refactor: 改进错误处理和代码格式化

- 增强API错误响应解析,添加详细错误日志
- 优化HTTP客户端响应错误处理逻辑
- 规范代码格式,调整函数参数和字典格式

🤖 Generated with [Claude Code](https://claude.ai/code)

Co-Authored-By: Claude <noreply@anthropic.com>
This commit is contained in:
春河晴
2025-03-14 14:08:09 +09:00
parent e58f9c646c
commit be7997e1b7

View File

@@ -47,9 +47,15 @@ class LLM_request:
except Exception:
logger.error("创建数据库索引失败")
def _record_usage(self, prompt_tokens: int, completion_tokens: int, total_tokens: int,
user_id: str = "system", request_type: str = "chat",
endpoint: str = "/chat/completions"):
def _record_usage(
self,
prompt_tokens: int,
completion_tokens: int,
total_tokens: int,
user_id: str = "system",
request_type: str = "chat",
endpoint: str = "/chat/completions",
):
"""记录模型使用情况到数据库
Args:
prompt_tokens: 输入token数
@@ -70,7 +76,7 @@ class LLM_request:
"total_tokens": total_tokens,
"cost": self._calculate_cost(prompt_tokens, completion_tokens),
"status": "success",
"timestamp": datetime.now()
"timestamp": datetime.now(),
}
db.llm_usage.insert_one(usage_data)
logger.info(
@@ -99,16 +105,16 @@ class LLM_request:
return round(input_cost + output_cost, 6)
async def _execute_request(
self,
endpoint: str,
prompt: str = None,
image_base64: str = None,
image_format: str = None,
payload: dict = None,
retry_policy: dict = None,
response_handler: callable = None,
user_id: str = "system",
request_type: str = "chat"
self,
endpoint: str,
prompt: str = None,
image_base64: str = None,
image_format: str = None,
payload: dict = None,
retry_policy: dict = None,
response_handler: callable = None,
user_id: str = "system",
request_type: str = "chat",
):
"""统一请求执行入口
Args:
@@ -124,9 +130,11 @@ class LLM_request:
"""
# 合并重试策略
default_retry = {
"max_retries": 3, "base_wait": 15,
"max_retries": 3,
"base_wait": 15,
"retry_codes": [429, 413, 500, 503],
"abort_codes": [400, 401, 402, 403]}
"abort_codes": [400, 401, 402, 403],
}
policy = {**default_retry, **(retry_policy or {})}
# 常见Error Code Mapping
@@ -138,7 +146,7 @@ class LLM_request:
404: "Not Found",
429: "请求过于频繁,请稍后再试",
500: "服务器内部故障",
503: "服务器负载过高"
503: "服务器负载过高",
}
api_url = f"{self.base_url.rstrip('/')}/{endpoint.lstrip('/')}"
@@ -168,7 +176,7 @@ class LLM_request:
async with session.post(api_url, headers=headers, json=payload) as response:
# 处理需要重试的状态码
if response.status in policy["retry_codes"]:
wait_time = policy["base_wait"] * (2 ** retry)
wait_time = policy["base_wait"] * (2**retry)
logger.warning(f"错误码: {response.status}, 等待 {wait_time}秒后重试")
if response.status == 413:
logger.warning("请求体过大,尝试压缩...")
@@ -184,26 +192,56 @@ class LLM_request:
continue
elif response.status in policy["abort_codes"]:
logger.error(f"错误码: {response.status} - {error_code_mapping.get(response.status)}")
# 尝试获取并记录服务器返回的详细错误信息
try:
error_json = await response.json()
if error_json and isinstance(error_json, list) and len(error_json) > 0:
for error_item in error_json:
if "error" in error_item and isinstance(error_item["error"], dict):
error_obj = error_item["error"]
error_code = error_obj.get("code")
error_message = error_obj.get("message")
error_status = error_obj.get("status")
logger.error(
f"服务器错误详情: 代码={error_code}, 状态={error_status}, 消息={error_message}"
)
elif isinstance(error_json, dict) and "error" in error_json:
# 处理单个错误对象的情况
error_obj = error_json.get("error", {})
error_code = error_obj.get("code")
error_message = error_obj.get("message")
error_status = error_obj.get("status")
logger.error(
f"服务器错误详情: 代码={error_code}, 状态={error_status}, 消息={error_message}"
)
else:
# 记录原始错误响应内容
logger.error(f"服务器错误响应: {error_json}")
except Exception as e:
logger.warning(f"无法解析服务器错误响应: {str(e)}")
if response.status == 403:
# 只针对硅基流动的V3和R1进行降级处理
if self.model_name.startswith(
"Pro/deepseek-ai") and self.base_url == "https://api.siliconflow.cn/v1/":
if (
self.model_name.startswith("Pro/deepseek-ai")
and self.base_url == "https://api.siliconflow.cn/v1/"
):
old_model_name = self.model_name
self.model_name = self.model_name[4:] # 移除"Pro/"前缀
logger.warning(f"检测到403错误模型从 {old_model_name} 降级为 {self.model_name}")
# 对全局配置进行更新
if global_config.llm_normal.get('name') == old_model_name:
global_config.llm_normal['name'] = self.model_name
if global_config.llm_normal.get("name") == old_model_name:
global_config.llm_normal["name"] = self.model_name
logger.warning(f"将全局配置中的 llm_normal 模型临时降级至{self.model_name}")
if global_config.llm_reasoning.get('name') == old_model_name:
global_config.llm_reasoning['name'] = self.model_name
if global_config.llm_reasoning.get("name") == old_model_name:
global_config.llm_reasoning["name"] = self.model_name
logger.warning(f"将全局配置中的 llm_reasoning 模型临时降级至{self.model_name}")
# 更新payload中的模型名
if payload and 'model' in payload:
payload['model'] = self.model_name
if payload and "model" in payload:
payload["model"] = self.model_name
# 重新尝试请求
retry -= 1 # 不计入重试次数
@@ -248,32 +286,75 @@ class LLM_request:
logger.exception("解析流式输出错误")
content = accumulated_content
reasoning_content = ""
think_match = re.search(r'<think>(.*?)</think>', content, re.DOTALL)
think_match = re.search(r"<think>(.*?)</think>", content, re.DOTALL)
if think_match:
reasoning_content = think_match.group(1).strip()
content = re.sub(r'<think>.*?</think>', '', content, flags=re.DOTALL).strip()
content = re.sub(r"<think>.*?</think>", "", content, flags=re.DOTALL).strip()
# 构造一个伪result以便调用自定义响应处理器或默认处理器
result = {
"choices": [{"message": {"content": content, "reasoning_content": reasoning_content}}],
"usage": usage}
return response_handler(result) if response_handler else self._default_response_handler(
result, user_id, request_type, endpoint)
"usage": usage,
}
return (
response_handler(result)
if response_handler
else self._default_response_handler(result, user_id, request_type, endpoint)
)
else:
result = await response.json()
# 使用自定义处理器或默认处理
return response_handler(result) if response_handler else self._default_response_handler(
result, user_id, request_type, endpoint)
return (
response_handler(result)
if response_handler
else self._default_response_handler(result, user_id, request_type, endpoint)
)
except aiohttp.ClientResponseError as e:
# 处理aiohttp抛出的响应错误
if retry < policy["max_retries"] - 1:
wait_time = policy["base_wait"] * (2**retry)
logger.error(f"HTTP响应错误等待{wait_time}秒后重试... 状态码: {e.status}, 错误: {e.message}")
try:
if hasattr(e, "history") and e.history and hasattr(e.history[0], "text"):
error_text = await e.history[0].text()
error_json = json.loads(error_text)
if isinstance(error_json, list) and len(error_json) > 0:
for error_item in error_json:
if "error" in error_item and isinstance(error_item["error"], dict):
error_obj = error_item["error"]
logger.error(
f"服务器错误详情: 代码={error_obj.get('code')}, 状态={error_obj.get('status')}, 消息={error_obj.get('message')}"
)
elif isinstance(error_json, dict) and "error" in error_json:
error_obj = error_json.get("error", {})
logger.error(
f"服务器错误详情: 代码={error_obj.get('code')}, 状态={error_obj.get('status')}, 消息={error_obj.get('message')}"
)
else:
logger.error(f"服务器错误响应: {error_json}")
except Exception as parse_err:
logger.warning(f"无法解析响应错误内容: {str(parse_err)}")
await asyncio.sleep(wait_time)
else:
logger.critical(f"HTTP响应错误达到最大重试次数: 状态码: {e.status}, 错误: {e.message}")
if image_base64:
payload["messages"][0]["content"][1]["image_url"]["url"] = (
f"data:image/{image_format.lower()};base64,{image_base64[:10]}...{image_base64[-10:]}"
)
logger.critical(f"请求头: {await self._build_headers(no_key=True)} 请求体: {payload}")
raise RuntimeError(f"API请求失败: 状态码 {e.status}, {e.message}")
except Exception as e:
if retry < policy["max_retries"] - 1:
wait_time = policy["base_wait"] * (2 ** retry)
wait_time = policy["base_wait"] * (2**retry)
logger.error(f"请求失败,等待{wait_time}秒后重试... 错误: {str(e)}")
await asyncio.sleep(wait_time)
else:
logger.critical(f"请求失败: {str(e)}")
if image_base64:
payload["messages"][0]["content"][1]["image_url"][
"url"] = f"data:image/{image_format.lower()};base64,{image_base64[:10]}...{image_base64[-10:]}"
payload["messages"][0]["content"][1]["image_url"]["url"] = (
f"data:image/{image_format.lower()};base64,{image_base64[:10]}...{image_base64[-10:]}"
)
logger.critical(f"请求头: {await self._build_headers(no_key=True)} 请求体: {payload}")
raise RuntimeError(f"API请求失败: {str(e)}")
@@ -289,8 +370,15 @@ class LLM_request:
# 复制一份参数,避免直接修改原始数据
new_params = dict(params)
# 定义需要转换的模型列表
models_needing_transformation = ["o3-mini", "o1-mini", "o1-preview", "o1-2024-12-17", "o1-preview-2024-09-12",
"o3-mini-2025-01-31", "o1-mini-2024-09-12"]
models_needing_transformation = [
"o3-mini",
"o1-mini",
"o1-preview",
"o1-2024-12-17",
"o1-preview-2024-09-12",
"o3-mini-2025-01-31",
"o1-mini-2024-09-12",
]
if self.model_name.lower() in models_needing_transformation:
# 删除 'temprature' 参数(如果存在)
new_params.pop("temperature", None)
@@ -311,29 +399,43 @@ class LLM_request:
"role": "user",
"content": [
{"type": "text", "text": prompt},
{"type": "image_url",
"image_url": {"url": f"data:image/{image_format.lower()};base64,{image_base64}"}}
]
{
"type": "image_url",
"image_url": {"url": f"data:image/{image_format.lower()};base64,{image_base64}"},
},
],
}
],
"max_tokens": global_config.max_response_length,
**params_copy
**params_copy,
}
else:
payload = {
"model": self.model_name,
"messages": [{"role": "user", "content": prompt}],
"max_tokens": global_config.max_response_length,
**params_copy
**params_copy,
}
# 如果 payload 中依然存在 max_tokens 且需要转换,在这里进行再次检查
if self.model_name.lower() in ["o3-mini", "o1-mini", "o1-preview", "o1-2024-12-17", "o1-preview-2024-09-12",
"o3-mini-2025-01-31", "o1-mini-2024-09-12"] and "max_tokens" in payload:
if (
self.model_name.lower()
in [
"o3-mini",
"o1-mini",
"o1-preview",
"o1-2024-12-17",
"o1-preview-2024-09-12",
"o3-mini-2025-01-31",
"o1-mini-2024-09-12",
]
and "max_tokens" in payload
):
payload["max_completion_tokens"] = payload.pop("max_tokens")
return payload
def _default_response_handler(self, result: dict, user_id: str = "system",
request_type: str = "chat", endpoint: str = "/chat/completions") -> Tuple:
def _default_response_handler(
self, result: dict, user_id: str = "system", request_type: str = "chat", endpoint: str = "/chat/completions"
) -> Tuple:
"""默认响应解析"""
if "choices" in result and result["choices"]:
message = result["choices"][0]["message"]
@@ -357,7 +459,7 @@ class LLM_request:
total_tokens=total_tokens,
user_id=user_id,
request_type=request_type,
endpoint=endpoint
endpoint=endpoint,
)
return content, reasoning_content
@@ -366,8 +468,8 @@ class LLM_request:
def _extract_reasoning(self, content: str) -> tuple[str, str]:
"""CoT思维链提取"""
match = re.search(r'(?:<think>)?(.*?)</think>', content, re.DOTALL)
content = re.sub(r'(?:<think>)?.*?</think>', '', content, flags=re.DOTALL, count=1).strip()
match = re.search(r"(?:<think>)?(.*?)</think>", content, re.DOTALL)
content = re.sub(r"(?:<think>)?.*?</think>", "", content, flags=re.DOTALL, count=1).strip()
if match:
reasoning = match.group(1).strip()
else:
@@ -377,34 +479,22 @@ class LLM_request:
async def _build_headers(self, no_key: bool = False) -> dict:
"""构建请求头"""
if no_key:
return {
"Authorization": "Bearer **********",
"Content-Type": "application/json"
}
return {"Authorization": "Bearer **********", "Content-Type": "application/json"}
else:
return {
"Authorization": f"Bearer {self.api_key}",
"Content-Type": "application/json"
}
return {"Authorization": f"Bearer {self.api_key}", "Content-Type": "application/json"}
# 防止小朋友们截图自己的key
async def generate_response(self, prompt: str) -> Tuple[str, str]:
"""根据输入的提示生成模型的异步响应"""
content, reasoning_content = await self._execute_request(
endpoint="/chat/completions",
prompt=prompt
)
content, reasoning_content = await self._execute_request(endpoint="/chat/completions", prompt=prompt)
return content, reasoning_content
async def generate_response_for_image(self, prompt: str, image_base64: str, image_format: str) -> Tuple[str, str]:
"""根据输入的提示和图片生成模型的异步响应"""
content, reasoning_content = await self._execute_request(
endpoint="/chat/completions",
prompt=prompt,
image_base64=image_base64,
image_format=image_format
endpoint="/chat/completions", prompt=prompt, image_base64=image_base64, image_format=image_format
)
return content, reasoning_content
@@ -415,13 +505,11 @@ class LLM_request:
"model": self.model_name,
"messages": [{"role": "user", "content": prompt}],
"max_tokens": global_config.max_response_length,
**self.params
**self.params,
}
content, reasoning_content = await self._execute_request(
endpoint="/chat/completions",
payload=data,
prompt=prompt
endpoint="/chat/completions", payload=data, prompt=prompt
)
return content, reasoning_content
@@ -444,16 +532,9 @@ class LLM_request:
embedding = await self._execute_request(
endpoint="/embeddings",
prompt=text,
payload={
"model": self.model_name,
"input": text,
"encoding_format": "float"
},
retry_policy={
"max_retries": 2,
"base_wait": 6
},
response_handler=embedding_handler
payload={"model": self.model_name, "input": text, "encoding_format": "float"},
retry_policy={"max_retries": 2, "base_wait": 6},
response_handler=embedding_handler,
)
return embedding
@@ -502,32 +583,33 @@ def compress_base64_image_by_scale(base64_data: str, target_size: int = 0.8 * 10
# 保存到缓冲区
frames[0].save(
output_buffer,
format='GIF',
format="GIF",
save_all=True,
append_images=frames[1:],
optimize=True,
duration=img.info.get('duration', 100),
loop=img.info.get('loop', 0)
duration=img.info.get("duration", 100),
loop=img.info.get("loop", 0),
)
else:
# 处理静态图片
resized_img = img.resize((new_width, new_height), Image.Resampling.LANCZOS)
# 保存到缓冲区,保持原始格式
if img.format == 'PNG' and img.mode in ('RGBA', 'LA'):
resized_img.save(output_buffer, format='PNG', optimize=True)
if img.format == "PNG" and img.mode in ("RGBA", "LA"):
resized_img.save(output_buffer, format="PNG", optimize=True)
else:
resized_img.save(output_buffer, format='JPEG', quality=95, optimize=True)
resized_img.save(output_buffer, format="JPEG", quality=95, optimize=True)
# 获取压缩后的数据并转换为base64
compressed_data = output_buffer.getvalue()
logger.success(f"压缩图片: {original_width}x{original_height} -> {new_width}x{new_height}")
logger.info(f"压缩前大小: {len(image_data) / 1024:.1f}KB, 压缩后大小: {len(compressed_data) / 1024:.1f}KB")
return base64.b64encode(compressed_data).decode('utf-8')
return base64.b64encode(compressed_data).decode("utf-8")
except Exception as e:
logger.error(f"压缩图片失败: {str(e)}")
import traceback
logger.error(traceback.format_exc())
return base64_data