feat: 添加嵌入模型一致性校验功能,优化错误处理

This commit is contained in:
墨梓柒
2025-05-04 00:32:10 +08:00
parent fe9a2315a5
commit b8d14add91
2 changed files with 94 additions and 1 deletions

View File

@@ -30,6 +30,7 @@ OPENIE_DIR = (
logger = get_module_logger("OpenIE导入")
def hash_deduplicate(
raw_paragraphs: dict[str, str],
triple_list_data: dict[str, list[list[str]]],
@@ -167,6 +168,7 @@ def main():
global_config["llm_providers"][key]["api_key"],
)
# 初始化Embedding库
embed_manager = EmbeddingManager(llm_client_list[global_config["embedding"]["provider"]])
logger.info("正在从文件加载Embedding库")
@@ -174,6 +176,11 @@ def main():
embed_manager.load_from_file()
except Exception as e:
logger.error("从文件加载Embedding库时发生错误{}".format(e))
if "嵌入模型与本地存储不一致" in str(e):
logger.error("检测到嵌入模型与本地存储不一致,已终止导入。请检查模型设置或清空嵌入库后重试。")
logger.error("请保证你的嵌入模型从未更改,并且在导入时使用相同的模型")
# print("检测到嵌入模型与本地存储不一致,已终止导入。请检查模型设置或清空嵌入库后重试。")
sys.exit(1)
logger.error("如果你是第一次导入知识,请忽略此错误")
logger.info("Embedding库加载完成")
# 初始化KG

View File

@@ -1,6 +1,7 @@
from dataclasses import dataclass
import json
import os
import math
from typing import Dict, List, Tuple
import numpy as np
@@ -25,9 +26,39 @@ from rich.progress import (
)
install(extra_lines=3)
ROOT_PATH = os.path.abspath(os.path.join(os.path.dirname(__file__), "..", "..", "..", ".."))
TOTAL_EMBEDDING_TIMES = 3 # 统计嵌入次数
# 嵌入模型测试字符串,测试模型一致性,来自开发群的聊天记录
# 这些字符串的嵌入结果应该是固定的,不能随时间变化
EMBEDDING_TEST_STRINGS = [
"阿卡伊真的太好玩了,神秘性感大女同等着你",
"你怎么知道我arc12.64了",
"我是蕾缪乐小姐的狗",
"关注Oct谢谢喵",
"不是w6我不草",
"关注千石可乐谢谢喵",
"来玩CLANNADAIR樱之诗樱之刻谢谢喵",
"关注墨梓柒谢谢喵",
"Ciallo~",
"来玩巧克甜恋谢谢喵",
"水印",
"我也在纠结晚饭,铁锅炒鸡听着就香!",
"test你妈喵"
]
EMBEDDING_TEST_FILE = os.path.join(ROOT_PATH, "data", "embedding_model_test.json")
EMBEDDING_SIM_THRESHOLD = 0.99
def cosine_similarity(a, b):
# 计算余弦相似度
dot = sum(x * y for x, y in zip(a, b))
norm_a = math.sqrt(sum(x * x for x in a))
norm_b = math.sqrt(sum(x * x for x in b))
if norm_a == 0 or norm_b == 0:
return 0.0
return dot / (norm_a * norm_b)
@dataclass
class EmbeddingStoreItem:
@@ -64,6 +95,46 @@ class EmbeddingStore:
def _get_embedding(self, s: str) -> List[float]:
return self.llm_client.send_embedding_request(global_config["embedding"]["model"], s)
def get_test_file_path(self):
return EMBEDDING_TEST_FILE
def save_embedding_test_vectors(self):
"""保存测试字符串的嵌入到本地"""
test_vectors = {}
for idx, s in enumerate(EMBEDDING_TEST_STRINGS):
test_vectors[str(idx)] = self._get_embedding(s)
with open(self.get_test_file_path(), "w", encoding="utf-8") as f:
json.dump(test_vectors, f, ensure_ascii=False, indent=2)
def load_embedding_test_vectors(self):
"""加载本地保存的测试字符串嵌入"""
path = self.get_test_file_path()
if not os.path.exists(path):
return None
with open(path, "r", encoding="utf-8") as f:
return json.load(f)
def check_embedding_model_consistency(self):
"""校验当前模型与本地嵌入模型是否一致"""
local_vectors = self.load_embedding_test_vectors()
if local_vectors is None:
logger.warning("未检测到本地嵌入模型测试文件,将保存当前模型的测试嵌入。")
self.save_embedding_test_vectors()
return True
for idx, s in enumerate(EMBEDDING_TEST_STRINGS):
local_emb = local_vectors.get(str(idx))
if local_emb is None:
logger.warning("本地嵌入模型测试文件缺失部分测试字符串,将重新保存。")
self.save_embedding_test_vectors()
return True
new_emb = self._get_embedding(s)
sim = cosine_similarity(local_emb, new_emb)
if sim < EMBEDDING_SIM_THRESHOLD:
logger.error("嵌入模型一致性校验失败")
return False
logger.info("嵌入模型一致性校验通过。")
return True
def batch_insert_strs(self, strs: List[str], times: int) -> None:
"""向库中存入字符串"""
total = len(strs)
@@ -216,6 +287,17 @@ class EmbeddingManager:
)
self.stored_pg_hashes = set()
def check_all_embedding_model_consistency(self):
"""对所有嵌入库做模型一致性校验"""
for store in [
self.paragraphs_embedding_store,
self.entities_embedding_store,
self.relation_embedding_store,
]:
if not store.check_embedding_model_consistency():
return False
return True
def _store_pg_into_embedding(self, raw_paragraphs: Dict[str, str]):
"""将段落编码存入Embedding库"""
self.paragraphs_embedding_store.batch_insert_strs(list(raw_paragraphs.values()), times=1)
@@ -239,6 +321,8 @@ class EmbeddingManager:
def load_from_file(self):
"""从文件加载"""
if not self.check_all_embedding_model_consistency():
raise Exception("嵌入模型与本地存储不一致,请检查模型设置或清空嵌入库后重试。")
self.paragraphs_embedding_store.load_from_file()
self.entities_embedding_store.load_from_file()
self.relation_embedding_store.load_from_file()
@@ -250,6 +334,8 @@ class EmbeddingManager:
raw_paragraphs: Dict[str, str],
triple_list_data: Dict[str, List[List[str]]],
):
if not self.check_all_embedding_model_consistency():
raise Exception("嵌入模型与本地存储不一致,请检查模型设置或清空嵌入库后重试。")
"""存储新的数据集"""
self._store_pg_into_embedding(raw_paragraphs)
self._store_ent_into_embedding(triple_list_data)