feat: 重构聊天系统的内存处理与格式化功能

- 更新了DefaultReplyer,采用新的内存格式化工具以提供更优质的内存描述。
- 已移除 Config 类中已弃用的内存配置。
- 在主系统中增强内存系统初始化检查,确保配置正确。
- 优化了MemoryManager,使其可直接使用全局配置进行内存设置。
- 新增了一个内存格式化工具,用于将内存对象转换为自然语言描述。
- 更新了内存工具,提供了更清晰的内存创建与管理指南。
- 精炼插件工具与使用提示,提升用户交互体验与记忆准确性。
- 根据内存系统结构的变化调整了机器人配置模板。
This commit is contained in:
Windpicker-owo
2025-11-06 08:47:18 +08:00
parent 7bb0248ca2
commit b6a693895b
13 changed files with 691 additions and 118 deletions

View File

@@ -0,0 +1,323 @@
"""
记忆格式化工具
用于将记忆图系统的Memory对象转换为适合提示词的自然语言描述
"""
import logging
from typing import Optional, List, Dict, Any
from datetime import datetime
from src.memory_graph.models import Memory, MemoryNode, NodeType, EdgeType, MemoryType
logger = logging.getLogger(__name__)
def format_memory_for_prompt(memory: Memory, include_metadata: bool = False) -> str:
"""
将记忆对象格式化为适合提示词的自然语言描述
根据记忆的图结构,构建完整的主谓宾描述,包含:
- 主语subject node
- 谓语/动作topic node
- 宾语/对象object node如果存在
- 属性信息attributes如时间、地点等
- 关系信息(记忆之间的关系)
Args:
memory: 记忆对象
include_metadata: 是否包含元数据(时间、重要性等)
Returns:
格式化后的自然语言描述
"""
try:
# 1. 获取主体节点(主语)
subject_node = memory.get_subject_node()
if not subject_node:
logger.warning(f"记忆 {memory.id} 缺少主体节点")
return "(记忆格式错误:缺少主体)"
subject_text = subject_node.content
# 2. 查找主题节点(谓语/动作)
topic_node = None
memory_type_relation = None
for edge in memory.edges:
if edge.edge_type == EdgeType.MEMORY_TYPE and edge.source_id == memory.subject_id:
topic_node = memory.get_node_by_id(edge.target_id)
memory_type_relation = edge.relation
break
if not topic_node:
logger.warning(f"记忆 {memory.id} 缺少主题节点")
return f"{subject_text}(记忆格式错误:缺少主题)"
topic_text = topic_node.content
# 3. 查找客体节点(宾语)和核心关系
object_node = None
core_relation = None
for edge in memory.edges:
if edge.edge_type == EdgeType.CORE_RELATION and edge.source_id == topic_node.id:
object_node = memory.get_node_by_id(edge.target_id)
core_relation = edge.relation if edge.relation else ""
break
# 4. 收集属性节点
attributes: Dict[str, str] = {}
for edge in memory.edges:
if edge.edge_type == EdgeType.ATTRIBUTE:
# 查找属性节点和值节点
attr_node = memory.get_node_by_id(edge.target_id)
if attr_node and attr_node.node_type == NodeType.ATTRIBUTE:
# 查找这个属性的值
for value_edge in memory.edges:
if (value_edge.edge_type == EdgeType.ATTRIBUTE
and value_edge.source_id == attr_node.id):
value_node = memory.get_node_by_id(value_edge.target_id)
if value_node and value_node.node_type == NodeType.VALUE:
attributes[attr_node.content] = value_node.content
break
# 5. 构建自然语言描述
parts = []
# 主谓宾结构
if object_node is not None:
# 有完整的主谓宾
if core_relation:
parts.append(f"{subject_text}{topic_text}{core_relation}{object_node.content}")
else:
parts.append(f"{subject_text}{topic_text}{object_node.content}")
else:
# 只有主谓
parts.append(f"{subject_text}{topic_text}")
# 添加属性信息
if attributes:
attr_parts = []
# 优先显示时间和地点
if "时间" in attributes:
attr_parts.append(f"{attributes['时间']}")
if "地点" in attributes:
attr_parts.append(f"{attributes['地点']}")
# 其他属性
for key, value in attributes.items():
if key not in ["时间", "地点"]:
attr_parts.append(f"{key}{value}")
if attr_parts:
parts.append(f"{' '.join(attr_parts)}")
description = "".join(parts)
# 6. 添加元数据(可选)
if include_metadata:
metadata_parts = []
# 记忆类型
if memory.memory_type:
metadata_parts.append(f"类型:{memory.memory_type.value}")
# 重要性
if memory.importance >= 0.8:
metadata_parts.append("重要")
elif memory.importance >= 0.6:
metadata_parts.append("一般")
# 时间(如果没有在属性中)
if "时间" not in attributes:
time_str = _format_relative_time(memory.created_at)
if time_str:
metadata_parts.append(time_str)
if metadata_parts:
description += f" [{', '.join(metadata_parts)}]"
return description
except Exception as e:
logger.error(f"格式化记忆失败: {e}", exc_info=True)
return f"(记忆格式化错误: {str(e)[:50]}"
def format_memories_for_prompt(
memories: List[Memory],
max_count: Optional[int] = None,
include_metadata: bool = False,
group_by_type: bool = False
) -> str:
"""
批量格式化多条记忆为提示词文本
Args:
memories: 记忆列表
max_count: 最大记忆数量(可选)
include_metadata: 是否包含元数据
group_by_type: 是否按类型分组
Returns:
格式化后的文本,包含标题和列表
"""
if not memories:
return ""
# 限制数量
if max_count:
memories = memories[:max_count]
# 按类型分组
if group_by_type:
type_groups: Dict[MemoryType, List[Memory]] = {}
for memory in memories:
if memory.memory_type not in type_groups:
type_groups[memory.memory_type] = []
type_groups[memory.memory_type].append(memory)
# 构建分组文本
parts = ["### 🧠 相关记忆 (Relevant Memories)", ""]
type_order = [MemoryType.FACT, MemoryType.EVENT, MemoryType.RELATION, MemoryType.OPINION]
for mem_type in type_order:
if mem_type in type_groups:
parts.append(f"#### {mem_type.value}")
for memory in type_groups[mem_type]:
desc = format_memory_for_prompt(memory, include_metadata)
parts.append(f"- {desc}")
parts.append("")
return "\n".join(parts)
else:
# 不分组,直接列出
parts = ["### 🧠 相关记忆 (Relevant Memories)", ""]
for memory in memories:
# 获取类型标签
type_label = memory.memory_type.value if memory.memory_type else "未知"
# 格式化记忆内容
desc = format_memory_for_prompt(memory, include_metadata)
# 添加类型标签
parts.append(f"- **[{type_label}]** {desc}")
return "\n".join(parts)
def get_memory_type_label(memory_type: str) -> str:
"""
获取记忆类型的中文标签
Args:
memory_type: 记忆类型(可能是英文或中文)
Returns:
中文标签
"""
# 映射表
type_mapping = {
# 英文到中文
"event": "事件",
"fact": "事实",
"relation": "关系",
"opinion": "观点",
"preference": "偏好",
"emotion": "情绪",
"knowledge": "知识",
"skill": "技能",
"goal": "目标",
"experience": "经历",
"contextual": "情境",
# 中文(保持不变)
"事件": "事件",
"事实": "事实",
"关系": "关系",
"观点": "观点",
"偏好": "偏好",
"情绪": "情绪",
"知识": "知识",
"技能": "技能",
"目标": "目标",
"经历": "经历",
"情境": "情境",
}
# 转换为小写进行匹配
memory_type_lower = memory_type.lower() if memory_type else ""
return type_mapping.get(memory_type_lower, "未知")
def _format_relative_time(timestamp: datetime) -> Optional[str]:
"""
格式化相对时间(如"2天前""刚才"
Args:
timestamp: 时间戳
Returns:
相对时间描述如果太久远则返回None
"""
try:
now = datetime.now()
delta = now - timestamp
if delta.total_seconds() < 60:
return "刚才"
elif delta.total_seconds() < 3600:
minutes = int(delta.total_seconds() / 60)
return f"{minutes}分钟前"
elif delta.total_seconds() < 86400:
hours = int(delta.total_seconds() / 3600)
return f"{hours}小时前"
elif delta.days < 7:
return f"{delta.days}天前"
elif delta.days < 30:
weeks = delta.days // 7
return f"{weeks}周前"
elif delta.days < 365:
months = delta.days // 30
return f"{months}个月前"
else:
# 超过一年不显示相对时间
return None
except Exception:
return None
def format_memory_summary(memory: Memory) -> str:
"""
生成记忆的简短摘要(用于日志和调试)
Args:
memory: 记忆对象
Returns:
简短摘要
"""
try:
subject_node = memory.get_subject_node()
subject_text = subject_node.content if subject_node else "?"
topic_text = "?"
for edge in memory.edges:
if edge.edge_type == EdgeType.MEMORY_TYPE and edge.source_id == memory.subject_id:
topic_node = memory.get_node_by_id(edge.target_id)
if topic_node:
topic_text = topic_node.content
break
return f"{subject_text} - {memory.memory_type.value if memory.memory_type else '?'}: {topic_text}"
except Exception:
return f"记忆 {memory.id[:8]}"
# 导出主要函数
__all__ = [
'format_memory_for_prompt',
'format_memories_for_prompt',
'get_memory_type_label',
'format_memory_summary',
]