Feature: 提供了主题识别的配置选项,现在可以自己选模型了

Feature: 提供了主题识别的配置选项,现在可以自己选模型了Merge pull request #49 from tcmofashi/feature
This commit is contained in:
SengokuCola
2025-03-04 22:47:07 +08:00
committed by GitHub
4 changed files with 52 additions and 8 deletions

View File

@@ -55,6 +55,8 @@ ban_user_id = [] #禁止回复消息的QQ号
#base_url = "DEEP_SEEK_BASE_URL"
#key = "DEEP_SEEK_KEY"
#下面的模型若使用硅基流动则不需要更改使用ds官方则改成.env.prod自定义的宏使用自定义模型则选择定位相似的模型自己填写
[model.llm_reasoning] #R1
name = "Pro/deepseek-ai/DeepSeek-R1"
base_url = "SILICONFLOW_BASE_URL"
@@ -84,3 +86,12 @@ key = "SILICONFLOW_KEY"
name = "BAAI/bge-m3"
base_url = "SILICONFLOW_BASE_URL"
key = "SILICONFLOW_KEY"
# 主题提取jieba和snownlp不用apillm需要api
[topic]
topic_extract='snownlp' # 只支持jieba,snownlp,llm三种选项
[topic.llm_topic]
name = "Pro/deepseek-ai/DeepSeek-V3"
base_url = "SILICONFLOW_BASE_URL"
key = "SILICONFLOW_KEY"

View File

@@ -67,13 +67,18 @@ class ChatBot:
current_time = time.strftime("%Y-%m-%d %H:%M:%S", time.localtime(message.time))
identifier=topic_identifier.identify_topic()
if global_config.topic_extract=='llm':
topic=await identifier(message.processed_plain_text)
else:
topic=identifier(message.detailed_plain_text)
# topic1 = topic_identifier.identify_topic_jieba(message.processed_plain_text)
# topic2 = await topic_identifier.identify_topic_llm(message.processed_plain_text)
topic3 = topic_identifier.identify_topic_snownlp(message.processed_plain_text)
# print(f"\033[1;32m[主题识别]\033[0m 使用jieba主题: {topic1}")
# print(f"\033[1;32m[主题识别]\033[0m 使用llm主题: {topic2}")
print(f"\033[1;32m[主题识别]\033[0m 使用snownlp主题: {topic3}")
topic = topic3
# topic3 = topic_identifier.identify_topic_snownlp(message.processed_plain_text)
print(f"\033[1;32m[主题识别]\033[0m 使用{global_config.topic_extract}主题: {topic}")
all_num = 0
interested_num = 0

View File

@@ -42,6 +42,10 @@ class BotConfig:
embedding: Dict[str, str] = field(default_factory=lambda: {})
vlm: Dict[str, str] = field(default_factory=lambda: {})
# 主题提取配置
topic_extract: str = 'snownlp' # 只支持jieba,snownlp,llm
llm_topic_extract: Dict[str, str] = field(default_factory=lambda: {})
API_USING: str = "siliconflow" # 使用的API
API_PAID: bool = False # 是否使用付费API
MODEL_R1_PROBABILITY: float = 0.8 # R1模型概率
@@ -81,8 +85,10 @@ class BotConfig:
personality_config=toml_dict['personality']
personality=personality_config.get('prompt_personality')
if len(personality) >= 2:
config.PROMPT_PERSONALITY=personality_config.get('prompt_personality')
config.PROMPT_SCHEDULE_GEN=personality_config.get('prompt_schedule')
print(f"载入自定义人格:{personality}")
config.PROMPT_PERSONALITY=personality_config.get('prompt_personality',config.PROMPT_PERSONALITY)
print(f"载入自定义日程prompt:{personality_config.get('prompt_schedule',config.PROMPT_SCHEDULE_GEN)}")
config.PROMPT_SCHEDULE_GEN=personality_config.get('prompt_schedule',config.PROMPT_SCHEDULE_GEN)
if "emoji" in toml_dict:
emoji_config = toml_dict["emoji"]
@@ -120,6 +126,7 @@ class BotConfig:
if "llm_normal" in model_config:
config.llm_normal = model_config["llm_normal"]
config.llm_topic_extract = config.llm_normal
if "llm_normal_minor" in model_config:
config.llm_normal_minor = model_config["llm_normal_minor"]
@@ -130,6 +137,15 @@ class BotConfig:
if "embedding" in model_config:
config.embedding = model_config["embedding"]
if 'topic' in toml_dict:
topic_config=toml_dict['topic']
if 'topic_extract' in topic_config:
config.topic_extract=topic_config.get('topic_extract',config.topic_extract)
print(f"载入自定义主题提取为{config.topic_extract}")
if config.topic_extract=='llm' and 'llm_topic' in topic_config:
config.llm_topic_extract=topic_config['llm_topic']
print(f"载入自定义主题提取模型为{config.llm_topic_extract['name']}")
# 消息配置
if "message" in toml_dict:
msg_config = toml_dict["message"]

View File

@@ -12,7 +12,19 @@ config = driver.config
class TopicIdentifier:
def __init__(self):
self.llm_client = LLM_request(model=global_config.llm_normal)
self.llm_client = LLM_request(model=global_config.llm_topic_extract)
self.select=global_config.topic_extract
def identify_topic(self):
if self.select=='jieba':
return self.identify_topic_jieba
elif self.select=='snownlp':
return self.identify_topic_snownlp
elif self.select=='llm':
return self.identify_topic_llm
else:
return self.identify_topic_snownlp
async def identify_topic_llm(self, text: str) -> Optional[List[str]]:
"""识别消息主题,返回主题列表"""