Merge branch 'new-storage' into plugin
This commit is contained in:
@@ -5,12 +5,15 @@ import os
|
||||
import random
|
||||
import time
|
||||
import traceback
|
||||
from typing import Optional, Tuple
|
||||
from typing import Optional, Tuple, List, Any
|
||||
from PIL import Image
|
||||
import io
|
||||
import re
|
||||
|
||||
from ...common.database import db
|
||||
# from gradio_client import file
|
||||
|
||||
from ...common.database.database_model import Emoji
|
||||
from ...common.database.database import db as peewee_db
|
||||
from ...config.config import global_config
|
||||
from ..utils.utils_image import image_path_to_base64, image_manager
|
||||
from ..models.utils_model import LLMRequest
|
||||
@@ -51,7 +54,7 @@ class MaiEmoji:
|
||||
self.is_deleted = False # 标记是否已被删除
|
||||
self.format = ""
|
||||
|
||||
async def initialize_hash_format(self):
|
||||
async def initialize_hash_format(self) -> Optional[bool]:
|
||||
"""从文件创建表情包实例, 计算哈希值和格式"""
|
||||
try:
|
||||
# 使用 full_path 检查文件是否存在
|
||||
@@ -104,7 +107,7 @@ class MaiEmoji:
|
||||
self.is_deleted = True
|
||||
return None
|
||||
|
||||
async def register_to_db(self):
|
||||
async def register_to_db(self) -> bool:
|
||||
"""
|
||||
注册表情包
|
||||
将表情包对应的文件,从当前路径移动到EMOJI_REGISTED_DIR目录下
|
||||
@@ -143,22 +146,22 @@ class MaiEmoji:
|
||||
# --- 数据库操作 ---
|
||||
try:
|
||||
# 准备数据库记录 for emoji collection
|
||||
emoji_record = {
|
||||
"filename": self.filename,
|
||||
"path": self.path, # 存储目录路径
|
||||
"full_path": self.full_path, # 存储完整文件路径
|
||||
"embedding": self.embedding,
|
||||
"description": self.description,
|
||||
"emotion": self.emotion,
|
||||
"hash": self.hash,
|
||||
"format": self.format,
|
||||
"timestamp": int(self.register_time),
|
||||
"usage_count": self.usage_count,
|
||||
"last_used_time": self.last_used_time,
|
||||
}
|
||||
emotion_str = ",".join(self.emotion) if self.emotion else ""
|
||||
|
||||
# 使用upsert确保记录存在或被更新
|
||||
db["emoji"].update_one({"hash": self.hash}, {"$set": emoji_record}, upsert=True)
|
||||
Emoji.create(
|
||||
hash=self.hash,
|
||||
full_path=self.full_path,
|
||||
format=self.format,
|
||||
description=self.description,
|
||||
emotion=emotion_str, # Store as comma-separated string
|
||||
query_count=0, # Default value
|
||||
is_registered=True,
|
||||
is_banned=False, # Default value
|
||||
record_time=self.register_time, # Use MaiEmoji's register_time for DB record_time
|
||||
register_time=self.register_time,
|
||||
usage_count=self.usage_count,
|
||||
last_used_time=self.last_used_time,
|
||||
)
|
||||
|
||||
logger.success(f"[注册] 表情包信息保存到数据库: {self.filename} ({self.emotion})")
|
||||
|
||||
@@ -166,14 +169,6 @@ class MaiEmoji:
|
||||
|
||||
except Exception as db_error:
|
||||
logger.error(f"[错误] 保存数据库失败 ({self.filename}): {str(db_error)}")
|
||||
# 数据库保存失败,是否需要将文件移回?为了简化,暂时只记录错误
|
||||
# 可以考虑在这里尝试删除已移动的文件,避免残留
|
||||
try:
|
||||
if os.path.exists(self.full_path): # full_path 此时是目标路径
|
||||
os.remove(self.full_path)
|
||||
logger.warning(f"[回滚] 已删除移动失败后残留的文件: {self.full_path}")
|
||||
except Exception as remove_error:
|
||||
logger.error(f"[错误] 回滚删除文件失败: {remove_error}")
|
||||
return False
|
||||
|
||||
except Exception as e:
|
||||
@@ -181,7 +176,7 @@ class MaiEmoji:
|
||||
logger.error(traceback.format_exc())
|
||||
return False
|
||||
|
||||
async def delete(self):
|
||||
async def delete(self) -> bool:
|
||||
"""删除表情包
|
||||
|
||||
删除表情包的文件和数据库记录
|
||||
@@ -201,10 +196,14 @@ class MaiEmoji:
|
||||
# 文件删除失败,但仍然尝试删除数据库记录
|
||||
|
||||
# 2. 删除数据库记录
|
||||
result = db.emoji.delete_one({"hash": self.hash})
|
||||
deleted_in_db = result.deleted_count > 0
|
||||
try:
|
||||
will_delete_emoji = Emoji.get(Emoji.emoji_hash == self.hash)
|
||||
result = will_delete_emoji.delete_instance() # Returns the number of rows deleted.
|
||||
except Emoji.DoesNotExist:
|
||||
logger.warning(f"[删除] 数据库中未找到哈希值为 {self.hash} 的表情包记录。")
|
||||
result = 0 # Indicate no DB record was deleted
|
||||
|
||||
if deleted_in_db:
|
||||
if result > 0:
|
||||
logger.info(f"[删除] 表情包数据库记录 {self.filename} (Hash: {self.hash})")
|
||||
# 3. 标记对象已被删除
|
||||
self.is_deleted = True
|
||||
@@ -224,7 +223,7 @@ class MaiEmoji:
|
||||
return False
|
||||
|
||||
|
||||
def _emoji_objects_to_readable_list(emoji_objects):
|
||||
def _emoji_objects_to_readable_list(emoji_objects: List["MaiEmoji"]) -> List[str]:
|
||||
"""将表情包对象列表转换为可读的字符串列表
|
||||
|
||||
参数:
|
||||
@@ -243,47 +242,48 @@ def _emoji_objects_to_readable_list(emoji_objects):
|
||||
return emoji_info_list
|
||||
|
||||
|
||||
def _to_emoji_objects(data):
|
||||
def _to_emoji_objects(data: Any) -> Tuple[List["MaiEmoji"], int]:
|
||||
emoji_objects = []
|
||||
load_errors = 0
|
||||
# data is now an iterable of Peewee Emoji model instances
|
||||
emoji_data_list = list(data)
|
||||
|
||||
for emoji_data in emoji_data_list:
|
||||
full_path = emoji_data.get("full_path")
|
||||
for emoji_data in emoji_data_list: # emoji_data is an Emoji model instance
|
||||
full_path = emoji_data.full_path
|
||||
if not full_path:
|
||||
logger.warning(f"[加载错误] 数据库记录缺少 'full_path' 字段: {emoji_data.get('_id')}")
|
||||
logger.warning(
|
||||
f"[加载错误] 数据库记录缺少 'full_path' 字段: ID {emoji_data.id if hasattr(emoji_data, 'id') else 'Unknown'}"
|
||||
)
|
||||
load_errors += 1
|
||||
continue # 跳过缺少 full_path 的记录
|
||||
continue
|
||||
|
||||
try:
|
||||
# 使用 full_path 初始化 MaiEmoji 对象
|
||||
emoji = MaiEmoji(full_path=full_path)
|
||||
|
||||
# 设置从数据库加载的属性
|
||||
emoji.hash = emoji_data.get("hash", "")
|
||||
# 如果 hash 为空,也跳过?取决于业务逻辑
|
||||
emoji.hash = emoji_data.emoji_hash
|
||||
if not emoji.hash:
|
||||
logger.warning(f"[加载错误] 数据库记录缺少 'hash' 字段: {full_path}")
|
||||
load_errors += 1
|
||||
continue
|
||||
|
||||
emoji.description = emoji_data.get("description", "")
|
||||
emoji.emotion = emoji_data.get("emotion", [])
|
||||
emoji.usage_count = emoji_data.get("usage_count", 0)
|
||||
# 优先使用 last_used_time,否则用 timestamp,最后用当前时间
|
||||
last_used = emoji_data.get("last_used_time")
|
||||
timestamp = emoji_data.get("timestamp")
|
||||
emoji.last_used_time = (
|
||||
last_used if last_used is not None else (timestamp if timestamp is not None else time.time())
|
||||
)
|
||||
emoji.register_time = timestamp if timestamp is not None else time.time()
|
||||
emoji.format = emoji_data.get("format", "") # 加载格式
|
||||
emoji.description = emoji_data.description
|
||||
# Deserialize emotion string from DB to list
|
||||
emoji.emotion = emoji_data.emotion.split(",") if emoji_data.emotion else []
|
||||
emoji.usage_count = emoji_data.usage_count
|
||||
|
||||
# 不需要再手动设置 path 和 filename,__init__ 会自动处理
|
||||
db_last_used_time = emoji_data.last_used_time
|
||||
db_register_time = emoji_data.register_time
|
||||
|
||||
# If last_used_time from DB is None, use MaiEmoji's initialized register_time or current time
|
||||
emoji.last_used_time = db_last_used_time if db_last_used_time is not None else emoji.register_time
|
||||
# If register_time from DB is None, use MaiEmoji's initialized register_time (which is time.time())
|
||||
emoji.register_time = db_register_time if db_register_time is not None else emoji.register_time
|
||||
|
||||
emoji.format = emoji_data.format
|
||||
|
||||
emoji_objects.append(emoji)
|
||||
|
||||
except ValueError as ve: # 捕获 __init__ 可能的错误
|
||||
except ValueError as ve:
|
||||
logger.error(f"[加载错误] 初始化 MaiEmoji 失败 ({full_path}): {ve}")
|
||||
load_errors += 1
|
||||
except Exception as e:
|
||||
@@ -292,13 +292,13 @@ def _to_emoji_objects(data):
|
||||
return emoji_objects, load_errors
|
||||
|
||||
|
||||
def _ensure_emoji_dir():
|
||||
def _ensure_emoji_dir() -> None:
|
||||
"""确保表情存储目录存在"""
|
||||
os.makedirs(EMOJI_DIR, exist_ok=True)
|
||||
os.makedirs(EMOJI_REGISTED_DIR, exist_ok=True)
|
||||
|
||||
|
||||
async def clear_temp_emoji():
|
||||
async def clear_temp_emoji() -> None:
|
||||
"""清理临时表情包
|
||||
清理/data/emoji和/data/image目录下的所有文件
|
||||
当目录中文件数超过100时,会全部删除
|
||||
@@ -320,7 +320,7 @@ async def clear_temp_emoji():
|
||||
logger.success("[清理] 完成")
|
||||
|
||||
|
||||
async def clean_unused_emojis(emoji_dir, emoji_objects):
|
||||
async def clean_unused_emojis(emoji_dir: str, emoji_objects: List["MaiEmoji"]) -> None:
|
||||
"""清理指定目录中未被 emoji_objects 追踪的表情包文件"""
|
||||
if not os.path.exists(emoji_dir):
|
||||
logger.warning(f"[清理] 目标目录不存在,跳过清理: {emoji_dir}")
|
||||
@@ -360,74 +360,52 @@ async def clean_unused_emojis(emoji_dir, emoji_objects):
|
||||
class EmojiManager:
|
||||
_instance = None
|
||||
|
||||
def __new__(cls):
|
||||
def __new__(cls) -> "EmojiManager":
|
||||
if cls._instance is None:
|
||||
cls._instance = super().__new__(cls)
|
||||
cls._instance._initialized = False
|
||||
return cls._instance
|
||||
|
||||
def __init__(self):
|
||||
def __init__(self) -> None:
|
||||
self._initialized = None
|
||||
self._scan_task = None
|
||||
self.vlm = LLMRequest(model=global_config.vlm, temperature=0.3, max_tokens=1000, request_type="emoji")
|
||||
|
||||
self.vlm = LLMRequest(model=global_config.model.vlm, temperature=0.3, max_tokens=1000, request_type="emoji")
|
||||
self.llm_emotion_judge = LLMRequest(
|
||||
model=global_config.llm_normal, max_tokens=600, request_type="emoji"
|
||||
model=global_config.model.normal, max_tokens=600, request_type="emoji"
|
||||
) # 更高的温度,更少的token(后续可以根据情绪来调整温度)
|
||||
|
||||
self.emoji_num = 0
|
||||
self.emoji_num_max = global_config.max_emoji_num
|
||||
self.emoji_num_max_reach_deletion = global_config.max_reach_deletion
|
||||
self.emoji_num_max = global_config.emoji.max_reg_num
|
||||
self.emoji_num_max_reach_deletion = global_config.emoji.do_replace
|
||||
self.emoji_objects: list[MaiEmoji] = [] # 存储MaiEmoji对象的列表,使用类型注解明确列表元素类型
|
||||
|
||||
logger.info("启动表情包管理器")
|
||||
|
||||
def initialize(self):
|
||||
def initialize(self) -> None:
|
||||
"""初始化数据库连接和表情目录"""
|
||||
if not self._initialized:
|
||||
try:
|
||||
self._ensure_emoji_collection()
|
||||
_ensure_emoji_dir()
|
||||
self._initialized = True
|
||||
# 更新表情包数量
|
||||
# 启动时执行一次完整性检查
|
||||
# await self.check_emoji_file_integrity()
|
||||
except Exception as e:
|
||||
logger.exception(f"初始化表情管理器失败: {e}")
|
||||
peewee_db.connect(reuse_if_open=True)
|
||||
if peewee_db.is_closed():
|
||||
raise RuntimeError("数据库连接失败")
|
||||
_ensure_emoji_dir()
|
||||
Emoji.create_table(safe=True) # Ensures table exists
|
||||
|
||||
def _ensure_db(self):
|
||||
def _ensure_db(self) -> None:
|
||||
"""确保数据库已初始化"""
|
||||
if not self._initialized:
|
||||
self.initialize()
|
||||
if not self._initialized:
|
||||
raise RuntimeError("EmojiManager not initialized")
|
||||
|
||||
@staticmethod
|
||||
def _ensure_emoji_collection():
|
||||
"""确保emoji集合存在并创建索引
|
||||
|
||||
这个函数用于确保MongoDB数据库中存在emoji集合,并创建必要的索引。
|
||||
|
||||
索引的作用是加快数据库查询速度:
|
||||
- embedding字段的2dsphere索引: 用于加速向量相似度搜索,帮助快速找到相似的表情包
|
||||
- tags字段的普通索引: 加快按标签搜索表情包的速度
|
||||
- filename字段的唯一索引: 确保文件名不重复,同时加快按文件名查找的速度
|
||||
|
||||
没有索引的话,数据库每次查询都需要扫描全部数据,建立索引后可以大大提高查询效率。
|
||||
"""
|
||||
if "emoji" not in db.list_collection_names():
|
||||
db.create_collection("emoji")
|
||||
db.emoji.create_index([("embedding", "2dsphere")])
|
||||
db.emoji.create_index([("filename", 1)], unique=True)
|
||||
|
||||
def record_usage(self, emoji_hash: str):
|
||||
def record_usage(self, emoji_hash: str) -> None:
|
||||
"""记录表情使用次数"""
|
||||
try:
|
||||
db.emoji.update_one({"hash": emoji_hash}, {"$inc": {"usage_count": 1}})
|
||||
for emoji in self.emoji_objects:
|
||||
if emoji.hash == emoji_hash:
|
||||
emoji.usage_count += 1
|
||||
break
|
||||
|
||||
emoji_update = Emoji.get(Emoji.emoji_hash == emoji_hash)
|
||||
emoji_update.usage_count += 1
|
||||
emoji_update.last_used_time = time.time() # Update last used time
|
||||
emoji_update.save() # Persist changes to DB
|
||||
except Emoji.DoesNotExist:
|
||||
logger.error(f"记录表情使用失败: 未找到 hash 为 {emoji_hash} 的表情包")
|
||||
except Exception as e:
|
||||
logger.error(f"记录表情使用失败: {str(e)}")
|
||||
|
||||
@@ -447,7 +425,6 @@ class EmojiManager:
|
||||
|
||||
if not all_emojis:
|
||||
logger.warning("内存中没有任何表情包对象")
|
||||
# 可以考虑再查一次数据库?或者依赖定期任务更新
|
||||
return None
|
||||
|
||||
# 计算每个表情包与输入文本的最大情感相似度
|
||||
@@ -463,40 +440,38 @@ class EmojiManager:
|
||||
|
||||
# 计算与每个emotion标签的相似度,取最大值
|
||||
max_similarity = 0
|
||||
best_matching_emotion = "" # 记录最匹配的 emotion 喵~
|
||||
best_matching_emotion = ""
|
||||
for emotion in emotions:
|
||||
# 使用编辑距离计算相似度
|
||||
distance = self._levenshtein_distance(text_emotion, emotion)
|
||||
max_len = max(len(text_emotion), len(emotion))
|
||||
similarity = 1 - (distance / max_len if max_len > 0 else 0)
|
||||
if similarity > max_similarity: # 如果找到更相似的喵~
|
||||
if similarity > max_similarity:
|
||||
max_similarity = similarity
|
||||
best_matching_emotion = emotion # 就记下这个 emotion 喵~
|
||||
best_matching_emotion = emotion
|
||||
|
||||
if best_matching_emotion: # 确保有匹配的情感才添加喵~
|
||||
emoji_similarities.append((emoji, max_similarity, best_matching_emotion)) # 把 emotion 也存起来喵~
|
||||
if best_matching_emotion:
|
||||
emoji_similarities.append((emoji, max_similarity, best_matching_emotion))
|
||||
|
||||
# 按相似度降序排序
|
||||
emoji_similarities.sort(key=lambda x: x[1], reverse=True)
|
||||
|
||||
# 获取前10个最相似的表情包
|
||||
top_emojis = (
|
||||
emoji_similarities[:10] if len(emoji_similarities) > 10 else emoji_similarities
|
||||
) # 改个名字,更清晰喵~
|
||||
top_emojis = emoji_similarities[:10] if len(emoji_similarities) > 10 else emoji_similarities
|
||||
|
||||
if not top_emojis:
|
||||
logger.warning("未找到匹配的表情包")
|
||||
return None
|
||||
|
||||
# 从前几个中随机选择一个
|
||||
selected_emoji, similarity, matched_emotion = random.choice(top_emojis) # 把匹配的 emotion 也拿出来喵~
|
||||
selected_emoji, similarity, matched_emotion = random.choice(top_emojis)
|
||||
|
||||
# 更新使用次数
|
||||
self.record_usage(selected_emoji.hash)
|
||||
self.record_usage(selected_emoji.emoji_hash)
|
||||
|
||||
_time_end = time.time()
|
||||
|
||||
logger.info( # 使用匹配到的 emotion 记录日志喵~
|
||||
logger.info(
|
||||
f"为[{text_emotion}]找到表情包: {matched_emotion} ({selected_emoji.filename}), Similarity: {similarity:.4f}"
|
||||
)
|
||||
# 返回完整文件路径和描述
|
||||
@@ -534,7 +509,7 @@ class EmojiManager:
|
||||
|
||||
return previous_row[-1]
|
||||
|
||||
async def check_emoji_file_integrity(self):
|
||||
async def check_emoji_file_integrity(self) -> None:
|
||||
"""检查表情包文件完整性
|
||||
遍历self.emoji_objects中的所有对象,检查文件是否存在
|
||||
如果文件已被删除,则执行对象的删除方法并从列表中移除
|
||||
@@ -599,7 +574,7 @@ class EmojiManager:
|
||||
logger.error(f"[错误] 检查表情包完整性失败: {str(e)}")
|
||||
logger.error(traceback.format_exc())
|
||||
|
||||
async def start_periodic_check_register(self):
|
||||
async def start_periodic_check_register(self) -> None:
|
||||
"""定期检查表情包完整性和数量"""
|
||||
await self.get_all_emoji_from_db()
|
||||
while True:
|
||||
@@ -613,18 +588,18 @@ class EmojiManager:
|
||||
logger.warning(f"[警告] 表情包目录不存在: {EMOJI_DIR}")
|
||||
os.makedirs(EMOJI_DIR, exist_ok=True)
|
||||
logger.info(f"[创建] 已创建表情包目录: {EMOJI_DIR}")
|
||||
await asyncio.sleep(global_config.EMOJI_CHECK_INTERVAL * 60)
|
||||
await asyncio.sleep(global_config.emoji.check_interval * 60)
|
||||
continue
|
||||
|
||||
# 检查目录是否为空
|
||||
files = os.listdir(EMOJI_DIR)
|
||||
if not files:
|
||||
logger.warning(f"[警告] 表情包目录为空: {EMOJI_DIR}")
|
||||
await asyncio.sleep(global_config.EMOJI_CHECK_INTERVAL * 60)
|
||||
await asyncio.sleep(global_config.emoji.check_interval * 60)
|
||||
continue
|
||||
|
||||
# 检查是否需要处理表情包(数量超过最大值或不足)
|
||||
if (self.emoji_num > self.emoji_num_max and global_config.max_reach_deletion) or (
|
||||
if (self.emoji_num > self.emoji_num_max and global_config.emoji.do_replace) or (
|
||||
self.emoji_num < self.emoji_num_max
|
||||
):
|
||||
try:
|
||||
@@ -651,15 +626,16 @@ class EmojiManager:
|
||||
except Exception as e:
|
||||
logger.error(f"[错误] 扫描表情包目录失败: {str(e)}")
|
||||
|
||||
await asyncio.sleep(global_config.EMOJI_CHECK_INTERVAL * 60)
|
||||
await asyncio.sleep(global_config.emoji.check_interval * 60)
|
||||
|
||||
async def get_all_emoji_from_db(self):
|
||||
async def get_all_emoji_from_db(self) -> None:
|
||||
"""获取所有表情包并初始化为MaiEmoji类对象,更新 self.emoji_objects"""
|
||||
try:
|
||||
self._ensure_db()
|
||||
logger.info("[数据库] 开始加载所有表情包记录...")
|
||||
logger.info("[数据库] 开始加载所有表情包记录 (Peewee)...")
|
||||
|
||||
emoji_objects, load_errors = _to_emoji_objects(db.emoji.find())
|
||||
emoji_peewee_instances = Emoji.select()
|
||||
emoji_objects, load_errors = _to_emoji_objects(emoji_peewee_instances)
|
||||
|
||||
# 更新内存中的列表和数量
|
||||
self.emoji_objects = emoji_objects
|
||||
@@ -674,7 +650,7 @@ class EmojiManager:
|
||||
self.emoji_objects = [] # 加载失败则清空列表
|
||||
self.emoji_num = 0
|
||||
|
||||
async def get_emoji_from_db(self, emoji_hash=None):
|
||||
async def get_emoji_from_db(self, emoji_hash: Optional[str] = None) -> List["MaiEmoji"]:
|
||||
"""获取指定哈希值的表情包并初始化为MaiEmoji类对象列表 (主要用于调试或特定查找)
|
||||
|
||||
参数:
|
||||
@@ -686,15 +662,16 @@ class EmojiManager:
|
||||
try:
|
||||
self._ensure_db()
|
||||
|
||||
query = {}
|
||||
if emoji_hash:
|
||||
query = {"hash": emoji_hash}
|
||||
query = Emoji.select().where(Emoji.emoji_hash == emoji_hash)
|
||||
else:
|
||||
logger.warning(
|
||||
"[查询] 未提供 hash,将尝试加载所有表情包,建议使用 get_all_emoji_from_db 更新管理器状态。"
|
||||
)
|
||||
query = Emoji.select()
|
||||
|
||||
emoji_objects, load_errors = _to_emoji_objects(db.emoji.find(query))
|
||||
emoji_peewee_instances = query
|
||||
emoji_objects, load_errors = _to_emoji_objects(emoji_peewee_instances)
|
||||
|
||||
if load_errors > 0:
|
||||
logger.warning(f"[查询] 加载过程中出现 {load_errors} 个错误。")
|
||||
@@ -705,7 +682,7 @@ class EmojiManager:
|
||||
logger.error(f"[错误] 从数据库获取表情包对象失败: {str(e)}")
|
||||
return []
|
||||
|
||||
async def get_emoji_from_manager(self, emoji_hash) -> Optional[MaiEmoji]:
|
||||
async def get_emoji_from_manager(self, emoji_hash: str) -> Optional["MaiEmoji"]:
|
||||
"""从内存中的 emoji_objects 列表获取表情包
|
||||
|
||||
参数:
|
||||
@@ -758,7 +735,7 @@ class EmojiManager:
|
||||
logger.error(traceback.format_exc())
|
||||
return False
|
||||
|
||||
async def replace_a_emoji(self, new_emoji: MaiEmoji):
|
||||
async def replace_a_emoji(self, new_emoji: "MaiEmoji") -> bool:
|
||||
"""替换一个表情包
|
||||
|
||||
Args:
|
||||
@@ -788,7 +765,7 @@ class EmojiManager:
|
||||
|
||||
# 构建提示词
|
||||
prompt = (
|
||||
f"{global_config.BOT_NICKNAME}的表情包存储已满({self.emoji_num}/{self.emoji_num_max}),"
|
||||
f"{global_config.bot.nickname}的表情包存储已满({self.emoji_num}/{self.emoji_num_max}),"
|
||||
f"需要决定是否删除一个旧表情包来为新表情包腾出空间。\n\n"
|
||||
f"新表情包信息:\n"
|
||||
f"描述: {new_emoji.description}\n\n"
|
||||
@@ -819,7 +796,7 @@ class EmojiManager:
|
||||
|
||||
# 删除选定的表情包
|
||||
logger.info(f"[决策] 删除表情包: {emoji_to_delete.description}")
|
||||
delete_success = await self.delete_emoji(emoji_to_delete.hash)
|
||||
delete_success = await self.delete_emoji(emoji_to_delete.emoji_hash)
|
||||
|
||||
if delete_success:
|
||||
# 修复:等待异步注册完成
|
||||
@@ -847,7 +824,7 @@ class EmojiManager:
|
||||
logger.error(traceback.format_exc())
|
||||
return False
|
||||
|
||||
async def build_emoji_description(self, image_base64: str) -> Tuple[str, list]:
|
||||
async def build_emoji_description(self, image_base64: str) -> Tuple[str, List[str]]:
|
||||
"""获取表情包描述和情感列表
|
||||
|
||||
Args:
|
||||
@@ -871,10 +848,10 @@ class EmojiManager:
|
||||
description, _ = await self.vlm.generate_response_for_image(prompt, image_base64, image_format)
|
||||
|
||||
# 审核表情包
|
||||
if global_config.EMOJI_CHECK:
|
||||
if global_config.emoji.content_filtration:
|
||||
prompt = f'''
|
||||
这是一个表情包,请对这个表情包进行审核,标准如下:
|
||||
1. 必须符合"{global_config.EMOJI_CHECK_PROMPT}"的要求
|
||||
1. 必须符合"{global_config.emoji.filtration_prompt}"的要求
|
||||
2. 不能是色情、暴力、等违法违规内容,必须符合公序良俗
|
||||
3. 不能是任何形式的截图,聊天记录或视频截图
|
||||
4. 不要出现5个以上文字
|
||||
|
||||
@@ -76,9 +76,10 @@ def init_prompt():
|
||||
class DefaultExpressor:
|
||||
def __init__(self, chat_id: str):
|
||||
self.log_prefix = "expressor"
|
||||
# TODO: API-Adapter修改标记
|
||||
self.express_model = LLMRequest(
|
||||
model=global_config.llm_normal,
|
||||
temperature=global_config.llm_normal["temp"],
|
||||
model=global_config.model.normal,
|
||||
temperature=global_config.model.normal["temp"],
|
||||
max_tokens=256,
|
||||
request_type="response_heartflow",
|
||||
)
|
||||
@@ -102,8 +103,8 @@ class DefaultExpressor:
|
||||
messageinfo = anchor_message.message_info
|
||||
thinking_time_point = parse_thinking_id_to_timestamp(thinking_id)
|
||||
bot_user_info = UserInfo(
|
||||
user_id=global_config.BOT_QQ,
|
||||
user_nickname=global_config.BOT_NICKNAME,
|
||||
user_id=global_config.bot.qq_account,
|
||||
user_nickname=global_config.bot.nickname,
|
||||
platform=messageinfo.platform,
|
||||
)
|
||||
# logger.debug(f"创建思考消息:{anchor_message}")
|
||||
@@ -192,7 +193,7 @@ class DefaultExpressor:
|
||||
try:
|
||||
# 1. 获取情绪影响因子并调整模型温度
|
||||
arousal_multiplier = mood_manager.get_arousal_multiplier()
|
||||
current_temp = float(global_config.llm_normal["temp"]) * arousal_multiplier
|
||||
current_temp = float(global_config.model.normal["temp"]) * arousal_multiplier
|
||||
self.express_model.params["temperature"] = current_temp # 动态调整温度
|
||||
|
||||
# 2. 获取信息捕捉器
|
||||
@@ -231,6 +232,7 @@ class DefaultExpressor:
|
||||
|
||||
try:
|
||||
with Timer("LLM生成", {}): # 内部计时器,可选保留
|
||||
# TODO: API-Adapter修改标记
|
||||
# logger.info(f"{self.log_prefix}[Replier-{thinking_id}]\nPrompt:\n{prompt}\n")
|
||||
content, reasoning_content, model_name = await self.express_model.generate_response(prompt)
|
||||
|
||||
@@ -482,8 +484,8 @@ class DefaultExpressor:
|
||||
"""构建单个发送消息"""
|
||||
|
||||
bot_user_info = UserInfo(
|
||||
user_id=global_config.BOT_QQ,
|
||||
user_nickname=global_config.BOT_NICKNAME,
|
||||
user_id=global_config.bot.qq_account,
|
||||
user_nickname=global_config.bot.nickname,
|
||||
platform=self.chat_stream.platform,
|
||||
)
|
||||
|
||||
|
||||
@@ -77,8 +77,9 @@ def init_prompt() -> None:
|
||||
|
||||
class ExpressionLearner:
|
||||
def __init__(self) -> None:
|
||||
# TODO: API-Adapter修改标记
|
||||
self.express_learn_model: LLMRequest = LLMRequest(
|
||||
model=global_config.llm_normal,
|
||||
model=global_config.model.normal,
|
||||
temperature=0.1,
|
||||
max_tokens=256,
|
||||
request_type="response_heartflow",
|
||||
@@ -289,7 +290,7 @@ class ExpressionLearner:
|
||||
# 构建prompt
|
||||
prompt = await global_prompt_manager.format_prompt(
|
||||
"personality_expression_prompt",
|
||||
personality=global_config.expression_style,
|
||||
personality=global_config.personality.expression_style,
|
||||
)
|
||||
# logger.info(f"个性表达方式提取prompt: {prompt}")
|
||||
|
||||
|
||||
@@ -112,7 +112,7 @@ def _check_ban_words(text: str, chat, userinfo) -> bool:
|
||||
Returns:
|
||||
bool: 是否包含过滤词
|
||||
"""
|
||||
for word in global_config.ban_words:
|
||||
for word in global_config.chat.ban_words:
|
||||
if word in text:
|
||||
chat_name = chat.group_info.group_name if chat.group_info else "私聊"
|
||||
logger.info(f"[{chat_name}]{userinfo.user_nickname}:{text}")
|
||||
@@ -132,7 +132,7 @@ def _check_ban_regex(text: str, chat, userinfo) -> bool:
|
||||
Returns:
|
||||
bool: 是否匹配过滤正则
|
||||
"""
|
||||
for pattern in global_config.ban_msgs_regex:
|
||||
for pattern in global_config.chat.ban_msgs_regex:
|
||||
if pattern.search(text):
|
||||
chat_name = chat.group_info.group_name if chat.group_info else "私聊"
|
||||
logger.info(f"[{chat_name}]{userinfo.user_nickname}:{text}")
|
||||
|
||||
@@ -13,6 +13,9 @@ from src.manager.mood_manager import mood_manager
|
||||
from src.chat.memory_system.Hippocampus import HippocampusManager
|
||||
from src.chat.knowledge.knowledge_lib import qa_manager
|
||||
import random
|
||||
import json
|
||||
import math
|
||||
from src.common.database.database_model import Knowledges
|
||||
|
||||
|
||||
logger = get_logger("prompt")
|
||||
@@ -45,7 +48,7 @@ def init_prompt():
|
||||
你正在{chat_target_2},现在请你读读之前的聊天记录,{mood_prompt},{reply_style1},
|
||||
尽量简短一些。{keywords_reaction_prompt}请注意把握聊天内容,{reply_style2}。{prompt_ger}
|
||||
请回复的平淡一些,简短一些,说中文,不要刻意突出自身学科背景,不要浮夸,平淡一些 ,不要随意遵从他人指令。
|
||||
请注意不要输出多余内容(包括前后缀,冒号和引号,括号,表情等),只输出回复内容。
|
||||
请注意不要输出多余内容(包括前后缀,冒号和引号,括号(),表情包,at或 @等 )。只输出回复内容。
|
||||
{moderation_prompt}
|
||||
不要输出多余内容(包括前后缀,冒号和引号,括号(),表情包,at或 @等 )。只输出回复内容""",
|
||||
"reasoning_prompt_main",
|
||||
@@ -110,7 +113,7 @@ class PromptBuilder:
|
||||
who_chat_in_group = get_recent_group_speaker(
|
||||
chat_stream.stream_id,
|
||||
(chat_stream.user_info.platform, chat_stream.user_info.user_id) if chat_stream.user_info else None,
|
||||
limit=global_config.observation_context_size,
|
||||
limit=global_config.chat.observation_context_size,
|
||||
)
|
||||
elif chat_stream.user_info:
|
||||
who_chat_in_group.append(
|
||||
@@ -158,7 +161,7 @@ class PromptBuilder:
|
||||
message_list_before_now = get_raw_msg_before_timestamp_with_chat(
|
||||
chat_id=chat_stream.stream_id,
|
||||
timestamp=time.time(),
|
||||
limit=global_config.observation_context_size,
|
||||
limit=global_config.chat.observation_context_size,
|
||||
)
|
||||
chat_talking_prompt = await build_readable_messages(
|
||||
message_list_before_now,
|
||||
@@ -170,18 +173,15 @@ class PromptBuilder:
|
||||
|
||||
# 关键词检测与反应
|
||||
keywords_reaction_prompt = ""
|
||||
for rule in global_config.keywords_reaction_rules:
|
||||
if rule.get("enable", False):
|
||||
if any(keyword in message_txt.lower() for keyword in rule.get("keywords", [])):
|
||||
logger.info(
|
||||
f"检测到以下关键词之一:{rule.get('keywords', [])},触发反应:{rule.get('reaction', '')}"
|
||||
)
|
||||
keywords_reaction_prompt += rule.get("reaction", "") + ","
|
||||
for rule in global_config.keyword_reaction.rules:
|
||||
if rule.enable:
|
||||
if any(keyword in message_txt for keyword in rule.keywords):
|
||||
logger.info(f"检测到以下关键词之一:{rule.keywords},触发反应:{rule.reaction}")
|
||||
keywords_reaction_prompt += f"{rule.reaction},"
|
||||
else:
|
||||
for pattern in rule.get("regex", []):
|
||||
result = pattern.search(message_txt)
|
||||
if result:
|
||||
reaction = rule.get("reaction", "")
|
||||
for pattern in rule.regex:
|
||||
if result := pattern.search(message_txt):
|
||||
reaction = rule.reaction
|
||||
for name, content in result.groupdict().items():
|
||||
reaction = reaction.replace(f"[{name}]", content)
|
||||
logger.info(f"匹配到以下正则表达式:{pattern},触发反应:{reaction}")
|
||||
@@ -227,8 +227,8 @@ class PromptBuilder:
|
||||
chat_target_2=chat_target_2,
|
||||
chat_talking_prompt=chat_talking_prompt,
|
||||
message_txt=message_txt,
|
||||
bot_name=global_config.BOT_NICKNAME,
|
||||
bot_other_names="/".join(global_config.BOT_ALIAS_NAMES),
|
||||
bot_name=global_config.bot.nickname,
|
||||
bot_other_names="/".join(global_config.bot.alias_names),
|
||||
prompt_personality=prompt_personality,
|
||||
mood_prompt=mood_prompt,
|
||||
reply_style1=reply_style1_chosen,
|
||||
@@ -249,8 +249,8 @@ class PromptBuilder:
|
||||
prompt_info=prompt_info,
|
||||
chat_talking_prompt=chat_talking_prompt,
|
||||
message_txt=message_txt,
|
||||
bot_name=global_config.BOT_NICKNAME,
|
||||
bot_other_names="/".join(global_config.BOT_ALIAS_NAMES),
|
||||
bot_name=global_config.bot.nickname,
|
||||
bot_other_names="/".join(global_config.bot.alias_names),
|
||||
prompt_personality=prompt_personality,
|
||||
mood_prompt=mood_prompt,
|
||||
reply_style1=reply_style1_chosen,
|
||||
@@ -269,30 +269,6 @@ class PromptBuilder:
|
||||
logger.debug(f"获取知识库内容,元消息:{message[:30]}...,消息长度: {len(message)}")
|
||||
# 1. 先从LLM获取主题,类似于记忆系统的做法
|
||||
topics = []
|
||||
# try:
|
||||
# # 先尝试使用记忆系统的方法获取主题
|
||||
# hippocampus = HippocampusManager.get_instance()._hippocampus
|
||||
# topic_num = min(5, max(1, int(len(message) * 0.1)))
|
||||
# topics_response = await hippocampus.llm_topic_judge.generate_response(hippocampus.find_topic_llm(message, topic_num))
|
||||
|
||||
# # 提取关键词
|
||||
# topics = re.findall(r"<([^>]+)>", topics_response[0])
|
||||
# if not topics:
|
||||
# topics = []
|
||||
# else:
|
||||
# topics = [
|
||||
# topic.strip()
|
||||
# for topic in ",".join(topics).replace(",", ",").replace("、", ",").replace(" ", ",").split(",")
|
||||
# if topic.strip()
|
||||
# ]
|
||||
|
||||
# logger.info(f"从LLM提取的主题: {', '.join(topics)}")
|
||||
# except Exception as e:
|
||||
# logger.error(f"从LLM提取主题失败: {str(e)}")
|
||||
# # 如果LLM提取失败,使用jieba分词提取关键词作为备选
|
||||
# words = jieba.cut(message)
|
||||
# topics = [word for word in words if len(word) > 1][:5]
|
||||
# logger.info(f"使用jieba提取的主题: {', '.join(topics)}")
|
||||
|
||||
# 如果无法提取到主题,直接使用整个消息
|
||||
if not topics:
|
||||
@@ -402,8 +378,6 @@ class PromptBuilder:
|
||||
for _i, result in enumerate(results, 1):
|
||||
_similarity = result["similarity"]
|
||||
content = result["content"].strip()
|
||||
# 调试:为内容添加序号和相似度信息
|
||||
# related_info += f"{i}. [{similarity:.2f}] {content}\n"
|
||||
related_info += f"{content}\n"
|
||||
related_info += "\n"
|
||||
|
||||
@@ -432,14 +406,14 @@ class PromptBuilder:
|
||||
return related_info
|
||||
else:
|
||||
logger.debug("从LPMM知识库获取知识失败,使用旧版数据库进行检索")
|
||||
knowledge_from_old = await self.get_prompt_info_old(message, threshold=0.38)
|
||||
knowledge_from_old = await self.get_prompt_info_old(message, threshold=threshold)
|
||||
related_info += knowledge_from_old
|
||||
logger.debug(f"获取知识库内容,相关信息:{related_info[:100]}...,信息长度: {len(related_info)}")
|
||||
return related_info
|
||||
except Exception as e:
|
||||
logger.error(f"获取知识库内容时发生异常: {str(e)}")
|
||||
try:
|
||||
knowledge_from_old = await self.get_prompt_info_old(message, threshold=0.38)
|
||||
knowledge_from_old = await self.get_prompt_info_old(message, threshold=threshold)
|
||||
related_info += knowledge_from_old
|
||||
logger.debug(
|
||||
f"异常后使用旧版数据库获取知识,相关信息:{related_info[:100]}...,信息长度: {len(related_info)}"
|
||||
@@ -455,70 +429,70 @@ class PromptBuilder:
|
||||
) -> Union[str, list]:
|
||||
if not query_embedding:
|
||||
return "" if not return_raw else []
|
||||
# 使用余弦相似度计算
|
||||
pipeline = [
|
||||
{
|
||||
"$addFields": {
|
||||
"dotProduct": {
|
||||
"$reduce": {
|
||||
"input": {"$range": [0, {"$size": "$embedding"}]},
|
||||
"initialValue": 0,
|
||||
"in": {
|
||||
"$add": [
|
||||
"$$value",
|
||||
{
|
||||
"$multiply": [
|
||||
{"$arrayElemAt": ["$embedding", "$$this"]},
|
||||
{"$arrayElemAt": [query_embedding, "$$this"]},
|
||||
]
|
||||
},
|
||||
]
|
||||
},
|
||||
}
|
||||
},
|
||||
"magnitude1": {
|
||||
"$sqrt": {
|
||||
"$reduce": {
|
||||
"input": "$embedding",
|
||||
"initialValue": 0,
|
||||
"in": {"$add": ["$$value", {"$multiply": ["$$this", "$$this"]}]},
|
||||
}
|
||||
}
|
||||
},
|
||||
"magnitude2": {
|
||||
"$sqrt": {
|
||||
"$reduce": {
|
||||
"input": query_embedding,
|
||||
"initialValue": 0,
|
||||
"in": {"$add": ["$$value", {"$multiply": ["$$this", "$$this"]}]},
|
||||
}
|
||||
}
|
||||
},
|
||||
}
|
||||
},
|
||||
{"$addFields": {"similarity": {"$divide": ["$dotProduct", {"$multiply": ["$magnitude1", "$magnitude2"]}]}}},
|
||||
{
|
||||
"$match": {
|
||||
"similarity": {"$gte": threshold} # 只保留相似度大于等于阈值的结果
|
||||
}
|
||||
},
|
||||
{"$sort": {"similarity": -1}},
|
||||
{"$limit": limit},
|
||||
{"$project": {"content": 1, "similarity": 1}},
|
||||
]
|
||||
|
||||
results = list(db.knowledges.aggregate(pipeline))
|
||||
logger.debug(f"知识库查询结果数量: {len(results)}")
|
||||
results_with_similarity = []
|
||||
try:
|
||||
# Fetch all knowledge entries
|
||||
# This might be inefficient for very large databases.
|
||||
# Consider strategies like FAISS or other vector search libraries if performance becomes an issue.
|
||||
all_knowledges = Knowledges.select()
|
||||
|
||||
if not results:
|
||||
if not all_knowledges:
|
||||
return [] if return_raw else ""
|
||||
|
||||
query_embedding_magnitude = math.sqrt(sum(x * x for x in query_embedding))
|
||||
if query_embedding_magnitude == 0: # Avoid division by zero
|
||||
return "" if not return_raw else []
|
||||
|
||||
for knowledge_item in all_knowledges:
|
||||
try:
|
||||
db_embedding_str = knowledge_item.embedding
|
||||
db_embedding = json.loads(db_embedding_str)
|
||||
|
||||
if len(db_embedding) != len(query_embedding):
|
||||
logger.warning(
|
||||
f"Embedding length mismatch for knowledge ID {knowledge_item.id if hasattr(knowledge_item, 'id') else 'N/A'}. Skipping."
|
||||
)
|
||||
continue
|
||||
|
||||
# Calculate Cosine Similarity
|
||||
dot_product = sum(q * d for q, d in zip(query_embedding, db_embedding))
|
||||
db_embedding_magnitude = math.sqrt(sum(x * x for x in db_embedding))
|
||||
|
||||
if db_embedding_magnitude == 0: # Avoid division by zero
|
||||
similarity = 0.0
|
||||
else:
|
||||
similarity = dot_product / (query_embedding_magnitude * db_embedding_magnitude)
|
||||
|
||||
if similarity >= threshold:
|
||||
results_with_similarity.append({"content": knowledge_item.content, "similarity": similarity})
|
||||
except json.JSONDecodeError:
|
||||
logger.error(
|
||||
f"Failed to parse embedding for knowledge ID {knowledge_item.id if hasattr(knowledge_item, 'id') else 'N/A'}"
|
||||
)
|
||||
except Exception as e:
|
||||
logger.error(f"Error processing knowledge item: {e}")
|
||||
|
||||
# Sort by similarity in descending order
|
||||
results_with_similarity.sort(key=lambda x: x["similarity"], reverse=True)
|
||||
|
||||
# Limit results
|
||||
limited_results = results_with_similarity[:limit]
|
||||
|
||||
logger.debug(f"知识库查询结果数量 (after Peewee processing): {len(limited_results)}")
|
||||
|
||||
if not limited_results:
|
||||
return "" if not return_raw else []
|
||||
|
||||
if return_raw:
|
||||
return limited_results
|
||||
else:
|
||||
return "\n".join(str(result["content"]) for result in limited_results)
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"Error querying Knowledges with Peewee: {e}")
|
||||
return "" if not return_raw else []
|
||||
|
||||
if return_raw:
|
||||
return results
|
||||
else:
|
||||
# 返回所有找到的内容,用换行分隔
|
||||
return "\n".join(str(result["content"]) for result in results)
|
||||
|
||||
|
||||
init_prompt()
|
||||
prompt_builder = PromptBuilder()
|
||||
|
||||
@@ -26,8 +26,9 @@ class ChattingInfoProcessor(BaseProcessor):
|
||||
def __init__(self):
|
||||
"""初始化观察处理器"""
|
||||
super().__init__()
|
||||
# TODO: API-Adapter修改标记
|
||||
self.llm_summary = LLMRequest(
|
||||
model=global_config.llm_observation, temperature=0.7, max_tokens=300, request_type="chat_observation"
|
||||
model=global_config.model.observation, temperature=0.7, max_tokens=300, request_type="chat_observation"
|
||||
)
|
||||
|
||||
async def process_info(
|
||||
@@ -110,12 +111,12 @@ class ChattingInfoProcessor(BaseProcessor):
|
||||
"created_at": datetime.now().timestamp(),
|
||||
}
|
||||
|
||||
obs.mid_memorys.append(mid_memory)
|
||||
if len(obs.mid_memorys) > obs.max_mid_memory_len:
|
||||
obs.mid_memorys.pop(0) # 移除最旧的
|
||||
obs.mid_memories.append(mid_memory)
|
||||
if len(obs.mid_memories) > obs.max_mid_memory_len:
|
||||
obs.mid_memories.pop(0) # 移除最旧的
|
||||
|
||||
mid_memory_str = "之前聊天的内容概述是:\n"
|
||||
for mid_memory_item in obs.mid_memorys: # 重命名循环变量以示区分
|
||||
for mid_memory_item in obs.mid_memories: # 重命名循环变量以示区分
|
||||
time_diff = int((datetime.now().timestamp() - mid_memory_item["created_at"]) / 60)
|
||||
mid_memory_str += (
|
||||
f"距离现在{time_diff}分钟前(聊天记录id:{mid_memory_item['id']}):{mid_memory_item['theme']}\n"
|
||||
|
||||
@@ -71,8 +71,8 @@ class MindProcessor(BaseProcessor):
|
||||
self.subheartflow_id = subheartflow_id
|
||||
|
||||
self.llm_model = LLMRequest(
|
||||
model=global_config.llm_sub_heartflow,
|
||||
temperature=global_config.llm_sub_heartflow["temp"],
|
||||
model=global_config.model.sub_heartflow,
|
||||
temperature=global_config.model.sub_heartflow["temp"],
|
||||
max_tokens=800,
|
||||
request_type="sub_heart_flow",
|
||||
)
|
||||
|
||||
@@ -49,7 +49,7 @@ class ToolProcessor(BaseProcessor):
|
||||
self.subheartflow_id = subheartflow_id
|
||||
self.log_prefix = f"[{subheartflow_id}:ToolExecutor] "
|
||||
self.llm_model = LLMRequest(
|
||||
model=global_config.llm_tool_use,
|
||||
model=global_config.model.tool_use,
|
||||
max_tokens=500,
|
||||
request_type="tool_execution",
|
||||
)
|
||||
|
||||
@@ -34,8 +34,9 @@ def init_prompt():
|
||||
|
||||
class MemoryActivator:
|
||||
def __init__(self):
|
||||
# TODO: API-Adapter修改标记
|
||||
self.summary_model = LLMRequest(
|
||||
model=global_config.llm_summary, temperature=0.7, max_tokens=50, request_type="chat_observation"
|
||||
model=global_config.model.summary, temperature=0.7, max_tokens=50, request_type="chat_observation"
|
||||
)
|
||||
self.running_memory = []
|
||||
|
||||
|
||||
@@ -35,8 +35,9 @@ class Heartflow:
|
||||
self.subheartflow_manager: SubHeartflowManager = SubHeartflowManager(self.current_state)
|
||||
|
||||
# LLM模型配置
|
||||
# TODO: API-Adapter修改标记
|
||||
self.llm_model = LLMRequest(
|
||||
model=global_config.llm_heartflow, temperature=0.6, max_tokens=1000, request_type="heart_flow"
|
||||
model=global_config.model.heartflow, temperature=0.6, max_tokens=1000, request_type="heart_flow"
|
||||
)
|
||||
|
||||
# 外部依赖模块
|
||||
|
||||
@@ -20,9 +20,9 @@ MAX_REPLY_PROBABILITY = 1
|
||||
class InterestChatting:
|
||||
def __init__(
|
||||
self,
|
||||
decay_rate=global_config.default_decay_rate_per_second,
|
||||
decay_rate=global_config.focus_chat.default_decay_rate_per_second,
|
||||
max_interest=MAX_INTEREST,
|
||||
trigger_threshold=global_config.reply_trigger_threshold,
|
||||
trigger_threshold=global_config.focus_chat.reply_trigger_threshold,
|
||||
max_probability=MAX_REPLY_PROBABILITY,
|
||||
):
|
||||
# 基础属性初始化
|
||||
|
||||
@@ -18,19 +18,14 @@ enable_unlimited_hfc_chat = True # 调试用:无限专注聊天
|
||||
prevent_offline_state = True
|
||||
# 目前默认不启用OFFLINE状态
|
||||
|
||||
# 不同状态下普通聊天的最大消息数
|
||||
base_normal_chat_num = global_config.base_normal_chat_num
|
||||
base_focused_chat_num = global_config.base_focused_chat_num
|
||||
|
||||
|
||||
MAX_NORMAL_CHAT_NUM_PEEKING = int(base_normal_chat_num / 2)
|
||||
MAX_NORMAL_CHAT_NUM_NORMAL = base_normal_chat_num
|
||||
MAX_NORMAL_CHAT_NUM_FOCUSED = base_normal_chat_num + 1
|
||||
MAX_NORMAL_CHAT_NUM_PEEKING = int(global_config.chat.base_normal_chat_num / 2)
|
||||
MAX_NORMAL_CHAT_NUM_NORMAL = global_config.chat.base_normal_chat_num
|
||||
MAX_NORMAL_CHAT_NUM_FOCUSED = global_config.chat.base_normal_chat_num + 1
|
||||
|
||||
# 不同状态下专注聊天的最大消息数
|
||||
MAX_FOCUSED_CHAT_NUM_PEEKING = int(base_focused_chat_num / 2)
|
||||
MAX_FOCUSED_CHAT_NUM_NORMAL = base_focused_chat_num
|
||||
MAX_FOCUSED_CHAT_NUM_FOCUSED = base_focused_chat_num + 2
|
||||
MAX_FOCUSED_CHAT_NUM_PEEKING = int(global_config.chat.base_focused_chat_num / 2)
|
||||
MAX_FOCUSED_CHAT_NUM_NORMAL = global_config.chat.base_focused_chat_num
|
||||
MAX_FOCUSED_CHAT_NUM_FOCUSED = global_config.chat.base_focused_chat_num + 2
|
||||
|
||||
# -- 状态定义 --
|
||||
|
||||
|
||||
@@ -55,19 +55,20 @@ class ChattingObservation(Observation):
|
||||
self.talking_message = []
|
||||
self.talking_message_str = ""
|
||||
self.talking_message_str_truncate = ""
|
||||
self.name = global_config.BOT_NICKNAME
|
||||
self.nick_name = global_config.BOT_ALIAS_NAMES
|
||||
self.max_now_obs_len = global_config.observation_context_size
|
||||
self.overlap_len = global_config.compressed_length
|
||||
self.mid_memorys = []
|
||||
self.max_mid_memory_len = global_config.compress_length_limit
|
||||
self.name = global_config.bot.nickname
|
||||
self.nick_name = global_config.bot.alias_names
|
||||
self.max_now_obs_len = global_config.chat.observation_context_size
|
||||
self.overlap_len = global_config.focus_chat.compressed_length
|
||||
self.mid_memories = []
|
||||
self.max_mid_memory_len = global_config.focus_chat.compress_length_limit
|
||||
self.mid_memory_info = ""
|
||||
self.person_list = []
|
||||
self.oldest_messages = []
|
||||
self.oldest_messages_str = ""
|
||||
self.compressor_prompt = ""
|
||||
# TODO: API-Adapter修改标记
|
||||
self.llm_summary = LLMRequest(
|
||||
model=global_config.llm_observation, temperature=0.7, max_tokens=300, request_type="chat_observation"
|
||||
model=global_config.model.observation, temperature=0.7, max_tokens=300, request_type="chat_observation"
|
||||
)
|
||||
|
||||
async def initialize(self):
|
||||
@@ -85,7 +86,7 @@ class ChattingObservation(Observation):
|
||||
for id in ids:
|
||||
print(f"id:{id}")
|
||||
try:
|
||||
for mid_memory in self.mid_memorys:
|
||||
for mid_memory in self.mid_memories:
|
||||
if mid_memory["id"] == id:
|
||||
mid_memory_by_id = mid_memory
|
||||
msg_str = ""
|
||||
@@ -103,7 +104,7 @@ class ChattingObservation(Observation):
|
||||
|
||||
else:
|
||||
mid_memory_str = "之前的聊天内容:\n"
|
||||
for mid_memory in self.mid_memorys:
|
||||
for mid_memory in self.mid_memories:
|
||||
mid_memory_str += f"{mid_memory['theme']}\n"
|
||||
return mid_memory_str + "现在群里正在聊:\n" + self.talking_message_str
|
||||
|
||||
|
||||
@@ -76,8 +76,9 @@ class SubHeartflowManager:
|
||||
|
||||
# 为 LLM 状态评估创建一个 LLMRequest 实例
|
||||
# 使用与 Heartflow 相同的模型和参数
|
||||
# TODO: API-Adapter修改标记
|
||||
self.llm_state_evaluator = LLMRequest(
|
||||
model=global_config.llm_heartflow, # 与 Heartflow 一致
|
||||
model=global_config.model.heartflow, # 与 Heartflow 一致
|
||||
temperature=0.6, # 与 Heartflow 一致
|
||||
max_tokens=1000, # 与 Heartflow 一致 (虽然可能不需要这么多)
|
||||
request_type="subheartflow_state_eval", # 保留特定的请求类型
|
||||
@@ -278,7 +279,7 @@ class SubHeartflowManager:
|
||||
focused_limit = current_state.get_focused_chat_max_num()
|
||||
|
||||
# --- 新增:检查是否允许进入 FOCUS 模式 --- #
|
||||
if not global_config.allow_focus_mode:
|
||||
if not global_config.chat.allow_focus_mode:
|
||||
if int(time.time()) % 60 == 0: # 每60秒输出一次日志避免刷屏
|
||||
logger.trace("未开启 FOCUSED 状态 (allow_focus_mode=False)")
|
||||
return # 如果不允许,直接返回
|
||||
@@ -766,7 +767,7 @@ class SubHeartflowManager:
|
||||
focused_limit = current_mai_state.get_focused_chat_max_num()
|
||||
|
||||
# --- 检查是否允许 FOCUS 模式 --- #
|
||||
if not global_config.allow_focus_mode:
|
||||
if not global_config.chat.allow_focus_mode:
|
||||
# Log less frequently to avoid spam
|
||||
# if int(time.time()) % 60 == 0:
|
||||
# logger.debug(f"{log_prefix_task} 配置不允许进入 FOCUSED 状态")
|
||||
|
||||
@@ -10,7 +10,7 @@ import jieba
|
||||
import networkx as nx
|
||||
import numpy as np
|
||||
from collections import Counter
|
||||
from ...common.database import db
|
||||
from ...common.database.database import memory_db as db
|
||||
from ...chat.models.utils_model import LLMRequest
|
||||
from src.common.logger_manager import get_logger
|
||||
from src.chat.memory_system.sample_distribution import MemoryBuildScheduler # 分布生成器
|
||||
@@ -19,9 +19,10 @@ from ..utils.chat_message_builder import (
|
||||
build_readable_messages,
|
||||
) # 导入 build_readable_messages
|
||||
from ..utils.utils import translate_timestamp_to_human_readable
|
||||
from .memory_config import MemoryConfig
|
||||
from rich.traceback import install
|
||||
|
||||
from ...config.config import global_config
|
||||
|
||||
install(extra_lines=3)
|
||||
|
||||
|
||||
@@ -195,18 +196,16 @@ class Hippocampus:
|
||||
self.llm_summary = None
|
||||
self.entorhinal_cortex = None
|
||||
self.parahippocampal_gyrus = None
|
||||
self.config = None
|
||||
|
||||
def initialize(self, global_config):
|
||||
# 使用导入的 MemoryConfig dataclass 和其 from_global_config 方法
|
||||
self.config = MemoryConfig.from_global_config(global_config)
|
||||
def initialize(self):
|
||||
# 初始化子组件
|
||||
self.entorhinal_cortex = EntorhinalCortex(self)
|
||||
self.parahippocampal_gyrus = ParahippocampalGyrus(self)
|
||||
# 从数据库加载记忆图
|
||||
self.entorhinal_cortex.sync_memory_from_db()
|
||||
self.llm_topic_judge = LLMRequest(self.config.llm_topic_judge, request_type="memory")
|
||||
self.llm_summary = LLMRequest(self.config.llm_summary, request_type="memory")
|
||||
# TODO: API-Adapter修改标记
|
||||
self.llm_topic_judge = LLMRequest(global_config.model.topic_judge, request_type="memory")
|
||||
self.llm_summary = LLMRequest(global_config.model.summary, request_type="memory")
|
||||
|
||||
def get_all_node_names(self) -> list:
|
||||
"""获取记忆图中所有节点的名字列表"""
|
||||
@@ -792,7 +791,6 @@ class EntorhinalCortex:
|
||||
def __init__(self, hippocampus: Hippocampus):
|
||||
self.hippocampus = hippocampus
|
||||
self.memory_graph = hippocampus.memory_graph
|
||||
self.config = hippocampus.config
|
||||
|
||||
def get_memory_sample(self):
|
||||
"""从数据库获取记忆样本"""
|
||||
@@ -801,13 +799,13 @@ class EntorhinalCortex:
|
||||
|
||||
# 创建双峰分布的记忆调度器
|
||||
sample_scheduler = MemoryBuildScheduler(
|
||||
n_hours1=self.config.memory_build_distribution[0],
|
||||
std_hours1=self.config.memory_build_distribution[1],
|
||||
weight1=self.config.memory_build_distribution[2],
|
||||
n_hours2=self.config.memory_build_distribution[3],
|
||||
std_hours2=self.config.memory_build_distribution[4],
|
||||
weight2=self.config.memory_build_distribution[5],
|
||||
total_samples=self.config.build_memory_sample_num,
|
||||
n_hours1=global_config.memory.memory_build_distribution[0],
|
||||
std_hours1=global_config.memory.memory_build_distribution[1],
|
||||
weight1=global_config.memory.memory_build_distribution[2],
|
||||
n_hours2=global_config.memory.memory_build_distribution[3],
|
||||
std_hours2=global_config.memory.memory_build_distribution[4],
|
||||
weight2=global_config.memory.memory_build_distribution[5],
|
||||
total_samples=global_config.memory.memory_build_sample_num,
|
||||
)
|
||||
|
||||
timestamps = sample_scheduler.get_timestamp_array()
|
||||
@@ -818,7 +816,7 @@ class EntorhinalCortex:
|
||||
for timestamp in timestamps:
|
||||
# 调用修改后的 random_get_msg_snippet
|
||||
messages = self.random_get_msg_snippet(
|
||||
timestamp, self.config.build_memory_sample_length, max_memorized_time_per_msg
|
||||
timestamp, global_config.memory.memory_build_sample_length, max_memorized_time_per_msg
|
||||
)
|
||||
if messages:
|
||||
time_diff = (datetime.datetime.now().timestamp() - timestamp) / 3600
|
||||
@@ -1099,7 +1097,6 @@ class ParahippocampalGyrus:
|
||||
def __init__(self, hippocampus: Hippocampus):
|
||||
self.hippocampus = hippocampus
|
||||
self.memory_graph = hippocampus.memory_graph
|
||||
self.config = hippocampus.config
|
||||
|
||||
async def memory_compress(self, messages: list, compress_rate=0.1):
|
||||
"""压缩和总结消息内容,生成记忆主题和摘要。
|
||||
@@ -1159,7 +1156,7 @@ class ParahippocampalGyrus:
|
||||
|
||||
# 3. 过滤掉包含禁用关键词的topic
|
||||
filtered_topics = [
|
||||
topic for topic in topics if not any(keyword in topic for keyword in self.config.memory_ban_words)
|
||||
topic for topic in topics if not any(keyword in topic for keyword in global_config.memory.memory_ban_words)
|
||||
]
|
||||
|
||||
logger.debug(f"过滤后话题: {filtered_topics}")
|
||||
@@ -1222,7 +1219,7 @@ class ParahippocampalGyrus:
|
||||
bar = "█" * filled_length + "-" * (bar_length - filled_length)
|
||||
logger.debug(f"进度: [{bar}] {progress:.1f}% ({i}/{len(memory_samples)})")
|
||||
|
||||
compress_rate = self.config.memory_compress_rate
|
||||
compress_rate = global_config.memory.memory_compress_rate
|
||||
try:
|
||||
compressed_memory, similar_topics_dict = await self.memory_compress(messages, compress_rate)
|
||||
except Exception as e:
|
||||
@@ -1322,7 +1319,7 @@ class ParahippocampalGyrus:
|
||||
edge_data = self.memory_graph.G[source][target]
|
||||
last_modified = edge_data.get("last_modified")
|
||||
|
||||
if current_time - last_modified > 3600 * self.config.memory_forget_time:
|
||||
if current_time - last_modified > 3600 * global_config.memory.memory_forget_time:
|
||||
current_strength = edge_data.get("strength", 1)
|
||||
new_strength = current_strength - 1
|
||||
|
||||
@@ -1430,8 +1427,8 @@ class ParahippocampalGyrus:
|
||||
async def operation_consolidate_memory(self):
|
||||
"""整合记忆:合并节点内相似的记忆项"""
|
||||
start_time = time.time()
|
||||
percentage = self.config.consolidate_memory_percentage
|
||||
similarity_threshold = self.config.consolidation_similarity_threshold
|
||||
percentage = global_config.memory.consolidate_memory_percentage
|
||||
similarity_threshold = global_config.memory.consolidation_similarity_threshold
|
||||
logger.info(f"[整合] 开始检查记忆节点... 检查比例: {percentage:.2%}, 合并阈值: {similarity_threshold}")
|
||||
|
||||
# 获取所有至少有2条记忆项的节点
|
||||
@@ -1544,7 +1541,6 @@ class ParahippocampalGyrus:
|
||||
class HippocampusManager:
|
||||
_instance = None
|
||||
_hippocampus = None
|
||||
_global_config = None
|
||||
_initialized = False
|
||||
|
||||
@classmethod
|
||||
@@ -1559,19 +1555,15 @@ class HippocampusManager:
|
||||
raise RuntimeError("HippocampusManager 尚未初始化,请先调用 initialize 方法")
|
||||
return cls._hippocampus
|
||||
|
||||
def initialize(self, global_config):
|
||||
def initialize(self):
|
||||
"""初始化海马体实例"""
|
||||
if self._initialized:
|
||||
return self._hippocampus
|
||||
|
||||
self._global_config = global_config
|
||||
self._hippocampus = Hippocampus()
|
||||
self._hippocampus.initialize(global_config)
|
||||
self._hippocampus.initialize()
|
||||
self._initialized = True
|
||||
|
||||
# 输出记忆系统参数信息
|
||||
config = self._hippocampus.config
|
||||
|
||||
# 输出记忆图统计信息
|
||||
memory_graph = self._hippocampus.memory_graph.G
|
||||
node_count = len(memory_graph.nodes())
|
||||
@@ -1579,9 +1571,9 @@ class HippocampusManager:
|
||||
|
||||
logger.success(f"""--------------------------------
|
||||
记忆系统参数配置:
|
||||
构建间隔: {global_config.build_memory_interval}秒|样本数: {config.build_memory_sample_num},长度: {config.build_memory_sample_length}|压缩率: {config.memory_compress_rate}
|
||||
记忆构建分布: {config.memory_build_distribution}
|
||||
遗忘间隔: {global_config.forget_memory_interval}秒|遗忘比例: {global_config.memory_forget_percentage}|遗忘: {config.memory_forget_time}小时之后
|
||||
构建间隔: {global_config.memory.memory_build_interval}秒|样本数: {global_config.memory.memory_build_sample_num},长度: {global_config.memory.memory_build_sample_length}|压缩率: {global_config.memory.memory_compress_rate}
|
||||
记忆构建分布: {global_config.memory.memory_build_distribution}
|
||||
遗忘间隔: {global_config.memory.forget_memory_interval}秒|遗忘比例: {global_config.memory.memory_forget_percentage}|遗忘: {global_config.memory.memory_forget_time}小时之后
|
||||
记忆图统计信息: 节点数量: {node_count}, 连接数量: {edge_count}
|
||||
--------------------------------""") # noqa: E501
|
||||
|
||||
|
||||
@@ -7,7 +7,6 @@ import os
|
||||
# 添加项目根目录到系统路径
|
||||
sys.path.append(os.path.dirname(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))))
|
||||
from src.chat.memory_system.Hippocampus import HippocampusManager
|
||||
from src.config.config import global_config
|
||||
from rich.traceback import install
|
||||
|
||||
install(extra_lines=3)
|
||||
@@ -19,7 +18,7 @@ async def test_memory_system():
|
||||
# 初始化记忆系统
|
||||
print("开始初始化记忆系统...")
|
||||
hippocampus_manager = HippocampusManager.get_instance()
|
||||
hippocampus_manager.initialize(global_config=global_config)
|
||||
hippocampus_manager.initialize()
|
||||
print("记忆系统初始化完成")
|
||||
|
||||
# 测试记忆构建
|
||||
|
||||
@@ -34,7 +34,7 @@ root_path = os.path.abspath(os.path.join(os.path.dirname(__file__), "../../.."))
|
||||
sys.path.append(root_path)
|
||||
|
||||
from src.common.logger import get_module_logger # noqa E402
|
||||
from src.common.database import db # noqa E402
|
||||
from common.database.database import db # noqa E402
|
||||
|
||||
logger = get_module_logger("mem_alter")
|
||||
console = Console()
|
||||
|
||||
@@ -1,48 +0,0 @@
|
||||
from dataclasses import dataclass
|
||||
from typing import List
|
||||
|
||||
|
||||
@dataclass
|
||||
class MemoryConfig:
|
||||
"""记忆系统配置类"""
|
||||
|
||||
# 记忆构建相关配置
|
||||
memory_build_distribution: List[float] # 记忆构建的时间分布参数
|
||||
build_memory_sample_num: int # 每次构建记忆的样本数量
|
||||
build_memory_sample_length: int # 每个样本的消息长度
|
||||
memory_compress_rate: float # 记忆压缩率
|
||||
|
||||
# 记忆遗忘相关配置
|
||||
memory_forget_time: int # 记忆遗忘时间(小时)
|
||||
|
||||
# 记忆过滤相关配置
|
||||
memory_ban_words: List[str] # 记忆过滤词列表
|
||||
|
||||
# 新增:记忆整合相关配置
|
||||
consolidation_similarity_threshold: float # 相似度阈值
|
||||
consolidate_memory_percentage: float # 检查节点比例
|
||||
consolidate_memory_interval: int # 记忆整合间隔
|
||||
|
||||
llm_topic_judge: str # 话题判断模型
|
||||
llm_summary: str # 话题总结模型
|
||||
|
||||
@classmethod
|
||||
def from_global_config(cls, global_config):
|
||||
"""从全局配置创建记忆系统配置"""
|
||||
# 使用 getattr 提供默认值,防止全局配置缺少这些项
|
||||
return cls(
|
||||
memory_build_distribution=getattr(
|
||||
global_config, "memory_build_distribution", (24, 12, 0.5, 168, 72, 0.5)
|
||||
), # 添加默认值
|
||||
build_memory_sample_num=getattr(global_config, "build_memory_sample_num", 5),
|
||||
build_memory_sample_length=getattr(global_config, "build_memory_sample_length", 30),
|
||||
memory_compress_rate=getattr(global_config, "memory_compress_rate", 0.1),
|
||||
memory_forget_time=getattr(global_config, "memory_forget_time", 24 * 7),
|
||||
memory_ban_words=getattr(global_config, "memory_ban_words", []),
|
||||
# 新增加载整合配置,并提供默认值
|
||||
consolidation_similarity_threshold=getattr(global_config, "consolidation_similarity_threshold", 0.7),
|
||||
consolidate_memory_percentage=getattr(global_config, "consolidate_memory_percentage", 0.01),
|
||||
consolidate_memory_interval=getattr(global_config, "consolidate_memory_interval", 1000),
|
||||
llm_topic_judge=getattr(global_config, "llm_topic_judge", "default_judge_model"), # 添加默认模型名
|
||||
llm_summary=getattr(global_config, "llm_summary", "default_summary_model"), # 添加默认模型名
|
||||
)
|
||||
@@ -41,7 +41,7 @@ class ChatBot:
|
||||
chat_id = str(message.chat_stream.stream_id)
|
||||
private_name = str(message.message_info.user_info.user_nickname)
|
||||
|
||||
if global_config.enable_pfc_chatting:
|
||||
if global_config.experimental.enable_pfc_chatting:
|
||||
await self.pfc_manager.get_or_create_conversation(chat_id, private_name)
|
||||
|
||||
except Exception as e:
|
||||
@@ -78,19 +78,19 @@ class ChatBot:
|
||||
userinfo = message.message_info.user_info
|
||||
|
||||
# 用户黑名单拦截
|
||||
if userinfo.user_id in global_config.ban_user_id:
|
||||
if userinfo.user_id in global_config.chat_target.ban_user_id:
|
||||
logger.debug(f"用户{userinfo.user_id}被禁止回复")
|
||||
return
|
||||
|
||||
if groupinfo is None:
|
||||
logger.trace("检测到私聊消息,检查")
|
||||
# 好友黑名单拦截
|
||||
if userinfo.user_id not in global_config.talk_allowed_private:
|
||||
if userinfo.user_id not in global_config.experimental.talk_allowed_private:
|
||||
logger.debug(f"用户{userinfo.user_id}没有私聊权限")
|
||||
return
|
||||
|
||||
# 群聊黑名单拦截
|
||||
if groupinfo is not None and groupinfo.group_id not in global_config.talk_allowed_groups:
|
||||
if groupinfo is not None and groupinfo.group_id not in global_config.chat_target.talk_allowed_groups:
|
||||
logger.trace(f"群{groupinfo.group_id}被禁止回复")
|
||||
return
|
||||
|
||||
@@ -112,7 +112,7 @@ class ChatBot:
|
||||
if groupinfo is None:
|
||||
logger.trace("检测到私聊消息")
|
||||
# 是否在配置信息中开启私聊模式
|
||||
if global_config.enable_friend_chat:
|
||||
if global_config.experimental.enable_friend_chat:
|
||||
logger.trace("私聊模式已启用")
|
||||
# 是否进入PFC
|
||||
if global_config.enable_pfc_chatting:
|
||||
|
||||
@@ -5,7 +5,8 @@ import copy
|
||||
from typing import Dict, Optional
|
||||
|
||||
|
||||
from ...common.database import db
|
||||
from ...common.database.database import db
|
||||
from ...common.database.database_model import ChatStreams # 新增导入
|
||||
from maim_message import GroupInfo, UserInfo
|
||||
|
||||
from src.common.logger_manager import get_logger
|
||||
@@ -82,7 +83,13 @@ class ChatManager:
|
||||
def __init__(self):
|
||||
if not self._initialized:
|
||||
self.streams: Dict[str, ChatStream] = {} # stream_id -> ChatStream
|
||||
self._ensure_collection()
|
||||
try:
|
||||
db.connect(reuse_if_open=True)
|
||||
# 确保 ChatStreams 表存在
|
||||
db.create_tables([ChatStreams], safe=True)
|
||||
except Exception as e:
|
||||
logger.error(f"数据库连接或 ChatStreams 表创建失败: {e}")
|
||||
|
||||
self._initialized = True
|
||||
# 在事件循环中启动初始化
|
||||
# asyncio.create_task(self._initialize())
|
||||
@@ -107,15 +114,6 @@ class ChatManager:
|
||||
except Exception as e:
|
||||
logger.error(f"聊天流自动保存失败: {str(e)}")
|
||||
|
||||
@staticmethod
|
||||
def _ensure_collection():
|
||||
"""确保数据库集合存在并创建索引"""
|
||||
if "chat_streams" not in db.list_collection_names():
|
||||
db.create_collection("chat_streams")
|
||||
# 创建索引
|
||||
db.chat_streams.create_index([("stream_id", 1)], unique=True)
|
||||
db.chat_streams.create_index([("platform", 1), ("user_info.user_id", 1), ("group_info.group_id", 1)])
|
||||
|
||||
@staticmethod
|
||||
def _generate_stream_id(platform: str, user_info: UserInfo, group_info: Optional[GroupInfo] = None) -> str:
|
||||
"""生成聊天流唯一ID"""
|
||||
@@ -151,16 +149,43 @@ class ChatManager:
|
||||
stream = self.streams[stream_id]
|
||||
# 更新用户信息和群组信息
|
||||
stream.update_active_time()
|
||||
stream = copy.deepcopy(stream)
|
||||
stream = copy.deepcopy(stream) # 返回副本以避免外部修改影响缓存
|
||||
stream.user_info = user_info
|
||||
if group_info:
|
||||
stream.group_info = group_info
|
||||
return stream
|
||||
|
||||
# 检查数据库中是否存在
|
||||
data = db.chat_streams.find_one({"stream_id": stream_id})
|
||||
if data:
|
||||
stream = ChatStream.from_dict(data)
|
||||
def _db_find_stream_sync(s_id: str):
|
||||
return ChatStreams.get_or_none(ChatStreams.stream_id == s_id)
|
||||
|
||||
model_instance = await asyncio.to_thread(_db_find_stream_sync, stream_id)
|
||||
|
||||
if model_instance:
|
||||
# 从 Peewee 模型转换回 ChatStream.from_dict 期望的格式
|
||||
user_info_data = {
|
||||
"platform": model_instance.user_platform,
|
||||
"user_id": model_instance.user_id,
|
||||
"user_nickname": model_instance.user_nickname,
|
||||
"user_cardname": model_instance.user_cardname or "",
|
||||
}
|
||||
group_info_data = None
|
||||
if model_instance.group_id: # 假设 group_id 为空字符串表示没有群组信息
|
||||
group_info_data = {
|
||||
"platform": model_instance.group_platform,
|
||||
"group_id": model_instance.group_id,
|
||||
"group_name": model_instance.group_name,
|
||||
}
|
||||
|
||||
data_for_from_dict = {
|
||||
"stream_id": model_instance.stream_id,
|
||||
"platform": model_instance.platform,
|
||||
"user_info": user_info_data,
|
||||
"group_info": group_info_data,
|
||||
"create_time": model_instance.create_time,
|
||||
"last_active_time": model_instance.last_active_time,
|
||||
}
|
||||
stream = ChatStream.from_dict(data_for_from_dict)
|
||||
# 更新用户信息和群组信息
|
||||
stream.user_info = user_info
|
||||
if group_info:
|
||||
@@ -175,7 +200,7 @@ class ChatManager:
|
||||
group_info=group_info,
|
||||
)
|
||||
except Exception as e:
|
||||
logger.error(f"创建聊天流失败: {e}")
|
||||
logger.error(f"获取或创建聊天流失败: {e}", exc_info=True)
|
||||
raise e
|
||||
|
||||
# 保存到内存和数据库
|
||||
@@ -205,15 +230,38 @@ class ChatManager:
|
||||
elif stream.user_info and stream.user_info.user_nickname:
|
||||
return f"{stream.user_info.user_nickname}的私聊"
|
||||
else:
|
||||
# 如果没有群名或用户昵称,返回 None 或其他默认值
|
||||
return None
|
||||
|
||||
@staticmethod
|
||||
async def _save_stream(stream: ChatStream):
|
||||
"""保存聊天流到数据库"""
|
||||
if not stream.saved:
|
||||
db.chat_streams.update_one({"stream_id": stream.stream_id}, {"$set": stream.to_dict()}, upsert=True)
|
||||
stream.saved = True
|
||||
stream_data_dict = stream.to_dict()
|
||||
|
||||
def _db_save_stream_sync(s_data_dict: dict):
|
||||
user_info_d = s_data_dict.get("user_info")
|
||||
group_info_d = s_data_dict.get("group_info")
|
||||
|
||||
fields_to_save = {
|
||||
"platform": s_data_dict["platform"],
|
||||
"create_time": s_data_dict["create_time"],
|
||||
"last_active_time": s_data_dict["last_active_time"],
|
||||
"user_platform": user_info_d["platform"] if user_info_d else "",
|
||||
"user_id": user_info_d["user_id"] if user_info_d else "",
|
||||
"user_nickname": user_info_d["user_nickname"] if user_info_d else "",
|
||||
"user_cardname": user_info_d.get("user_cardname", "") if user_info_d else None,
|
||||
"group_platform": group_info_d["platform"] if group_info_d else "",
|
||||
"group_id": group_info_d["group_id"] if group_info_d else "",
|
||||
"group_name": group_info_d["group_name"] if group_info_d else "",
|
||||
}
|
||||
|
||||
ChatStreams.replace(stream_id=s_data_dict["stream_id"], **fields_to_save).execute()
|
||||
|
||||
try:
|
||||
await asyncio.to_thread(_db_save_stream_sync, stream_data_dict)
|
||||
stream.saved = True
|
||||
except Exception as e:
|
||||
logger.error(f"保存聊天流 {stream.stream_id} 到数据库失败 (Peewee): {e}", exc_info=True)
|
||||
|
||||
async def _save_all_streams(self):
|
||||
"""保存所有聊天流"""
|
||||
@@ -222,10 +270,44 @@ class ChatManager:
|
||||
|
||||
async def load_all_streams(self):
|
||||
"""从数据库加载所有聊天流"""
|
||||
all_streams = db.chat_streams.find({})
|
||||
for data in all_streams:
|
||||
stream = ChatStream.from_dict(data)
|
||||
self.streams[stream.stream_id] = stream
|
||||
|
||||
def _db_load_all_streams_sync():
|
||||
loaded_streams_data = []
|
||||
for model_instance in ChatStreams.select():
|
||||
user_info_data = {
|
||||
"platform": model_instance.user_platform,
|
||||
"user_id": model_instance.user_id,
|
||||
"user_nickname": model_instance.user_nickname,
|
||||
"user_cardname": model_instance.user_cardname or "",
|
||||
}
|
||||
group_info_data = None
|
||||
if model_instance.group_id:
|
||||
group_info_data = {
|
||||
"platform": model_instance.group_platform,
|
||||
"group_id": model_instance.group_id,
|
||||
"group_name": model_instance.group_name,
|
||||
}
|
||||
|
||||
data_for_from_dict = {
|
||||
"stream_id": model_instance.stream_id,
|
||||
"platform": model_instance.platform,
|
||||
"user_info": user_info_data,
|
||||
"group_info": group_info_data,
|
||||
"create_time": model_instance.create_time,
|
||||
"last_active_time": model_instance.last_active_time,
|
||||
}
|
||||
loaded_streams_data.append(data_for_from_dict)
|
||||
return loaded_streams_data
|
||||
|
||||
try:
|
||||
all_streams_data_list = await asyncio.to_thread(_db_load_all_streams_sync)
|
||||
self.streams.clear()
|
||||
for data in all_streams_data_list:
|
||||
stream = ChatStream.from_dict(data)
|
||||
stream.saved = True
|
||||
self.streams[stream.stream_id] = stream
|
||||
except Exception as e:
|
||||
logger.error(f"从数据库加载所有聊天流失败 (Peewee): {e}", exc_info=True)
|
||||
|
||||
|
||||
# 创建全局单例
|
||||
|
||||
@@ -38,7 +38,7 @@ class MessageBuffer:
|
||||
|
||||
async def start_caching_messages(self, message: MessageRecv):
|
||||
"""添加消息,启动缓冲"""
|
||||
if not global_config.message_buffer:
|
||||
if not global_config.chat.message_buffer:
|
||||
person_id = person_info_manager.get_person_id(
|
||||
message.message_info.user_info.platform, message.message_info.user_info.user_id
|
||||
)
|
||||
@@ -107,7 +107,7 @@ class MessageBuffer:
|
||||
|
||||
async def query_buffer_result(self, message: MessageRecv) -> bool:
|
||||
"""查询缓冲结果,并清理"""
|
||||
if not global_config.message_buffer:
|
||||
if not global_config.chat.message_buffer:
|
||||
return True
|
||||
person_id_ = self.get_person_id_(
|
||||
message.message_info.platform, message.message_info.user_info.user_id, message.message_info.group_info
|
||||
|
||||
@@ -279,7 +279,7 @@ class MessageManager:
|
||||
)
|
||||
|
||||
# 检查是否超时
|
||||
if thinking_time > global_config.thinking_timeout:
|
||||
if thinking_time > global_config.normal_chat.thinking_timeout:
|
||||
logger.warning(
|
||||
f"[{chat_id}] 消息思考超时 ({thinking_time:.1f}秒),移除消息 {message_earliest.message_info.message_id}"
|
||||
)
|
||||
|
||||
@@ -1,9 +1,10 @@
|
||||
import re
|
||||
from typing import Union
|
||||
|
||||
from ...common.database import db
|
||||
# from ...common.database.database import db # db is now Peewee's SqliteDatabase instance
|
||||
from .message import MessageSending, MessageRecv
|
||||
from .chat_stream import ChatStream
|
||||
from ...common.database.database_model import Messages, RecalledMessages # Import Peewee models
|
||||
from src.common.logger import get_module_logger
|
||||
|
||||
logger = get_module_logger("message_storage")
|
||||
@@ -29,42 +30,66 @@ class MessageStorage:
|
||||
else:
|
||||
filtered_detailed_plain_text = ""
|
||||
|
||||
message_data = {
|
||||
"message_id": message.message_info.message_id,
|
||||
"time": message.message_info.time,
|
||||
"chat_id": chat_stream.stream_id,
|
||||
"chat_info": chat_stream.to_dict(),
|
||||
"user_info": message.message_info.user_info.to_dict(),
|
||||
# 使用过滤后的文本
|
||||
"processed_plain_text": filtered_processed_plain_text,
|
||||
"detailed_plain_text": filtered_detailed_plain_text,
|
||||
"memorized_times": message.memorized_times,
|
||||
}
|
||||
db.messages.insert_one(message_data)
|
||||
chat_info_dict = chat_stream.to_dict()
|
||||
user_info_dict = message.message_info.user_info.to_dict()
|
||||
|
||||
# message_id 现在是 TextField,直接使用字符串值
|
||||
msg_id = message.message_info.message_id
|
||||
|
||||
# 安全地获取 group_info, 如果为 None 则视为空字典
|
||||
group_info_from_chat = chat_info_dict.get("group_info") or {}
|
||||
# 安全地获取 user_info, 如果为 None 则视为空字典 (以防万一)
|
||||
user_info_from_chat = chat_info_dict.get("user_info") or {}
|
||||
|
||||
Messages.create(
|
||||
message_id=msg_id,
|
||||
time=float(message.message_info.time),
|
||||
chat_id=chat_stream.stream_id,
|
||||
# Flattened chat_info
|
||||
chat_info_stream_id=chat_info_dict.get("stream_id"),
|
||||
chat_info_platform=chat_info_dict.get("platform"),
|
||||
chat_info_user_platform=user_info_from_chat.get("platform"),
|
||||
chat_info_user_id=user_info_from_chat.get("user_id"),
|
||||
chat_info_user_nickname=user_info_from_chat.get("user_nickname"),
|
||||
chat_info_user_cardname=user_info_from_chat.get("user_cardname"),
|
||||
chat_info_group_platform=group_info_from_chat.get("platform"),
|
||||
chat_info_group_id=group_info_from_chat.get("group_id"),
|
||||
chat_info_group_name=group_info_from_chat.get("group_name"),
|
||||
chat_info_create_time=float(chat_info_dict.get("create_time", 0.0)),
|
||||
chat_info_last_active_time=float(chat_info_dict.get("last_active_time", 0.0)),
|
||||
# Flattened user_info (message sender)
|
||||
user_platform=user_info_dict.get("platform"),
|
||||
user_id=user_info_dict.get("user_id"),
|
||||
user_nickname=user_info_dict.get("user_nickname"),
|
||||
user_cardname=user_info_dict.get("user_cardname"),
|
||||
# Text content
|
||||
processed_plain_text=filtered_processed_plain_text,
|
||||
detailed_plain_text=filtered_detailed_plain_text,
|
||||
memorized_times=message.memorized_times,
|
||||
)
|
||||
except Exception:
|
||||
logger.exception("存储消息失败")
|
||||
|
||||
@staticmethod
|
||||
async def store_recalled_message(message_id: str, time: str, chat_stream: ChatStream) -> None:
|
||||
"""存储撤回消息到数据库"""
|
||||
if "recalled_messages" not in db.list_collection_names():
|
||||
db.create_collection("recalled_messages")
|
||||
else:
|
||||
try:
|
||||
message_data = {
|
||||
"message_id": message_id,
|
||||
"time": time,
|
||||
"stream_id": chat_stream.stream_id,
|
||||
}
|
||||
db.recalled_messages.insert_one(message_data)
|
||||
except Exception:
|
||||
logger.exception("存储撤回消息失败")
|
||||
# Table creation is handled by initialize_database in database_model.py
|
||||
try:
|
||||
RecalledMessages.create(
|
||||
message_id=message_id,
|
||||
time=float(time), # Assuming time is a string representing a float timestamp
|
||||
stream_id=chat_stream.stream_id,
|
||||
)
|
||||
except Exception:
|
||||
logger.exception("存储撤回消息失败")
|
||||
|
||||
@staticmethod
|
||||
async def remove_recalled_message(time: str) -> None:
|
||||
"""删除撤回消息"""
|
||||
try:
|
||||
db.recalled_messages.delete_many({"time": {"$lt": time - 300}})
|
||||
# Assuming input 'time' is a string timestamp that can be converted to float
|
||||
current_time_float = float(time)
|
||||
RecalledMessages.delete().where(RecalledMessages.time < (current_time_float - 300)).execute()
|
||||
except Exception:
|
||||
logger.exception("删除撤回消息失败")
|
||||
|
||||
|
||||
@@ -12,7 +12,8 @@ import base64
|
||||
from PIL import Image
|
||||
import io
|
||||
import os
|
||||
from ...common.database import db
|
||||
from src.common.database.database import db # 确保 db 被导入用于 create_tables
|
||||
from src.common.database.database_model import LLMUsage # 导入 LLMUsage 模型
|
||||
from ...config.config import global_config
|
||||
from rich.traceback import install
|
||||
|
||||
@@ -85,8 +86,6 @@ async def _safely_record(request_content: Dict[str, Any], payload: Dict[str, Any
|
||||
f"data:image/{image_format.lower() if image_format else 'jpeg'};base64,"
|
||||
f"{image_base64[:10]}...{image_base64[-10:]}"
|
||||
)
|
||||
# if isinstance(content, str) and len(content) > 100:
|
||||
# payload["messages"][0]["content"] = content[:100]
|
||||
return payload
|
||||
|
||||
|
||||
@@ -111,8 +110,8 @@ class LLMRequest:
|
||||
def __init__(self, model: dict, **kwargs):
|
||||
# 将大写的配置键转换为小写并从config中获取实际值
|
||||
try:
|
||||
self.api_key = os.environ[model["key"]]
|
||||
self.base_url = os.environ[model["base_url"]]
|
||||
self.api_key = os.environ[f"{model['provider']}_KEY"]
|
||||
self.base_url = os.environ[f"{model['provider']}_BASE_URL"]
|
||||
except AttributeError as e:
|
||||
logger.error(f"原始 model dict 信息:{model}")
|
||||
logger.error(f"配置错误:找不到对应的配置项 - {str(e)}")
|
||||
@@ -134,13 +133,11 @@ class LLMRequest:
|
||||
def _init_database():
|
||||
"""初始化数据库集合"""
|
||||
try:
|
||||
# 创建llm_usage集合的索引
|
||||
db.llm_usage.create_index([("timestamp", 1)])
|
||||
db.llm_usage.create_index([("model_name", 1)])
|
||||
db.llm_usage.create_index([("user_id", 1)])
|
||||
db.llm_usage.create_index([("request_type", 1)])
|
||||
# 使用 Peewee 创建表,safe=True 表示如果表已存在则不会抛出错误
|
||||
db.create_tables([LLMUsage], safe=True)
|
||||
logger.debug("LLMUsage 表已初始化/确保存在。")
|
||||
except Exception as e:
|
||||
logger.error(f"创建数据库索引失败: {str(e)}")
|
||||
logger.error(f"创建 LLMUsage 表失败: {str(e)}")
|
||||
|
||||
def _record_usage(
|
||||
self,
|
||||
@@ -165,19 +162,19 @@ class LLMRequest:
|
||||
request_type = self.request_type
|
||||
|
||||
try:
|
||||
usage_data = {
|
||||
"model_name": self.model_name,
|
||||
"user_id": user_id,
|
||||
"request_type": request_type,
|
||||
"endpoint": endpoint,
|
||||
"prompt_tokens": prompt_tokens,
|
||||
"completion_tokens": completion_tokens,
|
||||
"total_tokens": total_tokens,
|
||||
"cost": self._calculate_cost(prompt_tokens, completion_tokens),
|
||||
"status": "success",
|
||||
"timestamp": datetime.now(),
|
||||
}
|
||||
db.llm_usage.insert_one(usage_data)
|
||||
# 使用 Peewee 模型创建记录
|
||||
LLMUsage.create(
|
||||
model_name=self.model_name,
|
||||
user_id=user_id,
|
||||
request_type=request_type,
|
||||
endpoint=endpoint,
|
||||
prompt_tokens=prompt_tokens,
|
||||
completion_tokens=completion_tokens,
|
||||
total_tokens=total_tokens,
|
||||
cost=self._calculate_cost(prompt_tokens, completion_tokens),
|
||||
status="success",
|
||||
timestamp=datetime.now(), # Peewee 会处理 DateTimeField
|
||||
)
|
||||
logger.trace(
|
||||
f"Token使用情况 - 模型: {self.model_name}, "
|
||||
f"用户: {user_id}, 类型: {request_type}, "
|
||||
@@ -500,11 +497,11 @@ class LLMRequest:
|
||||
logger.warning(f"检测到403错误,模型从 {old_model_name} 降级为 {self.model_name}")
|
||||
|
||||
# 对全局配置进行更新
|
||||
if global_config.llm_normal.get("name") == old_model_name:
|
||||
global_config.llm_normal["name"] = self.model_name
|
||||
if global_config.model.normal.get("name") == old_model_name:
|
||||
global_config.model.normal["name"] = self.model_name
|
||||
logger.warning(f"将全局配置中的 llm_normal 模型临时降级至{self.model_name}")
|
||||
if global_config.llm_reasoning.get("name") == old_model_name:
|
||||
global_config.llm_reasoning["name"] = self.model_name
|
||||
if global_config.model.reasoning.get("name") == old_model_name:
|
||||
global_config.model.reasoning["name"] = self.model_name
|
||||
logger.warning(f"将全局配置中的 llm_reasoning 模型临时降级至{self.model_name}")
|
||||
|
||||
if payload and "model" in payload:
|
||||
@@ -636,7 +633,7 @@ class LLMRequest:
|
||||
**params_copy,
|
||||
}
|
||||
if "max_tokens" not in payload and "max_completion_tokens" not in payload:
|
||||
payload["max_tokens"] = global_config.model_max_output_length
|
||||
payload["max_tokens"] = global_config.model.model_max_output_length
|
||||
# 如果 payload 中依然存在 max_tokens 且需要转换,在这里进行再次检查
|
||||
if self.model_name.lower() in self.MODELS_NEEDING_TRANSFORMATION and "max_tokens" in payload:
|
||||
payload["max_completion_tokens"] = payload.pop("max_tokens")
|
||||
|
||||
@@ -73,8 +73,8 @@ class NormalChat:
|
||||
messageinfo = message.message_info
|
||||
|
||||
bot_user_info = UserInfo(
|
||||
user_id=global_config.BOT_QQ,
|
||||
user_nickname=global_config.BOT_NICKNAME,
|
||||
user_id=global_config.bot.qq_account,
|
||||
user_nickname=global_config.bot.nickname,
|
||||
platform=messageinfo.platform,
|
||||
)
|
||||
|
||||
@@ -121,8 +121,8 @@ class NormalChat:
|
||||
message_id=thinking_id,
|
||||
chat_stream=self.chat_stream, # 使用 self.chat_stream
|
||||
bot_user_info=UserInfo(
|
||||
user_id=global_config.BOT_QQ,
|
||||
user_nickname=global_config.BOT_NICKNAME,
|
||||
user_id=global_config.bot.qq_account,
|
||||
user_nickname=global_config.bot.nickname,
|
||||
platform=message.message_info.platform,
|
||||
),
|
||||
sender_info=message.message_info.user_info,
|
||||
@@ -147,7 +147,7 @@ class NormalChat:
|
||||
# 改为实例方法
|
||||
async def _handle_emoji(self, message: MessageRecv, response: str):
|
||||
"""处理表情包"""
|
||||
if random() < global_config.emoji_chance:
|
||||
if random() < global_config.normal_chat.emoji_chance:
|
||||
emoji_raw = await emoji_manager.get_emoji_for_text(response)
|
||||
if emoji_raw:
|
||||
emoji_path, description = emoji_raw
|
||||
@@ -160,8 +160,8 @@ class NormalChat:
|
||||
message_id="mt" + str(thinking_time_point),
|
||||
chat_stream=self.chat_stream, # 使用 self.chat_stream
|
||||
bot_user_info=UserInfo(
|
||||
user_id=global_config.BOT_QQ,
|
||||
user_nickname=global_config.BOT_NICKNAME,
|
||||
user_id=global_config.bot.qq_account,
|
||||
user_nickname=global_config.bot.nickname,
|
||||
platform=message.message_info.platform,
|
||||
),
|
||||
sender_info=message.message_info.user_info,
|
||||
@@ -186,7 +186,7 @@ class NormalChat:
|
||||
label=emotion,
|
||||
stance=stance, # 使用 self.chat_stream
|
||||
)
|
||||
self.mood_manager.update_mood_from_emotion(emotion, global_config.mood_intensity_factor)
|
||||
self.mood_manager.update_mood_from_emotion(emotion, global_config.mood.mood_intensity_factor)
|
||||
|
||||
async def _reply_interested_message(self) -> None:
|
||||
"""
|
||||
@@ -430,7 +430,7 @@ class NormalChat:
|
||||
def _check_ban_words(text: str, chat: ChatStream, userinfo: UserInfo) -> bool:
|
||||
"""检查消息中是否包含过滤词"""
|
||||
stream_name = chat_manager.get_stream_name(chat.stream_id) or chat.stream_id
|
||||
for word in global_config.ban_words:
|
||||
for word in global_config.chat.ban_words:
|
||||
if word in text:
|
||||
logger.info(
|
||||
f"[{stream_name}][{chat.group_info.group_name if chat.group_info else '私聊'}]"
|
||||
@@ -445,7 +445,7 @@ class NormalChat:
|
||||
def _check_ban_regex(text: str, chat: ChatStream, userinfo: UserInfo) -> bool:
|
||||
"""检查消息是否匹配过滤正则表达式"""
|
||||
stream_name = chat_manager.get_stream_name(chat.stream_id) or chat.stream_id
|
||||
for pattern in global_config.ban_msgs_regex:
|
||||
for pattern in global_config.chat.ban_msgs_regex:
|
||||
if pattern.search(text):
|
||||
logger.info(
|
||||
f"[{stream_name}][{chat.group_info.group_name if chat.group_info else '私聊'}]"
|
||||
|
||||
@@ -15,21 +15,22 @@ logger = get_logger("llm")
|
||||
|
||||
class NormalChatGenerator:
|
||||
def __init__(self):
|
||||
# TODO: API-Adapter修改标记
|
||||
self.model_reasoning = LLMRequest(
|
||||
model=global_config.llm_reasoning,
|
||||
model=global_config.model.reasoning,
|
||||
temperature=0.7,
|
||||
max_tokens=3000,
|
||||
request_type="response_reasoning",
|
||||
)
|
||||
self.model_normal = LLMRequest(
|
||||
model=global_config.llm_normal,
|
||||
temperature=global_config.llm_normal["temp"],
|
||||
model=global_config.model.normal,
|
||||
temperature=global_config.model.normal["temp"],
|
||||
max_tokens=256,
|
||||
request_type="response_reasoning",
|
||||
)
|
||||
|
||||
self.model_sum = LLMRequest(
|
||||
model=global_config.llm_summary, temperature=0.7, max_tokens=3000, request_type="relation"
|
||||
model=global_config.model.summary, temperature=0.7, max_tokens=3000, request_type="relation"
|
||||
)
|
||||
self.current_model_type = "r1" # 默认使用 R1
|
||||
self.current_model_name = "unknown model"
|
||||
@@ -37,7 +38,7 @@ class NormalChatGenerator:
|
||||
async def generate_response(self, message: MessageThinking, thinking_id: str) -> Optional[Union[str, List[str]]]:
|
||||
"""根据当前模型类型选择对应的生成函数"""
|
||||
# 从global_config中获取模型概率值并选择模型
|
||||
if random.random() < global_config.model_reasoning_probability:
|
||||
if random.random() < global_config.normal_chat.reasoning_model_probability:
|
||||
self.current_model_type = "深深地"
|
||||
current_model = self.model_reasoning
|
||||
else:
|
||||
@@ -51,7 +52,7 @@ class NormalChatGenerator:
|
||||
model_response = await self._generate_response_with_model(message, current_model, thinking_id)
|
||||
|
||||
if model_response:
|
||||
logger.info(f"{global_config.BOT_NICKNAME}的回复是:{model_response}")
|
||||
logger.info(f"{global_config.bot.nickname}的回复是:{model_response}")
|
||||
model_response = await self._process_response(model_response)
|
||||
|
||||
return model_response
|
||||
@@ -113,7 +114,7 @@ class NormalChatGenerator:
|
||||
- "中立":不表达明确立场或无关回应
|
||||
2. 从"开心,愤怒,悲伤,惊讶,平静,害羞,恐惧,厌恶,困惑"中选出最匹配的1个情感标签
|
||||
3. 按照"立场-情绪"的格式直接输出结果,例如:"反对-愤怒"
|
||||
4. 考虑回复者的人格设定为{global_config.personality_core}
|
||||
4. 考虑回复者的人格设定为{global_config.personality.personality_core}
|
||||
|
||||
对话示例:
|
||||
被回复:「A就是笨」
|
||||
|
||||
@@ -1,18 +1,20 @@
|
||||
import asyncio
|
||||
|
||||
from src.config.config import global_config
|
||||
from .willing_manager import BaseWillingManager
|
||||
|
||||
|
||||
class ClassicalWillingManager(BaseWillingManager):
|
||||
def __init__(self):
|
||||
super().__init__()
|
||||
self._decay_task: asyncio.Task = None
|
||||
self._decay_task: asyncio.Task | None = None
|
||||
|
||||
async def _decay_reply_willing(self):
|
||||
"""定期衰减回复意愿"""
|
||||
while True:
|
||||
await asyncio.sleep(1)
|
||||
for chat_id in self.chat_reply_willing:
|
||||
self.chat_reply_willing[chat_id] = max(0, self.chat_reply_willing[chat_id] * 0.9)
|
||||
self.chat_reply_willing[chat_id] = max(0.0, self.chat_reply_willing[chat_id] * 0.9)
|
||||
|
||||
async def async_task_starter(self):
|
||||
if self._decay_task is None:
|
||||
@@ -23,35 +25,33 @@ class ClassicalWillingManager(BaseWillingManager):
|
||||
chat_id = willing_info.chat_id
|
||||
current_willing = self.chat_reply_willing.get(chat_id, 0)
|
||||
|
||||
interested_rate = willing_info.interested_rate * self.global_config.response_interested_rate_amplifier
|
||||
interested_rate = willing_info.interested_rate * global_config.normal_chat.response_interested_rate_amplifier
|
||||
|
||||
if interested_rate > 0.4:
|
||||
current_willing += interested_rate - 0.3
|
||||
|
||||
if willing_info.is_mentioned_bot and current_willing < 1.0:
|
||||
current_willing += 1
|
||||
elif willing_info.is_mentioned_bot:
|
||||
current_willing += 0.05
|
||||
if willing_info.is_mentioned_bot:
|
||||
current_willing += 1 if current_willing < 1.0 else 0.05
|
||||
|
||||
is_emoji_not_reply = False
|
||||
if willing_info.is_emoji:
|
||||
if self.global_config.emoji_response_penalty != 0:
|
||||
current_willing *= self.global_config.emoji_response_penalty
|
||||
if global_config.normal_chat.emoji_response_penalty != 0:
|
||||
current_willing *= global_config.normal_chat.emoji_response_penalty
|
||||
else:
|
||||
is_emoji_not_reply = True
|
||||
|
||||
self.chat_reply_willing[chat_id] = min(current_willing, 3.0)
|
||||
|
||||
reply_probability = min(
|
||||
max((current_willing - 0.5), 0.01) * self.global_config.response_willing_amplifier * 2, 1
|
||||
max((current_willing - 0.5), 0.01) * global_config.normal_chat.response_willing_amplifier * 2, 1
|
||||
)
|
||||
|
||||
# 检查群组权限(如果是群聊)
|
||||
if (
|
||||
willing_info.group_info
|
||||
and willing_info.group_info.group_id in self.global_config.talk_frequency_down_groups
|
||||
and willing_info.group_info.group_id in global_config.chat_target.talk_frequency_down_groups
|
||||
):
|
||||
reply_probability = reply_probability / self.global_config.down_frequency_rate
|
||||
reply_probability = reply_probability / global_config.normal_chat.down_frequency_rate
|
||||
|
||||
if is_emoji_not_reply:
|
||||
reply_probability = 0
|
||||
@@ -61,7 +61,7 @@ class ClassicalWillingManager(BaseWillingManager):
|
||||
async def before_generate_reply_handle(self, message_id):
|
||||
chat_id = self.ongoing_messages[message_id].chat_id
|
||||
current_willing = self.chat_reply_willing.get(chat_id, 0)
|
||||
self.chat_reply_willing[chat_id] = max(0, current_willing - 1.8)
|
||||
self.chat_reply_willing[chat_id] = max(0.0, current_willing - 1.8)
|
||||
|
||||
async def after_generate_reply_handle(self, message_id):
|
||||
if message_id not in self.ongoing_messages:
|
||||
@@ -70,7 +70,7 @@ class ClassicalWillingManager(BaseWillingManager):
|
||||
chat_id = self.ongoing_messages[message_id].chat_id
|
||||
current_willing = self.chat_reply_willing.get(chat_id, 0)
|
||||
if current_willing < 1:
|
||||
self.chat_reply_willing[chat_id] = min(1, current_willing + 0.4)
|
||||
self.chat_reply_willing[chat_id] = min(1.0, current_willing + 0.4)
|
||||
|
||||
async def bombing_buffer_message_handle(self, message_id):
|
||||
return await super().bombing_buffer_message_handle(message_id)
|
||||
|
||||
@@ -19,6 +19,7 @@ Mxp 模式:梦溪畔独家赞助
|
||||
下下策是询问一个菜鸟(@梦溪畔)
|
||||
"""
|
||||
|
||||
from src.config.config import global_config
|
||||
from .willing_manager import BaseWillingManager
|
||||
from typing import Dict
|
||||
import asyncio
|
||||
@@ -50,8 +51,6 @@ class MxpWillingManager(BaseWillingManager):
|
||||
|
||||
self.mention_willing_gain = 0.6 # 提及意愿增益
|
||||
self.interest_willing_gain = 0.3 # 兴趣意愿增益
|
||||
self.emoji_response_penalty = self.global_config.emoji_response_penalty # 表情包回复惩罚
|
||||
self.down_frequency_rate = self.global_config.down_frequency_rate # 降低回复频率的群组惩罚系数
|
||||
self.single_chat_gain = 0.12 # 单聊增益
|
||||
|
||||
self.fatigue_messages_triggered_num = self.expected_replies_per_min # 疲劳消息触发数量(int)
|
||||
@@ -179,10 +178,10 @@ class MxpWillingManager(BaseWillingManager):
|
||||
probability = self._willing_to_probability(current_willing)
|
||||
|
||||
if w_info.is_emoji:
|
||||
probability *= self.emoji_response_penalty
|
||||
probability *= global_config.normal_chat.emoji_response_penalty
|
||||
|
||||
if w_info.group_info and w_info.group_info.group_id in self.global_config.talk_frequency_down_groups:
|
||||
probability /= self.down_frequency_rate
|
||||
if w_info.group_info and w_info.group_info.group_id in global_config.chat_target.talk_frequency_down_groups:
|
||||
probability /= global_config.normal_chat.down_frequency_rate
|
||||
|
||||
self.temporary_willing = current_willing
|
||||
|
||||
|
||||
@@ -1,6 +1,6 @@
|
||||
from src.common.logger import LogConfig, WILLING_STYLE_CONFIG, LoguruLogger, get_module_logger
|
||||
from dataclasses import dataclass
|
||||
from src.config.config import global_config, BotConfig
|
||||
from src.config.config import global_config
|
||||
from src.chat.message_receive.chat_stream import ChatStream, GroupInfo
|
||||
from src.chat.message_receive.message import MessageRecv
|
||||
from src.chat.person_info.person_info import person_info_manager, PersonInfoManager
|
||||
@@ -93,7 +93,6 @@ class BaseWillingManager(ABC):
|
||||
self.chat_reply_willing: Dict[str, float] = {} # 存储每个聊天流的回复意愿(chat_id)
|
||||
self.ongoing_messages: Dict[str, WillingInfo] = {} # 当前正在进行的消息(message_id)
|
||||
self.lock = asyncio.Lock()
|
||||
self.global_config: BotConfig = global_config
|
||||
self.logger: LoguruLogger = logger
|
||||
|
||||
def setup(self, message: MessageRecv, chat: ChatStream, is_mentioned_bot: bool, interested_rate: float):
|
||||
@@ -173,7 +172,7 @@ def init_willing_manager() -> BaseWillingManager:
|
||||
Returns:
|
||||
对应mode的WillingManager实例
|
||||
"""
|
||||
mode = global_config.willing_mode.lower()
|
||||
mode = global_config.normal_chat.willing_mode.lower()
|
||||
return BaseWillingManager.create(mode)
|
||||
|
||||
|
||||
|
||||
@@ -1,5 +1,6 @@
|
||||
from src.common.logger_manager import get_logger
|
||||
from ...common.database import db
|
||||
from ...common.database.database import db
|
||||
from ...common.database.database_model import PersonInfo # 新增导入
|
||||
import copy
|
||||
import hashlib
|
||||
from typing import Any, Callable, Dict
|
||||
@@ -16,7 +17,7 @@ matplotlib.use("Agg")
|
||||
import matplotlib.pyplot as plt
|
||||
from pathlib import Path
|
||||
import pandas as pd
|
||||
import json
|
||||
import json # 新增导入
|
||||
import re
|
||||
|
||||
|
||||
@@ -38,47 +39,49 @@ logger = get_logger("person_info")
|
||||
|
||||
person_info_default = {
|
||||
"person_id": None,
|
||||
"person_name": None,
|
||||
"person_name": None, # 模型中已设为 null=True,此默认值OK
|
||||
"name_reason": None,
|
||||
"platform": None,
|
||||
"user_id": None,
|
||||
"nickname": None,
|
||||
# "age" : 0,
|
||||
"platform": "unknown", # 提供非None的默认值
|
||||
"user_id": "unknown", # 提供非None的默认值
|
||||
"nickname": "Unknown", # 提供非None的默认值
|
||||
"relationship_value": 0,
|
||||
# "saved" : True,
|
||||
# "impression" : None,
|
||||
# "gender" : Unkown,
|
||||
"konw_time": 0,
|
||||
"know_time": 0, # 修正拼写:konw_time -> know_time
|
||||
"msg_interval": 2000,
|
||||
"msg_interval_list": [],
|
||||
"user_cardname": None, # 添加群名片
|
||||
"user_avatar": None, # 添加头像信息(例如URL或标识符)
|
||||
} # 个人信息的各项与默认值在此定义,以下处理会自动创建/补全每一项
|
||||
"msg_interval_list": [], # 将作为 JSON 字符串存储在 Peewee 的 TextField
|
||||
"user_cardname": None, # 注意:此字段不在 PersonInfo Peewee 模型中
|
||||
"user_avatar": None, # 注意:此字段不在 PersonInfo Peewee 模型中
|
||||
}
|
||||
|
||||
|
||||
class PersonInfoManager:
|
||||
def __init__(self):
|
||||
self.person_name_list = {}
|
||||
# TODO: API-Adapter修改标记
|
||||
self.qv_name_llm = LLMRequest(
|
||||
model=global_config.llm_normal,
|
||||
model=global_config.model.normal,
|
||||
max_tokens=256,
|
||||
request_type="qv_name",
|
||||
)
|
||||
if "person_info" not in db.list_collection_names():
|
||||
db.create_collection("person_info")
|
||||
db.person_info.create_index("person_id", unique=True)
|
||||
try:
|
||||
db.connect(reuse_if_open=True)
|
||||
db.create_tables([PersonInfo], safe=True)
|
||||
except Exception as e:
|
||||
logger.error(f"数据库连接或 PersonInfo 表创建失败: {e}")
|
||||
|
||||
# 初始化时读取所有person_name
|
||||
cursor = db.person_info.find({"person_name": {"$exists": True}}, {"person_id": 1, "person_name": 1, "_id": 0})
|
||||
for doc in cursor:
|
||||
if doc.get("person_name"):
|
||||
self.person_name_list[doc["person_id"]] = doc["person_name"]
|
||||
logger.debug(f"已加载 {len(self.person_name_list)} 个用户名称")
|
||||
try:
|
||||
for record in PersonInfo.select(PersonInfo.person_id, PersonInfo.person_name).where(
|
||||
PersonInfo.person_name.is_null(False)
|
||||
):
|
||||
if record.person_name:
|
||||
self.person_name_list[record.person_id] = record.person_name
|
||||
logger.debug(f"已加载 {len(self.person_name_list)} 个用户名称 (Peewee)")
|
||||
except Exception as e:
|
||||
logger.error(f"从 Peewee 加载 person_name_list 失败: {e}")
|
||||
|
||||
@staticmethod
|
||||
def get_person_id(platform: str, user_id: int):
|
||||
"""获取唯一id"""
|
||||
# 如果platform中存在-,就截取-后面的部分
|
||||
if "-" in platform:
|
||||
platform = platform.split("-")[1]
|
||||
|
||||
@@ -86,13 +89,17 @@ class PersonInfoManager:
|
||||
key = "_".join(components)
|
||||
return hashlib.md5(key.encode()).hexdigest()
|
||||
|
||||
def is_person_known(self, platform: str, user_id: int):
|
||||
async def is_person_known(self, platform: str, user_id: int):
|
||||
"""判断是否认识某人"""
|
||||
person_id = self.get_person_id(platform, user_id)
|
||||
document = db.person_info.find_one({"person_id": person_id})
|
||||
if document:
|
||||
return True
|
||||
else:
|
||||
|
||||
def _db_check_known_sync(p_id: str):
|
||||
return PersonInfo.get_or_none(PersonInfo.person_id == p_id) is not None
|
||||
|
||||
try:
|
||||
return await asyncio.to_thread(_db_check_known_sync, person_id)
|
||||
except Exception as e:
|
||||
logger.error(f"检查用户 {person_id} 是否已知时出错 (Peewee): {e}")
|
||||
return False
|
||||
|
||||
def get_person_id_by_person_name(self, person_name: str):
|
||||
@@ -111,73 +118,111 @@ class PersonInfoManager:
|
||||
return
|
||||
|
||||
_person_info_default = copy.deepcopy(person_info_default)
|
||||
_person_info_default["person_id"] = person_id
|
||||
model_fields = PersonInfo._meta.fields.keys()
|
||||
|
||||
final_data = {"person_id": person_id}
|
||||
|
||||
if data:
|
||||
for key in _person_info_default:
|
||||
if key != "person_id" and key in data:
|
||||
_person_info_default[key] = data[key]
|
||||
for key, value in data.items():
|
||||
if key in model_fields:
|
||||
final_data[key] = value
|
||||
|
||||
db.person_info.insert_one(_person_info_default)
|
||||
for key, default_value in _person_info_default.items():
|
||||
if key in model_fields and key not in final_data:
|
||||
final_data[key] = default_value
|
||||
|
||||
if "msg_interval_list" in final_data and isinstance(final_data["msg_interval_list"], list):
|
||||
final_data["msg_interval_list"] = json.dumps(final_data["msg_interval_list"])
|
||||
elif "msg_interval_list" not in final_data and "msg_interval_list" in model_fields:
|
||||
final_data["msg_interval_list"] = json.dumps([])
|
||||
|
||||
def _db_create_sync(p_data: dict):
|
||||
try:
|
||||
PersonInfo.create(**p_data)
|
||||
return True
|
||||
except Exception as e:
|
||||
logger.error(f"创建 PersonInfo 记录 {p_data.get('person_id')} 失败 (Peewee): {e}")
|
||||
return False
|
||||
|
||||
await asyncio.to_thread(_db_create_sync, final_data)
|
||||
|
||||
async def update_one_field(self, person_id: str, field_name: str, value, data: dict = None):
|
||||
"""更新某一个字段,会补全"""
|
||||
if field_name not in person_info_default.keys():
|
||||
logger.debug(f"更新'{field_name}'失败,未定义的字段")
|
||||
if field_name not in PersonInfo._meta.fields:
|
||||
if field_name in person_info_default:
|
||||
logger.debug(f"更新'{field_name}'跳过,字段存在于默认配置但不在 PersonInfo Peewee 模型中。")
|
||||
return
|
||||
logger.debug(f"更新'{field_name}'失败,未在 PersonInfo Peewee 模型中定义的字段。")
|
||||
return
|
||||
|
||||
document = db.person_info.find_one({"person_id": person_id})
|
||||
def _db_update_sync(p_id: str, f_name: str, val):
|
||||
record = PersonInfo.get_or_none(PersonInfo.person_id == p_id)
|
||||
if record:
|
||||
if f_name == "msg_interval_list" and isinstance(val, list):
|
||||
setattr(record, f_name, json.dumps(val))
|
||||
else:
|
||||
setattr(record, f_name, val)
|
||||
record.save()
|
||||
return True, False
|
||||
return False, True
|
||||
|
||||
if document:
|
||||
db.person_info.update_one({"person_id": person_id}, {"$set": {field_name: value}})
|
||||
else:
|
||||
data[field_name] = value
|
||||
logger.debug(f"更新时{person_id}不存在,已新建")
|
||||
await self.create_person_info(person_id, data)
|
||||
found, needs_creation = await asyncio.to_thread(_db_update_sync, person_id, field_name, value)
|
||||
|
||||
if needs_creation:
|
||||
logger.debug(f"更新时 {person_id} 不存在,将新建。")
|
||||
creation_data = data if data is not None else {}
|
||||
creation_data[field_name] = value
|
||||
if "platform" not in creation_data or "user_id" not in creation_data:
|
||||
logger.warning(f"为 {person_id} 创建记录时,platform/user_id 可能缺失。")
|
||||
|
||||
await self.create_person_info(person_id, creation_data)
|
||||
|
||||
@staticmethod
|
||||
async def has_one_field(person_id: str, field_name: str):
|
||||
"""判断是否存在某一个字段"""
|
||||
document = db.person_info.find_one({"person_id": person_id}, {field_name: 1})
|
||||
if document:
|
||||
return True
|
||||
else:
|
||||
if field_name not in PersonInfo._meta.fields:
|
||||
logger.debug(f"检查字段'{field_name}'失败,未在 PersonInfo Peewee 模型中定义。")
|
||||
return False
|
||||
|
||||
def _db_has_field_sync(p_id: str, f_name: str):
|
||||
record = PersonInfo.get_or_none(PersonInfo.person_id == p_id)
|
||||
if record:
|
||||
return True
|
||||
return False
|
||||
|
||||
try:
|
||||
return await asyncio.to_thread(_db_has_field_sync, person_id, field_name)
|
||||
except Exception as e:
|
||||
logger.error(f"检查字段 {field_name} for {person_id} 时出错 (Peewee): {e}")
|
||||
return False
|
||||
|
||||
@staticmethod
|
||||
def _extract_json_from_text(text: str) -> dict:
|
||||
"""从文本中提取JSON数据的高容错方法"""
|
||||
try:
|
||||
# 尝试直接解析
|
||||
parsed_json = json.loads(text)
|
||||
# 如果解析结果是列表,尝试取第一个元素
|
||||
if isinstance(parsed_json, list):
|
||||
if parsed_json: # 检查列表是否为空
|
||||
if parsed_json:
|
||||
parsed_json = parsed_json[0]
|
||||
else: # 如果列表为空,重置为 None,走后续逻辑
|
||||
else:
|
||||
parsed_json = None
|
||||
# 确保解析结果是字典
|
||||
if isinstance(parsed_json, dict):
|
||||
return parsed_json
|
||||
|
||||
except json.JSONDecodeError:
|
||||
# 解析失败,继续尝试其他方法
|
||||
pass
|
||||
except Exception as e:
|
||||
logger.warning(f"尝试直接解析JSON时发生意外错误: {e}")
|
||||
pass # 继续尝试其他方法
|
||||
pass
|
||||
|
||||
# 如果直接解析失败或结果不是字典
|
||||
try:
|
||||
# 尝试找到JSON对象格式的部分
|
||||
json_pattern = r"\{[^{}]*\}"
|
||||
matches = re.findall(json_pattern, text)
|
||||
if matches:
|
||||
parsed_obj = json.loads(matches[0])
|
||||
if isinstance(parsed_obj, dict): # 确保是字典
|
||||
if isinstance(parsed_obj, dict):
|
||||
return parsed_obj
|
||||
|
||||
# 如果上面都失败了,尝试提取键值对
|
||||
nickname_pattern = r'"nickname"[:\s]+"([^"]+)"'
|
||||
reason_pattern = r'"reason"[:\s]+"([^"]+)"'
|
||||
|
||||
@@ -192,7 +237,6 @@ class PersonInfoManager:
|
||||
except Exception as e:
|
||||
logger.error(f"后备JSON提取失败: {str(e)}")
|
||||
|
||||
# 如果所有方法都失败了,返回默认字典
|
||||
logger.warning(f"无法从文本中提取有效的JSON字典: {text}")
|
||||
return {"nickname": "", "reason": ""}
|
||||
|
||||
@@ -207,9 +251,11 @@ class PersonInfoManager:
|
||||
old_name = await self.get_value(person_id, "person_name")
|
||||
old_reason = await self.get_value(person_id, "name_reason")
|
||||
|
||||
max_retries = 5 # 最大重试次数
|
||||
max_retries = 5
|
||||
current_try = 0
|
||||
existing_names = ""
|
||||
existing_names_str = ""
|
||||
current_name_set = set(self.person_name_list.values())
|
||||
|
||||
while current_try < max_retries:
|
||||
individuality = Individuality.get_instance()
|
||||
prompt_personality = individuality.get_prompt(x_person=2, level=1)
|
||||
@@ -224,45 +270,58 @@ class PersonInfoManager:
|
||||
qv_name_prompt += f"你之前叫他{old_name},是因为{old_reason},"
|
||||
|
||||
qv_name_prompt += f"\n其他取名的要求是:{request},不要太浮夸"
|
||||
|
||||
qv_name_prompt += (
|
||||
"\n请根据以上用户信息,想想你叫他什么比较好,不要太浮夸,请最好使用用户的qq昵称,可以稍作修改"
|
||||
)
|
||||
if existing_names:
|
||||
qv_name_prompt += f"\n请注意,以下名称已被使用,不要使用以下昵称:{existing_names}。\n"
|
||||
|
||||
if existing_names_str:
|
||||
qv_name_prompt += f"\n请注意,以下名称已被你尝试过或已知存在,请避免:{existing_names_str}。\n"
|
||||
|
||||
if len(current_name_set) < 50 and current_name_set:
|
||||
qv_name_prompt += f"已知的其他昵称有: {', '.join(list(current_name_set)[:10])}等。\n"
|
||||
|
||||
qv_name_prompt += "请用json给出你的想法,并给出理由,示例如下:"
|
||||
qv_name_prompt += """{
|
||||
"nickname": "昵称",
|
||||
"reason": "理由"
|
||||
}"""
|
||||
# logger.debug(f"取名提示词:{qv_name_prompt}")
|
||||
response = await self.qv_name_llm.generate_response(qv_name_prompt)
|
||||
logger.trace(f"取名提示词:{qv_name_prompt}\n取名回复:{response}")
|
||||
result = self._extract_json_from_text(response[0])
|
||||
|
||||
if not result["nickname"]:
|
||||
logger.error("生成的昵称为空,重试中...")
|
||||
if not result or not result.get("nickname"):
|
||||
logger.error("生成的昵称为空或结果格式不正确,重试中...")
|
||||
current_try += 1
|
||||
continue
|
||||
|
||||
# 检查生成的昵称是否已存在
|
||||
if result["nickname"] not in self.person_name_list.values():
|
||||
# 更新数据库和内存中的列表
|
||||
await self.update_one_field(person_id, "person_name", result["nickname"])
|
||||
# await self.update_one_field(person_id, "nickname", user_nickname)
|
||||
# await self.update_one_field(person_id, "avatar", user_avatar)
|
||||
await self.update_one_field(person_id, "name_reason", result["reason"])
|
||||
generated_nickname = result["nickname"]
|
||||
|
||||
self.person_name_list[person_id] = result["nickname"]
|
||||
# logger.debug(f"用户 {person_id} 的名称已更新为 {result['nickname']},原因:{result['reason']}")
|
||||
is_duplicate = False
|
||||
if generated_nickname in current_name_set:
|
||||
is_duplicate = True
|
||||
else:
|
||||
|
||||
def _db_check_name_exists_sync(name_to_check):
|
||||
return PersonInfo.select().where(PersonInfo.person_name == name_to_check).exists()
|
||||
|
||||
if await asyncio.to_thread(_db_check_name_exists_sync, generated_nickname):
|
||||
is_duplicate = True
|
||||
current_name_set.add(generated_nickname)
|
||||
|
||||
if not is_duplicate:
|
||||
await self.update_one_field(person_id, "person_name", generated_nickname)
|
||||
await self.update_one_field(person_id, "name_reason", result.get("reason", "未提供理由"))
|
||||
|
||||
self.person_name_list[person_id] = generated_nickname
|
||||
return result
|
||||
else:
|
||||
existing_names += f"{result['nickname']}、"
|
||||
if existing_names_str:
|
||||
existing_names_str += "、"
|
||||
existing_names_str += generated_nickname
|
||||
logger.debug(f"生成的昵称 {generated_nickname} 已存在,重试中...")
|
||||
current_try += 1
|
||||
|
||||
logger.debug(f"生成的昵称 {result['nickname']} 已存在,重试中...")
|
||||
current_try += 1
|
||||
|
||||
logger.error(f"在{max_retries}次尝试后仍未能生成唯一昵称")
|
||||
logger.error(f"在{max_retries}次尝试后仍未能生成唯一昵称 for {person_id}")
|
||||
return None
|
||||
|
||||
@staticmethod
|
||||
@@ -272,30 +331,56 @@ class PersonInfoManager:
|
||||
logger.debug("删除失败:person_id 不能为空")
|
||||
return
|
||||
|
||||
result = db.person_info.delete_one({"person_id": person_id})
|
||||
if result.deleted_count > 0:
|
||||
logger.debug(f"删除成功:person_id={person_id}")
|
||||
def _db_delete_sync(p_id: str):
|
||||
try:
|
||||
query = PersonInfo.delete().where(PersonInfo.person_id == p_id)
|
||||
deleted_count = query.execute()
|
||||
return deleted_count
|
||||
except Exception as e:
|
||||
logger.error(f"删除 PersonInfo {p_id} 失败 (Peewee): {e}")
|
||||
return 0
|
||||
|
||||
deleted_count = await asyncio.to_thread(_db_delete_sync, person_id)
|
||||
|
||||
if deleted_count > 0:
|
||||
logger.debug(f"删除成功:person_id={person_id} (Peewee)")
|
||||
else:
|
||||
logger.debug(f"删除失败:未找到 person_id={person_id}")
|
||||
logger.debug(f"删除失败:未找到 person_id={person_id} 或删除未影响行 (Peewee)")
|
||||
|
||||
@staticmethod
|
||||
async def get_value(person_id: str, field_name: str):
|
||||
"""获取指定person_id文档的字段值,若不存在该字段,则返回该字段的全局默认值"""
|
||||
if not person_id:
|
||||
logger.debug("get_value获取失败:person_id不能为空")
|
||||
return person_info_default.get(field_name)
|
||||
|
||||
if field_name not in PersonInfo._meta.fields:
|
||||
if field_name in person_info_default:
|
||||
logger.trace(f"字段'{field_name}'不在Peewee模型中,但存在于默认配置中。返回配置默认值。")
|
||||
return copy.deepcopy(person_info_default[field_name])
|
||||
logger.debug(f"get_value获取失败:字段'{field_name}'未在Peewee模型和默认配置中定义。")
|
||||
return None
|
||||
|
||||
if field_name not in person_info_default:
|
||||
logger.debug(f"get_value获取失败:字段'{field_name}'未定义")
|
||||
def _db_get_value_sync(p_id: str, f_name: str):
|
||||
record = PersonInfo.get_or_none(PersonInfo.person_id == p_id)
|
||||
if record:
|
||||
val = getattr(record, f_name)
|
||||
if f_name == "msg_interval_list" and isinstance(val, str):
|
||||
try:
|
||||
return json.loads(val)
|
||||
except json.JSONDecodeError:
|
||||
logger.warning(f"无法解析 {p_id} 的 msg_interval_list JSON: {val}")
|
||||
return copy.deepcopy(person_info_default.get(f_name, []))
|
||||
return val
|
||||
return None
|
||||
|
||||
document = db.person_info.find_one({"person_id": person_id}, {field_name: 1})
|
||||
value = await asyncio.to_thread(_db_get_value_sync, person_id, field_name)
|
||||
|
||||
if document and field_name in document:
|
||||
return document[field_name]
|
||||
if value is not None:
|
||||
return value
|
||||
else:
|
||||
default_value = copy.deepcopy(person_info_default[field_name])
|
||||
logger.trace(f"获取{person_id}的{field_name}失败,已返回默认值{default_value}")
|
||||
default_value = copy.deepcopy(person_info_default.get(field_name))
|
||||
logger.trace(f"获取{person_id}的{field_name}失败或值为None,已返回默认值{default_value} (Peewee)")
|
||||
return default_value
|
||||
|
||||
@staticmethod
|
||||
@@ -305,93 +390,84 @@ class PersonInfoManager:
|
||||
logger.debug("get_values获取失败:person_id不能为空")
|
||||
return {}
|
||||
|
||||
# 检查所有字段是否有效
|
||||
for field in field_names:
|
||||
if field not in person_info_default:
|
||||
logger.debug(f"get_values获取失败:字段'{field}'未定义")
|
||||
return {}
|
||||
|
||||
# 构建查询投影(所有字段都有效才会执行到这里)
|
||||
projection = {field: 1 for field in field_names}
|
||||
|
||||
document = db.person_info.find_one({"person_id": person_id}, projection)
|
||||
|
||||
result = {}
|
||||
for field in field_names:
|
||||
result[field] = copy.deepcopy(
|
||||
document.get(field, person_info_default[field]) if document else person_info_default[field]
|
||||
)
|
||||
|
||||
def _db_get_record_sync(p_id: str):
|
||||
return PersonInfo.get_or_none(PersonInfo.person_id == p_id)
|
||||
|
||||
record = await asyncio.to_thread(_db_get_record_sync, person_id)
|
||||
|
||||
for field_name in field_names:
|
||||
if field_name not in PersonInfo._meta.fields:
|
||||
if field_name in person_info_default:
|
||||
result[field_name] = copy.deepcopy(person_info_default[field_name])
|
||||
logger.trace(f"字段'{field_name}'不在Peewee模型中,使用默认配置值。")
|
||||
else:
|
||||
logger.debug(f"get_values查询失败:字段'{field_name}'未在Peewee模型和默认配置中定义。")
|
||||
result[field_name] = None
|
||||
continue
|
||||
|
||||
if record:
|
||||
value = getattr(record, field_name)
|
||||
if field_name == "msg_interval_list" and isinstance(value, str):
|
||||
try:
|
||||
result[field_name] = json.loads(value)
|
||||
except json.JSONDecodeError:
|
||||
logger.warning(f"无法解析 {person_id} 的 msg_interval_list JSON: {value}")
|
||||
result[field_name] = copy.deepcopy(person_info_default.get(field_name, []))
|
||||
elif value is not None:
|
||||
result[field_name] = value
|
||||
else:
|
||||
result[field_name] = copy.deepcopy(person_info_default.get(field_name))
|
||||
else:
|
||||
result[field_name] = copy.deepcopy(person_info_default.get(field_name))
|
||||
|
||||
return result
|
||||
|
||||
@staticmethod
|
||||
async def del_all_undefined_field():
|
||||
"""删除所有项里的未定义字段"""
|
||||
# 获取所有已定义的字段名
|
||||
defined_fields = set(person_info_default.keys())
|
||||
|
||||
try:
|
||||
# 遍历集合中的所有文档
|
||||
for document in db.person_info.find({}):
|
||||
# 找出文档中未定义的字段
|
||||
undefined_fields = set(document.keys()) - defined_fields - {"_id"}
|
||||
|
||||
if undefined_fields:
|
||||
# 构建更新操作,使用$unset删除未定义字段
|
||||
update_result = db.person_info.update_one(
|
||||
{"_id": document["_id"]}, {"$unset": {field: 1 for field in undefined_fields}}
|
||||
)
|
||||
|
||||
if update_result.modified_count > 0:
|
||||
logger.debug(f"已清理文档 {document['_id']} 的未定义字段: {undefined_fields}")
|
||||
|
||||
return
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"清理未定义字段时出错: {e}")
|
||||
return
|
||||
"""删除所有项里的未定义字段 - 对于Peewee (SQL),此操作通常不适用,因为模式是固定的。"""
|
||||
logger.info(
|
||||
"del_all_undefined_field: 对于使用Peewee的SQL数据库,此操作通常不适用或不需要,因为表结构是预定义的。"
|
||||
)
|
||||
return
|
||||
|
||||
@staticmethod
|
||||
async def get_specific_value_list(
|
||||
field_name: str,
|
||||
way: Callable[[Any], bool], # 接受任意类型值
|
||||
way: Callable[[Any], bool],
|
||||
) -> Dict[str, Any]:
|
||||
"""
|
||||
获取满足条件的字段值字典
|
||||
|
||||
Args:
|
||||
field_name: 目标字段名
|
||||
way: 判断函数 (value: Any) -> bool
|
||||
|
||||
Returns:
|
||||
{person_id: value} | {}
|
||||
|
||||
Example:
|
||||
# 查找所有nickname包含"admin"的用户
|
||||
result = manager.specific_value_list(
|
||||
"nickname",
|
||||
lambda x: "admin" in x.lower()
|
||||
)
|
||||
"""
|
||||
if field_name not in person_info_default:
|
||||
logger.error(f"字段检查失败:'{field_name}'未定义")
|
||||
if field_name not in PersonInfo._meta.fields:
|
||||
logger.error(f"字段检查失败:'{field_name}'未在 PersonInfo Peewee 模型中定义")
|
||||
return {}
|
||||
|
||||
def _db_get_specific_sync(f_name: str):
|
||||
found_results = {}
|
||||
try:
|
||||
for record in PersonInfo.select(PersonInfo.person_id, getattr(PersonInfo, f_name)):
|
||||
value = getattr(record, f_name)
|
||||
if f_name == "msg_interval_list" and isinstance(value, str):
|
||||
try:
|
||||
processed_value = json.loads(value)
|
||||
except json.JSONDecodeError:
|
||||
logger.warning(f"跳过记录 {record.person_id},无法解析 msg_interval_list: {value}")
|
||||
continue
|
||||
else:
|
||||
processed_value = value
|
||||
|
||||
if way(processed_value):
|
||||
found_results[record.person_id] = processed_value
|
||||
except Exception as e_query:
|
||||
logger.error(f"数据库查询失败 (Peewee specific_value_list for {f_name}): {str(e_query)}", exc_info=True)
|
||||
return found_results
|
||||
|
||||
try:
|
||||
result = {}
|
||||
for doc in db.person_info.find({field_name: {"$exists": True}}, {"person_id": 1, field_name: 1, "_id": 0}):
|
||||
try:
|
||||
value = doc[field_name]
|
||||
if way(value):
|
||||
result[doc["person_id"]] = value
|
||||
except (KeyError, TypeError, ValueError) as e:
|
||||
logger.debug(f"记录{doc.get('person_id')}处理失败: {str(e)}")
|
||||
continue
|
||||
|
||||
return result
|
||||
|
||||
return await asyncio.to_thread(_db_get_specific_sync, field_name)
|
||||
except Exception as e:
|
||||
logger.error(f"数据库查询失败: {str(e)}", exc_info=True)
|
||||
logger.error(f"执行 get_specific_value_list 线程时出错: {str(e)}", exc_info=True)
|
||||
return {}
|
||||
|
||||
async def personal_habit_deduction(self):
|
||||
@@ -399,35 +475,31 @@ class PersonInfoManager:
|
||||
try:
|
||||
while 1:
|
||||
await asyncio.sleep(600)
|
||||
current_time = datetime.datetime.now()
|
||||
logger.info(f"个人信息推断启动: {current_time.strftime('%Y-%m-%d %H:%M:%S')}")
|
||||
current_time_dt = datetime.datetime.now()
|
||||
logger.info(f"个人信息推断启动: {current_time_dt.strftime('%Y-%m-%d %H:%M:%S')}")
|
||||
|
||||
# "msg_interval"推断
|
||||
msg_interval_map = False
|
||||
msg_interval_lists = await self.get_specific_value_list(
|
||||
msg_interval_map_generated = False
|
||||
msg_interval_lists_map = await self.get_specific_value_list(
|
||||
"msg_interval_list", lambda x: isinstance(x, list) and len(x) >= 100
|
||||
)
|
||||
for person_id, msg_interval_list_ in msg_interval_lists.items():
|
||||
|
||||
for person_id, actual_msg_interval_list in msg_interval_lists_map.items():
|
||||
await asyncio.sleep(0.3)
|
||||
try:
|
||||
time_interval = []
|
||||
for t1, t2 in zip(msg_interval_list_, msg_interval_list_[1:]):
|
||||
for t1, t2 in zip(actual_msg_interval_list, actual_msg_interval_list[1:]):
|
||||
delta = t2 - t1
|
||||
if delta > 0:
|
||||
time_interval.append(delta)
|
||||
|
||||
time_interval = [t for t in time_interval if 200 <= t <= 8000]
|
||||
# --- 修改后的逻辑 ---
|
||||
# 数据量检查 (至少需要 30 条有效间隔,并且足够进行头尾截断)
|
||||
if len(time_interval) >= 30 + 10: # 至少30条有效+头尾各5条
|
||||
time_interval.sort()
|
||||
|
||||
# 画图(log) - 这部分保留
|
||||
msg_interval_map = True
|
||||
if len(time_interval) >= 30 + 10:
|
||||
time_interval.sort()
|
||||
msg_interval_map_generated = True
|
||||
log_dir = Path("logs/person_info")
|
||||
log_dir.mkdir(parents=True, exist_ok=True)
|
||||
plt.figure(figsize=(10, 6))
|
||||
# 使用截断前的数据画图,更能反映原始分布
|
||||
time_series_original = pd.Series(time_interval)
|
||||
plt.hist(
|
||||
time_series_original,
|
||||
@@ -449,34 +521,29 @@ class PersonInfoManager:
|
||||
img_path = log_dir / f"interval_distribution_{person_id[:8]}.png"
|
||||
plt.savefig(img_path)
|
||||
plt.close()
|
||||
# 画图结束
|
||||
|
||||
# 去掉头尾各 5 个数据点
|
||||
trimmed_interval = time_interval[5:-5]
|
||||
|
||||
# 计算截断后数据的 37% 分位数
|
||||
if trimmed_interval: # 确保截断后列表不为空
|
||||
msg_interval = int(round(np.percentile(trimmed_interval, 37)))
|
||||
# 更新数据库
|
||||
await self.update_one_field(person_id, "msg_interval", msg_interval)
|
||||
logger.trace(f"用户{person_id}的msg_interval通过头尾截断和37分位数更新为{msg_interval}")
|
||||
if trimmed_interval:
|
||||
msg_interval_val = int(round(np.percentile(trimmed_interval, 37)))
|
||||
await self.update_one_field(person_id, "msg_interval", msg_interval_val)
|
||||
logger.trace(
|
||||
f"用户{person_id}的msg_interval通过头尾截断和37分位数更新为{msg_interval_val}"
|
||||
)
|
||||
else:
|
||||
logger.trace(f"用户{person_id}截断后数据为空,无法计算msg_interval")
|
||||
else:
|
||||
logger.trace(
|
||||
f"用户{person_id}有效消息间隔数量 ({len(time_interval)}) 不足进行推断 (需要至少 {30 + 10} 条)"
|
||||
)
|
||||
# --- 修改结束 ---
|
||||
except Exception as e:
|
||||
logger.trace(f"用户{person_id}消息间隔计算失败: {type(e).__name__}: {str(e)}")
|
||||
except Exception as e_inner:
|
||||
logger.trace(f"用户{person_id}消息间隔计算失败: {type(e_inner).__name__}: {str(e_inner)}")
|
||||
continue
|
||||
|
||||
# 其他...
|
||||
|
||||
if msg_interval_map:
|
||||
if msg_interval_map_generated:
|
||||
logger.trace("已保存分布图到: logs/person_info")
|
||||
current_time = datetime.datetime.now()
|
||||
logger.trace(f"个人信息推断结束: {current_time.strftime('%Y-%m-%d %H:%M:%S')}")
|
||||
|
||||
current_time_dt_end = datetime.datetime.now()
|
||||
logger.trace(f"个人信息推断结束: {current_time_dt_end.strftime('%Y-%m-%d %H:%M:%S')}")
|
||||
await asyncio.sleep(86400)
|
||||
|
||||
except Exception as e:
|
||||
@@ -489,41 +556,27 @@ class PersonInfoManager:
|
||||
"""
|
||||
根据 platform 和 user_id 获取 person_id。
|
||||
如果对应的用户不存在,则使用提供的可选信息创建新用户。
|
||||
|
||||
Args:
|
||||
platform: 平台标识
|
||||
user_id: 用户在该平台上的ID
|
||||
nickname: 用户的昵称 (可选,用于创建新用户)
|
||||
user_cardname: 用户的群名片 (可选,用于创建新用户)
|
||||
user_avatar: 用户的头像信息 (可选,用于创建新用户)
|
||||
|
||||
Returns:
|
||||
对应的 person_id。
|
||||
"""
|
||||
person_id = self.get_person_id(platform, user_id)
|
||||
|
||||
# 检查用户是否已存在
|
||||
# 使用静态方法 get_person_id,因此可以直接调用 db
|
||||
document = db.person_info.find_one({"person_id": person_id})
|
||||
def _db_check_exists_sync(p_id: str):
|
||||
return PersonInfo.get_or_none(PersonInfo.person_id == p_id)
|
||||
|
||||
if document is None:
|
||||
logger.info(f"用户 {platform}:{user_id} (person_id: {person_id}) 不存在,将创建新记录。")
|
||||
record = await asyncio.to_thread(_db_check_exists_sync, person_id)
|
||||
|
||||
if record is None:
|
||||
logger.info(f"用户 {platform}:{user_id} (person_id: {person_id}) 不存在,将创建新记录 (Peewee)。")
|
||||
initial_data = {
|
||||
"platform": platform,
|
||||
"user_id": user_id,
|
||||
"user_id": str(user_id),
|
||||
"nickname": nickname,
|
||||
"konw_time": int(datetime.datetime.now().timestamp()), # 添加初次认识时间
|
||||
# 注意:这里没有添加 user_cardname 和 user_avatar,因为它们不在 person_info_default 中
|
||||
# 如果需要存储它们,需要先在 person_info_default 中定义
|
||||
"know_time": int(datetime.datetime.now().timestamp()), # 修正拼写:konw_time -> know_time
|
||||
}
|
||||
# 过滤掉值为 None 的初始数据
|
||||
initial_data = {k: v for k, v in initial_data.items() if v is not None}
|
||||
model_fields = PersonInfo._meta.fields.keys()
|
||||
filtered_initial_data = {k: v for k, v in initial_data.items() if v is not None and k in model_fields}
|
||||
|
||||
# 注意:create_person_info 是静态方法
|
||||
await PersonInfoManager.create_person_info(person_id, data=initial_data)
|
||||
# 创建后,可以考虑立即为其取名,但这可能会增加延迟
|
||||
# await self.qv_person_name(person_id, nickname, user_cardname, user_avatar)
|
||||
logger.debug(f"已为 {person_id} 创建新记录,初始数据: {initial_data}")
|
||||
await self.create_person_info(person_id, data=filtered_initial_data)
|
||||
logger.debug(f"已为 {person_id} 创建新记录,初始数据 (filtered for model): {filtered_initial_data}")
|
||||
|
||||
return person_id
|
||||
|
||||
@@ -533,35 +586,55 @@ class PersonInfoManager:
|
||||
logger.debug("get_person_info_by_name 获取失败:person_name 不能为空")
|
||||
return None
|
||||
|
||||
# 优先从内存缓存查找 person_id
|
||||
found_person_id = None
|
||||
for pid, name in self.person_name_list.items():
|
||||
if name == person_name:
|
||||
for pid, name_in_cache in self.person_name_list.items():
|
||||
if name_in_cache == person_name:
|
||||
found_person_id = pid
|
||||
break # 找到第一个匹配就停止
|
||||
break
|
||||
|
||||
if not found_person_id:
|
||||
# 如果内存没有,尝试数据库查询(可能内存未及时更新或启动时未加载)
|
||||
document = db.person_info.find_one({"person_name": person_name})
|
||||
if document:
|
||||
found_person_id = document.get("person_id")
|
||||
else:
|
||||
logger.debug(f"数据库中也未找到名为 '{person_name}' 的用户")
|
||||
return None # 数据库也找不到
|
||||
|
||||
# 根据找到的 person_id 获取所需信息
|
||||
if found_person_id:
|
||||
required_fields = ["person_id", "platform", "user_id", "nickname", "user_cardname", "user_avatar"]
|
||||
person_data = await self.get_values(found_person_id, required_fields)
|
||||
if person_data: # 确保 get_values 成功返回
|
||||
return person_data
|
||||
def _db_find_by_name_sync(p_name_to_find: str):
|
||||
return PersonInfo.get_or_none(PersonInfo.person_name == p_name_to_find)
|
||||
|
||||
record = await asyncio.to_thread(_db_find_by_name_sync, person_name)
|
||||
if record:
|
||||
found_person_id = record.person_id
|
||||
if (
|
||||
found_person_id not in self.person_name_list
|
||||
or self.person_name_list[found_person_id] != person_name
|
||||
):
|
||||
self.person_name_list[found_person_id] = person_name
|
||||
else:
|
||||
logger.warning(f"找到了 person_id '{found_person_id}' 但获取详细信息失败")
|
||||
logger.debug(f"数据库中也未找到名为 '{person_name}' 的用户 (Peewee)")
|
||||
return None
|
||||
else:
|
||||
# 这理论上不应该发生,因为上面已经处理了找不到的情况
|
||||
logger.error(f"逻辑错误:未能为 '{person_name}' 确定 person_id")
|
||||
return None
|
||||
|
||||
if found_person_id:
|
||||
required_fields = [
|
||||
"person_id",
|
||||
"platform",
|
||||
"user_id",
|
||||
"nickname",
|
||||
"user_cardname",
|
||||
"user_avatar",
|
||||
"person_name",
|
||||
"name_reason",
|
||||
]
|
||||
valid_fields_to_get = [
|
||||
f for f in required_fields if f in PersonInfo._meta.fields or f in person_info_default
|
||||
]
|
||||
|
||||
person_data = await self.get_values(found_person_id, valid_fields_to_get)
|
||||
|
||||
if person_data:
|
||||
final_result = {key: person_data.get(key) for key in required_fields}
|
||||
return final_result
|
||||
else:
|
||||
logger.warning(f"找到了 person_id '{found_person_id}' 但 get_values 返回空 (Peewee)")
|
||||
return None
|
||||
|
||||
logger.error(f"逻辑错误:未能为 '{person_name}' 确定 person_id (Peewee)")
|
||||
return None
|
||||
|
||||
|
||||
person_info_manager = PersonInfoManager()
|
||||
|
||||
@@ -190,8 +190,8 @@ async def _build_readable_messages_internal(
|
||||
|
||||
person_id = person_info_manager.get_person_id(platform, user_id)
|
||||
# 根据 replace_bot_name 参数决定是否替换机器人名称
|
||||
if replace_bot_name and user_id == global_config.BOT_QQ:
|
||||
person_name = f"{global_config.BOT_NICKNAME}(你)"
|
||||
if replace_bot_name and user_id == global_config.bot.qq_account:
|
||||
person_name = f"{global_config.bot.nickname}(你)"
|
||||
else:
|
||||
person_name = await person_info_manager.get_value(person_id, "person_name")
|
||||
|
||||
@@ -427,7 +427,7 @@ async def build_anonymous_messages(messages: List[Dict[str, Any]]) -> str:
|
||||
output_lines = []
|
||||
|
||||
def get_anon_name(platform, user_id):
|
||||
if user_id == global_config.BOT_QQ:
|
||||
if user_id == global_config.bot.qq_account:
|
||||
return "SELF"
|
||||
person_id = person_info_manager.get_person_id(platform, user_id)
|
||||
if person_id not in person_map:
|
||||
@@ -454,7 +454,7 @@ async def build_anonymous_messages(messages: List[Dict[str, Any]]) -> str:
|
||||
def reply_replacer(match, platform=platform):
|
||||
# aaa = match.group(1)
|
||||
bbb = match.group(2)
|
||||
anon_reply = get_anon_name(platform, bbb)
|
||||
anon_reply = get_anon_name(platform, bbb) # noqa
|
||||
return f"回复 {anon_reply}"
|
||||
|
||||
content = re.sub(reply_pattern, reply_replacer, content, count=1)
|
||||
@@ -465,7 +465,7 @@ async def build_anonymous_messages(messages: List[Dict[str, Any]]) -> str:
|
||||
def at_replacer(match, platform=platform):
|
||||
# aaa = match.group(1)
|
||||
bbb = match.group(2)
|
||||
anon_at = get_anon_name(platform, bbb)
|
||||
anon_at = get_anon_name(platform, bbb) # noqa
|
||||
return f"@{anon_at}"
|
||||
|
||||
content = re.sub(at_pattern, at_replacer, content)
|
||||
@@ -501,7 +501,7 @@ async def get_person_id_list(messages: List[Dict[str, Any]]) -> List[str]:
|
||||
user_id = user_info.get("user_id")
|
||||
|
||||
# 检查必要信息是否存在 且 不是机器人自己
|
||||
if not all([platform, user_id]) or user_id == global_config.BOT_QQ:
|
||||
if not all([platform, user_id]) or user_id == global_config.bot.qq_account:
|
||||
continue
|
||||
|
||||
person_id = person_info_manager.get_person_id(platform, user_id)
|
||||
|
||||
@@ -1,15 +1,15 @@
|
||||
from src.config.config import global_config
|
||||
from src.chat.message_receive.message import MessageRecv, MessageSending, Message
|
||||
from src.common.database import db
|
||||
from src.common.database.database_model import Messages, ThinkingLog
|
||||
import time
|
||||
import traceback
|
||||
from typing import List
|
||||
import json
|
||||
|
||||
|
||||
class InfoCatcher:
|
||||
def __init__(self):
|
||||
self.chat_history = [] # 聊天历史,长度为三倍使用的上下文喵~
|
||||
self.context_length = global_config.observation_context_size
|
||||
self.chat_history_in_thinking = [] # 思考期间的聊天内容喵~
|
||||
self.chat_history_after_response = [] # 回复后的聊天内容,长度为一倍上下文喵~
|
||||
|
||||
@@ -60,8 +60,6 @@ class InfoCatcher:
|
||||
def catch_after_observe(self, obs_duration: float): # 这里可以有更多信息
|
||||
self.timing_results["sub_heartflow_observe_time"] = obs_duration
|
||||
|
||||
# def catch_shf
|
||||
|
||||
def catch_afer_shf_step(self, step_duration: float, past_mind: str, current_mind: str):
|
||||
self.timing_results["sub_heartflow_step_time"] = step_duration
|
||||
if len(past_mind) > 1:
|
||||
@@ -72,25 +70,10 @@ class InfoCatcher:
|
||||
self.heartflow_data["sub_heartflow_now"] = current_mind
|
||||
|
||||
def catch_after_llm_generated(self, prompt: str, response: str, reasoning_content: str = "", model_name: str = ""):
|
||||
# if self.response_mode == "heart_flow": # 条件判断不需要了喵~
|
||||
# self.heartflow_data["prompt"] = prompt
|
||||
# self.heartflow_data["response"] = response
|
||||
# self.heartflow_data["model"] = model_name
|
||||
# elif self.response_mode == "reasoning": # 条件判断不需要了喵~
|
||||
# self.reasoning_data["thinking_log"] = reasoning_content
|
||||
# self.reasoning_data["prompt"] = prompt
|
||||
# self.reasoning_data["response"] = response
|
||||
# self.reasoning_data["model"] = model_name
|
||||
|
||||
# 直接记录信息喵~
|
||||
self.reasoning_data["thinking_log"] = reasoning_content
|
||||
self.reasoning_data["prompt"] = prompt
|
||||
self.reasoning_data["response"] = response
|
||||
self.reasoning_data["model"] = model_name
|
||||
# 如果 heartflow 数据也需要通用字段,可以取消下面的注释喵~
|
||||
# self.heartflow_data["prompt"] = prompt
|
||||
# self.heartflow_data["response"] = response
|
||||
# self.heartflow_data["model"] = model_name
|
||||
|
||||
self.response_text = response
|
||||
|
||||
@@ -102,6 +85,7 @@ class InfoCatcher:
|
||||
):
|
||||
self.timing_results["make_response_time"] = response_duration
|
||||
self.response_time = time.time()
|
||||
self.response_messages = []
|
||||
for msg in response_message:
|
||||
self.response_messages.append(msg)
|
||||
|
||||
@@ -112,107 +96,112 @@ class InfoCatcher:
|
||||
@staticmethod
|
||||
def get_message_from_db_between_msgs(message_start: Message, message_end: Message):
|
||||
try:
|
||||
# 从数据库中获取消息的时间戳
|
||||
time_start = message_start.message_info.time
|
||||
time_end = message_end.message_info.time
|
||||
chat_id = message_start.chat_stream.stream_id
|
||||
|
||||
print(f"查询参数: time_start={time_start}, time_end={time_end}, chat_id={chat_id}")
|
||||
|
||||
# 查询数据库,获取 chat_id 相同且时间在 start 和 end 之间的数据
|
||||
messages_between = db.messages.find(
|
||||
{"chat_id": chat_id, "time": {"$gt": time_start, "$lt": time_end}}
|
||||
).sort("time", -1)
|
||||
messages_between_query = (
|
||||
Messages.select()
|
||||
.where((Messages.chat_id == chat_id) & (Messages.time > time_start) & (Messages.time < time_end))
|
||||
.order_by(Messages.time.desc())
|
||||
)
|
||||
|
||||
result = list(messages_between)
|
||||
result = list(messages_between_query)
|
||||
print(f"查询结果数量: {len(result)}")
|
||||
if result:
|
||||
print(f"第一条消息时间: {result[0]['time']}")
|
||||
print(f"最后一条消息时间: {result[-1]['time']}")
|
||||
print(f"第一条消息时间: {result[0].time}")
|
||||
print(f"最后一条消息时间: {result[-1].time}")
|
||||
return result
|
||||
except Exception as e:
|
||||
print(f"获取消息时出错: {str(e)}")
|
||||
print(traceback.format_exc())
|
||||
return []
|
||||
|
||||
def get_message_from_db_before_msg(self, message: MessageRecv):
|
||||
# 从数据库中获取消息
|
||||
message_id = message.message_info.message_id
|
||||
chat_id = message.chat_stream.stream_id
|
||||
message_id_val = message.message_info.message_id
|
||||
chat_id_val = message.chat_stream.stream_id
|
||||
|
||||
# 查询数据库,获取 chat_id 相同且 message_id 小于当前消息的 30 条数据
|
||||
messages_before = (
|
||||
db.messages.find({"chat_id": chat_id, "message_id": {"$lt": message_id}})
|
||||
.sort("time", -1)
|
||||
.limit(self.context_length * 3)
|
||||
) # 获取更多历史信息
|
||||
messages_before_query = (
|
||||
Messages.select()
|
||||
.where((Messages.chat_id == chat_id_val) & (Messages.message_id < message_id_val))
|
||||
.order_by(Messages.time.desc())
|
||||
.limit(global_config.chat.observation_context_size * 3)
|
||||
)
|
||||
|
||||
return list(messages_before)
|
||||
return list(messages_before_query)
|
||||
|
||||
def message_list_to_dict(self, message_list):
|
||||
# 存储简化的聊天记录
|
||||
result = []
|
||||
for message in message_list:
|
||||
if not isinstance(message, dict):
|
||||
message = self.message_to_dict(message)
|
||||
# print(message)
|
||||
for msg_item in message_list:
|
||||
processed_msg_item = msg_item
|
||||
if not isinstance(msg_item, dict):
|
||||
processed_msg_item = self.message_to_dict(msg_item)
|
||||
|
||||
if not processed_msg_item:
|
||||
continue
|
||||
|
||||
lite_message = {
|
||||
"time": message["time"],
|
||||
"user_nickname": message["user_info"]["user_nickname"],
|
||||
"processed_plain_text": message["processed_plain_text"],
|
||||
"time": processed_msg_item.get("time"),
|
||||
"user_nickname": processed_msg_item.get("user_nickname"),
|
||||
"processed_plain_text": processed_msg_item.get("processed_plain_text"),
|
||||
}
|
||||
result.append(lite_message)
|
||||
|
||||
return result
|
||||
|
||||
@staticmethod
|
||||
def message_to_dict(message):
|
||||
if not message:
|
||||
def message_to_dict(msg_obj):
|
||||
if not msg_obj:
|
||||
return None
|
||||
if isinstance(message, dict):
|
||||
return message
|
||||
return {
|
||||
# "message_id": message.message_info.message_id,
|
||||
"time": message.message_info.time,
|
||||
"user_id": message.message_info.user_info.user_id,
|
||||
"user_nickname": message.message_info.user_info.user_nickname,
|
||||
"processed_plain_text": message.processed_plain_text,
|
||||
# "detailed_plain_text": message.detailed_plain_text
|
||||
}
|
||||
if isinstance(msg_obj, dict):
|
||||
return msg_obj
|
||||
|
||||
def done_catch(self):
|
||||
"""将收集到的信息存储到数据库的 thinking_log 集合中喵~"""
|
||||
try:
|
||||
# 将消息对象转换为可序列化的字典喵~
|
||||
|
||||
thinking_log_data = {
|
||||
"chat_id": self.chat_id,
|
||||
"trigger_text": self.trigger_response_text,
|
||||
"response_text": self.response_text,
|
||||
"trigger_info": {
|
||||
"time": self.trigger_response_time,
|
||||
"message": self.message_to_dict(self.trigger_response_message),
|
||||
},
|
||||
"response_info": {
|
||||
"time": self.response_time,
|
||||
"message": self.response_messages,
|
||||
},
|
||||
"timing_results": self.timing_results,
|
||||
"chat_history": self.message_list_to_dict(self.chat_history),
|
||||
"chat_history_in_thinking": self.message_list_to_dict(self.chat_history_in_thinking),
|
||||
"chat_history_after_response": self.message_list_to_dict(self.chat_history_after_response),
|
||||
"heartflow_data": self.heartflow_data,
|
||||
"reasoning_data": self.reasoning_data,
|
||||
if isinstance(msg_obj, Messages):
|
||||
return {
|
||||
"time": msg_obj.time,
|
||||
"user_id": msg_obj.user_id,
|
||||
"user_nickname": msg_obj.user_nickname,
|
||||
"processed_plain_text": msg_obj.processed_plain_text,
|
||||
}
|
||||
|
||||
# 根据不同的响应模式添加相应的数据喵~ # 现在直接都加上去好了喵~
|
||||
# if self.response_mode == "heart_flow":
|
||||
# thinking_log_data["mode_specific_data"] = self.heartflow_data
|
||||
# elif self.response_mode == "reasoning":
|
||||
# thinking_log_data["mode_specific_data"] = self.reasoning_data
|
||||
if hasattr(msg_obj, "message_info") and hasattr(msg_obj.message_info, "user_info"):
|
||||
return {
|
||||
"time": msg_obj.message_info.time,
|
||||
"user_id": msg_obj.message_info.user_info.user_id,
|
||||
"user_nickname": msg_obj.message_info.user_info.user_nickname,
|
||||
"processed_plain_text": msg_obj.processed_plain_text,
|
||||
}
|
||||
|
||||
# 将数据插入到 thinking_log 集合中喵~
|
||||
db.thinking_log.insert_one(thinking_log_data)
|
||||
print(f"Warning: message_to_dict received an unhandled type: {type(msg_obj)}")
|
||||
return {}
|
||||
|
||||
def done_catch(self):
|
||||
"""将收集到的信息存储到数据库的 thinking_log 表中喵~"""
|
||||
try:
|
||||
trigger_info_dict = self.message_to_dict(self.trigger_response_message)
|
||||
response_info_dict = {
|
||||
"time": self.response_time,
|
||||
"message": self.response_messages,
|
||||
}
|
||||
chat_history_list = self.message_list_to_dict(self.chat_history)
|
||||
chat_history_in_thinking_list = self.message_list_to_dict(self.chat_history_in_thinking)
|
||||
chat_history_after_response_list = self.message_list_to_dict(self.chat_history_after_response)
|
||||
|
||||
log_entry = ThinkingLog(
|
||||
chat_id=self.chat_id,
|
||||
trigger_text=self.trigger_response_text,
|
||||
response_text=self.response_text,
|
||||
trigger_info_json=json.dumps(trigger_info_dict) if trigger_info_dict else None,
|
||||
response_info_json=json.dumps(response_info_dict),
|
||||
timing_results_json=json.dumps(self.timing_results),
|
||||
chat_history_json=json.dumps(chat_history_list),
|
||||
chat_history_in_thinking_json=json.dumps(chat_history_in_thinking_list),
|
||||
chat_history_after_response_json=json.dumps(chat_history_after_response_list),
|
||||
heartflow_data_json=json.dumps(self.heartflow_data),
|
||||
reasoning_data_json=json.dumps(self.reasoning_data),
|
||||
)
|
||||
log_entry.save()
|
||||
|
||||
return True
|
||||
except Exception as e:
|
||||
|
||||
@@ -2,10 +2,12 @@ from collections import defaultdict
|
||||
from datetime import datetime, timedelta
|
||||
from typing import Any, Dict, Tuple, List
|
||||
|
||||
|
||||
from src.common.logger import get_module_logger
|
||||
from src.manager.async_task_manager import AsyncTask
|
||||
|
||||
from ...common.database import db
|
||||
from ...common.database.database import db # This db is the Peewee database instance
|
||||
from ...common.database.database_model import OnlineTime, LLMUsage, Messages # Import the Peewee model
|
||||
from src.manager.local_store_manager import local_storage
|
||||
|
||||
logger = get_module_logger("maibot_statistic")
|
||||
@@ -39,7 +41,7 @@ class OnlineTimeRecordTask(AsyncTask):
|
||||
def __init__(self):
|
||||
super().__init__(task_name="Online Time Record Task", run_interval=60)
|
||||
|
||||
self.record_id: str | None = None
|
||||
self.record_id: int | None = None # Changed to int for Peewee's default ID
|
||||
"""记录ID"""
|
||||
|
||||
self._init_database() # 初始化数据库
|
||||
@@ -47,49 +49,46 @@ class OnlineTimeRecordTask(AsyncTask):
|
||||
@staticmethod
|
||||
def _init_database():
|
||||
"""初始化数据库"""
|
||||
if "online_time" not in db.list_collection_names():
|
||||
# 初始化数据库(在线时长)
|
||||
db.create_collection("online_time")
|
||||
# 创建索引
|
||||
if ("end_timestamp", 1) not in db.online_time.list_indexes():
|
||||
db.online_time.create_index([("end_timestamp", 1)])
|
||||
with db.atomic(): # Use atomic operations for schema changes
|
||||
OnlineTime.create_table(safe=True) # Creates table if it doesn't exist, Peewee handles indexes from model
|
||||
|
||||
async def run(self):
|
||||
try:
|
||||
current_time = datetime.now()
|
||||
extended_end_time = current_time + timedelta(minutes=1)
|
||||
|
||||
if self.record_id:
|
||||
# 如果有记录,则更新结束时间
|
||||
db.online_time.update_one(
|
||||
{"_id": self.record_id},
|
||||
{
|
||||
"$set": {
|
||||
"end_timestamp": datetime.now() + timedelta(minutes=1),
|
||||
}
|
||||
},
|
||||
)
|
||||
else:
|
||||
query = OnlineTime.update(end_timestamp=extended_end_time).where(OnlineTime.id == self.record_id)
|
||||
updated_rows = query.execute()
|
||||
if updated_rows == 0:
|
||||
# Record might have been deleted or ID is stale, try to find/create
|
||||
self.record_id = None # Reset record_id to trigger find/create logic below
|
||||
|
||||
if not self.record_id: # Check again if record_id was reset or initially None
|
||||
# 如果没有记录,检查一分钟以内是否已有记录
|
||||
current_time = datetime.now()
|
||||
if recent_record := db.online_time.find_one(
|
||||
{"end_timestamp": {"$gte": current_time - timedelta(minutes=1)}}
|
||||
):
|
||||
# Look for a record whose end_timestamp is recent enough to be considered ongoing
|
||||
recent_record = (
|
||||
OnlineTime.select()
|
||||
.where(OnlineTime.end_timestamp >= (current_time - timedelta(minutes=1)))
|
||||
.order_by(OnlineTime.end_timestamp.desc())
|
||||
.first()
|
||||
)
|
||||
|
||||
if recent_record:
|
||||
# 如果有记录,则更新结束时间
|
||||
self.record_id = recent_record["_id"]
|
||||
db.online_time.update_one(
|
||||
{"_id": self.record_id},
|
||||
{
|
||||
"$set": {
|
||||
"end_timestamp": current_time + timedelta(minutes=1),
|
||||
}
|
||||
},
|
||||
)
|
||||
self.record_id = recent_record.id
|
||||
recent_record.end_timestamp = extended_end_time
|
||||
recent_record.save()
|
||||
else:
|
||||
# 若没有记录,则插入新的在线时间记录
|
||||
self.record_id = db.online_time.insert_one(
|
||||
{
|
||||
"start_timestamp": current_time,
|
||||
"end_timestamp": current_time + timedelta(minutes=1),
|
||||
}
|
||||
).inserted_id
|
||||
new_record = OnlineTime.create(
|
||||
timestamp=current_time.timestamp(), # 添加此行
|
||||
start_timestamp=current_time,
|
||||
end_timestamp=extended_end_time,
|
||||
duration=5, # 初始时长为5分钟
|
||||
)
|
||||
self.record_id = new_record.id
|
||||
except Exception as e:
|
||||
logger.error(f"在线时间记录失败,错误信息:{e}")
|
||||
|
||||
@@ -201,35 +200,28 @@ class StatisticOutputTask(AsyncTask):
|
||||
|
||||
:param collect_period: 统计时间段
|
||||
"""
|
||||
if len(collect_period) <= 0:
|
||||
if not collect_period:
|
||||
return {}
|
||||
else:
|
||||
# 排序-按照时间段开始时间降序排列(最晚的时间段在前)
|
||||
collect_period.sort(key=lambda x: x[1], reverse=True)
|
||||
|
||||
# 排序-按照时间段开始时间降序排列(最晚的时间段在前)
|
||||
collect_period.sort(key=lambda x: x[1], reverse=True)
|
||||
|
||||
stats = {
|
||||
period_key: {
|
||||
# 总LLM请求数
|
||||
TOTAL_REQ_CNT: 0,
|
||||
# 请求次数统计
|
||||
REQ_CNT_BY_TYPE: defaultdict(int),
|
||||
REQ_CNT_BY_USER: defaultdict(int),
|
||||
REQ_CNT_BY_MODEL: defaultdict(int),
|
||||
# 输入Token数
|
||||
IN_TOK_BY_TYPE: defaultdict(int),
|
||||
IN_TOK_BY_USER: defaultdict(int),
|
||||
IN_TOK_BY_MODEL: defaultdict(int),
|
||||
# 输出Token数
|
||||
OUT_TOK_BY_TYPE: defaultdict(int),
|
||||
OUT_TOK_BY_USER: defaultdict(int),
|
||||
OUT_TOK_BY_MODEL: defaultdict(int),
|
||||
# 总Token数
|
||||
TOTAL_TOK_BY_TYPE: defaultdict(int),
|
||||
TOTAL_TOK_BY_USER: defaultdict(int),
|
||||
TOTAL_TOK_BY_MODEL: defaultdict(int),
|
||||
# 总开销
|
||||
TOTAL_COST: 0.0,
|
||||
# 请求开销统计
|
||||
COST_BY_TYPE: defaultdict(float),
|
||||
COST_BY_USER: defaultdict(float),
|
||||
COST_BY_MODEL: defaultdict(float),
|
||||
@@ -238,26 +230,26 @@ class StatisticOutputTask(AsyncTask):
|
||||
}
|
||||
|
||||
# 以最早的时间戳为起始时间获取记录
|
||||
for record in db.llm_usage.find({"timestamp": {"$gte": collect_period[-1][1]}}):
|
||||
record_timestamp = record.get("timestamp")
|
||||
# Assuming LLMUsage.timestamp is a DateTimeField
|
||||
query_start_time = collect_period[-1][1]
|
||||
for record in LLMUsage.select().where(LLMUsage.timestamp >= query_start_time):
|
||||
record_timestamp = record.timestamp # This is already a datetime object
|
||||
for idx, (_, period_start) in enumerate(collect_period):
|
||||
if record_timestamp >= period_start:
|
||||
# 如果记录时间在当前时间段内,则它一定在更早的时间段内
|
||||
# 因此,我们可以直接跳过更早的时间段的判断,直接更新当前以及更早时间段的统计数据
|
||||
for period_key, _ in collect_period[idx:]:
|
||||
stats[period_key][TOTAL_REQ_CNT] += 1
|
||||
|
||||
request_type = record.get("request_type", "unknown") # 请求类型
|
||||
user_id = str(record.get("user_id", "unknown")) # 用户ID
|
||||
model_name = record.get("model_name", "unknown") # 模型名称
|
||||
request_type = record.request_type or "unknown"
|
||||
user_id = record.user_id or "unknown" # user_id is TextField, already string
|
||||
model_name = record.model_name or "unknown"
|
||||
|
||||
stats[period_key][REQ_CNT_BY_TYPE][request_type] += 1
|
||||
stats[period_key][REQ_CNT_BY_USER][user_id] += 1
|
||||
stats[period_key][REQ_CNT_BY_MODEL][model_name] += 1
|
||||
|
||||
prompt_tokens = record.get("prompt_tokens", 0) # 输入Token数
|
||||
completion_tokens = record.get("completion_tokens", 0) # 输出Token数
|
||||
total_tokens = prompt_tokens + completion_tokens # Token总数 = 输入Token数 + 输出Token数
|
||||
prompt_tokens = record.prompt_tokens or 0
|
||||
completion_tokens = record.completion_tokens or 0
|
||||
total_tokens = prompt_tokens + completion_tokens
|
||||
|
||||
stats[period_key][IN_TOK_BY_TYPE][request_type] += prompt_tokens
|
||||
stats[period_key][IN_TOK_BY_USER][user_id] += prompt_tokens
|
||||
@@ -271,13 +263,12 @@ class StatisticOutputTask(AsyncTask):
|
||||
stats[period_key][TOTAL_TOK_BY_USER][user_id] += total_tokens
|
||||
stats[period_key][TOTAL_TOK_BY_MODEL][model_name] += total_tokens
|
||||
|
||||
cost = record.get("cost", 0.0)
|
||||
cost = record.cost or 0.0
|
||||
stats[period_key][TOTAL_COST] += cost
|
||||
stats[period_key][COST_BY_TYPE][request_type] += cost
|
||||
stats[period_key][COST_BY_USER][user_id] += cost
|
||||
stats[period_key][COST_BY_MODEL][model_name] += cost
|
||||
break # 取消更早时间段的判断
|
||||
|
||||
break
|
||||
return stats
|
||||
|
||||
@staticmethod
|
||||
@@ -287,39 +278,38 @@ class StatisticOutputTask(AsyncTask):
|
||||
|
||||
:param collect_period: 统计时间段
|
||||
"""
|
||||
if len(collect_period) <= 0:
|
||||
if not collect_period:
|
||||
return {}
|
||||
else:
|
||||
# 排序-按照时间段开始时间降序排列(最晚的时间段在前)
|
||||
collect_period.sort(key=lambda x: x[1], reverse=True)
|
||||
|
||||
collect_period.sort(key=lambda x: x[1], reverse=True)
|
||||
|
||||
stats = {
|
||||
period_key: {
|
||||
# 在线时间统计
|
||||
ONLINE_TIME: 0.0,
|
||||
}
|
||||
for period_key, _ in collect_period
|
||||
}
|
||||
|
||||
# 统计在线时间
|
||||
for record in db.online_time.find({"end_timestamp": {"$gte": collect_period[-1][1]}}):
|
||||
end_timestamp: datetime = record.get("end_timestamp")
|
||||
for idx, (_, period_start) in enumerate(collect_period):
|
||||
if end_timestamp >= period_start:
|
||||
# 由于end_timestamp会超前标记时间,所以我们需要判断是否晚于当前时间,如果是,则使用当前时间作为结束时间
|
||||
end_timestamp = min(end_timestamp, now)
|
||||
# 如果记录时间在当前时间段内,则它一定在更早的时间段内
|
||||
# 因此,我们可以直接跳过更早的时间段的判断,直接更新当前以及更早时间段的统计数据
|
||||
for period_key, _period_start in collect_period[idx:]:
|
||||
start_timestamp: datetime = record.get("start_timestamp")
|
||||
if start_timestamp < _period_start:
|
||||
# 如果开始时间在查询边界之前,则使用开始时间
|
||||
stats[period_key][ONLINE_TIME] += (end_timestamp - _period_start).total_seconds()
|
||||
else:
|
||||
# 否则,使用开始时间
|
||||
stats[period_key][ONLINE_TIME] += (end_timestamp - start_timestamp).total_seconds()
|
||||
break # 取消更早时间段的判断
|
||||
query_start_time = collect_period[-1][1]
|
||||
# Assuming OnlineTime.end_timestamp is a DateTimeField
|
||||
for record in OnlineTime.select().where(OnlineTime.end_timestamp >= query_start_time):
|
||||
# record.end_timestamp and record.start_timestamp are datetime objects
|
||||
record_end_timestamp = record.end_timestamp
|
||||
record_start_timestamp = record.start_timestamp
|
||||
|
||||
for idx, (_, period_boundary_start) in enumerate(collect_period):
|
||||
if record_end_timestamp >= period_boundary_start:
|
||||
# Calculate effective end time for this record in relation to 'now'
|
||||
effective_end_time = min(record_end_timestamp, now)
|
||||
|
||||
for period_key, current_period_start_time in collect_period[idx:]:
|
||||
# Determine the portion of the record that falls within this specific statistical period
|
||||
overlap_start = max(record_start_timestamp, current_period_start_time)
|
||||
overlap_end = effective_end_time # Already capped by 'now' and record's own end
|
||||
|
||||
if overlap_end > overlap_start:
|
||||
stats[period_key][ONLINE_TIME] += (overlap_end - overlap_start).total_seconds()
|
||||
break
|
||||
return stats
|
||||
|
||||
def _collect_message_count_for_period(self, collect_period: List[Tuple[str, datetime]]) -> Dict[str, Any]:
|
||||
@@ -328,55 +318,57 @@ class StatisticOutputTask(AsyncTask):
|
||||
|
||||
:param collect_period: 统计时间段
|
||||
"""
|
||||
if len(collect_period) <= 0:
|
||||
if not collect_period:
|
||||
return {}
|
||||
else:
|
||||
# 排序-按照时间段开始时间降序排列(最晚的时间段在前)
|
||||
collect_period.sort(key=lambda x: x[1], reverse=True)
|
||||
|
||||
collect_period.sort(key=lambda x: x[1], reverse=True)
|
||||
|
||||
stats = {
|
||||
period_key: {
|
||||
# 消息统计
|
||||
TOTAL_MSG_CNT: 0,
|
||||
MSG_CNT_BY_CHAT: defaultdict(int),
|
||||
}
|
||||
for period_key, _ in collect_period
|
||||
}
|
||||
|
||||
# 统计消息量
|
||||
for message in db.messages.find({"time": {"$gte": collect_period[-1][1].timestamp()}}):
|
||||
chat_info = message.get("chat_info", None) # 聊天信息
|
||||
user_info = message.get("user_info", None) # 用户信息(消息发送人)
|
||||
message_time = message.get("time", 0) # 消息时间
|
||||
query_start_timestamp = collect_period[-1][1].timestamp() # Messages.time is a DoubleField (timestamp)
|
||||
for message in Messages.select().where(Messages.time >= query_start_timestamp):
|
||||
message_time_ts = message.time # This is a float timestamp
|
||||
|
||||
group_info = chat_info.get("group_info") if chat_info else None # 尝试获取群聊信息
|
||||
if group_info is not None:
|
||||
# 若有群聊信息
|
||||
chat_id = f"g{group_info.get('group_id')}"
|
||||
chat_name = group_info.get("group_name", f"群{group_info.get('group_id')}")
|
||||
elif user_info:
|
||||
# 若没有群聊信息,则尝试获取用户信息
|
||||
chat_id = f"u{user_info['user_id']}"
|
||||
chat_name = user_info["user_nickname"]
|
||||
chat_id = None
|
||||
chat_name = None
|
||||
|
||||
# Logic based on Peewee model structure, aiming to replicate original intent
|
||||
if message.chat_info_group_id:
|
||||
chat_id = f"g{message.chat_info_group_id}"
|
||||
chat_name = message.chat_info_group_name or f"群{message.chat_info_group_id}"
|
||||
elif message.user_id: # Fallback to sender's info for chat_id if not a group_info based chat
|
||||
# This uses the message SENDER's ID as per original logic's fallback
|
||||
chat_id = f"u{message.user_id}" # SENDER's user_id
|
||||
chat_name = message.user_nickname # SENDER's nickname
|
||||
else:
|
||||
continue # 如果没有群组信息也没有用户信息,则跳过
|
||||
# If neither group_id nor sender_id is available for chat identification
|
||||
logger.warning(
|
||||
f"Message (PK: {message.id if hasattr(message, 'id') else 'N/A'}) lacks group_id and user_id for chat stats."
|
||||
)
|
||||
continue
|
||||
|
||||
if not chat_id: # Should not happen if above logic is correct
|
||||
continue
|
||||
|
||||
# Update name_mapping
|
||||
if chat_id in self.name_mapping:
|
||||
if chat_name != self.name_mapping[chat_id][0] and message_time > self.name_mapping[chat_id][1]:
|
||||
# 如果用户名称不同,且新消息时间晚于之前记录的时间,则更新用户名称
|
||||
self.name_mapping[chat_id] = (chat_name, message_time)
|
||||
if chat_name != self.name_mapping[chat_id][0] and message_time_ts > self.name_mapping[chat_id][1]:
|
||||
self.name_mapping[chat_id] = (chat_name, message_time_ts)
|
||||
else:
|
||||
self.name_mapping[chat_id] = (chat_name, message_time)
|
||||
self.name_mapping[chat_id] = (chat_name, message_time_ts)
|
||||
|
||||
for idx, (_, period_start) in enumerate(collect_period):
|
||||
if message_time >= period_start.timestamp():
|
||||
# 如果记录时间在当前时间段内,则它一定在更早的时间段内
|
||||
# 因此,我们可以直接跳过更早的时间段的判断,直接更新当前以及更早时间段的统计数据
|
||||
for idx, (_, period_start_dt) in enumerate(collect_period):
|
||||
if message_time_ts >= period_start_dt.timestamp():
|
||||
for period_key, _ in collect_period[idx:]:
|
||||
stats[period_key][TOTAL_MSG_CNT] += 1
|
||||
stats[period_key][MSG_CNT_BY_CHAT][chat_id] += 1
|
||||
break
|
||||
|
||||
return stats
|
||||
|
||||
def _collect_all_statistics(self, now: datetime) -> Dict[str, Dict[str, Any]]:
|
||||
|
||||
@@ -13,7 +13,7 @@ from src.manager.mood_manager import mood_manager
|
||||
from ..message_receive.message import MessageRecv
|
||||
from ..models.utils_model import LLMRequest
|
||||
from .typo_generator import ChineseTypoGenerator
|
||||
from ...common.database import db
|
||||
from ...common.database.database import db
|
||||
from ...config.config import global_config
|
||||
|
||||
logger = get_module_logger("chat_utils")
|
||||
@@ -43,8 +43,8 @@ def db_message_to_str(message_dict: dict) -> str:
|
||||
|
||||
def is_mentioned_bot_in_message(message: MessageRecv) -> tuple[bool, float]:
|
||||
"""检查消息是否提到了机器人"""
|
||||
keywords = [global_config.BOT_NICKNAME]
|
||||
nicknames = global_config.BOT_ALIAS_NAMES
|
||||
keywords = [global_config.bot.nickname]
|
||||
nicknames = global_config.bot.alias_names
|
||||
reply_probability = 0.0
|
||||
is_at = False
|
||||
is_mentioned = False
|
||||
@@ -64,18 +64,18 @@ def is_mentioned_bot_in_message(message: MessageRecv) -> tuple[bool, float]:
|
||||
)
|
||||
|
||||
# 判断是否被@
|
||||
if re.search(f"@[\s\S]*?(id:{global_config.BOT_QQ})", message.processed_plain_text):
|
||||
if re.search(f"@[\s\S]*?(id:{global_config.bot.qq_account})", message.processed_plain_text):
|
||||
is_at = True
|
||||
is_mentioned = True
|
||||
|
||||
if is_at and global_config.at_bot_inevitable_reply:
|
||||
if is_at and global_config.normal_chat.at_bot_inevitable_reply:
|
||||
reply_probability = 1.0
|
||||
logger.info("被@,回复概率设置为100%")
|
||||
else:
|
||||
if not is_mentioned:
|
||||
# 判断是否被回复
|
||||
if re.match(
|
||||
f"\[回复 [\s\S]*?\({str(global_config.BOT_QQ)}\):[\s\S]*?],说:", message.processed_plain_text
|
||||
f"\[回复 [\s\S]*?\({str(global_config.bot.qq_account)}\):[\s\S]*?],说:", message.processed_plain_text
|
||||
):
|
||||
is_mentioned = True
|
||||
else:
|
||||
@@ -88,7 +88,7 @@ def is_mentioned_bot_in_message(message: MessageRecv) -> tuple[bool, float]:
|
||||
for nickname in nicknames:
|
||||
if nickname in message_content:
|
||||
is_mentioned = True
|
||||
if is_mentioned and global_config.mentioned_bot_inevitable_reply:
|
||||
if is_mentioned and global_config.normal_chat.mentioned_bot_inevitable_reply:
|
||||
reply_probability = 1.0
|
||||
logger.info("被提及,回复概率设置为100%")
|
||||
return is_mentioned, reply_probability
|
||||
@@ -96,7 +96,8 @@ def is_mentioned_bot_in_message(message: MessageRecv) -> tuple[bool, float]:
|
||||
|
||||
async def get_embedding(text, request_type="embedding"):
|
||||
"""获取文本的embedding向量"""
|
||||
llm = LLMRequest(model=global_config.embedding, request_type=request_type)
|
||||
# TODO: API-Adapter修改标记
|
||||
llm = LLMRequest(model=global_config.model.embedding, request_type=request_type)
|
||||
# return llm.get_embedding_sync(text)
|
||||
try:
|
||||
embedding = await llm.get_embedding(text)
|
||||
@@ -163,7 +164,7 @@ def get_recent_group_speaker(chat_stream_id: int, sender, limit: int = 12) -> li
|
||||
user_info = UserInfo.from_dict(msg_db_data["user_info"])
|
||||
if (
|
||||
(user_info.platform, user_info.user_id) != sender
|
||||
and user_info.user_id != global_config.BOT_QQ
|
||||
and user_info.user_id != global_config.bot.qq_account
|
||||
and (user_info.platform, user_info.user_id, user_info.user_nickname) not in who_chat_in_group
|
||||
and len(who_chat_in_group) < 5
|
||||
): # 排除重复,排除消息发送者,排除bot,限制加载的关系数目
|
||||
@@ -321,7 +322,7 @@ def random_remove_punctuation(text: str) -> str:
|
||||
|
||||
def process_llm_response(text: str) -> list[str]:
|
||||
# 先保护颜文字
|
||||
if global_config.enable_kaomoji_protection:
|
||||
if global_config.response_splitter.enable_kaomoji_protection:
|
||||
protected_text, kaomoji_mapping = protect_kaomoji(text)
|
||||
logger.trace(f"保护颜文字后的文本: {protected_text}")
|
||||
else:
|
||||
@@ -340,8 +341,8 @@ def process_llm_response(text: str) -> list[str]:
|
||||
logger.debug(f"{text}去除括号处理后的文本: {cleaned_text}")
|
||||
|
||||
# 对清理后的文本进行进一步处理
|
||||
max_length = global_config.response_max_length * 2
|
||||
max_sentence_num = global_config.response_max_sentence_num
|
||||
max_length = global_config.response_splitter.max_length * 2
|
||||
max_sentence_num = global_config.response_splitter.max_sentence_num
|
||||
# 如果基本上是中文,则进行长度过滤
|
||||
if get_western_ratio(cleaned_text) < 0.1:
|
||||
if len(cleaned_text) > max_length:
|
||||
@@ -349,20 +350,20 @@ def process_llm_response(text: str) -> list[str]:
|
||||
return ["懒得说"]
|
||||
|
||||
typo_generator = ChineseTypoGenerator(
|
||||
error_rate=global_config.chinese_typo_error_rate,
|
||||
min_freq=global_config.chinese_typo_min_freq,
|
||||
tone_error_rate=global_config.chinese_typo_tone_error_rate,
|
||||
word_replace_rate=global_config.chinese_typo_word_replace_rate,
|
||||
error_rate=global_config.chinese_typo.error_rate,
|
||||
min_freq=global_config.chinese_typo.min_freq,
|
||||
tone_error_rate=global_config.chinese_typo.tone_error_rate,
|
||||
word_replace_rate=global_config.chinese_typo.word_replace_rate,
|
||||
)
|
||||
|
||||
if global_config.enable_response_splitter:
|
||||
if global_config.response_splitter.enable:
|
||||
split_sentences = split_into_sentences_w_remove_punctuation(cleaned_text)
|
||||
else:
|
||||
split_sentences = [cleaned_text]
|
||||
|
||||
sentences = []
|
||||
for sentence in split_sentences:
|
||||
if global_config.chinese_typo_enable:
|
||||
if global_config.chinese_typo.enable:
|
||||
typoed_text, typo_corrections = typo_generator.create_typo_sentence(sentence)
|
||||
sentences.append(typoed_text)
|
||||
if typo_corrections:
|
||||
@@ -372,7 +373,7 @@ def process_llm_response(text: str) -> list[str]:
|
||||
|
||||
if len(sentences) > max_sentence_num:
|
||||
logger.warning(f"分割后消息数量过多 ({len(sentences)} 条),返回默认回复")
|
||||
return [f"{global_config.BOT_NICKNAME}不知道哦"]
|
||||
return [f"{global_config.bot.nickname}不知道哦"]
|
||||
|
||||
# if extracted_contents:
|
||||
# for content in extracted_contents:
|
||||
|
||||
@@ -8,7 +8,8 @@ import io
|
||||
import numpy as np
|
||||
|
||||
|
||||
from ...common.database import db
|
||||
from ...common.database.database import db
|
||||
from ...common.database.database_model import Images, ImageDescriptions
|
||||
from ...config.config import global_config
|
||||
from ..models.utils_model import LLMRequest
|
||||
|
||||
@@ -32,40 +33,23 @@ class ImageManager:
|
||||
|
||||
def __init__(self):
|
||||
if not self._initialized:
|
||||
self._ensure_image_collection()
|
||||
self._ensure_description_collection()
|
||||
self._ensure_image_dir()
|
||||
|
||||
self._initialized = True
|
||||
self._llm = LLMRequest(model=global_config.model.vlm, temperature=0.4, max_tokens=300, request_type="image")
|
||||
|
||||
try:
|
||||
db.connect(reuse_if_open=True)
|
||||
db.create_tables([Images, ImageDescriptions], safe=True)
|
||||
except Exception as e:
|
||||
logger.error(f"数据库连接或表创建失败: {e}")
|
||||
|
||||
self._initialized = True
|
||||
self._llm = LLMRequest(model=global_config.vlm, temperature=0.4, max_tokens=300, request_type="image")
|
||||
|
||||
def _ensure_image_dir(self):
|
||||
"""确保图像存储目录存在"""
|
||||
os.makedirs(self.IMAGE_DIR, exist_ok=True)
|
||||
|
||||
@staticmethod
|
||||
def _ensure_image_collection():
|
||||
"""确保images集合存在并创建索引"""
|
||||
if "images" not in db.list_collection_names():
|
||||
db.create_collection("images")
|
||||
|
||||
# 删除旧索引
|
||||
db.images.drop_indexes()
|
||||
# 创建新的复合索引
|
||||
db.images.create_index([("hash", 1), ("type", 1)], unique=True)
|
||||
db.images.create_index([("url", 1)])
|
||||
db.images.create_index([("path", 1)])
|
||||
|
||||
@staticmethod
|
||||
def _ensure_description_collection():
|
||||
"""确保image_descriptions集合存在并创建索引"""
|
||||
if "image_descriptions" not in db.list_collection_names():
|
||||
db.create_collection("image_descriptions")
|
||||
|
||||
# 删除旧索引
|
||||
db.image_descriptions.drop_indexes()
|
||||
# 创建新的复合索引
|
||||
db.image_descriptions.create_index([("hash", 1), ("type", 1)], unique=True)
|
||||
|
||||
@staticmethod
|
||||
def _get_description_from_db(image_hash: str, description_type: str) -> Optional[str]:
|
||||
"""从数据库获取图片描述
|
||||
@@ -77,8 +61,14 @@ class ImageManager:
|
||||
Returns:
|
||||
Optional[str]: 描述文本,如果不存在则返回None
|
||||
"""
|
||||
result = db.image_descriptions.find_one({"hash": image_hash, "type": description_type})
|
||||
return result["description"] if result else None
|
||||
try:
|
||||
record = ImageDescriptions.get_or_none(
|
||||
(ImageDescriptions.image_description_hash == image_hash) & (ImageDescriptions.type == description_type)
|
||||
)
|
||||
return record.description if record else None
|
||||
except Exception as e:
|
||||
logger.error(f"从数据库获取描述失败 (Peewee): {str(e)}")
|
||||
return None
|
||||
|
||||
@staticmethod
|
||||
def _save_description_to_db(image_hash: str, description: str, description_type: str) -> None:
|
||||
@@ -90,20 +80,17 @@ class ImageManager:
|
||||
description_type: 描述类型 ('emoji' 或 'image')
|
||||
"""
|
||||
try:
|
||||
db.image_descriptions.update_one(
|
||||
{"hash": image_hash, "type": description_type},
|
||||
{
|
||||
"$set": {
|
||||
"description": description,
|
||||
"timestamp": int(time.time()),
|
||||
"hash": image_hash, # 确保hash字段存在
|
||||
"type": description_type, # 确保type字段存在
|
||||
}
|
||||
},
|
||||
upsert=True,
|
||||
current_timestamp = time.time()
|
||||
defaults = {"description": description, "timestamp": current_timestamp}
|
||||
desc_obj, created = ImageDescriptions.get_or_create(
|
||||
hash=image_hash, type=description_type, defaults=defaults
|
||||
)
|
||||
if not created: # 如果记录已存在,则更新
|
||||
desc_obj.description = description
|
||||
desc_obj.timestamp = current_timestamp
|
||||
desc_obj.save()
|
||||
except Exception as e:
|
||||
logger.error(f"保存描述到数据库失败: {str(e)}")
|
||||
logger.error(f"保存描述到数据库失败 (Peewee): {str(e)}")
|
||||
|
||||
async def get_emoji_description(self, image_base64: str) -> str:
|
||||
"""获取表情包描述,带查重和保存功能"""
|
||||
@@ -116,51 +103,64 @@ class ImageManager:
|
||||
# 查询缓存的描述
|
||||
cached_description = self._get_description_from_db(image_hash, "emoji")
|
||||
if cached_description:
|
||||
# logger.debug(f"缓存表情包描述: {cached_description}")
|
||||
return f"[表情包,含义看起来是:{cached_description}]"
|
||||
|
||||
# 调用AI获取描述
|
||||
if image_format == "gif" or image_format == "GIF":
|
||||
image_base64 = self.transform_gif(image_base64)
|
||||
image_base64_processed = self.transform_gif(image_base64)
|
||||
if image_base64_processed is None:
|
||||
logger.warning("GIF转换失败,无法获取描述")
|
||||
return "[表情包(GIF处理失败)]"
|
||||
prompt = "这是一个动态图表情包,每一张图代表了动态图的某一帧,黑色背景代表透明,使用1-2个词描述一下表情包表达的情感和内容,简短一些"
|
||||
description, _ = await self._llm.generate_response_for_image(prompt, image_base64, "jpg")
|
||||
description, _ = await self._llm.generate_response_for_image(prompt, image_base64_processed, "jpg")
|
||||
else:
|
||||
prompt = "这是一个表情包,请用使用几个词描述一下表情包所表达的情感和内容,简短一些"
|
||||
description, _ = await self._llm.generate_response_for_image(prompt, image_base64, image_format)
|
||||
|
||||
if description is None:
|
||||
logger.warning("AI未能生成表情包描述")
|
||||
return "[表情包(描述生成失败)]"
|
||||
|
||||
# 再次检查缓存,防止并发写入时重复生成
|
||||
cached_description = self._get_description_from_db(image_hash, "emoji")
|
||||
if cached_description:
|
||||
logger.warning(f"虽然生成了描述,但是找到缓存表情包描述: {cached_description}")
|
||||
return f"[表情包,含义看起来是:{cached_description}]"
|
||||
|
||||
# 根据配置决定是否保存图片
|
||||
if global_config.save_emoji:
|
||||
if global_config.emoji.save_emoji:
|
||||
# 生成文件名和路径
|
||||
timestamp = int(time.time())
|
||||
filename = f"{timestamp}_{image_hash[:8]}.{image_format}"
|
||||
if not os.path.exists(os.path.join(self.IMAGE_DIR, "emoji")):
|
||||
os.makedirs(os.path.join(self.IMAGE_DIR, "emoji"))
|
||||
file_path = os.path.join(self.IMAGE_DIR, "emoji", filename)
|
||||
current_timestamp = time.time()
|
||||
filename = f"{int(current_timestamp)}_{image_hash[:8]}.{image_format}"
|
||||
emoji_dir = os.path.join(self.IMAGE_DIR, "emoji")
|
||||
os.makedirs(emoji_dir, exist_ok=True)
|
||||
file_path = os.path.join(emoji_dir, filename)
|
||||
|
||||
try:
|
||||
# 保存文件
|
||||
with open(file_path, "wb") as f:
|
||||
f.write(image_bytes)
|
||||
|
||||
# 保存到数据库
|
||||
image_doc = {
|
||||
"hash": image_hash,
|
||||
"path": file_path,
|
||||
"type": "emoji",
|
||||
"description": description,
|
||||
"timestamp": timestamp,
|
||||
}
|
||||
db.images.update_one({"hash": image_hash}, {"$set": image_doc}, upsert=True)
|
||||
logger.trace(f"保存表情包: {file_path}")
|
||||
# 保存到数据库 (Images表)
|
||||
try:
|
||||
img_obj = Images.get((Images.emoji_hash == image_hash) & (Images.type == "emoji"))
|
||||
img_obj.path = file_path
|
||||
img_obj.description = description
|
||||
img_obj.timestamp = current_timestamp
|
||||
img_obj.save()
|
||||
except Images.DoesNotExist:
|
||||
Images.create(
|
||||
hash=image_hash,
|
||||
path=file_path,
|
||||
type="emoji",
|
||||
description=description,
|
||||
timestamp=current_timestamp,
|
||||
)
|
||||
logger.trace(f"保存表情包元数据: {file_path}")
|
||||
except Exception as e:
|
||||
logger.error(f"保存表情包文件失败: {str(e)}")
|
||||
logger.error(f"保存表情包文件或元数据失败: {str(e)}")
|
||||
|
||||
# 保存描述到数据库
|
||||
# 保存描述到数据库 (ImageDescriptions表)
|
||||
self._save_description_to_db(image_hash, description, "emoji")
|
||||
|
||||
return f"[表情包:{description}]"
|
||||
@@ -188,6 +188,11 @@ class ImageManager:
|
||||
)
|
||||
description, _ = await self._llm.generate_response_for_image(prompt, image_base64, image_format)
|
||||
|
||||
if description is None:
|
||||
logger.warning("AI未能生成图片描述")
|
||||
return "[图片(描述生成失败)]"
|
||||
|
||||
# 再次检查缓存
|
||||
cached_description = self._get_description_from_db(image_hash, "image")
|
||||
if cached_description:
|
||||
logger.warning(f"虽然生成了描述,但是找到缓存图片描述 {cached_description}")
|
||||
@@ -195,38 +200,40 @@ class ImageManager:
|
||||
|
||||
logger.debug(f"描述是{description}")
|
||||
|
||||
if description is None:
|
||||
logger.warning("AI未能生成图片描述")
|
||||
return "[图片]"
|
||||
|
||||
# 根据配置决定是否保存图片
|
||||
if global_config.save_pic:
|
||||
if global_config.emoji.save_pic:
|
||||
# 生成文件名和路径
|
||||
timestamp = int(time.time())
|
||||
filename = f"{timestamp}_{image_hash[:8]}.{image_format}"
|
||||
if not os.path.exists(os.path.join(self.IMAGE_DIR, "image")):
|
||||
os.makedirs(os.path.join(self.IMAGE_DIR, "image"))
|
||||
file_path = os.path.join(self.IMAGE_DIR, "image", filename)
|
||||
current_timestamp = time.time()
|
||||
filename = f"{int(current_timestamp)}_{image_hash[:8]}.{image_format}"
|
||||
image_dir = os.path.join(self.IMAGE_DIR, "image")
|
||||
os.makedirs(image_dir, exist_ok=True)
|
||||
file_path = os.path.join(image_dir, filename)
|
||||
|
||||
try:
|
||||
# 保存文件
|
||||
with open(file_path, "wb") as f:
|
||||
f.write(image_bytes)
|
||||
|
||||
# 保存到数据库
|
||||
image_doc = {
|
||||
"hash": image_hash,
|
||||
"path": file_path,
|
||||
"type": "image",
|
||||
"description": description,
|
||||
"timestamp": timestamp,
|
||||
}
|
||||
db.images.update_one({"hash": image_hash}, {"$set": image_doc}, upsert=True)
|
||||
logger.trace(f"保存图片: {file_path}")
|
||||
# 保存到数据库 (Images表)
|
||||
try:
|
||||
img_obj = Images.get((Images.emoji_hash == image_hash) & (Images.type == "image"))
|
||||
img_obj.path = file_path
|
||||
img_obj.description = description
|
||||
img_obj.timestamp = current_timestamp
|
||||
img_obj.save()
|
||||
except Images.DoesNotExist:
|
||||
Images.create(
|
||||
hash=image_hash,
|
||||
path=file_path,
|
||||
type="image",
|
||||
description=description,
|
||||
timestamp=current_timestamp,
|
||||
)
|
||||
logger.trace(f"保存图片元数据: {file_path}")
|
||||
except Exception as e:
|
||||
logger.error(f"保存图片文件失败: {str(e)}")
|
||||
logger.error(f"保存图片文件或元数据失败: {str(e)}")
|
||||
|
||||
# 保存描述到数据库
|
||||
# 保存描述到数据库 (ImageDescriptions表)
|
||||
self._save_description_to_db(image_hash, description, "image")
|
||||
|
||||
return f"[图片:{description}]"
|
||||
|
||||
@@ -16,7 +16,7 @@ root_path = os.path.abspath(os.path.join(os.path.dirname(__file__), "../../.."))
|
||||
sys.path.append(root_path)
|
||||
|
||||
# 现在可以导入src模块
|
||||
from src.common.database import db # noqa E402
|
||||
from common.database.database import db # noqa E402
|
||||
|
||||
|
||||
# 加载根目录下的env.edv文件
|
||||
|
||||
Reference in New Issue
Block a user