.append(lite_message)
return result
@staticmethod
def message_to_dict(msg_obj):
if not msg_obj:
return None
if isinstance(msg_obj, dict):
return msg_obj
if isinstance(msg_obj, Messages):
return {
"time": msg_obj.time,
"user_id": msg_obj.user_id,
"user_nickname": msg_obj.user_nickname,
"processed_plain_text": msg_obj.processed_plain_text,
}
if hasattr(msg_obj, "message_info") and hasattr(msg_obj.message_info, "user_info"):
return {
"time": msg_obj.message_info.time,
"user_id": msg_obj.message_info.user_info.user_id,
"user_nickname": msg_obj.message_info.user_info.user_nickname,
"processed_plain_text": msg_obj.processed_plain_text,
}
print(f"Warning: message_to_dict received an unhandled type: {type(msg_obj)}")
return {}
def done_catch(self):
"""将收集到的信息存储到数据库的 thinking_log 表中喵~"""
try:
trigger_info_dict = self.message_to_dict(self.trigger_response_message)
response_info_dict = {
"time": self.response_time,
"message": self.response_messages,
}
chat_history_list = self.message_list_to_dict(self.chat_history)
chat_history_in_thinking_list = self.message_list_to_dict(self.chat_history_in_thinking)
chat_history_after_response_list = self.message_list_to_dict(self.chat_history_after_response)
log_entry = ThinkingLog(
chat_id=self.chat_id,
trigger_text=self.trigger_response_text,
response_text=self.response_text,
trigger_info_json=json.dumps(trigger_info_dict) if trigger_info_dict else None,
response_info_json=json.dumps(response_info_dict),
timing_results_json=json.dumps(self.timing_results),
chat_history_json=json.dumps(chat_history_list),
chat_history_in_thinking_json=json.dumps(chat_history_in_thinking_list),
chat_history_after_response_json=json.dumps(chat_history_after_response_list),
heartflow_data_json=json.dumps(self.heartflow_data),
reasoning_data_json=json.dumps(self.reasoning_data),
)
log_entry.save()
return True
except Exception as e:
print(f"存储思考日志时出错: {str(e)} 喵~")
print(traceback.format_exc())
return False
class InfoCatcherManager:
def __init__(self):
self.info_catchers = {}
def get_info_catcher(self, thinking_id: str) -> InfoCatcher:
if thinking_id not in self.info_catchers:
self.info_catchers[thinking_id] = InfoCatcher()
return self.info_catchers[thinking_id]
info_catcher_manager = InfoCatcherManager()

View File

@@ -1,88 +0,0 @@
import sys
import loguru
from enum import Enum
class LogClassification(Enum):
BASE = "base"
MEMORY = "memory"
EMOJI = "emoji"
CHAT = "chat"
PBUILDER = "promptbuilder"
class LogModule:
logger = loguru.logger.opt()
def __init__(self):
pass
def setup_logger(self, log_type: LogClassification):
"""配置日志格式
Args:
log_type: 日志类型可选值BASE(基础日志)、MEMORY(记忆系统日志)、EMOJI(表情包系统日志)
"""
# 移除默认日志处理器
self.logger.remove()
# 基础日志格式
base_format = (
"<green>{time:HH:mm:ss}</green> | <level>{level: <8}</level> | "
" d<cyan>{name}</cyan>:<cyan>{function}</cyan>:<cyan>{line}</cyan> - <level>{message}</level>"
)
chat_format = (
"<green>{time:HH:mm:ss}</green> | <level>{level: <8}</level> | "
"<cyan>{name}</cyan>:<cyan>{function}</cyan>:<cyan>{line}</cyan> - <level>{message}</level>"
)
# 记忆系统日志格式
memory_format = (
"<green>{time:HH:mm}</green> | <level>{level: <8}</level> | "
"<light-magenta>海马体</light-magenta> | <level>{message}</level>"
)
# 表情包系统日志格式
emoji_format = (
"<green>{time:HH:mm}</green> | <level>{level: <8}</level> | <yellow>表情包</yellow> | "
"<cyan>{function}</cyan>:<cyan>{line}</cyan> - <level>{message}</level>"
)
promptbuilder_format = (
"<green>{time:HH:mm}</green> | <level>{level: <8}</level> | <yellow>Prompt</yellow> | "
"<cyan>{function}</cyan>:<cyan>{line}</cyan> - <level>{message}</level>"
)
# 根据日志类型选择日志格式和输出
if log_type == LogClassification.CHAT:
self.logger.add(
sys.stderr,
format=chat_format,
# level="INFO"
)
elif log_type == LogClassification.PBUILDER:
self.logger.add(
sys.stderr,
format=promptbuilder_format,
# level="INFO"
)
elif log_type == LogClassification.MEMORY:
# 同时输出到控制台和文件
self.logger.add(
sys.stderr,
format=memory_format,
# level="INFO"
)
self.logger.add("logs/memory.log", format=memory_format, level="INFO", rotation="1 day", retention="7 days")
elif log_type == LogClassification.EMOJI:
self.logger.add(
sys.stderr,
format=emoji_format,
# level="INFO"
)
self.logger.add("logs/emoji.log", format=emoji_format, level="INFO", rotation="1 day", retention="7 days")
else: # BASE
self.logger.add(sys.stderr, format=base_format, level="INFO")
return self.logger

View File

@@ -3,14 +3,14 @@ import re
from contextlib import asynccontextmanager
import asyncio
import contextvars
from src.common.logger import get_module_logger
from src.common.logger import get_logger
# import traceback
from rich.traceback import install
install(extra_lines=3)
logger = get_module_logger("prompt_build")
logger = get_logger("prompt_build")
class PromptContext:

View File

@@ -3,14 +3,14 @@ from datetime import datetime, timedelta
from typing import Any, Dict, Tuple, List
from src.common.logger import get_module_logger
from src.common.logger import get_logger
from src.manager.async_task_manager import AsyncTask
from ...common.database.database import db # This db is the Peewee database instance
from ...common.database.database_model import OnlineTime, LLMUsage, Messages # Import the Peewee model
from src.manager.local_store_manager import local_storage
logger = get_module_logger("maibot_statistic")
logger = get_logger("maibot_statistic")
# 统计数据的键
TOTAL_REQ_CNT = "total_requests"

View File

@@ -111,11 +111,13 @@ class Timer:
async def async_wrapper(*args, **kwargs):
with self:
return await func(*args, **kwargs)
return None
@wraps(func)
def sync_wrapper(*args, **kwargs):
with self:
return func(*args, **kwargs)
return None
wrapper = async_wrapper if asyncio.iscoroutinefunction(func) else sync_wrapper
wrapper.__timer__ = self # 保留计时器引用

View File

@@ -13,9 +13,9 @@ from pathlib import Path
import jieba
from pypinyin import Style, pinyin
from src.common.logger import get_module_logger
from src.common.logger import get_logger
logger = get_module_logger("typo_gen")
logger = get_logger("typo_gen")
class ChineseTypoGenerator:

View File

@@ -7,7 +7,7 @@ import jieba
import numpy as np
from maim_message import UserInfo
from src.common.logger import get_module_logger
from src.common.logger import get_logger
from src.manager.mood_manager import mood_manager
from ..message_receive.message import MessageRecv
from src.llm_models.utils_model import LLMRequest
@@ -15,7 +15,7 @@ from .typo_generator import ChineseTypoGenerator
from ...config.config import global_config
from ...common.message_repository import find_messages, count_messages
logger = get_module_logger("chat_utils")
logger = get_logger("chat_utils")
def is_english_letter(char: str) -> bool:
@@ -247,8 +247,6 @@ def split_into_sentences_w_remove_punctuation(text: str) -> list[str]:
# 如果分割后为空(例如,输入全是分隔符且不满足保留条件),恢复颜文字并返回
if not segments:
# recovered_text = recover_kaomoji([text], mapping) # 恢复原文本中的颜文字 - 已移至上层处理
# return [s for s in recovered_text if s] # 返回非空结果
return [text] if text else [] # 如果原始文本非空,则返回原始文本(可能只包含未被分割的字符或颜文字占位符)
# 2. 概率合并
@@ -324,16 +322,18 @@ def random_remove_punctuation(text: str) -> str:
def process_llm_response(text: str) -> list[str]:
if not global_config.response_post_process.enable_response_post_process:
return [text]
# 先保护颜文字
if global_config.response_splitter.enable_kaomoji_protection:
protected_text, kaomoji_mapping = protect_kaomoji(text)
logger.trace(f"保护颜文字后的文本: {protected_text}")
logger.debug(f"保护颜文字后的文本: {protected_text}")
else:
protected_text = text
kaomoji_mapping = {}
# 提取被 () 或 [] 或 ()包裹且包含中文的内容
pattern = re.compile(r"[(\[](?=.*[一-鿿]).*?[)\]]")
# _extracted_contents = pattern.findall(text)
_extracted_contents = pattern.findall(protected_text) # 在保护后的文本上查找
# 去除 () 和 [] 及其包裹的内容
cleaned_text = pattern.sub("", protected_text)

View File

@@ -13,7 +13,7 @@ from src.common.database.database_model import Images, ImageDescriptions
from src.config.config import global_config
from src.llm_models.utils_model import LLMRequest
from src.common.logger_manager import get_logger
from src.common.logger import get_logger
from rich.traceback import install
install(extra_lines=3)
@@ -228,7 +228,7 @@ class ImageManager:
description=description,
timestamp=current_timestamp,
)
logger.trace(f"保存图片元数据: {file_path}")
logger.debug(f"保存图片元数据: {file_path}")
except Exception as e:
logger.error(f"保存图片文件或元数据失败: {str(e)}")
@@ -288,7 +288,7 @@ class ImageManager:
# 计算和上一张选中帧的差异(均方误差 MSE
if last_selected_frame_np is not None:
mse = np.mean((current_frame_np - last_selected_frame_np) ** 2)
# logger.trace(f"帧 {i} 与上一选中帧的 MSE: {mse}") # 可以取消注释来看差异值
# logger.debug(f"帧 {i} 与上一选中帧的 MSE: {mse}") # 可以取消注释来看差异值
# 如果差异够大,就选它!
if mse > similarity_threshold:
@@ -362,7 +362,15 @@ class ImageManager:
# 创建全局单例
image_manager = ImageManager()
image_manager = None
def get_image_manager() -> ImageManager:
"""获取全局图片管理器单例"""
global image_manager
if image_manager is None:
image_manager = ImageManager()
return image_manager
def image_path_to_base64(image_path: str) -> str: