diff --git a/.gitignore b/.gitignore
index f704a19ba..51a11d8c2 100644
--- a/.gitignore
+++ b/.gitignore
@@ -185,3 +185,6 @@ cython_debug/
# PyPI configuration file
.pypirc
.env
+
+# jieba
+jieba.cache
diff --git a/src/plugins/chat/__init__.py b/src/plugins/chat/__init__.py
index 66824d986..ab99f6477 100644
--- a/src/plugins/chat/__init__.py
+++ b/src/plugins/chat/__init__.py
@@ -13,6 +13,7 @@ from .willing_manager import willing_manager
from nonebot.rule import to_me
from .bot import chat_bot
from .emoji_manager import emoji_manager
+import time
# 获取驱动器
@@ -86,31 +87,27 @@ async def _(bot: Bot):
async def _(bot: Bot, event: GroupMessageEvent, state: T_State):
await chat_bot.handle_message(event, bot)
-'''
-@scheduler.scheduled_job("interval", seconds=300000, id="monitor_relationships")
-async def monitor_relationships():
- """每15秒打印一次关系数据"""
- relationship_manager.print_all_relationships()
-'''
-
# 添加build_memory定时任务
@scheduler.scheduled_job("interval", seconds=global_config.build_memory_interval, id="build_memory")
async def build_memory_task():
"""每30秒执行一次记忆构建"""
- print("\033[1;32m[记忆构建]\033[0m 开始构建记忆...")
- await hippocampus.operation_build_memory(chat_size=30)
- print("\033[1;32m[记忆构建]\033[0m 记忆构建完成")
+ print("\033[1;32m[记忆构建]\033[0m -------------------------------------------开始构建记忆-------------------------------------------")
+ start_time = time.time()
+ await hippocampus.operation_build_memory(chat_size=20)
+ end_time = time.time()
+ print(f"\033[1;32m[记忆构建]\033[0m -------------------------------------------记忆构建完成:耗时: {end_time - start_time:.2f} 秒-------------------------------------------")
+
@scheduler.scheduled_job("interval", seconds=global_config.forget_memory_interval, id="forget_memory")
async def forget_memory_task():
"""每30秒执行一次记忆构建"""
- print("\033[1;32m[记忆遗忘]\033[0m 开始遗忘记忆...")
- await hippocampus.operation_forget_topic(percentage=0.1)
- print("\033[1;32m[记忆遗忘]\033[0m 记忆遗忘完成")
+ # print("\033[1;32m[记忆遗忘]\033[0m 开始遗忘记忆...")
+ # await hippocampus.operation_forget_topic(percentage=0.1)
+ # print("\033[1;32m[记忆遗忘]\033[0m 记忆遗忘完成")
-@scheduler.scheduled_job("interval", seconds=global_config.build_memory_interval + 10, id="build_memory")
-async def build_memory_task():
+@scheduler.scheduled_job("interval", seconds=global_config.build_memory_interval + 10, id="merge_memory")
+async def merge_memory_task():
"""每30秒执行一次记忆构建"""
- print("\033[1;32m[记忆整合]\033[0m 开始整合")
- await hippocampus.operation_merge_memory(percentage=0.1)
- print("\033[1;32m[记忆整合]\033[0m 记忆整合完成")
+ # print("\033[1;32m[记忆整合]\033[0m 开始整合")
+ # await hippocampus.operation_merge_memory(percentage=0.1)
+ # print("\033[1;32m[记忆整合]\033[0m 记忆整合完成")
diff --git a/src/plugins/chat/bot.py b/src/plugins/chat/bot.py
index 6b0e76db5..e3525b3bb 100644
--- a/src/plugins/chat/bot.py
+++ b/src/plugins/chat/bot.py
@@ -69,11 +69,9 @@ class ChatBot:
current_time = time.strftime("%Y-%m-%d %H:%M:%S", time.localtime(message.time))
- identifier=topic_identifier.identify_topic()
- if global_config.topic_extract=='llm':
- topic=await identifier(message.processed_plain_text)
- else:
- topic=identifier(message.detailed_plain_text)
+
+ topic=await topic_identifier.identify_topic_llm(message.processed_plain_text)
+
# topic1 = topic_identifier.identify_topic_jieba(message.processed_plain_text)
# topic2 = await topic_identifier.identify_topic_llm(message.processed_plain_text)
diff --git a/src/plugins/chat/config.py b/src/plugins/chat/config.py
index 298683054..be599f48a 100644
--- a/src/plugins/chat/config.py
+++ b/src/plugins/chat/config.py
@@ -26,7 +26,7 @@ class BotConfig:
talk_frequency_down_groups = set()
ban_user_id = set()
- build_memory_interval: int = 60 # 记忆构建间隔(秒)
+ build_memory_interval: int = 30 # 记忆构建间隔(秒)
forget_memory_interval: int = 300 # 记忆遗忘间隔(秒)
EMOJI_CHECK_INTERVAL: int = 120 # 表情包检查间隔(分钟)
EMOJI_REGISTER_INTERVAL: int = 10 # 表情包注册间隔(分钟)
diff --git a/src/plugins/chat/llm_generator.py b/src/plugins/chat/llm_generator.py
index f380d62f4..04f2e73ad 100644
--- a/src/plugins/chat/llm_generator.py
+++ b/src/plugins/chat/llm_generator.py
@@ -95,7 +95,11 @@ class ResponseGenerator:
# return None
# 生成回复
- content, reasoning_content = await model.generate_response(prompt)
+ try:
+ content, reasoning_content = await model.generate_response(prompt)
+ except Exception as e:
+ print(f"生成回复时出错: {e}")
+ return None
# 保存到数据库
self._save_to_db(
diff --git a/src/plugins/chat/message_sender.py b/src/plugins/chat/message_sender.py
index 998586943..970fd3682 100644
--- a/src/plugins/chat/message_sender.py
+++ b/src/plugins/chat/message_sender.py
@@ -52,12 +52,16 @@ class Message_Sender:
await asyncio.sleep(typing_time)
# 发送消息
- await self._current_bot.send_group_msg(
- group_id=group_id,
- message=message,
- auto_escape=auto_escape
- )
- print(f"\033[1;34m[调试]\033[0m 发送消息{message}成功")
+ try:
+ await self._current_bot.send_group_msg(
+ group_id=group_id,
+ message=message,
+ auto_escape=auto_escape
+ )
+ print(f"\033[1;34m[调试]\033[0m 发送消息{message}成功")
+ except Exception as e:
+ print(f"发生错误 {e}")
+ print(f"\033[1;34m[调试]\033[0m 发送消息{message}失败")
class MessageContainer:
diff --git a/src/plugins/chat/prompt_builder.py b/src/plugins/chat/prompt_builder.py
index c354631c6..ba22a403d 100644
--- a/src/plugins/chat/prompt_builder.py
+++ b/src/plugins/chat/prompt_builder.py
@@ -36,7 +36,9 @@ class PromptBuilder:
memory_prompt = ''
start_time = time.time() # 记录开始时间
- topic = topic_identifier.identify_topic_jieba(message_txt)
+ # topic = await topic_identifier.identify_topic_llm(message_txt)
+ topic = topic_identifier.identify_topic_snownlp(message_txt)
+
# print(f"\033[1;32m[pb主题识别]\033[0m 主题: {topic}")
all_first_layer_items = [] # 存储所有第一层记忆
@@ -64,15 +66,7 @@ class PromptBuilder:
if overlap:
# print(f"\033[1;32m[前额叶]\033[0m 发现主题 '{current_topic}' 和 '{other_topic}' 有共同的第二层记忆: {overlap}")
overlapping_second_layer.update(overlap)
-
- # 合并所有需要的记忆
- # if all_first_layer_items:
- # print(f"\033[1;32m[前额叶]\033[0m 合并所有需要的记忆1: {all_first_layer_items}")
- # if overlapping_second_layer:
- # print(f"\033[1;32m[前额叶]\033[0m 合并所有需要的记忆2: {list(overlapping_second_layer)}")
-
- # 使用集合去重
- # 从每个来源随机选择2条记忆(如果有的话)
+
selected_first_layer = random.sample(all_first_layer_items, min(2, len(all_first_layer_items))) if all_first_layer_items else []
selected_second_layer = random.sample(list(overlapping_second_layer), min(2, len(overlapping_second_layer))) if overlapping_second_layer else []
diff --git a/src/plugins/chat/topic_identifier.py b/src/plugins/chat/topic_identifier.py
index 07749e837..812d4e321 100644
--- a/src/plugins/chat/topic_identifier.py
+++ b/src/plugins/chat/topic_identifier.py
@@ -15,16 +15,6 @@ class TopicIdentifier:
self.llm_client = LLM_request(model=global_config.llm_topic_extract)
self.select=global_config.topic_extract
- def identify_topic(self):
- if self.select=='jieba':
- return self.identify_topic_jieba
- elif self.select=='snownlp':
- return self.identify_topic_snownlp
- elif self.select=='llm':
- return self.identify_topic_llm
- else:
- return self.identify_topic_snownlp
-
async def identify_topic_llm(self, text: str) -> Optional[List[str]]:
"""识别消息主题,返回主题列表"""
@@ -48,56 +38,10 @@ class TopicIdentifier:
# 解析主题字符串为列表
topic_list = [t.strip() for t in topic.split(",") if t.strip()]
+
+ print(f"\033[1;32m[主题识别]\033[0m 主题: {topic_list}")
return topic_list if topic_list else None
- def identify_topic_jieba(self, text: str) -> Optional[str]:
- """使用jieba识别主题"""
- words = jieba.lcut(text)
- # 去除停用词和标点符号
- stop_words = {
- '的', '了', '和', '是', '就', '都', '而', '及', '与', '这', '那', '但', '然', '却',
- '因为', '所以', '如果', '虽然', '一个', '我', '你', '他', '她', '它', '我们', '你们',
- '他们', '在', '有', '个', '把', '被', '让', '给', '从', '向', '到', '又', '也', '很',
- '啊', '吧', '呢', '吗', '呀', '哦', '哈', '么', '嘛', '啦', '哎', '唉', '哇', '嗯',
- '哼', '哪', '什么', '怎么', '为什么', '怎样', '如何', '什么样', '这样', '那样', '这么',
- '那么', '多少', '几', '谁', '哪里', '哪儿', '什么时候', '何时', '为何', '怎么办',
- '怎么样', '这些', '那些', '一些', '一点', '一下', '一直', '一定', '一般', '一样',
- '一会儿', '一边', '一起',
- # 添加更多量词
- '个', '只', '条', '张', '片', '块', '本', '册', '页', '幅', '面', '篇', '份',
- '朵', '颗', '粒', '座', '幢', '栋', '间', '层', '家', '户', '位', '名', '群',
- '双', '对', '打', '副', '套', '批', '组', '串', '包', '箱', '袋', '瓶', '罐',
- # 添加更多介词
- '按', '按照', '把', '被', '比', '比如', '除', '除了', '当', '对', '对于',
- '根据', '关于', '跟', '和', '将', '经', '经过', '靠', '连', '论', '通过',
- '同', '往', '为', '为了', '围绕', '于', '由', '由于', '与', '在', '沿', '沿着',
- '依', '依照', '以', '因', '因为', '用', '由', '与', '自', '自从'
- }
-
- # 过滤掉停用词和标点符号,只保留名词和动词
- filtered_words = []
- for word in words:
- if word not in stop_words and not word.strip() in {
- '。', ',', '、', ':', ';', '!', '?', '"', '"', ''', ''',
- '(', ')', '【', '】', '《', '》', '…', '—', '·', '、', '~',
- '~', '+', '=', '-', '/', '\\', '|', '*', '#', '@', '$', '%',
- '^', '&', '[', ']', '{', '}', '<', '>', '`', '_', '.', ',',
- ';', ':', '\'', '"', '(', ')', '?', '!', '±', '×', '÷', '≠',
- '≈', '∈', '∉', '⊆', '⊇', '⊂', '⊃', '∪', '∩', '∧', '∨'
- }:
- filtered_words.append(word)
-
- # 统计词频
- word_freq = {}
- for word in filtered_words:
- word_freq[word] = word_freq.get(word, 0) + 1
-
- # 按词频排序,取前3个
- sorted_words = sorted(word_freq.items(), key=lambda x: x[1], reverse=True)
- top_words = [word for word, freq in sorted_words[:3]]
-
- return top_words if top_words else None
-
def identify_topic_snownlp(self, text: str) -> Optional[List[str]]:
"""使用 SnowNLP 进行主题识别
@@ -113,7 +57,7 @@ class TopicIdentifier:
try:
s = SnowNLP(text)
# 提取前3个关键词作为主题
- keywords = s.keywords(3)
+ keywords = s.keywords(5)
return keywords if keywords else None
except Exception as e:
print(f"\033[1;31m[错误]\033[0m SnowNLP 处理失败: {str(e)}")
diff --git a/src/plugins/chat/utils.py b/src/plugins/chat/utils.py
index 63151592d..aa16268ef 100644
--- a/src/plugins/chat/utils.py
+++ b/src/plugins/chat/utils.py
@@ -75,13 +75,11 @@ def cosine_similarity(v1, v2):
norm2 = np.linalg.norm(v2)
return dot_product / (norm1 * norm2)
-def calculate_information_content(text):
+def calculate_information_content(text):
"""计算文本的信息量(熵)"""
- # 统计字符频率
char_count = Counter(text)
total_chars = len(text)
- # 计算熵
entropy = 0
for count in char_count.values():
probability = count / total_chars
@@ -90,27 +88,37 @@ def calculate_information_content(text):
return entropy
def get_cloest_chat_from_db(db, length: int, timestamp: str):
- # 从数据库中根据时间戳获取离其最近的聊天记录
+ """从数据库中获取最接近指定时间戳的聊天记录,并记录读取次数"""
chat_text = ''
- closest_record = db.db.messages.find_one({"time": {"$lte": timestamp}}, sort=[('time', -1)]) # 调试输出
- # print(f"距离time最近的消息时间: {time.strftime('%Y-%m-%d %H:%M:%S', time.localtime(int(closest_record['time'])))}")
+ closest_record = db.db.messages.find_one({"time": {"$lte": timestamp}}, sort=[('time', -1)])
- if closest_record:
+ if closest_record and closest_record.get('memorized', 0) < 4:
closest_time = closest_record['time']
group_id = closest_record['group_id'] # 获取groupid
# 获取该时间戳之后的length条消息,且groupid相同
- chat_record = list(db.db.messages.find({"time": {"$gt": closest_time}, "group_id": group_id}).sort('time', 1).limit(length))
- for record in chat_record:
- time_str = time.strftime('%Y-%m-%d %H:%M:%S', time.localtime(int(record['time'])))
- try:
- displayname="[(%s)%s]%s" % (record["user_id"],record["user_nickname"],record["user_cardname"])
- except:
- displayname=record["user_nickname"] or "用户" + str(record["user_id"])
- chat_text += f'[{time_str}] {displayname}: {record["processed_plain_text"]}\n' # 添加发送者和时间信息
+ chat_records = list(db.db.messages.find(
+ {"time": {"$gt": closest_time}, "group_id": group_id}
+ ).sort('time', 1).limit(length))
+
+ # 更新每条消息的memorized属性
+ for record in chat_records:
+ # 检查当前记录的memorized值
+ current_memorized = record.get('memorized', 0)
+ if current_memorized > 3:
+ # print(f"消息已读取3次,跳过")
+ return ''
+
+ # 更新memorized值
+ db.db.messages.update_one(
+ {"_id": record["_id"]},
+ {"$set": {"memorized": current_memorized + 1}}
+ )
+
+ chat_text += record["detailed_plain_text"]
+
return chat_text
-
- return [] # 如果没有找到记录,返回空列表
-
+ print(f"消息已读取3次,跳过")
+ return ''
def get_recent_group_messages(db, group_id: int, limit: int = 12) -> list:
"""从数据库获取群组最近的消息记录
diff --git a/src/plugins/chat/utils_image.py b/src/plugins/chat/utils_image.py
index efe2f1c92..922ab5228 100644
--- a/src/plugins/chat/utils_image.py
+++ b/src/plugins/chat/utils_image.py
@@ -7,6 +7,7 @@ from ...common.database import Database
import zlib # 用于 CRC32
import base64
from nonebot import get_driver
+from loguru import logger
driver = get_driver()
config = driver.config
@@ -213,11 +214,11 @@ def storage_image(image_data: bytes) -> bytes:
print(f"\033[1;31m[错误]\033[0m 保存图片失败: {str(e)}")
return image_data
-def compress_base64_image_by_scale(base64_data: str, scale: float = 0.5) -> str:
- """按比例压缩base64格式的图片
+def compress_base64_image_by_scale(base64_data: str, target_size: int = 0.8 * 1024 * 1024) -> str:
+ """压缩base64格式的图片到指定大小
Args:
base64_data: base64编码的图片数据
- scale: 压缩比例(0-1之间的浮点数)
+ target_size: 目标文件大小(字节),默认0.8MB
Returns:
str: 压缩后的base64图片数据
"""
@@ -225,34 +226,64 @@ def compress_base64_image_by_scale(base64_data: str, scale: float = 0.5) -> str:
# 将base64转换为字节数据
image_data = base64.b64decode(base64_data)
+ # 如果已经小于目标大小,直接返回原图
+ if len(image_data) <= target_size:
+ return base64_data
+
# 将字节数据转换为图片对象
img = Image.open(io.BytesIO(image_data))
- # 如果是动图,直接返回原图
- if getattr(img, 'is_animated', False):
- return base64_data
-
+ # 获取原始尺寸
+ original_width, original_height = img.size
+
+ # 计算缩放比例
+ scale = min(1.0, (target_size / len(image_data)) ** 0.5)
+
# 计算新的尺寸
- new_width = int(img.width * scale)
- new_height = int(img.height * scale)
+ new_width = int(original_width * scale)
+ new_height = int(original_height * scale)
- # 缩放图片
- img = img.resize((new_width, new_height), Image.Resampling.LANCZOS)
+ # 创建内存缓冲区
+ output_buffer = io.BytesIO()
- # 转换为RGB模式(去除透明通道)
- if img.mode in ('RGBA', 'P'):
- img = img.convert('RGB')
+ # 如果是GIF,处理所有帧
+ if getattr(img, "is_animated", False):
+ frames = []
+ for frame_idx in range(img.n_frames):
+ img.seek(frame_idx)
+ new_frame = img.copy()
+ new_frame = new_frame.resize((new_width, new_height), Image.Resampling.LANCZOS)
+ frames.append(new_frame)
+
+ # 保存到缓冲区
+ frames[0].save(
+ output_buffer,
+ format='GIF',
+ save_all=True,
+ append_images=frames[1:],
+ optimize=True,
+ duration=img.info.get('duration', 100),
+ loop=img.info.get('loop', 0)
+ )
+ else:
+ # 处理静态图片
+ resized_img = img.resize((new_width, new_height), Image.Resampling.LANCZOS)
+
+ # 保存到缓冲区,保持原始格式
+ if img.format == 'PNG' and img.mode in ('RGBA', 'LA'):
+ resized_img.save(output_buffer, format='PNG', optimize=True)
+ else:
+ resized_img.save(output_buffer, format='JPEG', quality=95, optimize=True)
- # 保存压缩后的图片
- output = io.BytesIO()
- img.save(output, format='JPEG', quality=85, optimize=True)
- compressed_data = output.getvalue()
+ # 获取压缩后的数据并转换为base64
+ compressed_data = output_buffer.getvalue()
+ logger.success(f"压缩图片: {original_width}x{original_height} -> {new_width}x{new_height}")
+ logger.info(f"压缩前大小: {len(image_data)/1024:.1f}KB, 压缩后大小: {len(compressed_data)/1024:.1f}KB")
- # 转换回base64
return base64.b64encode(compressed_data).decode('utf-8')
except Exception as e:
- print(f"\033[1;31m[错误]\033[0m 压缩图片失败: {str(e)}")
+ logger.error(f"压缩图片失败: {str(e)}")
import traceback
- print(traceback.format_exc())
+ logger.error(traceback.format_exc())
return base64_data
\ No newline at end of file
diff --git a/src/plugins/chat/willing_manager.py b/src/plugins/chat/willing_manager.py
index ab8c5ee25..7559406f9 100644
--- a/src/plugins/chat/willing_manager.py
+++ b/src/plugins/chat/willing_manager.py
@@ -52,8 +52,8 @@ class WillingManager:
reply_probability = reply_probability / 3.5
reply_probability = min(reply_probability, 1)
- if reply_probability < 0.1:
- reply_probability = 0.1
+ if reply_probability < 0:
+ reply_probability = 0
return reply_probability
def change_reply_willing_sent(self, group_id: int):
diff --git a/src/plugins/knowledege/knowledge_library.py b/src/plugins/knowledege/knowledge_library.py
index cd6122b4c..d7071985e 100644
--- a/src/plugins/knowledege/knowledge_library.py
+++ b/src/plugins/knowledege/knowledge_library.py
@@ -79,7 +79,7 @@ class KnowledgeLibrary:
content = f.read()
# 按1024字符分段
- segments = [content[i:i+400] for i in range(0, len(content), 400)]
+ segments = [content[i:i+600] for i in range(0, len(content), 600)]
# 处理每个分段
for segment in segments:
diff --git a/src/plugins/memory_system/memory.py b/src/plugins/memory_system/memory.py
index 9ad740844..4d20d05a9 100644
--- a/src/plugins/memory_system/memory.py
+++ b/src/plugins/memory_system/memory.py
@@ -9,8 +9,14 @@ import random
import time
from ..chat.config import global_config
from ...common.database import Database # 使用正确的导入语法
-from ..chat.utils import calculate_information_content, get_cloest_chat_from_db
from ..models.utils_model import LLM_request
+import math
+from ..chat.utils import calculate_information_content, get_cloest_chat_from_db
+
+
+
+
+
class Memory_graph:
def __init__(self):
self.G = nx.Graph() # 使用 networkx 的图结构
@@ -126,8 +132,8 @@ class Memory_graph:
class Hippocampus:
def __init__(self,memory_graph:Memory_graph):
self.memory_graph = memory_graph
- self.llm_model = LLM_request(model = global_config.llm_normal,temperature=0.5)
- self.llm_model_small = LLM_request(model = global_config.llm_normal_minor,temperature=0.5)
+ self.llm_model_get_topic = LLM_request(model = global_config.llm_normal_minor,temperature=0.5)
+ self.llm_model_summary = LLM_request(model = global_config.llm_normal,temperature=0.5)
def calculate_node_hash(self, concept, memory_items):
"""计算节点的特征值"""
@@ -158,54 +164,75 @@ class Hippocampus:
random_time = current_timestamp - random.randint(3600*4, 3600*24) # 随机时间
chat_ = get_cloest_chat_from_db(db=self.memory_graph.db, length=chat_size, timestamp=random_time)
chat_text.append(chat_)
- return chat_text
+ return [text for text in chat_text if text]
- async def memory_compress(self, input_text, rate=1):
- information_content = calculate_information_content(input_text)
- print(f"文本的信息量(熵): {information_content:.4f} bits")
- topic_num = max(1, min(5, int(information_content * rate / 4)))
- topic_prompt = find_topic(input_text, topic_num)
- topic_response = await self.llm_model.generate_response(topic_prompt)
- # 检查 topic_response 是否为元组
- if isinstance(topic_response, tuple):
- topics = topic_response[0].split(",") # 假设第一个元素是我们需要的字符串
- else:
- topics = topic_response.split(",")
- compressed_memory = set()
+ async def memory_compress(self, input_text, compress_rate=0.1):
+ print(input_text)
+
+ #获取topics
+ topic_num = self.calculate_topic_num(input_text, compress_rate)
+ topics_response = await self.llm_model_get_topic.generate_response(self.find_topic_llm(input_text, topic_num))
+ # 修改话题处理逻辑
+ print(f"话题: {topics_response[0]}")
+ topics = [topic.strip() for topic in topics_response[0].replace(",", ",").replace("、", ",").replace(" ", ",").split(",") if topic.strip()]
+ print(f"话题: {topics}")
+
+ # 创建所有话题的请求任务
+ tasks = []
for topic in topics:
- topic_what_prompt = topic_what(input_text,topic)
- topic_what_response = await self.llm_model_small.generate_response(topic_what_prompt)
- compressed_memory.add((topic.strip(), topic_what_response[0])) # 将话题和记忆作为元组存储
+ topic_what_prompt = self.topic_what(input_text, topic)
+ # 创建异步任务
+ task = self.llm_model_summary.generate_response_async(topic_what_prompt)
+ tasks.append((topic.strip(), task))
+
+ # 等待所有任务完成
+ compressed_memory = set()
+ for topic, task in tasks:
+ response = await task
+ if response:
+ compressed_memory.add((topic, response[0]))
+
return compressed_memory
- async def operation_build_memory(self,chat_size=12):
- #最近消息获取频率
- time_frequency = {'near':1,'mid':2,'far':2}
+ def calculate_topic_num(self,text, compress_rate):
+ """计算文本的话题数量"""
+ information_content = calculate_information_content(text)
+ topic_by_length = text.count('\n')*compress_rate
+ topic_by_information_content = max(1, min(5, int((information_content-3) * 2)))
+ topic_num = int((topic_by_length + topic_by_information_content)/2)
+ print(f"topic_by_length: {topic_by_length}, topic_by_information_content: {topic_by_information_content}, topic_num: {topic_num}")
+ return topic_num
+
+ async def operation_build_memory(self,chat_size=20):
+ # 最近消息获取频率
+ time_frequency = {'near':2,'mid':4,'far':2}
memory_sample = self.get_memory_sample(chat_size,time_frequency)
- # print(f"\033[1;32m[记忆构建]\033[0m 获取记忆样本: {memory_sample}")
+
for i, input_text in enumerate(memory_sample, 1):
- #加载进度可视化
+ # 加载进度可视化
+ all_topics = []
progress = (i / len(memory_sample)) * 100
bar_length = 30
filled_length = int(bar_length * i // len(memory_sample))
bar = '█' * filled_length + '-' * (bar_length - filled_length)
print(f"\n进度: [{bar}] {progress:.1f}% ({i}/{len(memory_sample)})")
- if input_text:
- # 生成压缩后记忆
- first_memory = set()
- first_memory = await self.memory_compress(input_text, 2.5)
- #将记忆加入到图谱中
- for topic, memory in first_memory:
- topics = segment_text(topic)
- print(f"\033[1;34m话题\033[0m: {topic},节点: {topics}, 记忆: {memory}")
- for split_topic in topics:
- self.memory_graph.add_dot(split_topic,memory)
- for split_topic in topics:
- for other_split_topic in topics:
- if split_topic != other_split_topic:
- self.memory_graph.connect_dot(split_topic, other_split_topic)
- else:
- print(f"空消息 跳过")
+
+ # 生成压缩后记忆 ,表现为 (话题,记忆) 的元组
+ compressed_memory = set()
+ compress_rate = 0.1
+ compressed_memory = await self.memory_compress(input_text, compress_rate)
+ print(f"\033[1;33m压缩后记忆数量\033[0m: {len(compressed_memory)}")
+
+ # 将记忆加入到图谱中
+ for topic, memory in compressed_memory:
+ print(f"\033[1;32m添加节点\033[0m: {topic}")
+ self.memory_graph.add_dot(topic, memory)
+ all_topics.append(topic) # 收集所有话题
+ for i in range(len(all_topics)):
+ for j in range(i + 1, len(all_topics)):
+ print(f"\033[1;32m连接节点\033[0m: {all_topics[i]} 和 {all_topics[j]}")
+ self.memory_graph.connect_dot(all_topics[i], all_topics[j])
+
self.sync_memory_to_db()
def sync_memory_to_db(self):
@@ -448,19 +475,19 @@ class Hippocampus:
else:
print("\n本次检查没有需要合并的节点")
+ def find_topic_llm(self,text, topic_num):
+ prompt = f'这是一段文字:{text}。请你从这段话中总结出{topic_num}个关键的概念,可以是名词,动词,或者特定人物,帮我列出来,用逗号,隔开,尽可能精简。只需要列举{topic_num}个话题就好,不要有序号,不要告诉我其他内容。'
+ return prompt
+
+ def topic_what(self,text, topic):
+ prompt = f'这是一段文字:{text}。我想让你基于这段文字来概括"{topic}"这个概念,帮我总结成一句自然的话,可以包含时间和人物,以及具体的观点。只输出这句话就好'
+ return prompt
+
def segment_text(text):
seg_text = list(jieba.cut(text))
return seg_text
-def find_topic(text, topic_num):
- prompt = f'这是一段文字:{text}。请你从这段话中总结出{topic_num}个话题,帮我列出来,用逗号隔开,尽可能精简。只需要列举{topic_num}个话题就好,不要告诉我其他内容。'
- return prompt
-
-def topic_what(text, topic):
- prompt = f'这是一段文字:{text}。我想知道这记忆里有什么关于{topic}的话题,帮我总结成一句自然的话,可以包含时间和人物。只输出这句话就好'
- return prompt
-
from nonebot import get_driver
driver = get_driver()
diff --git a/src/plugins/memory_system/memory_manual_build.py b/src/plugins/memory_system/memory_manual_build.py
index 66933dd04..d6aa2f669 100644
--- a/src/plugins/memory_system/memory_manual_build.py
+++ b/src/plugins/memory_system/memory_manual_build.py
@@ -73,8 +73,6 @@ class Database:
logger.error(f"初始化MongoDB失败: {str(e)}")
raise
-
-
def calculate_information_content(text):
"""计算文本的信息量(熵)"""
char_count = Counter(text)
@@ -88,19 +86,36 @@ def calculate_information_content(text):
return entropy
def get_cloest_chat_from_db(db, length: int, timestamp: str):
- """从数据库中获取最接近指定时间戳的聊天记录"""
+ """从数据库中获取最接近指定时间戳的聊天记录,并记录读取次数"""
chat_text = ''
closest_record = db.db.messages.find_one({"time": {"$lte": timestamp}}, sort=[('time', -1)])
- if closest_record:
+ if closest_record and closest_record.get('memorized', 0) < 4:
closest_time = closest_record['time']
group_id = closest_record['group_id'] # 获取groupid
# 获取该时间戳之后的length条消息,且groupid相同
- chat_record = list(db.db.messages.find({"time": {"$gt": closest_time}, "group_id": group_id}).sort('time', 1).limit(length))
- for record in chat_record:
+ chat_records = list(db.db.messages.find(
+ {"time": {"$gt": closest_time}, "group_id": group_id}
+ ).sort('time', 1).limit(length))
+
+ # 更新每条消息的memorized属性
+ for record in chat_records:
+ # 检查当前记录的memorized值
+ current_memorized = record.get('memorized', 0)
+ if current_memorized > 3:
+ print(f"消息已读取3次,跳过")
+ return ''
+
+ # 更新memorized值
+ db.db.messages.update_one(
+ {"_id": record["_id"]},
+ {"$set": {"memorized": current_memorized + 1}}
+ )
+
chat_text += record["detailed_plain_text"]
+
return chat_text
-
+ print(f"消息已读取3次,跳过")
return ''
class Memory_graph:
@@ -186,24 +201,26 @@ class Hippocampus:
self.memory_graph = memory_graph
self.llm_model = LLMModel()
self.llm_model_small = LLMModel(model_name="deepseek-ai/DeepSeek-V2.5")
+ self.llm_model_get_topic = LLMModel(model_name="Pro/Qwen/Qwen2.5-7B-Instruct")
+ self.llm_model_summary = LLMModel(model_name="Qwen/Qwen2.5-32B-Instruct")
def get_memory_sample(self, chat_size=20, time_frequency:dict={'near':2,'mid':4,'far':3}):
current_timestamp = datetime.datetime.now().timestamp()
chat_text = []
#短期:1h 中期:4h 长期:24h
for _ in range(time_frequency.get('near')): # 循环10次
- random_time = current_timestamp - random.randint(1, 3600) # 随机时间
+ random_time = current_timestamp - random.randint(1, 3600*4) # 随机时间
chat_ = get_cloest_chat_from_db(db=self.memory_graph.db, length=chat_size, timestamp=random_time)
chat_text.append(chat_)
for _ in range(time_frequency.get('mid')): # 循环10次
- random_time = current_timestamp - random.randint(3600, 3600*4) # 随机时间
+ random_time = current_timestamp - random.randint(3600*4, 3600*24) # 随机时间
chat_ = get_cloest_chat_from_db(db=self.memory_graph.db, length=chat_size, timestamp=random_time)
chat_text.append(chat_)
for _ in range(time_frequency.get('far')): # 循环10次
- random_time = current_timestamp - random.randint(3600*4, 3600*24) # 随机时间
+ random_time = current_timestamp - random.randint(3600*24, 3600*24*7) # 随机时间
chat_ = get_cloest_chat_from_db(db=self.memory_graph.db, length=chat_size, timestamp=random_time)
chat_text.append(chat_)
- return chat_text
+ return [chat for chat in chat_text if chat]
def calculate_topic_num(self,text, compress_rate):
"""计算文本的话题数量"""
@@ -219,8 +236,9 @@ class Hippocampus:
#获取topics
topic_num = self.calculate_topic_num(input_text, compress_rate)
- topics_response = await self.llm_model_small.generate_response_async(self.find_topic_llm(input_text, topic_num))
- topics = topics_response[0].split(",")
+ topics_response = await self.llm_model_get_topic.generate_response_async(self.find_topic_llm(input_text, topic_num))
+ # 修改话题处理逻辑
+ topics = [topic.strip() for topic in topics_response[0].replace(",", ",").replace("、", ",").replace(" ", ",").split(",") if topic.strip()]
print(f"话题: {topics}")
# 创建所有话题的请求任务
@@ -241,57 +259,41 @@ class Hippocampus:
return compressed_memory
async def operation_build_memory(self, chat_size=12):
- #最近消息获取频率
- time_frequency = {'near':1,'mid':2,'far':2}
- memory_sample = self.get_memory_sample(chat_size,time_frequency)
+ # 最近消息获取频率
+ time_frequency = {'near': 3, 'mid': 8, 'far': 5}
+ memory_sample = self.get_memory_sample(chat_size, time_frequency)
+ all_topics = [] # 用于存储所有话题
+
for i, input_text in enumerate(memory_sample, 1):
- #加载进度可视化
+ # 加载进度可视化
+ all_topics = []
progress = (i / len(memory_sample)) * 100
bar_length = 30
filled_length = int(bar_length * i // len(memory_sample))
bar = '█' * filled_length + '-' * (bar_length - filled_length)
print(f"\n进度: [{bar}] {progress:.1f}% ({i}/{len(memory_sample)})")
+
+ # 生成压缩后记忆 ,表现为 (话题,记忆) 的元组
+ compressed_memory = set()
+ compress_rate = 0.1
+ compressed_memory = await self.memory_compress(input_text, compress_rate)
+ print(f"\033[1;33m压缩后记忆数量\033[0m: {len(compressed_memory)}")
- if input_text:
- # 生成压缩后记忆 ,表现为 (话题,记忆) 的元组
- compressed_memory = set()
- compress_rate = 0.15
- compressed_memory = await self.memory_compress(input_text,compress_rate)
- print(f"\033[1;33m压缩后记忆数量\033[0m: {len(compressed_memory)}")
+ # 将记忆加入到图谱中
+ for topic, memory in compressed_memory:
+ print(f"\033[1;32m添加节点\033[0m: {topic}")
+ self.memory_graph.add_dot(topic, memory)
+ all_topics.append(topic) # 收集所有话题
+ for i in range(len(all_topics)):
+ for j in range(i + 1, len(all_topics)):
+ print(f"\033[1;32m连接节点\033[0m: {all_topics[i]} 和 {all_topics[j]}")
+ self.memory_graph.connect_dot(all_topics[i], all_topics[j])
+
- #将记忆加入到图谱中
- for topic, memory in compressed_memory:
- # 将jieba分词结果转换为列表以便多次使用
- topics = list(jieba.cut(topic))
- print(f"\033[1;34m话题\033[0m: {topic}")
- print(f"\033[1;34m分词结果\033[0m: {topics}")
- print(f"\033[1;34m记忆\033[0m: {memory}")
-
- # 如果分词结果少于2个词,跳过连接
- if len(topics) < 2:
- print(f"\033[1;31m分词结果少于2个词,跳过连接\033[0m")
- # 仍然添加单个节点
- for split_topic in topics:
- self.memory_graph.add_dot(split_topic, memory)
- continue
-
- # 先添加所有节点
- for split_topic in topics:
- print(f"\033[1;32m添加节点\033[0m: {split_topic}")
- self.memory_graph.add_dot(split_topic, memory)
-
- # 再添加节点之间的连接
- for i, split_topic in enumerate(topics):
- for j, other_split_topic in enumerate(topics):
- if i < j: # 只连接一次,避免重复连接
- print(f"\033[1;32m连接节点\033[0m: {split_topic} 和 {other_split_topic}")
- self.memory_graph.connect_dot(split_topic, other_split_topic)
- else:
- print(f"空消息 跳过")
- # 每处理完一条消息就同步一次到数据库
- self.sync_memory_to_db_2()
+
+ self.sync_memory_to_db()
def sync_memory_from_db(self):
"""
@@ -344,7 +346,7 @@ class Hippocampus:
nodes = sorted([source, target])
return hash(f"{nodes[0]}:{nodes[1]}")
- def sync_memory_to_db_2(self):
+ def sync_memory_to_db(self):
"""
检查并同步内存中的图结构与数据库
使用特征值(哈希值)快速判断是否需要更新
@@ -448,11 +450,13 @@ class Hippocampus:
logger.success("完成记忆图谱与数据库的差异同步")
def find_topic_llm(self,text, topic_num):
- prompt = f'这是一段文字:{text}。请你从这段话中总结出{topic_num}个话题,帮我列出来,用逗号隔开,尽可能精简。只需要列举{topic_num}个话题就好,不要告诉我其他内容。'
+ # prompt = f'这是一段文字:{text}。请你从这段话中总结出{topic_num}个话题,帮我列出来,用逗号隔开,尽可能精简。只需要列举{topic_num}个话题就好,不要告诉我其他内容。'
+ prompt = f'这是一段文字:{text}。请你从这段话中总结出{topic_num}个关键的概念,可以是名词,动词,或者特定人物,帮我列出来,用逗号,隔开,尽可能精简。只需要列举{topic_num}个话题就好,不要有序号,不要告诉我其他内容。'
return prompt
def topic_what(self,text, topic):
- prompt = f'这是一段文字:{text}。我想知道这记忆里有什么关于{topic}的话题,帮我总结成一句自然的话,可以包含时间和人物,以及具体的观点。只输出这句话就好'
+ # prompt = f'这是一段文字:{text}。我想知道这段文字里有什么关于{topic}的话题,帮我总结成一句自然的话,可以包含时间和人物,以及具体的观点。只输出这句话就好'
+ prompt = f'这是一段文字:{text}。我想让你基于这段文字来概括"{topic}"这个概念,帮我总结成一句自然的话,可以包含时间和人物,以及具体的观点。只输出这句话就好'
return prompt
def remove_node_from_db(self, topic):
@@ -557,7 +561,7 @@ class Hippocampus:
# 同步到数据库
if forgotten_nodes:
- self.sync_memory_to_db_2()
+ self.sync_memory_to_db()
logger.info(f"完成遗忘操作,共遗忘 {len(forgotten_nodes)} 个节点的记忆")
else:
logger.info("本次检查没有节点满足遗忘条件")
@@ -632,7 +636,7 @@ class Hippocampus:
# 同步到数据库
if merged_nodes:
- self.sync_memory_to_db_2()
+ self.sync_memory_to_db()
print(f"\n完成记忆合并操作,共处理 {len(merged_nodes)} 个节点")
else:
print("\n本次检查没有需要合并的节点")
@@ -667,7 +671,7 @@ def visualize_graph_lite(memory_graph: Memory_graph, color_by_memory: bool = Fal
memory_count = len(memory_items) if isinstance(memory_items, list) else (1 if memory_items else 0)
# 使用指数函数使变化更明显
ratio = memory_count / max_memories
- size = 500 + 5000 * (ratio ** 2) # 使用平方函数使差异更明显
+ size = 400 + 2000 * (ratio ** 2) # 增大节点大小
node_sizes.append(size)
# 计算节点颜色(基于连接数)
@@ -682,45 +686,22 @@ def visualize_graph_lite(memory_graph: Memory_graph, color_by_memory: bool = Fal
blue = max(0.0, 1.0 - color_ratio)
node_colors.append((red, 0, blue))
- # 获取边的权重和透明度
- edge_colors = []
- max_strength = 1
-
- # 找出最大强度值
- for (u, v) in H.edges():
- strength = H[u][v].get('strength', 1)
- max_strength = max(max_strength, strength)
-
- # 创建边权重字典用于布局
- edge_weights = {}
-
- # 计算每条边的透明度和权重
- for (u, v) in H.edges():
- strength = H[u][v].get('strength', 1)
- # 将强度映射到透明度范围 [0.05, 0.8]
- alpha = 0.02 + 0.55 * (strength / max_strength)
- # 使用统一的蓝色,但透明度不同
- edge_colors.append((0, 0, 1, alpha))
- # 设置边的权重(强度越大,权重越大,节点间距离越小)
- edge_weights[(u, v)] = strength
-
# 绘制图形
- plt.figure(figsize=(20, 16)) # 增加图形尺寸
- # 调整弹簧布局参数,使用边权重影响布局
+ plt.figure(figsize=(16, 12)) # 减小图形尺寸
pos = nx.spring_layout(H,
- k=2.0, # 增加节点间斥力
+ k=1, # 调整节点间斥力
iterations=100, # 增加迭代次数
- scale=2.0, # 增加布局尺寸
+ scale=1.5, # 减小布局尺寸
weight='strength') # 使用边的strength属性作为权重
nx.draw(H, pos,
with_labels=True,
node_color=node_colors,
node_size=node_sizes,
- font_size=8, # 稍微减小字体大小
+ font_size=12, # 保持增大的字体大小
font_family='SimHei',
font_weight='bold',
- edge_color=edge_colors,
+ edge_color='gray',
width=1.5) # 统一的边宽度
title = '记忆图谱可视化 - 节点大小表示记忆数量\n节点颜色:蓝(弱连接)到红(强连接)渐变,边的透明度表示连接强度\n连接强度越大的节点距离越近'
@@ -733,7 +714,7 @@ async def main():
db = Database.get_instance()
start_time = time.time()
- test_pare = {'do_build_memory':False,'do_forget_topic':True,'do_visualize_graph':True,'do_query':False,'do_merge_memory':True}
+ test_pare = {'do_build_memory':True,'do_forget_topic':False,'do_visualize_graph':True,'do_query':False,'do_merge_memory':False}
# 创建记忆图
memory_graph = Memory_graph()
@@ -750,11 +731,11 @@ async def main():
# 构建记忆
if test_pare['do_build_memory']:
logger.info("开始构建记忆...")
- chat_size = 25
+ chat_size = 20
await hippocampus.operation_build_memory(chat_size=chat_size)
end_time = time.time()
- logger.info(f"\033[32m[构建记忆耗时: {end_time - start_time:.2f} 秒,chat_size={chat_size},chat_count = {chat_size}]\033[0m")
+ logger.info(f"\033[32m[构建记忆耗时: {end_time - start_time:.2f} 秒,chat_size={chat_size},chat_count = 16]\033[0m")
if test_pare['do_forget_topic']:
logger.info("开始遗忘记忆...")
diff --git a/src/plugins/models/utils_model.py b/src/plugins/models/utils_model.py
index c7dbc6ffd..0717bc3a7 100644
--- a/src/plugins/models/utils_model.py
+++ b/src/plugins/models/utils_model.py
@@ -36,7 +36,6 @@ class LLM_request:
data = {
"model": self.model_name,
"messages": [{"role": "user", "content": prompt}],
- "max_tokens": 8000,
**self.params
}
@@ -57,6 +56,10 @@ class LLM_request:
await asyncio.sleep(wait_time)
continue
+ if response.status in [500, 503]:
+ logger.error(f"服务器错误: {response.status}")
+ raise RuntimeError("服务器负载过高,模型恢复失败QAQ")
+
response.raise_for_status() # 检查其他响应状态
result = await response.json()
@@ -113,7 +116,6 @@ class LLM_request:
]
}
],
- "max_tokens": 8000,
**self.params
}
@@ -126,7 +128,7 @@ class LLM_request:
base_wait_time = 15
current_image_base64 = image_base64
-
+ current_image_base64 = compress_base64_image_by_scale(current_image_base64)
for retry in range(max_retries):
try:
@@ -172,6 +174,68 @@ class LLM_request:
logger.error("达到最大重试次数,请求仍然失败")
raise RuntimeError("达到最大重试次数,API请求仍然失败")
+ async def generate_response_async(self, prompt: str) -> Union[str, Tuple[str, str]]:
+ """异步方式根据输入的提示生成模型的响应"""
+ headers = {
+ "Authorization": f"Bearer {self.api_key}",
+ "Content-Type": "application/json"
+ }
+
+ # 构建请求体
+ data = {
+ "model": self.model_name,
+ "messages": [{"role": "user", "content": prompt}],
+ "temperature": 0.5,
+ **self.params
+ }
+
+ # 发送请求到完整的 chat/completions 端点
+ api_url = f"{self.base_url.rstrip('/')}/chat/completions"
+ logger.info(f"Request URL: {api_url}") # 记录请求的 URL
+
+ max_retries = 3
+ base_wait_time = 15
+
+ async with aiohttp.ClientSession() as session:
+ for retry in range(max_retries):
+ try:
+ async with session.post(api_url, headers=headers, json=data) as response:
+ if response.status == 429:
+ wait_time = base_wait_time * (2 ** retry) # 指数退避
+ logger.warning(f"遇到请求限制(429),等待{wait_time}秒后重试...")
+ await asyncio.sleep(wait_time)
+ continue
+
+ response.raise_for_status() # 检查其他响应状态
+
+ result = await response.json()
+ if "choices" in result and len(result["choices"]) > 0:
+ message = result["choices"][0]["message"]
+ content = message.get("content", "")
+ think_match = None
+ reasoning_content = message.get("reasoning_content", "")
+ if not reasoning_content:
+ think_match = re.search(r'(?:)?(.*?)', content, re.DOTALL)
+ if think_match:
+ reasoning_content = think_match.group(1).strip()
+ content = re.sub(r'(?:)?.*?', '', content, flags=re.DOTALL, count=1).strip()
+ return content, reasoning_content
+ return "没有返回结果", ""
+
+ except Exception as e:
+ if retry < max_retries - 1: # 如果还有重试机会
+ wait_time = base_wait_time * (2 ** retry)
+ logger.error(f"[回复]请求失败,等待{wait_time}秒后重试... 错误: {str(e)}")
+ await asyncio.sleep(wait_time)
+ else:
+ logger.error(f"请求失败: {str(e)}")
+ return f"请求失败: {str(e)}", ""
+
+ logger.error("达到最大重试次数,请求仍然失败")
+ return "达到最大重试次数,请求仍然失败", ""
+
+
+
def generate_response_for_image_sync(self, prompt: str, image_base64: str) -> Tuple[str, str]:
"""同步方法:根据输入的提示和图片生成模型的响应"""
headers = {
@@ -179,6 +243,8 @@ class LLM_request:
"Content-Type": "application/json"
}
+ image_base64=compress_base64_image_by_scale(image_base64)
+
# 构建请求体
data = {
"model": self.model_name,
@@ -199,7 +265,6 @@ class LLM_request:
]
}
],
- "max_tokens": 8000,
**self.params
}
diff --git a/src/plugins/schedule/schedule_generator.py b/src/plugins/schedule/schedule_generator.py
index 7afa5e7ba..f2b11c33f 100644
--- a/src/plugins/schedule/schedule_generator.py
+++ b/src/plugins/schedule/schedule_generator.py
@@ -104,6 +104,8 @@ class ScheduleGenerator:
min_diff = float('inf')
# 检查今天的日程
+ if not self.today_schedule:
+ return "摸鱼"
for time_str in self.today_schedule.keys():
diff = abs(self._time_diff(current_time, time_str))
if closest_time is None or diff < min_diff: