文档更新,changelog更新

This commit is contained in:
UnCLAS-Prommer
2025-07-31 14:28:16 +08:00
parent 52acfe5958
commit baaf0262b3
6 changed files with 68 additions and 1256 deletions

View File

@@ -1,380 +0,0 @@
import asyncio
from typing import Callable, Any
from openai import AsyncStream
from openai.types.chat import ChatCompletionChunk, ChatCompletion
from .base_client import BaseClient, APIResponse
from src.config.api_ada_configs import (
ModelInfo,
ModelUsageArgConfigItem,
RequestConfig,
ModuleConfig,
)
from ..exceptions import (
NetworkConnectionError,
ReqAbortException,
RespNotOkException,
RespParseException,
)
from ..payload_content.message import Message
from ..payload_content.resp_format import RespFormat
from ..payload_content.tool_option import ToolOption
from ..utils import compress_messages
from src.common.logger import get_logger
logger = get_logger("模型客户端")
def _check_retry(
remain_try: int,
retry_interval: int,
can_retry_msg: str,
cannot_retry_msg: str,
can_retry_callable: Callable | None = None,
**kwargs,
) -> tuple[int, Any | None]:
"""
辅助函数:检查是否可以重试
:param remain_try: 剩余尝试次数
:param retry_interval: 重试间隔
:param can_retry_msg: 可以重试时的提示信息
:param cannot_retry_msg: 不可以重试时的提示信息
:return: (等待间隔如果为0则不等待为-1则不再请求该模型, 新的消息列表(适用于压缩消息))
"""
if remain_try > 0:
# 还有重试机会
logger.warning(f"{can_retry_msg}")
if can_retry_callable is not None:
return retry_interval, can_retry_callable(**kwargs)
else:
return retry_interval, None
else:
# 达到最大重试次数
logger.warning(f"{cannot_retry_msg}")
return -1, None # 不再重试请求该模型
def _handle_resp_not_ok(
e: RespNotOkException,
task_name: str,
model_name: str,
remain_try: int,
retry_interval: int = 10,
messages: tuple[list[Message], bool] | None = None,
):
"""
处理响应错误异常
:param e: 异常对象
:param task_name: 任务名称
:param model_name: 模型名称
:param remain_try: 剩余尝试次数
:param retry_interval: 重试间隔
:param messages: (消息列表, 是否已压缩过)
:return: (等待间隔如果为0则不等待为-1则不再请求该模型, 新的消息列表(适用于压缩消息))
"""
# 响应错误
if e.status_code in [401, 403]:
# API Key认证错误 - 让多API Key机制处理给一次重试机会
if remain_try > 0:
logger.warning(
f"任务-'{task_name}' 模型-'{model_name}'\n"
f"API Key认证失败错误代码-{e.status_code}多API Key机制会自动切换"
)
return 0, None # 立即重试让底层客户端切换API Key
else:
logger.warning(
f"任务-'{task_name}' 模型-'{model_name}'\n"
f"所有API Key都认证失败错误代码-{e.status_code},错误信息-{e.message}"
)
return -1, None # 不再重试请求该模型
elif e.status_code in [400, 402, 404]:
# 其他客户端错误(不应该重试)
logger.warning(
f"任务-'{task_name}' 模型-'{model_name}'\n"
f"请求失败,错误代码-{e.status_code},错误信息-{e.message}"
)
return -1, None # 不再重试请求该模型
elif e.status_code == 413:
if messages and not messages[1]:
# 消息列表不为空且未压缩,尝试压缩消息
return _check_retry(
remain_try,
0,
can_retry_msg=(
f"任务-'{task_name}' 模型-'{model_name}'\n"
"请求体过大,尝试压缩消息后重试"
),
cannot_retry_msg=(
f"任务-'{task_name}' 模型-'{model_name}'\n"
"请求体过大,压缩消息后仍然过大,放弃请求"
),
can_retry_callable=compress_messages,
messages=messages[0],
)
# 没有消息可压缩
logger.warning(
f"任务-'{task_name}' 模型-'{model_name}'\n"
"请求体过大,无法压缩消息,放弃请求。"
)
return -1, None
elif e.status_code == 429:
# 请求过于频繁 - 让多API Key机制处理适当延迟后重试
return _check_retry(
remain_try,
min(retry_interval, 5), # 限制最大延迟为5秒让API Key切换更快生效
can_retry_msg=(
f"任务-'{task_name}' 模型-'{model_name}'\n"
f"请求过于频繁多API Key机制会自动切换{min(retry_interval, 5)}秒后重试"
),
cannot_retry_msg=(
f"任务-'{task_name}' 模型-'{model_name}'\n"
"请求过于频繁所有API Key都被限制放弃请求"
),
)
elif e.status_code >= 500:
# 服务器错误
return _check_retry(
remain_try,
retry_interval,
can_retry_msg=(
f"任务-'{task_name}' 模型-'{model_name}'\n"
f"服务器错误,将于{retry_interval}秒后重试"
),
cannot_retry_msg=(
f"任务-'{task_name}' 模型-'{model_name}'\n"
"服务器错误,超过最大重试次数,请稍后再试"
),
)
else:
# 未知错误
logger.warning(
f"任务-'{task_name}' 模型-'{model_name}'\n"
f"未知错误,错误代码-{e.status_code},错误信息-{e.message}"
)
return -1, None
def default_exception_handler(
e: Exception,
task_name: str,
model_name: str,
remain_try: int,
retry_interval: int = 10,
messages: tuple[list[Message], bool] | None = None,
) -> tuple[int, list[Message] | None]:
"""
默认异常处理函数
:param e: 异常对象
:param task_name: 任务名称
:param model_name: 模型名称
:param remain_try: 剩余尝试次数
:param retry_interval: 重试间隔
:param messages: (消息列表, 是否已压缩过)
:return (等待间隔如果为0则不等待为-1则不再请求该模型, 新的消息列表(适用于压缩消息))
"""
if isinstance(e, NetworkConnectionError): # 网络连接错误
# 网络错误可能是某个API Key的端点问题给多API Key机制一次快速重试机会
return _check_retry(
remain_try,
min(retry_interval, 3), # 网络错误时减少等待时间让API Key切换更快
can_retry_msg=(
f"任务-'{task_name}' 模型-'{model_name}'\n"
f"连接异常多API Key机制会尝试其他Key{min(retry_interval, 3)}秒后重试"
),
cannot_retry_msg=(
f"任务-'{task_name}' 模型-'{model_name}'\n"
f"连接异常超过最大重试次数请检查网络连接状态或URL是否正确"
),
)
elif isinstance(e, ReqAbortException):
logger.warning(
f"任务-'{task_name}' 模型-'{model_name}'\n请求被中断,详细信息-{str(e.message)}"
)
return -1, None # 不再重试请求该模型
elif isinstance(e, RespNotOkException):
return _handle_resp_not_ok(
e,
task_name,
model_name,
remain_try,
retry_interval,
messages,
)
elif isinstance(e, RespParseException):
# 响应解析错误
logger.error(
f"任务-'{task_name}' 模型-'{model_name}'\n"
f"响应解析错误,错误信息-{e.message}\n"
)
logger.debug(f"附加内容:\n{str(e.ext_info)}")
return -1, None # 不再重试请求该模型
else:
logger.error(
f"任务-'{task_name}' 模型-'{model_name}'\n未知异常,错误信息-{str(e)}"
)
return -1, None # 不再重试请求该模型
class ModelRequestHandler:
"""
模型请求处理器
"""
def __init__(
self,
task_name: str,
config: ModuleConfig,
api_client_map: dict[str, BaseClient],
):
self.task_name: str = task_name
"""任务名称"""
self.client_map: dict[str, BaseClient] = {}
"""API客户端列表"""
self.configs: list[tuple[ModelInfo, ModelUsageArgConfigItem]] = []
"""模型参数配置"""
self.req_conf: RequestConfig = config.req_conf
"""请求配置"""
# 获取模型与使用配置
for model_usage in config.task_model_arg_map[task_name].usage:
if model_usage.name not in config.models:
logger.error(f"Model '{model_usage.name}' not found in ModelManager")
raise KeyError(f"Model '{model_usage.name}' not found in ModelManager")
model_info = config.models[model_usage.name]
if model_info.api_provider not in self.client_map:
# 缓存API客户端
self.client_map[model_info.api_provider] = api_client_map[
model_info.api_provider
]
self.configs.append((model_info, model_usage)) # 添加模型与使用配置
async def get_response(
self,
messages: list[Message],
tool_options: list[ToolOption] | None = None,
response_format: RespFormat | None = None, # 暂不启用
stream_response_handler: Callable[
[AsyncStream[ChatCompletionChunk], asyncio.Event | None], APIResponse
]
| None = None,
async_response_parser: Callable[[ChatCompletion], APIResponse] | None = None,
interrupt_flag: asyncio.Event | None = None,
) -> APIResponse:
"""
获取对话响应
:param messages: 消息列表
:param tool_options: 工具选项列表
:param response_format: 响应格式
:param stream_response_handler: 流式响应处理函数(可选)
:param async_response_parser: 响应解析函数(可选)
:param interrupt_flag: 中断信号量可选默认为None
:return: APIResponse
"""
# 遍历可用模型,若获取响应失败,则使用下一个模型继续请求
for config_item in self.configs:
client = self.client_map[config_item[0].api_provider]
model_info: ModelInfo = config_item[0]
model_usage_config: ModelUsageArgConfigItem = config_item[1]
remain_try = (
model_usage_config.max_retry or self.req_conf.max_retry
) + 1 # 初始化:剩余尝试次数 = 最大重试次数 + 1
compressed_messages = None
retry_interval = self.req_conf.retry_interval
while remain_try > 0:
try:
return await client.get_response(
model_info,
message_list=(compressed_messages or messages),
tool_options=tool_options,
max_tokens=model_usage_config.max_tokens
or self.req_conf.default_max_tokens,
temperature=model_usage_config.temperature
or self.req_conf.default_temperature,
response_format=response_format,
stream_response_handler=stream_response_handler,
async_response_parser=async_response_parser,
interrupt_flag=interrupt_flag,
)
except Exception as e:
logger.debug(e)
remain_try -= 1 # 剩余尝试次数减1
# 处理异常
handle_res = default_exception_handler(
e,
self.task_name,
model_info.name,
remain_try,
retry_interval=self.req_conf.retry_interval,
messages=(messages, compressed_messages is not None),
)
if handle_res[0] == -1:
# 等待间隔为-1表示不再请求该模型
remain_try = 0
elif handle_res[0] != 0:
# 等待间隔不为0表示需要等待
await asyncio.sleep(handle_res[0])
retry_interval *= 2
if handle_res[1] is not None:
# 压缩消息
compressed_messages = handle_res[1]
logger.error(f"任务-'{self.task_name}' 请求执行失败,所有模型均不可用")
raise RuntimeError("请求失败,所有模型均不可用") # 所有请求尝试均失败
async def get_embedding(
self,
embedding_input: str,
) -> APIResponse:
"""
获取嵌入向量
:param embedding_input: 嵌入输入
:return: APIResponse
"""
for config in self.configs:
client = self.client_map[config[0].api_provider]
model_info: ModelInfo = config[0]
model_usage_config: ModelUsageArgConfigItem = config[1]
remain_try = (
model_usage_config.max_retry or self.req_conf.max_retry
) + 1 # 初始化:剩余尝试次数 = 最大重试次数 + 1
while remain_try:
try:
return await client.get_embedding(
model_info=model_info,
embedding_input=embedding_input,
)
except Exception as e:
logger.debug(e)
remain_try -= 1 # 剩余尝试次数减1
# 处理异常
handle_res = default_exception_handler(
e,
self.task_name,
model_info.name,
remain_try,
retry_interval=self.req_conf.retry_interval,
)
if handle_res[0] == -1:
# 等待间隔为-1表示不再请求该模型
remain_try = 0
elif handle_res[0] != 0:
# 等待间隔不为0表示需要等待
await asyncio.sleep(handle_res[0])
logger.error(f"任务-'{self.task_name}' 请求执行失败,所有模型均不可用")
raise RuntimeError("请求失败,所有模型均不可用") # 所有请求尝试均失败

View File

@@ -1,778 +0,0 @@
import re
from datetime import datetime
from typing import Tuple, Union
from src.common.logger import get_logger
import base64
from PIL import Image
import io
from src.common.database.database import db # 确保 db 被导入用于 create_tables
from src.common.database.database_model import LLMUsage # 导入 LLMUsage 模型
from src.config.config import global_config
from rich.traceback import install
from .exceptions import NetworkConnectionError, ReqAbortException, RespNotOkException, RespParseException, PayLoadTooLargeError, RequestAbortException, PermissionDeniedException
install(extra_lines=3)
logger = get_logger("model_utils")
# 导入具体的异常类型用于精确的异常处理
from .exceptions import NetworkConnectionError, ReqAbortException, RespNotOkException, RespParseException
SPECIFIC_EXCEPTIONS_AVAILABLE = True
# 新架构导入 - 使用延迟导入以支持fallback模式
from .model_manager_bak import ModelManager
from .model_client import ModelRequestHandler
from .payload_content.message import MessageBuilder
# 不在模块级别初始化ModelManager延迟到实际使用时
ModelManager_class = ModelManager
model_manager = None # 延迟初始化
# 添加请求处理器缓存,避免重复创建
_request_handler_cache = {} # 格式: {(model_name, task_name): ModelRequestHandler}
NEW_ARCHITECTURE_AVAILABLE = True
logger.info("新架构模块导入成功")
# 常见Error Code Mapping
error_code_mapping = {
400: "参数不正确",
401: "API key 错误,认证失败,请检查 config/model_config.toml 中的配置是否正确",
402: "账号余额不足",
403: "需要实名,或余额不足",
404: "Not Found",
429: "请求过于频繁,请稍后再试",
500: "服务器内部故障",
503: "服务器负载过高",
}
class LLMRequest:
"""
重构后的LLM请求类基于新的model_manager和model_client架构
保持向后兼容的API接口
"""
# 定义需要转换的模型列表,作为类变量避免重复
MODELS_NEEDING_TRANSFORMATION = [
"o1",
"o1-2024-12-17",
"o1-mini",
"o1-mini-2024-09-12",
"o1-preview",
"o1-preview-2024-09-12",
"o1-pro",
"o1-pro-2025-03-19",
"o3",
"o3-2025-04-16",
"o3-mini",
"o3-mini-2025-01-31",
"o4-mini",
"o4-mini-2025-04-16",
]
def __init__(self, model: dict, **kwargs):
"""
初始化LLM请求实例
Args:
model: 模型配置字典,兼容旧格式和新格式
**kwargs: 额外参数
"""
logger.debug(f"🔍 [模型初始化] 开始初始化模型: {model.get('model_name', model.get('name', 'Unknown'))}")
logger.debug(f"🔍 [模型初始化] 输入的模型配置: {model}")
logger.debug(f"🔍 [模型初始化] 额外参数: {kwargs}")
# 兼容新旧模型配置格式
# 新格式使用 model_name旧格式使用 name
self.model_name: str = model.get("model_name", model.get("name", ""))
# 如果传入的配置不完整,自动从全局配置中获取完整配置
if not all(key in model for key in ["task_type", "capabilities"]):
logger.debug("🔍 [模型初始化] 检测到不完整的模型配置,尝试获取完整配置")
if (full_model_config := self._get_full_model_config(self.model_name)):
logger.debug("🔍 [模型初始化] 成功获取完整模型配置,合并配置信息")
# 合并配置:运行时参数优先,但添加缺失的配置字段
model = {**full_model_config, **model}
logger.debug(f"🔍 [模型初始化] 合并后的模型配置: {model}")
else:
logger.warning(f"⚠️ [模型初始化] 无法获取模型 {self.model_name} 的完整配置,使用原始配置")
# 在新架构中provider信息从model_config.toml自动获取不需要在这里设置
self.provider = model.get("provider", "") # 保留兼容性,但在新架构中不使用
# 从全局配置中获取任务配置
self.request_type = kwargs.pop("request_type", "default")
# 确定使用哪个任务配置
task_name = self._determine_task_name(model)
# 初始化 request_handler
self.request_handler = None
# 尝试初始化新架构
if NEW_ARCHITECTURE_AVAILABLE and ModelManager_class is not None:
try:
# 延迟初始化ModelManager
global model_manager, _request_handler_cache
if model_manager is None:
from src.config.config import model_config
model_manager = ModelManager_class(model_config)
logger.debug("🔍 [模型初始化] ModelManager延迟初始化成功")
# 构建缓存键
cache_key = (self.model_name, task_name)
# 检查是否已有缓存的请求处理器
if cache_key in _request_handler_cache:
self.request_handler = _request_handler_cache[cache_key]
logger.debug(f"🚀 [性能优化] 从LLMRequest缓存获取请求处理器: {cache_key}")
else:
# 使用新架构获取模型请求处理器
self.request_handler = model_manager[task_name]
_request_handler_cache[cache_key] = self.request_handler
logger.debug(f"🔧 [性能优化] 创建并缓存LLMRequest请求处理器: {cache_key}")
logger.debug(f"🔍 [模型初始化] 成功获取模型请求处理器,任务: {task_name}")
self.use_new_architecture = True
except Exception as e:
logger.warning(f"无法使用新架构,任务 {task_name} 初始化失败: {e}")
logger.warning("回退到兼容模式,某些功能可能受限")
self.request_handler = None
self.use_new_architecture = False
else:
logger.warning("新架构不可用,使用兼容模式")
logger.warning("回退到兼容模式,某些功能可能受限")
self.request_handler = None
self.use_new_architecture = False
# 保存原始参数用于向后兼容
self.params = kwargs
# 兼容性属性,从模型配置中提取
# 新格式和旧格式都支持
self.enable_thinking = model.get("enable_thinking", False)
self.temp = model.get("temperature", model.get("temp", 0.7)) # 新格式用temperature旧格式用temp
self.thinking_budget = model.get("thinking_budget", 4096)
self.stream = model.get("stream", False)
self.pri_in = model.get("pri_in", 0)
self.pri_out = model.get("pri_out", 0)
self.max_tokens = model.get("max_tokens", global_config.model.model_max_output_length)
# 记录配置文件中声明了哪些参数(不管值是什么)
self.has_enable_thinking = "enable_thinking" in model
self.has_thinking_budget = "thinking_budget" in model
self.pri_out = model.get("pri_out", 0)
self.max_tokens = model.get("max_tokens", global_config.model.model_max_output_length)
# 记录配置文件中声明了哪些参数(不管值是什么)
self.has_enable_thinking = "enable_thinking" in model
self.has_thinking_budget = "thinking_budget" in model
logger.debug("🔍 [模型初始化] 模型参数设置完成:")
logger.debug(f" - model_name: {self.model_name}")
logger.debug(f" - provider: {self.provider}")
logger.debug(f" - has_enable_thinking: {self.has_enable_thinking}")
logger.debug(f" - enable_thinking: {self.enable_thinking}")
logger.debug(f" - has_thinking_budget: {self.has_thinking_budget}")
logger.debug(f" - thinking_budget: {self.thinking_budget}")
logger.debug(f" - temp: {self.temp}")
logger.debug(f" - stream: {self.stream}")
logger.debug(f" - max_tokens: {self.max_tokens}")
logger.debug(f" - use_new_architecture: {self.use_new_architecture}")
# 获取数据库实例
self._init_database()
logger.debug(f"🔍 [模型初始化] 初始化完成request_type: {self.request_type}")
def _determine_task_name(self, model: dict) -> str:
"""
根据模型配置确定任务名称
优先使用配置文件中明确定义的任务类型,避免基于模型名称的脆弱推断
Args:
model: 模型配置字典
Returns:
任务名称
"""
# 调试信息:打印模型配置字典的所有键
logger.debug(f"🔍 [任务确定] 模型配置字典的所有键: {list(model.keys())}")
logger.debug(f"🔍 [任务确定] 模型配置字典内容: {model}")
# 获取模型名称
model_name = model.get("model_name", model.get("name", ""))
# 方法1: 优先使用配置文件中明确定义的 task_type 字段
if "task_type" in model:
task_type = model["task_type"]
logger.debug(f"🎯 [任务确定] 使用配置中的 task_type: {task_type}")
return task_type
# 方法2: 使用 capabilities 字段来推断主要任务类型
if "capabilities" in model:
capabilities = model["capabilities"]
if isinstance(capabilities, list):
# 按优先级顺序检查能力
if "vision" in capabilities:
logger.debug(f"🎯 [任务确定] 从 capabilities {capabilities} 推断为: vision")
return "vision"
elif "embedding" in capabilities:
logger.debug(f"🎯 [任务确定] 从 capabilities {capabilities} 推断为: embedding")
return "embedding"
elif "speech" in capabilities:
logger.debug(f"🎯 [任务确定] 从 capabilities {capabilities} 推断为: speech")
return "speech"
elif "text" in capabilities:
# 如果只有文本能力则根据request_type细分
task = "llm_reasoning" if self.request_type == "reasoning" else "llm_normal"
logger.debug(f"🎯 [任务确定] 从 capabilities {capabilities} 和 request_type {self.request_type} 推断为: {task}")
return task
# 方法3: 向后兼容 - 基于模型名称的关键字推断(不推荐但保留兼容性)
logger.warning(f"⚠️ [任务确定] 配置中未找到 task_type 或 capabilities回退到基于模型名称的推断: {model_name}")
logger.warning("⚠️ [建议] 请在 model_config.toml 中为模型添加明确的 task_type 或 capabilities 字段")
# 保留原有的关键字匹配逻辑作为fallback
if any(keyword in model_name.lower() for keyword in ["vlm", "vision", "gpt-4o", "claude", "vl-"]):
logger.debug(f"🎯 [任务确定] 从模型名称 {model_name} 推断为: vision")
return "vision"
elif any(keyword in model_name.lower() for keyword in ["embed", "text-embedding", "bge-"]):
logger.debug(f"🎯 [任务确定] 从模型名称 {model_name} 推断为: embedding")
return "embedding"
elif any(keyword in model_name.lower() for keyword in ["whisper", "speech", "voice"]):
logger.debug(f"🎯 [任务确定] 从模型名称 {model_name} 推断为: speech")
return "speech"
else:
# 根据request_type确定映射到配置文件中定义的任务
task = "llm_reasoning" if self.request_type == "reasoning" else "llm_normal"
logger.debug(f"🎯 [任务确定] 从 request_type {self.request_type} 推断为: {task}")
return task
def _get_full_model_config(self, model_name: str) -> dict | None:
"""
根据模型名称从全局配置中获取完整的模型配置
现在直接使用已解析的ModelInfo对象不再读取TOML文件
Args:
model_name: 模型名称
Returns:
完整的模型配置字典如果找不到则返回None
"""
try:
from src.config.config import model_config
return self._get_model_config_from_parsed(model_name, model_config)
except Exception as e:
logger.warning(f"⚠️ [配置查找] 获取模型配置时出错: {str(e)}")
return None
def _get_model_config_from_parsed(self, model_name: str, model_config) -> dict | None:
"""
从已解析的配置对象中获取模型配置
使用扩展后的ModelInfo类包含task_type和capabilities字段
"""
try:
# 直接通过模型名称查找
if model_name in model_config.models:
model_info = model_config.models[model_name]
logger.debug(f"🔍 [配置查找] 找到模型 {model_name} 的配置对象: {model_info}")
# 将ModelInfo对象转换为字典
model_dict = {
"model_identifier": model_info.model_identifier,
"name": model_info.name,
"api_provider": model_info.api_provider,
"price_in": model_info.price_in,
"price_out": model_info.price_out,
"force_stream_mode": model_info.force_stream_mode,
"task_type": model_info.task_type,
"capabilities": model_info.capabilities,
}
logger.debug(f"🔍 [配置查找] 转换后的模型配置字典: {model_dict}")
return model_dict
# 如果直接查找失败尝试通过model_identifier查找
for name, model_info in model_config.models.items():
if (model_info.model_identifier == model_name or
hasattr(model_info, 'model_name') and model_info.model_name == model_name):
logger.debug(f"🔍 [配置查找] 通过标识符找到模型 {model_name} (配置名称: {name})")
# 同样转换为字典
model_dict = {
"model_identifier": model_info.model_identifier,
"name": model_info.name,
"api_provider": model_info.api_provider,
"price_in": model_info.price_in,
"price_out": model_info.price_out,
"force_stream_mode": model_info.force_stream_mode,
"task_type": model_info.task_type,
"capabilities": model_info.capabilities,
}
return model_dict
return None
except Exception as e:
logger.warning(f"⚠️ [配置查找] 从已解析配置获取模型配置时出错: {str(e)}")
return None
@staticmethod
def _init_database():
"""初始化数据库集合"""
try:
# 使用 Peewee 创建表safe=True 表示如果表已存在则不会抛出错误
db.create_tables([LLMUsage], safe=True)
# logger.debug("LLMUsage 表已初始化/确保存在。")
except Exception as e:
logger.error(f"创建 LLMUsage 表失败: {str(e)}")
def _record_usage(
self,
prompt_tokens: int,
completion_tokens: int,
total_tokens: int,
user_id: str = "system",
request_type: str | None = None,
endpoint: str = "/chat/completions",
):
"""记录模型使用情况到数据库
Args:
prompt_tokens: 输入token数
completion_tokens: 输出token数
total_tokens: 总token数
user_id: 用户ID默认为system
request_type: 请求类型
endpoint: API端点
"""
# 如果 request_type 为 None则使用实例变量中的值
if request_type is None:
request_type = self.request_type
try:
# 使用 Peewee 模型创建记录
LLMUsage.create(
model_name=self.model_name,
user_id=user_id,
request_type=request_type,
endpoint=endpoint,
prompt_tokens=prompt_tokens,
completion_tokens=completion_tokens,
total_tokens=total_tokens,
cost=self._calculate_cost(prompt_tokens, completion_tokens),
status="success",
timestamp=datetime.now(), # Peewee 会处理 DateTimeField
)
logger.debug(
f"Token使用情况 - 模型: {self.model_name}, "
f"用户: {user_id}, 类型: {request_type}, "
f"提示词: {prompt_tokens}, 完成: {completion_tokens}, "
f"总计: {total_tokens}"
)
except Exception as e:
logger.error(f"记录token使用情况失败: {str(e)}")
def _calculate_cost(self, prompt_tokens: int, completion_tokens: int) -> float:
"""计算API调用成本
使用模型的pri_in和pri_out价格计算输入和输出的成本
Args:
prompt_tokens: 输入token数量
completion_tokens: 输出token数量
Returns:
float: 总成本(元)
"""
# 使用模型的pri_in和pri_out计算成本
input_cost = (prompt_tokens / 1000000) * self.pri_in
output_cost = (completion_tokens / 1000000) * self.pri_out
return round(input_cost + output_cost, 6)
@staticmethod
def _extract_reasoning(content: str) -> Tuple[str, str]:
"""CoT思维链提取"""
match = re.search(r"(?:<think>)?(.*?)</think>", content, re.DOTALL)
content = re.sub(r"(?:<think>)?.*?</think>", "", content, flags=re.DOTALL, count=1).strip()
reasoning = match[1].strip() if match else ""
return content, reasoning
def _handle_model_exception(self, e: Exception, operation: str) -> None:
"""
统一的模型异常处理方法
根据异常类型提供更精确的错误信息和处理策略
Args:
e: 捕获的异常
operation: 操作类型(用于日志记录)
"""
operation_desc = {
"image": "图片响应生成",
"voice": "语音识别",
"text": "文本响应生成",
"embedding": "向量嵌入获取"
}
op_name = operation_desc.get(operation, operation)
if SPECIFIC_EXCEPTIONS_AVAILABLE:
# 使用具体异常类型进行精确处理
if isinstance(e, NetworkConnectionError):
logger.error(f"模型 {self.model_name} {op_name}失败: 网络连接错误")
raise RuntimeError("网络连接异常请检查网络连接状态或API服务器地址是否正确") from e
elif isinstance(e, ReqAbortException):
logger.error(f"模型 {self.model_name} {op_name}失败: 请求被中断")
raise RuntimeError("请求被中断或取消,请稍后重试") from e
elif isinstance(e, RespNotOkException):
logger.error(f"模型 {self.model_name} {op_name}失败: HTTP响应错误 {e.status_code}")
# 重新抛出原始异常,保留详细的状态码信息
raise e
elif isinstance(e, RespParseException):
logger.error(f"模型 {self.model_name} {op_name}失败: 响应解析错误")
raise RuntimeError("API响应格式异常请检查模型配置或联系管理员") from e
else:
# 未知异常,使用通用处理
logger.error(f"模型 {self.model_name} {op_name}失败: 未知错误 {type(e).__name__}: {str(e)}")
self._handle_generic_exception(e, op_name)
else:
# 如果无法导入具体异常,使用通用处理
logger.error(f"模型 {self.model_name} {op_name}失败: {str(e)}")
self._handle_generic_exception(e, op_name)
def _handle_generic_exception(self, e: Exception, operation: str) -> None:
"""
通用异常处理(向后兼容的错误字符串匹配)
Args:
e: 捕获的异常
operation: 操作描述
"""
error_str = str(e)
# 基于错误消息内容的分类处理
if "401" in error_str or "API key" in error_str or "认证" in error_str:
raise RuntimeError("API key 错误,认证失败,请检查 config/model_config.toml 中的 API key 配置是否正确") from e
elif "429" in error_str or "频繁" in error_str or "rate limit" in error_str:
raise RuntimeError("请求过于频繁,请稍后再试") from e
elif "500" in error_str or "503" in error_str or "服务器" in error_str:
raise RuntimeError("服务器负载过高模型回复失败QAQ") from e
elif "413" in error_str or "payload" in error_str.lower() or "过大" in error_str:
raise RuntimeError("请求体过大,请尝试压缩图片或减少输入内容") from e
elif "timeout" in error_str.lower() or "超时" in error_str:
raise RuntimeError("请求超时,请检查网络连接或稍后重试") from e
else:
raise RuntimeError(f"模型 {self.model_name} {operation}失败: {str(e)}") from e
# === 主要API方法 ===
# 这些方法提供与新架构的桥接
async def generate_response_for_image(self, prompt: str, image_base64: str, image_format: str) -> Tuple:
"""
根据输入的提示和图片生成模型的异步响应
使用新架构的模型请求处理器
"""
if not self.use_new_architecture:
raise RuntimeError(
f"模型 {self.model_name} 无法使用新架构,请检查 config/model_config.toml 中的 API 配置。"
)
if self.request_handler is None:
raise RuntimeError(
f"模型 {self.model_name} 请求处理器未初始化,无法处理图片请求"
)
if MessageBuilder is None:
raise RuntimeError("MessageBuilder不可用请检查新架构配置")
try:
# 构建包含图片的消息
message_builder = MessageBuilder()
message_builder.add_text_content(prompt).add_image_content(
image_format=image_format,
image_base64=image_base64
)
messages = [message_builder.build()]
# 使用新架构发送请求(只传递支持的参数)
response = await self.request_handler.get_response( # type: ignore
messages=messages,
tool_options=None,
response_format=None
)
# 新架构返回的是 APIResponse 对象,直接提取内容
content = response.content or ""
reasoning_content = response.reasoning_content or ""
tool_calls = response.tool_calls
# 从内容中提取<think>标签的推理内容(向后兼容)
if not reasoning_content and content:
content, extracted_reasoning = self._extract_reasoning(content)
reasoning_content = extracted_reasoning
# 记录token使用情况
if response.usage:
self._record_usage(
prompt_tokens=response.usage.prompt_tokens or 0,
completion_tokens=response.usage.completion_tokens or 0,
total_tokens=response.usage.total_tokens or 0,
user_id="system",
request_type=self.request_type,
endpoint="/chat/completions"
)
# 返回格式兼容旧版本
if tool_calls:
return content, reasoning_content, tool_calls
else:
return content, reasoning_content
except Exception as e:
self._handle_model_exception(e, "image")
# 这行代码永远不会执行因为_handle_model_exception总是抛出异常
# 但是为了满足类型检查的要求,我们添加一个不可达的返回语句
return "", "" # pragma: no cover
async def generate_response_for_voice(self, voice_bytes: bytes) -> Tuple:
"""
根据输入的语音文件生成模型的异步响应
使用新架构的模型请求处理器
"""
if not self.use_new_architecture:
raise RuntimeError(
f"模型 {self.model_name} 无法使用新架构,请检查 config/model_config.toml 中的 API 配置。"
)
if self.request_handler is None:
raise RuntimeError(
f"模型 {self.model_name} 请求处理器未初始化,无法处理语音请求"
)
try:
# 构建语音识别请求参数
# 注意:新架构中的语音识别可能使用不同的方法
# 这里先使用get_response方法可能需要根据实际API调整
response = await self.request_handler.get_response( # type: ignore
messages=[], # 语音识别可能不需要消息
tool_options=None
)
# 新架构返回的是 APIResponse 对象,直接提取文本内容
return (response.content,) if response.content else ("",)
except Exception as e:
self._handle_model_exception(e, "voice")
# 不可达的返回语句,仅用于满足类型检查
return ("",) # pragma: no cover
async def generate_response_async(self, prompt: str, **kwargs) -> Union[str, Tuple]:
"""
异步方式根据输入的提示生成模型的响应
使用新架构的模型请求处理器,如无法使用则抛出错误
"""
if not self.use_new_architecture:
raise RuntimeError(
f"模型 {self.model_name} 无法使用新架构,请检查 config/model_config.toml 中的 API 配置。"
)
if self.request_handler is None:
raise RuntimeError(
f"模型 {self.model_name} 请求处理器未初始化,无法生成响应"
)
if MessageBuilder is None:
raise RuntimeError("MessageBuilder不可用请检查新架构配置")
try:
# 构建消息
message_builder = MessageBuilder()
message_builder.add_text_content(prompt)
messages = [message_builder.build()]
# 使用新架构发送请求(只传递支持的参数)
response = await self.request_handler.get_response( # type: ignore
messages=messages,
tool_options=None,
response_format=None
)
# 新架构返回的是 APIResponse 对象,直接提取内容
content = response.content or ""
reasoning_content = response.reasoning_content or ""
tool_calls = response.tool_calls
# 从内容中提取<think>标签的推理内容(向后兼容)
if not reasoning_content and content:
content, extracted_reasoning = self._extract_reasoning(content)
reasoning_content = extracted_reasoning
# 记录token使用情况
if response.usage:
self._record_usage(
prompt_tokens=response.usage.prompt_tokens or 0,
completion_tokens=response.usage.completion_tokens or 0,
total_tokens=response.usage.total_tokens or 0,
user_id="system",
request_type=self.request_type,
endpoint="/chat/completions"
)
# 返回格式兼容旧版本
if tool_calls:
return content, (reasoning_content, self.model_name, tool_calls)
else:
return content, (reasoning_content, self.model_name)
except Exception as e:
self._handle_model_exception(e, "text")
# 不可达的返回语句,仅用于满足类型检查
return "", ("", self.model_name) # pragma: no cover
async def get_embedding(self, text: str) -> Union[list, None]:
"""
异步方法获取文本的embedding向量
使用新架构的模型请求处理器
Args:
text: 需要获取embedding的文本
Returns:
list: embedding向量如果失败则返回None
"""
if not text:
logger.debug("该消息没有长度不再发送获取embedding向量的请求")
return None
if not self.use_new_architecture:
logger.warning(f"模型 {self.model_name} 无法使用新架构embedding请求将被跳过")
return None
if self.request_handler is None:
logger.warning(f"模型 {self.model_name} 请求处理器未初始化embedding请求将被跳过")
return None
try:
# 构建embedding请求参数
# 使用新架构的get_embedding方法
response = await self.request_handler.get_embedding(text) # type: ignore
# 新架构返回的是 APIResponse 对象直接提取embedding
if response.embedding:
embedding = response.embedding
# 记录token使用情况
if response.usage:
self._record_usage(
prompt_tokens=response.usage.prompt_tokens or 0,
completion_tokens=response.usage.completion_tokens or 0,
total_tokens=response.usage.total_tokens or 0,
user_id="system",
request_type=self.request_type,
endpoint="/embeddings"
)
return embedding
else:
logger.warning(f"模型 {self.model_name} 返回的embedding响应为空")
return None
except Exception as e:
# 对于embedding请求我们记录错误但不抛出异常而是返回None
# 这是为了保持与原有行为的兼容性
try:
self._handle_model_exception(e, "embedding")
except RuntimeError:
# 捕获_handle_model_exception抛出的RuntimeError转换为警告日志
logger.warning(f"模型 {self.model_name} embedding请求失败返回None: {str(e)}")
return None
def compress_base64_image_by_scale(base64_data: str, target_size: int = int(0.8 * 1024 * 1024)) -> str:
"""压缩base64格式的图片到指定大小
Args:
base64_data: base64编码的图片数据
target_size: 目标文件大小字节默认0.8MB
Returns:
str: 压缩后的base64图片数据
"""
try:
# 将base64转换为字节数据
# 确保base64字符串只包含ASCII字符
if isinstance(base64_data, str):
base64_data = base64_data.encode("ascii", errors="ignore").decode("ascii")
image_data = base64.b64decode(base64_data)
# 如果已经小于目标大小,直接返回原图
if len(image_data) <= 2 * 1024 * 1024:
return base64_data
# 将字节数据转换为图片对象
img = Image.open(io.BytesIO(image_data))
# 获取原始尺寸
original_width, original_height = img.size
# 计算缩放比例
scale = min(1.0, (target_size / len(image_data)) ** 0.5)
# 计算新的尺寸
new_width = int(original_width * scale)
new_height = int(original_height * scale)
# 创建内存缓冲区
output_buffer = io.BytesIO()
# 如果是GIF处理所有帧
if getattr(img, "is_animated", False):
frames = []
n_frames = getattr(img, 'n_frames', 1)
for frame_idx in range(n_frames):
img.seek(frame_idx)
new_frame = img.copy()
new_frame = new_frame.resize((new_width // 2, new_height // 2), Image.Resampling.LANCZOS) # 动图折上折
frames.append(new_frame)
# 保存到缓冲区
frames[0].save(
output_buffer,
format="GIF",
save_all=True,
append_images=frames[1:],
optimize=True,
duration=img.info.get("duration", 100),
loop=img.info.get("loop", 0),
)
else:
# 处理静态图片
resized_img = img.resize((new_width, new_height), Image.Resampling.LANCZOS)
# 保存到缓冲区,保持原始格式
if img.format == "PNG" and img.mode in ("RGBA", "LA"):
resized_img.save(output_buffer, format="PNG", optimize=True)
else:
resized_img.save(output_buffer, format="JPEG", quality=95, optimize=True)
# 获取压缩后的数据并转换为base64
compressed_data = output_buffer.getvalue()
logger.info(f"压缩图片: {original_width}x{original_height} -> {new_width}x{new_height}")
logger.info(f"压缩前大小: {len(image_data) / 1024:.1f}KB, 压缩后大小: {len(compressed_data) / 1024:.1f}KB")
return base64.b64encode(compressed_data).decode("utf-8")
except Exception as e:
logger.error(f"压缩图片失败: {str(e)}")
import traceback
logger.error(traceback.format_exc())
return base64_data