先杀一部分根目录文件

This commit is contained in:
墨梓柒
2025-04-28 22:21:37 +08:00
parent 200c64646e
commit c3e0d6651c
4 changed files with 1 additions and 1 deletions

View File

@@ -0,0 +1,351 @@
import asyncio
import time
from src.plugins.models.utils_model import LLMRequest
from src.config.config import global_config
from src.do_tool.tool_use import ToolUser
import statistics
import json
async def run_test(test_name, test_function, iterations=5):
"""
运行指定次数的测试并计算平均响应时间
参数:
test_name: 测试名称
test_function: 要执行的测试函数
iterations: 测试迭代次数
返回:
测试结果统计
"""
print(f"开始 {test_name} 测试({iterations}次迭代)...")
times = []
responses = []
for i in range(iterations):
print(f" 运行第 {i + 1}/{iterations} 次测试...")
start_time = time.time()
response = await test_function()
end_time = time.time()
elapsed = end_time - start_time
times.append(elapsed)
responses.append(response)
print(f" - 耗时: {elapsed:.2f}")
results = {
"平均耗时": statistics.mean(times),
"最短耗时": min(times),
"最长耗时": max(times),
"标准差": statistics.stdev(times) if len(times) > 1 else 0,
"所有耗时": times,
"响应结果": responses,
}
return results
async def test_with_tool_calls():
"""使用工具调用的LLM请求测试"""
# 创建LLM模型实例
llm_model = LLMRequest(
model=global_config.llm_sub_heartflow,
# model = global_config.llm_tool_use,
# temperature=global_config.llm_sub_heartflow["temp"],
max_tokens=800,
request_type="benchmark_test",
)
# 创建工具实例
tool_instance = ToolUser()
tools = tool_instance._define_tools()
# 简单的测试提示词
prompt = "请分析当前天气情况并查询今日历史上的重要事件。并且3.9和3.11谁比较大?请使用适当的工具来获取这些信息。"
prompt = """
你的名字是麦麦,你包容开放,情绪敏感,有时候有些搞怪幽默, 是一个学习心理学和脑科学的女大学生,现在在读大二,你会刷贴吧,有时候会喜欢说一些奇怪的话,喜欢刷小红书
刚刚你的内心想法是:漂移菌提到罐罐被吃完了,可以顺着这个梗继续玩一下,比如假装委屈"那今晚的加班费是不是也要被吃掉了"或者"猫娘罢工警告"。不过薯薯和薯宝之前已经接了不少梗,漂移菌刚刚也参与了,可能话题热度还在,可以再互动一下。如果没人接话,或许可以问问大家有没有遇到过类似"代码写完但奖励被吃掉"的搞笑职场经历,换个轻松的话题方向。
暂时不需要使用工具。
-----------------------------------
现在是2025-04-25 17:38:37你正在上网和qq群里的网友们聊天以下是正在进行的聊天内容
2025-04-25 17:34:08麦麦(你) 说:[表达了:顽皮、嬉戏。];
2025-04-25 17:34:39漂移菌 说:@麦麦。id:3936257206 你是一只猫娘;
2025-04-25 17:34:42薯宝 说:🤣;
2025-04-25 17:34:43麦麦(你) 说:行啊 工资分我一半;
2025-04-25 17:34:43麦麦(你) 说:我帮你写bug;
2025-04-25 17:34:43麦麦(你) 说:[表达了:悲伤、绝望、无奈、无力];
2025-04-25 17:34:53薯薯 说:;
2025-04-25 17:35:03既文横 说:麦麦,你是一只猫娘程序员,猫娘是不需要工资;
2025-04-25 17:35:20薯宝 说:[图片:图片内容:一只卡通风格的灰色猫咪,眼睛闭着,表情显得很平静。图片下方有"死了"两个字。
图片含义猜测:这可能是一个幽默的表达,用来形容某人或某事处于非常平静的状态,仿佛已经""了一样。] hfc这周真能出来吗...;
2025-04-25 17:35:34薯宝 说:[表情包:搞笑、滑稽、讽刺、幽默];
2025-04-25 17:36:25麦麦(你) 说:喵喵;
2025-04-25 17:36:25麦麦(你) 说:代码写完了;
2025-04-25 17:36:25麦麦(你) 说:罐罐拿来;
2025-04-25 17:36:25麦麦(你) 说:[表达了:悲伤、绝望、无奈、无力];
2025-04-25 17:36:41薯薯 说:好可爱;
2025-04-25 17:37:05薯薯 说:脑补出来认真营业了一天等待主人发放奖励的小猫咪;
2025-04-25 17:37:25薯宝 说:敷衍营业bushi;
2025-04-25 17:37:54漂移菌 说:回复麦麦。的消息(罐罐拿来),说:猫娘我昨晚上太饿吃完了;
--- 以上消息已读 (标记时间: 2025-04-25 17:37:54) ---
--- 以下新消息未读---
2025-04-25 17:38:29麦麦(你) 说:那今晚的猫条是不是也要被克扣了(盯——);
2025-04-25 17:38:29麦麦(你) 说:[表达了:幽默,自嘲,无奈,父子关系,编程笑话];
你现在当前心情:平静。
现在请你生成你的内心想法,要求思考群里正在进行的话题,之前大家聊过的话题,群里成员的关系。请你思考,要不要对群里的话题进行回复,以及如何对群聊内容进行回复
回复的要求是:不要总是重复自己提到过的话题,如果你要回复,最好只回复一个人的一个话题
如果最后一条消息是你自己发的,观察到的内容只有你自己的发言,并且之后没有人回复你,不要回复。如果聊天记录中最新的消息是你自己发送的,并且你还想继续回复,你应该紧紧衔接你发送的消息,进行话题的深入,补充,或追问等等。请注意不要输出多余内容(包括前后缀,冒号和引号,括号, 表情,等),不要回复自己的发言
现在请你先输出想法,生成你在这个聊天中的想法,在原来的想法上尝试新的话题,不要分点输出,文字不要浮夸在输出完想法后,请你思考应该使用什么工具。工具可以帮你取得一些你不知道的信息,或者进行一些操作。如果你需要做某件事,来对消息和你的回复进行处理,请使用工具。"""
# 发送带有工具调用的请求
response = await llm_model.generate_response_tool_async(prompt=prompt, tools=tools)
result_info = {}
# 简单处理工具调用结果
if len(response) == 3:
content, reasoning_content, tool_calls = response
tool_calls_count = len(tool_calls) if tool_calls else 0
print(f" 工具调用请求生成了 {tool_calls_count} 个工具调用")
# 输出内容和工具调用详情
print("\n 生成的内容:")
print(f" {content[:200]}..." if len(content) > 200 else f" {content}")
if tool_calls:
print("\n 工具调用详情:")
for i, tool_call in enumerate(tool_calls):
tool_name = tool_call["function"]["name"]
tool_params = tool_call["function"].get("arguments", {})
print(f" - 工具 {i + 1}: {tool_name}")
print(
f" 参数: {json.dumps(tool_params, ensure_ascii=False)[:100]}..."
if len(json.dumps(tool_params, ensure_ascii=False)) > 100
else f" 参数: {json.dumps(tool_params, ensure_ascii=False)}"
)
result_info = {"内容": content, "推理内容": reasoning_content, "工具调用": tool_calls}
else:
content, reasoning_content = response
print(" 工具调用请求未生成任何工具调用")
print("\n 生成的内容:")
print(f" {content[:200]}..." if len(content) > 200 else f" {content}")
result_info = {"内容": content, "推理内容": reasoning_content, "工具调用": []}
return result_info
async def test_without_tool_calls():
"""不使用工具调用的LLM请求测试"""
# 创建LLM模型实例
llm_model = LLMRequest(
model=global_config.llm_sub_heartflow,
temperature=global_config.llm_sub_heartflow["temp"],
max_tokens=800,
request_type="benchmark_test",
)
# 简单的测试提示词(与工具调用相同,以便公平比较)
prompt = """
你的名字是麦麦,你包容开放,情绪敏感,有时候有些搞怪幽默, 是一个学习心理学和脑科学的女大学生,现在在读大二,你会刷贴吧,有时候会喜欢说一些奇怪的话,喜欢刷小红书
刚刚你的内心想法是:漂移菌提到罐罐被吃完了,可以顺着这个梗继续玩一下,比如假装委屈"那今晚的加班费是不是也要被吃掉了"或者"猫娘罢工警告"。不过薯薯和薯宝之前已经接了不少梗,漂移菌刚刚也参与了,可能话题热度还在,可以再互动一下。如果没人接话,或许可以问问大家有没有遇到过类似"代码写完但奖励被吃掉"的搞笑职场经历,换个轻松的话题方向。
暂时不需要使用工具。
-----------------------------------
现在是2025-04-25 17:38:37你正在上网和qq群里的网友们聊天以下是正在进行的聊天内容
2025-04-25 17:34:08麦麦(你) 说:[表达了:顽皮、嬉戏。];
2025-04-25 17:34:39漂移菌 说:@麦麦。id:3936257206 你是一只猫娘;
2025-04-25 17:34:42薯宝 说:🤣;
2025-04-25 17:34:43麦麦(你) 说:行啊 工资分我一半;
2025-04-25 17:34:43麦麦(你) 说:我帮你写bug;
2025-04-25 17:34:43麦麦(你) 说:[表达了:悲伤、绝望、无奈、无力];
2025-04-25 17:34:53薯薯 说:;
2025-04-25 17:35:03既文横 说:麦麦,你是一只猫娘程序员,猫娘是不需要工资;
2025-04-25 17:35:20薯宝 说:[图片:图片内容:一只卡通风格的灰色猫咪,眼睛闭着,表情显得很平静。图片下方有"死了"两个字。
图片含义猜测:这可能是一个幽默的表达,用来形容某人或某事处于非常平静的状态,仿佛已经""了一样。] hfc这周真能出来吗...;
2025-04-25 17:35:34薯宝 说:[表情包:搞笑、滑稽、讽刺、幽默];
2025-04-25 17:36:25麦麦(你) 说:喵喵;
2025-04-25 17:36:25麦麦(你) 说:代码写完了;
2025-04-25 17:36:25麦麦(你) 说:罐罐拿来;
2025-04-25 17:36:25麦麦(你) 说:[表达了:悲伤、绝望、无奈、无力];
2025-04-25 17:36:41薯薯 说:好可爱;
2025-04-25 17:37:05薯薯 说:脑补出来认真营业了一天等待主人发放奖励的小猫咪;
2025-04-25 17:37:25薯宝 说:敷衍营业bushi;
2025-04-25 17:37:54漂移菌 说:回复麦麦。的消息(罐罐拿来),说:猫娘我昨晚上太饿吃完了;
--- 以上消息已读 (标记时间: 2025-04-25 17:37:54) ---
--- 以下新消息未读---
2025-04-25 17:38:29麦麦(你) 说:那今晚的猫条是不是也要被克扣了(盯——);
2025-04-25 17:38:29麦麦(你) 说:[表达了:幽默,自嘲,无奈,父子关系,编程笑话];
你现在当前心情:平静。
现在请你生成你的内心想法,要求思考群里正在进行的话题,之前大家聊过的话题,群里成员的关系。请你思考,要不要对群里的话题进行回复,以及如何对群聊内容进行回复
回复的要求是:不要总是重复自己提到过的话题,如果你要回复,最好只回复一个人的一个话题
如果最后一条消息是你自己发的,观察到的内容只有你自己的发言,并且之后没有人回复你,不要回复。如果聊天记录中最新的消息是你自己发送的,并且你还想继续回复,你应该紧紧衔接你发送的消息,进行话题的深入,补充,或追问等等。请注意不要输出多余内容(包括前后缀,冒号和引号,括号, 表情,等),不要回复自己的发言
现在请你先输出想法,生成你在这个聊天中的想法,在原来的想法上尝试新的话题,不要分点输出,文字不要浮夸在输出完想法后,请你思考应该使用什么工具。工具可以帮你取得一些你不知道的信息,或者进行一些操作。如果你需要做某件事,来对消息和你的回复进行处理,请使用工具。"""
# 发送不带工具调用的请求
response, reasoning_content = await llm_model.generate_response_async(prompt)
# 输出生成的内容
print("\n 生成的内容:")
print(f" {response[:200]}..." if len(response) > 200 else f" {response}")
result_info = {"内容": response, "推理内容": reasoning_content, "工具调用": []}
return result_info
async def run_alternating_tests(iterations=5):
"""
交替运行两种测试方法,每种方法运行指定次数
参数:
iterations: 每种测试方法运行的次数
返回:
包含两种测试方法结果的元组
"""
print(f"开始交替测试(每种方法{iterations}次)...")
# 初始化结果列表
times_without_tools = []
times_with_tools = []
responses_without_tools = []
responses_with_tools = []
for i in range(iterations):
print(f"\n{i + 1}/{iterations} 轮交替测试")
# 不使用工具的测试
print("\n 执行不使用工具调用的测试...")
start_time = time.time()
response = await test_without_tool_calls()
end_time = time.time()
elapsed = end_time - start_time
times_without_tools.append(elapsed)
responses_without_tools.append(response)
print(f" - 耗时: {elapsed:.2f}")
# 使用工具的测试
print("\n 执行使用工具调用的测试...")
start_time = time.time()
response = await test_with_tool_calls()
end_time = time.time()
elapsed = end_time - start_time
times_with_tools.append(elapsed)
responses_with_tools.append(response)
print(f" - 耗时: {elapsed:.2f}")
# 计算统计数据
results_without_tools = {
"平均耗时": statistics.mean(times_without_tools),
"最短耗时": min(times_without_tools),
"最长耗时": max(times_without_tools),
"标准差": statistics.stdev(times_without_tools) if len(times_without_tools) > 1 else 0,
"所有耗时": times_without_tools,
"响应结果": responses_without_tools,
}
results_with_tools = {
"平均耗时": statistics.mean(times_with_tools),
"最短耗时": min(times_with_tools),
"最长耗时": max(times_with_tools),
"标准差": statistics.stdev(times_with_tools) if len(times_with_tools) > 1 else 0,
"所有耗时": times_with_tools,
"响应结果": responses_with_tools,
}
return results_without_tools, results_with_tools
async def main():
"""主测试函数"""
print("=" * 50)
print("LLM工具调用与普通请求性能比较测试")
print("=" * 50)
# 设置测试迭代次数
iterations = 10
# 执行交替测试
results_without_tools, results_with_tools = await run_alternating_tests(iterations)
# 显示结果比较
print("\n" + "=" * 50)
print("测试结果比较")
print("=" * 50)
print("\n不使用工具调用:")
for key, value in results_without_tools.items():
if key == "所有耗时":
print(f" {key}: {[f'{t:.2f}' for t in value]}")
elif key == "响应结果":
print(f" {key}: [内容已省略,详见结果文件]")
else:
print(f" {key}: {value:.2f}")
print("\n使用工具调用:")
for key, value in results_with_tools.items():
if key == "所有耗时":
print(f" {key}: {[f'{t:.2f}' for t in value]}")
elif key == "响应结果":
tool_calls_counts = [len(res.get("工具调用", [])) for res in value]
print(f" {key}: [内容已省略,详见结果文件]")
print(f" 工具调用数量: {tool_calls_counts}")
else:
print(f" {key}: {value:.2f}")
# 计算差异百分比
diff_percent = ((results_with_tools["平均耗时"] / results_without_tools["平均耗时"]) - 1) * 100
print(f"\n工具调用比普通请求平均耗时相差: {diff_percent:.2f}%")
# 保存结果到JSON文件
results = {
"测试时间": time.strftime("%Y-%m-%d %H:%M:%S"),
"测试迭代次数": iterations,
"不使用工具调用": {
k: (v if k != "所有耗时" else [float(f"{t:.2f}") for t in v])
for k, v in results_without_tools.items()
if k != "响应结果"
},
"不使用工具调用_详细响应": [
{
"内容摘要": resp["内容"][:200] + "..." if len(resp["内容"]) > 200 else resp["内容"],
"推理内容摘要": resp["推理内容"][:200] + "..." if len(resp["推理内容"]) > 200 else resp["推理内容"],
}
for resp in results_without_tools["响应结果"]
],
"使用工具调用": {
k: (v if k != "所有耗时" else [float(f"{t:.2f}") for t in v])
for k, v in results_with_tools.items()
if k != "响应结果"
},
"使用工具调用_详细响应": [
{
"内容摘要": resp["内容"][:200] + "..." if len(resp["内容"]) > 200 else resp["内容"],
"推理内容摘要": resp["推理内容"][:200] + "..." if len(resp["推理内容"]) > 200 else resp["推理内容"],
"工具调用数量": len(resp["工具调用"]),
"工具调用详情": [
{"工具名称": tool["function"]["name"], "参数": tool["function"].get("arguments", {})}
for tool in resp["工具调用"]
],
}
for resp in results_with_tools["响应结果"]
],
"差异百分比": float(f"{diff_percent:.2f}"),
}
with open("llm_tool_benchmark_results.json", "w", encoding="utf-8") as f:
json.dump(results, f, ensure_ascii=False, indent=2)
print("\n测试结果已保存到 llm_tool_benchmark_results.json")
if __name__ == "__main__":
asyncio.run(main())