diff --git a/src/llm_models/utils_model.py b/src/llm_models/utils_model.py index 3efa9cd2d..a4a98ba83 100644 --- a/src/llm_models/utils_model.py +++ b/src/llm_models/utils_model.py @@ -764,8 +764,7 @@ class LLMRequest: max_tokens: Optional[int] = None, ) -> Tuple[str, Tuple[str, str, Optional[List[ToolCall]]]]: """ - 为图像生成响应。 - + 为图像生成响应(已集成故障转移) Args: prompt (str): 提示词 image_base64 (str): 图像的Base64编码字符串 @@ -774,49 +773,79 @@ class LLMRequest: Returns: (Tuple[str, str, str, Optional[List[ToolCall]]]): 响应内容、推理内容、模型名称、工具调用列表 """ - start_time = time.time() - - # 图像请求目前不使用复杂的故障转移策略,直接选择模型并执行 - selection_result = self._model_selector.select_best_available_model(set(), "response") - if not selection_result: - raise RuntimeError("无法为图像响应选择可用模型。") - model_info, api_provider, client = selection_result - normalized_format = _normalize_image_format(image_format) - message = MessageBuilder().add_text_content(prompt).add_image_content( - image_base64=image_base64, - image_format=normalized_format, - support_formats=client.get_support_image_formats(), - ).build() - response = await self._executor.execute_request( - api_provider, client, RequestType.RESPONSE, model_info, - message_list=[message], - temperature=temperature, - max_tokens=max_tokens, - ) - - self._record_usage(model_info, response.usage, time.time() - start_time, "/chat/completions") - content, reasoning, _ = self._prompt_processor.process_response(response.content or "", False) - reasoning = response.reasoning_content or reasoning - - return content, (reasoning, model_info.name, response.tool_calls) + async def request_logic( + model_info: ModelInfo, api_provider: APIProvider, client: BaseClient + ) -> Tuple[str, Tuple[str, str, Optional[List[ToolCall]]]]: + start_time = time.time() + message_builder = MessageBuilder() + message_builder.add_text_content(prompt) + message_builder.add_image_content( + image_base64=image_base64, + image_format=normalized_format, + support_formats=client.get_support_image_formats(), + ) + messages = [message_builder.build()] + + response = await self._execute_request( + api_provider=api_provider, + client=client, + request_type=RequestType.RESPONSE, + model_info=model_info, + message_list=messages, + temperature=temperature, + max_tokens=max_tokens, + ) + + content = response.content or "" + reasoning_content = response.reasoning_content or "" + tool_calls = response.tool_calls + if not reasoning_content and content: + content, extracted_reasoning = self._extract_reasoning(content) + reasoning_content = extracted_reasoning + if usage := response.usage: + await llm_usage_recorder.record_usage_to_database( + model_info=model_info, + model_usage=usage, + user_id="system", + time_cost=time.time() - start_time, + request_type=self.request_type, + endpoint="/chat/completions", + ) + return content, (reasoning_content, model_info.name, tool_calls) + + result = await self._execute_with_failover(request_callable=request_logic, raise_on_failure=True) + if result: + return result + + # 这段代码理论上不可达,因为 raise_on_failure=True 会抛出异常 + raise RuntimeError("图片响应生成失败,所有模型均尝试失败。") async def generate_response_for_voice(self, voice_base64: str) -> Optional[str]: """ - 为语音生成响应(语音转文字)。 - 使用故障转移策略来确保即使主模型失败也能获得结果。 - + 为语音生成响应(已集成故障转移) Args: voice_base64 (str): 语音的Base64编码字符串。 Returns: - Optional[str]: 语音转换后的文本内容,如果所有模型都失败则返回None。 + (Optional[str]): 生成的文本描述或None """ - response, _ = await self._strategy.execute_with_failover( - RequestType.AUDIO, audio_base64=voice_base64 - ) - return response.content or None + + async def request_logic(model_info: ModelInfo, api_provider: APIProvider, client: BaseClient) -> Optional[str]: + """定义单次请求的具体逻辑""" + response = await self._execute_request( + api_provider=api_provider, + client=client, + request_type=RequestType.AUDIO, + model_info=model_info, + audio_base64=voice_base64, + ) + return response.content or None + + # 对于语音识别,如果所有模型都失败,我们可能不希望程序崩溃,而是返回None + result = await self._execute_with_failover(request_callable=request_logic, raise_on_failure=False) + return result async def generate_response_async( self, @@ -856,7 +885,76 @@ class LLMRequest: raise e return "所有并发请求都失败了", ("", "unknown", None) - async def _execute_single_text_request( + async def _execute_with_failover( + self, + request_callable: Callable[[ModelInfo, APIProvider, BaseClient], Coroutine[Any, Any, Any]], + raise_on_failure: bool = True, + ) -> Any: + """ + 通用的故障转移执行器。 + + 它会使用智能模型调度器按最优顺序尝试模型,直到请求成功或所有模型都失败。 + + Args: + request_callable: 一个接收 (model_info, api_provider, client) 并返回协程的函数, + 用于执行实际的请求逻辑。 + raise_on_failure: 如果所有模型都失败,是否抛出异常。 + + Returns: + 请求成功时的返回结果。 + + Raises: + RuntimeError: 如果所有模型都失败且 raise_on_failure 为 True。 + """ + failed_models = set() + last_exception: Optional[Exception] = None + + # model_scheduler 现在会动态排序,所以我们只需要在循环中处理失败的模型 + while True: + model_scheduler = self._model_scheduler(failed_models) + try: + model_info, api_provider, client = next(model_scheduler) + except StopIteration: + # 没有更多可用模型了 + break + + model_name = model_info.name + logger.debug(f"正在尝试使用模型: {model_name} (剩余可用: {len(self.model_for_task.model_list) - len(failed_models)})") + + try: + # 执行传入的请求函数 + result = await request_callable(model_info, api_provider, client) + logger.debug(f"模型 '{model_name}' 成功生成回复。") + return result + + except RespNotOkException as e: + # 对于某些致命的HTTP错误(如认证失败),我们可能希望立即失败或标记该模型为永久失败 + if e.status_code in [401, 403]: + logger.error(f"模型 '{model_name}' 遇到认证/权限错误 (Code: {e.status_code}),将永久禁用此模型在此次请求中。") + else: + logger.warning(f"模型 '{model_name}' 请求失败,HTTP状态码: {e.status_code},将尝试下一个模型。") + failed_models.add(model_name) + last_exception = e + continue + + except Exception as e: + # 捕获其他所有异常(包括超时、解析错误、运行时错误等) + logger.error(f"使用模型 '{model_name}' 时发生异常: {e},将尝试下一个模型。") + failed_models.add(model_name) + last_exception = e + continue + + # 所有模型都尝试失败 + logger.error("所有可用模型都已尝试失败。") + if raise_on_failure: + if last_exception: + raise RuntimeError("所有模型都请求失败") from last_exception + raise RuntimeError("所有模型都请求失败,且没有具体的异常信息") + + # 根据需要返回一个默认的错误结果 + return None + + async def _execute_single_request( self, prompt: str, temperature: Optional[float] = None, @@ -865,92 +963,283 @@ class LLMRequest: raise_when_empty: bool = True, ) -> Tuple[str, Tuple[str, str, Optional[List[ToolCall]]]]: """ - 执行单次文本生成请求的内部方法。 - 这是 `generate_response_async` 的核心实现,处理单个请求的完整生命周期, - 包括工具构建、故障转移执行和用量记录。 - - Args: - prompt (str): 用户的提示。 - temperature (Optional[float]): 生成温度。 - max_tokens (Optional[int]): 最大生成令牌数。 - tools (Optional[List[Dict[str, Any]]]): 可用工具列表。 - raise_when_empty (bool): 如果响应为空是否引发异常。 - - Returns: - Tuple[str, Tuple[str, str, Optional[List[ToolCall]]]]: - (响应内容, (推理过程, 模型名称, 工具调用)) + 使用通用的故障转移执行器来执行单次文本生成请求。 """ - start_time = time.time() - tool_options = self._build_tool_options(tools) - response, model_info = await self._strategy.execute_with_failover( - RequestType.RESPONSE, - raise_when_empty=raise_when_empty, - prompt=prompt, # 传递原始prompt,由strategy处理 - tool_options=tool_options, - temperature=self.model_for_task.temperature if temperature is None else temperature, - max_tokens=self.model_for_task.max_tokens if max_tokens is None else max_tokens, + async def request_logic( + model_info: ModelInfo, api_provider: APIProvider, client: BaseClient + ) -> Tuple[str, Tuple[str, str, Optional[List[ToolCall]]]]: + """定义单次请求的具体逻辑""" + start_time = time.time() + model_name = model_info.name + + # 检查是否启用反截断 + use_anti_truncation = getattr(model_info, "use_anti_truncation", False) + processed_prompt = prompt + if use_anti_truncation: + processed_prompt += self.anti_truncation_instruction + logger.info(f"模型 '{model_name}' (任务: '{self.task_name}') 已启用反截断功能。") + + processed_prompt = self._apply_content_obfuscation(processed_prompt, api_provider) + + message_builder = MessageBuilder() + message_builder.add_text_content(processed_prompt) + messages = [message_builder.build()] + tool_built = self._build_tool_options(tools) + + # 针对当前模型的空回复/截断重试逻辑 + empty_retry_count = 0 + max_empty_retry = api_provider.max_retry + empty_retry_interval = api_provider.retry_interval + + is_empty_reply = False + is_truncated = False + + while empty_retry_count <= max_empty_retry: + response = await self._execute_request( + api_provider=api_provider, + client=client, + request_type=RequestType.RESPONSE, + model_info=model_info, + message_list=messages, + tool_options=tool_built, + temperature=temperature, + max_tokens=max_tokens, + ) + + content = response.content or "" + reasoning_content = response.reasoning_content or "" + tool_calls = response.tool_calls + + if not reasoning_content and content: + content, extracted_reasoning = self._extract_reasoning(content) + reasoning_content = extracted_reasoning + + is_empty_reply = not tool_calls and (not content or content.strip() == "") + is_truncated = False + if use_anti_truncation: + if content.endswith(self.end_marker): + content = content[: -len(self.end_marker)].strip() + else: + is_truncated = True + + if not is_empty_reply and not is_truncated: + # 成功获取响应 + if usage := response.usage: + llm_usage_recorder.record_usage_to_database( + model_info=model_info, + model_usage=usage, + time_cost=time.time() - start_time, + user_id="system", + request_type=self.request_type, + endpoint="/chat/completions", + ) + + if not content and not tool_calls: + if raise_when_empty: + raise RuntimeError("生成空回复") + content = "生成的响应为空" + + return content, (reasoning_content, model_name, tool_calls) + + # 如果代码执行到这里,说明是空回复或截断,需要重试 + empty_retry_count += 1 + if empty_retry_count <= max_empty_retry: + reason = "空回复" if is_empty_reply else "截断" + logger.warning( + f"模型 '{model_name}' 检测到{reason},正在进行第 {empty_retry_count}/{max_empty_retry} 次重新生成..." + ) + if empty_retry_interval > 0: + await asyncio.sleep(empty_retry_interval) + continue # 继续使用当前模型重试 + + # 如果循环结束,说明重试次数已用尽 + reason = "空回复" if is_empty_reply else "截断" + logger.error(f"模型 '{model_name}' 经过 {max_empty_retry} 次重试后仍然是{reason}的回复。") + raise RuntimeError(f"模型 '{model_name}' 达到最大空回复/截断重试次数") + + # 调用通用的故障转移执行器 + result = await self._execute_with_failover( + request_callable=request_logic, raise_on_failure=raise_when_empty ) - self._record_usage(model_info, response.usage, time.time() - start_time, "/chat/completions") + if result: + return result - if not response.content and not response.tool_calls: - if raise_when_empty: - raise RuntimeError("所选模型生成了空回复。") - response.content = "生成的响应为空" - - return response.content or "", (response.reasoning_content or "", model_info.name, response.tool_calls) + # 如果所有模型都失败了,并且不抛出异常,返回一个默认的错误信息 + return "所有模型都请求失败", ("", "unknown", None) async def get_embedding(self, embedding_input: str) -> Tuple[List[float], str]: - """ - 获取嵌入向量。 - + """获取嵌入向量(已集成故障转移) Args: embedding_input (str): 获取嵌入的目标 Returns: (Tuple[List[float], str]): (嵌入向量,使用的模型名称) """ - start_time = time.time() - response, model_info = await self._strategy.execute_with_failover( - RequestType.EMBEDDING, - embedding_input=embedding_input - ) - - self._record_usage(model_info, response.usage, time.time() - start_time, "/embeddings") - - if not response.embedding: - raise RuntimeError("获取embedding失败") - - return response.embedding, model_info.name - def _record_usage(self, model_info: ModelInfo, usage: Optional[UsageRecord], time_cost: float, endpoint: str): - """ - 记录模型使用情况。 - - 此方法首先在内存中更新模型的累计token使用量,然后创建一个异步任务, - 将详细的用量数据(包括模型信息、token数、耗时等)写入数据库。 - - Args: - model_info (ModelInfo): 使用的模型信息。 - usage (Optional[UsageRecord]): API返回的用量记录。 - time_cost (float): 本次请求的总耗时。 - endpoint (str): 请求的API端点 (e.g., "/chat/completions")。 - """ - if usage: - # 步骤1: 更新内存中的token计数,用于负载均衡 - total_tokens, penalty, usage_penalty = self.model_usage[model_info.name] - self.model_usage[model_info.name] = (total_tokens + usage.total_tokens, penalty, usage_penalty) - - # 步骤2: 创建一个后台任务,将用量数据异步写入数据库 - asyncio.create_task(llm_usage_recorder.record_usage_to_database( + async def request_logic( + model_info: ModelInfo, api_provider: APIProvider, client: BaseClient + ) -> Tuple[List[float], str]: + """定义单次请求的具体逻辑""" + start_time = time.time() + response = await self._execute_request( + api_provider=api_provider, + client=client, + request_type=RequestType.EMBEDDING, model_info=model_info, - model_usage=usage, - user_id="system", # 此处可根据业务需求修改 - time_cost=time_cost, - request_type=self.task_name, - endpoint=endpoint, - )) + embedding_input=embedding_input, + ) + + embedding = response.embedding + if not embedding: + raise RuntimeError(f"模型 '{model_info.name}'未能返回 embedding。") + + if usage := response.usage: + await llm_usage_recorder.record_usage_to_database( + model_info=model_info, + time_cost=time.time() - start_time, + model_usage=usage, + user_id="system", + request_type=self.request_type, + endpoint="/embeddings", + ) + + return embedding, model_info.name + + result = await self._execute_with_failover(request_callable=request_logic, raise_on_failure=True) + if result: + return result + + # 这段代码理论上不可达,因为 raise_on_failure=True 会抛出异常 + raise RuntimeError("获取 embedding 失败,所有模型均尝试失败。") + + def _model_scheduler( + self, failed_models: set | None = None + ) -> Generator[Tuple[ModelInfo, APIProvider, BaseClient], None, None]: + """ + 一个智能模型调度器,根据实时负载动态排序并提供模型,同时跳过已失败的模型。 + """ + # sourcery skip: class-extract-method + if failed_models is None: + failed_models = set() + + # 1. 筛选出所有未失败的可用模型 + available_models = [name for name in self.model_for_task.model_list if name not in failed_models] + + # 2. 根据负载均衡算法对可用模型进行排序 + # key: total_tokens + penalty * 300 + usage_penalty * 1000 + sorted_models = sorted( + available_models, + key=lambda name: self.model_usage[name][0] + + self.model_usage[name][1] * 300 + + self.model_usage[name][2] * 1000, + ) + + if not sorted_models: + logger.warning("所有模型都已失败或不可用,调度器无法提供任何模型。") + return + + logger.debug(f"模型调度顺序: {', '.join(sorted_models)}") + + # 3. 按最优顺序 yield 模型信息 + for model_name in sorted_models: + model_info = model_config.get_model_info(model_name) + api_provider = model_config.get_provider(model_info.api_provider) + force_new_client = self.request_type == "embedding" + client = client_registry.get_client_class_instance(api_provider, force_new=force_new_client) + yield model_info, api_provider, client + + async def _execute_request( + self, + api_provider: APIProvider, + client: BaseClient, + request_type: RequestType, + model_info: ModelInfo, + message_list: List[Message] | None = None, + tool_options: list[ToolOption] | None = None, + response_format: RespFormat | None = None, + stream_response_handler: Optional[Callable] = None, + async_response_parser: Optional[Callable] = None, + temperature: Optional[float] = None, + max_tokens: Optional[int] = None, + embedding_input: str = "", + audio_base64: str = "", + ) -> APIResponse: + """ + 实际执行请求的方法 + + 包含了重试和异常处理逻辑 + """ + retry_remain = api_provider.max_retry + compressed_messages: Optional[List[Message]] = None + + # 增加使用惩罚值,标记该模型正在被尝试 + total_tokens, penalty, usage_penalty = self.model_usage[model_info.name] + self.model_usage[model_info.name] = (total_tokens, penalty, usage_penalty + 1) + + try: + while retry_remain > 0: + try: + if request_type == RequestType.RESPONSE: + assert message_list is not None, "message_list cannot be None for response requests" + return await client.get_response( + model_info=model_info, + message_list=(compressed_messages or message_list), + tool_options=tool_options, + max_tokens=self.model_for_task.max_tokens if max_tokens is None else max_tokens, + temperature=self.model_for_task.temperature if temperature is None else temperature, + response_format=response_format, + stream_response_handler=stream_response_handler, + async_response_parser=async_response_parser, + extra_params=model_info.extra_params, + ) + elif request_type == RequestType.EMBEDDING: + assert embedding_input, "embedding_input cannot be empty for embedding requests" + return await client.get_embedding( + model_info=model_info, + embedding_input=embedding_input, + extra_params=model_info.extra_params, + ) + elif request_type == RequestType.AUDIO: + assert audio_base64 is not None, "audio_base64 cannot be None for audio requests" + return await client.get_audio_transcriptions( + model_info=model_info, + audio_base64=audio_base64, + extra_params=model_info.extra_params, + ) + except Exception as e: + logger.debug(f"请求失败: {str(e)}") + # 处理异常 + total_tokens, penalty, usage_penalty = self.model_usage[model_info.name] + self.model_usage[model_info.name] = (total_tokens, penalty + 1, usage_penalty) + + wait_interval, compressed_messages = self._default_exception_handler( + e, + self.task_name, + model_info=model_info, + api_provider=api_provider, + remain_try=retry_remain, + retry_interval=api_provider.retry_interval, + messages=(message_list, compressed_messages is not None) if message_list else None, + ) + + if wait_interval == -1: + retry_remain = 0 # 不再重试 + elif wait_interval > 0: + logger.info(f"等待 {wait_interval} 秒后重试...") + await asyncio.sleep(wait_interval) + finally: + # 放在finally防止死循环 + retry_remain -= 1 + + # 当请求完全结束(无论是成功还是所有重试都失败),都将在此处处理 + logger.error(f"模型 '{model_info.name}' 请求失败,达到最大重试次数 {api_provider.max_retry} 次") + raise RuntimeError("请求失败,已达到最大重试次数") + finally: + # 无论请求成功或失败,最终都将使用惩罚值减回去 + total_tokens, penalty, usage_penalty = self.model_usage[model_info.name] + self.model_usage[model_info.name] = (total_tokens, penalty, usage_penalty - 1) @staticmethod def _build_tool_options(tools: Optional[List[Dict[str, Any]]]) -> Optional[List[ToolOption]]: