重构数据库交互以使用 Peewee ORM

- 更新数据库连接和模型定义,以便使用 Peewee for SQLite。
- 在消息存储和检索功能中,用 Peewee ORM 查询替换 MongoDB 查询。
- 为 Messages、ThinkingLog 和 OnlineTime 引入了新的模型,以方便结构化数据存储。
- 增强了数据库操作的错误处理和日志记录。
- 删除了过时的 MongoDB 集合管理代码。
- 通过利用 Peewee 内置的查询和数据操作方法来提升性能。
This commit is contained in:
墨梓柒
2025-05-14 22:53:21 +08:00
parent df897a0f42
commit b84cc9240a
15 changed files with 999 additions and 758 deletions

View File

@@ -1,9 +1,10 @@
from peewee import Model, DoubleField, IntegerField, SqliteDatabase, BooleanField, TextField, FloatField
from peewee import Model, DoubleField, IntegerField, BooleanField, TextField, FloatField, DateTimeField
from .database import db
import datetime
# 请在此处定义您的数据库实例。
# 您需要取消注释并配置适合您的数据库的部分。
# 例如,对于 SQLite:
db = SqliteDatabase('my_application.db')
# db = SqliteDatabase('MaiBot.db')
#
# 对于 PostgreSQL:
# db = PostgresqlDatabase('your_db_name', user='your_user', password='your_password',
@@ -69,17 +70,16 @@ class LLMUsage(BaseModel):
"""
用于存储 API 使用日志数据的模型。
"""
model_name = TextField()
user_id = TextField()
request_type = TextField()
model_name = TextField(index=True) # 添加索引
user_id = TextField(index=True) # 添加索引
request_type = TextField(index=True) # 添加索引
endpoint = TextField()
prompt_tokens = IntegerField()
completion_tokens = IntegerField()
total_tokens = IntegerField()
cost = DoubleField()
status = TextField()
# timestamp: "$date": "2025-05-01T18:52:50.870Z" (存储为字符串)
timestamp = TextField()
timestamp = DateTimeField(index=True) # 更改为 DateTimeField 并添加索引
class Meta:
# 如果 BaseModel.Meta.database 已设置,则此模型将继承该数据库配置。
@@ -177,6 +177,8 @@ class OnlineTime(BaseModel):
# timestamp: "$date": "2025-05-01T18:52:18.191Z" (存储为字符串)
timestamp = TextField()
duration = IntegerField() # 时长,单位分钟
start_timestamp = DateTimeField(default=datetime.datetime.now)
end_timestamp = DateTimeField(index=True)
class Meta:
# database = db # 继承自 BaseModel
@@ -202,3 +204,39 @@ class PersonInfo(BaseModel):
# database = db # 继承自 BaseModel
table_name = 'person_info'
class Knowledges(BaseModel):
"""
用于存储知识库条目的模型。
"""
content = TextField() # 知识内容的文本
embedding = TextField() # 知识内容的嵌入向量,存储为 JSON 字符串的浮点数列表
# 可以添加其他元数据字段,如 source, create_time 等
class Meta:
# database = db # 继承自 BaseModel
table_name = 'knowledges'
class ThinkingLog(BaseModel):
chat_id = TextField(index=True)
trigger_text = TextField(null=True)
response_text = TextField(null=True)
# Store complex dicts/lists as JSON strings
trigger_info_json = TextField(null=True)
response_info_json = TextField(null=True)
timing_results_json = TextField(null=True)
chat_history_json = TextField(null=True)
chat_history_in_thinking_json = TextField(null=True)
chat_history_after_response_json = TextField(null=True)
heartflow_data_json = TextField(null=True)
reasoning_data_json = TextField(null=True)
# Add a timestamp for the log entry itself
# Ensure you have: from peewee import DateTimeField
# And: import datetime
created_at = DateTimeField(default=datetime.datetime.now)
class Meta:
table_name = 'thinking_logs'