Merge branch 'new-storage' into plugin

This commit is contained in:
SengokuCola
2025-05-16 21:14:16 +08:00
63 changed files with 2397 additions and 2008 deletions

View File

@@ -76,9 +76,10 @@ def init_prompt():
class DefaultExpressor:
def __init__(self, chat_id: str):
self.log_prefix = "expressor"
# TODO: API-Adapter修改标记
self.express_model = LLMRequest(
model=global_config.llm_normal,
temperature=global_config.llm_normal["temp"],
model=global_config.model.normal,
temperature=global_config.model.normal["temp"],
max_tokens=256,
request_type="response_heartflow",
)
@@ -102,8 +103,8 @@ class DefaultExpressor:
messageinfo = anchor_message.message_info
thinking_time_point = parse_thinking_id_to_timestamp(thinking_id)
bot_user_info = UserInfo(
user_id=global_config.BOT_QQ,
user_nickname=global_config.BOT_NICKNAME,
user_id=global_config.bot.qq_account,
user_nickname=global_config.bot.nickname,
platform=messageinfo.platform,
)
# logger.debug(f"创建思考消息:{anchor_message}")
@@ -192,7 +193,7 @@ class DefaultExpressor:
try:
# 1. 获取情绪影响因子并调整模型温度
arousal_multiplier = mood_manager.get_arousal_multiplier()
current_temp = float(global_config.llm_normal["temp"]) * arousal_multiplier
current_temp = float(global_config.model.normal["temp"]) * arousal_multiplier
self.express_model.params["temperature"] = current_temp # 动态调整温度
# 2. 获取信息捕捉器
@@ -231,6 +232,7 @@ class DefaultExpressor:
try:
with Timer("LLM生成", {}): # 内部计时器,可选保留
# TODO: API-Adapter修改标记
# logger.info(f"{self.log_prefix}[Replier-{thinking_id}]\nPrompt:\n{prompt}\n")
content, reasoning_content, model_name = await self.express_model.generate_response(prompt)
@@ -482,8 +484,8 @@ class DefaultExpressor:
"""构建单个发送消息"""
bot_user_info = UserInfo(
user_id=global_config.BOT_QQ,
user_nickname=global_config.BOT_NICKNAME,
user_id=global_config.bot.qq_account,
user_nickname=global_config.bot.nickname,
platform=self.chat_stream.platform,
)

View File

@@ -77,8 +77,9 @@ def init_prompt() -> None:
class ExpressionLearner:
def __init__(self) -> None:
# TODO: API-Adapter修改标记
self.express_learn_model: LLMRequest = LLMRequest(
model=global_config.llm_normal,
model=global_config.model.normal,
temperature=0.1,
max_tokens=256,
request_type="response_heartflow",
@@ -289,7 +290,7 @@ class ExpressionLearner:
# 构建prompt
prompt = await global_prompt_manager.format_prompt(
"personality_expression_prompt",
personality=global_config.expression_style,
personality=global_config.personality.expression_style,
)
# logger.info(f"个性表达方式提取prompt: {prompt}")