fix:实例化 normal_chat,支持不同子聊天拥有不同参数,修复各种问题

This commit is contained in:
SengokuCola
2025-04-23 15:30:31 +08:00
parent ca2bbc9c85
commit b4054544c4
13 changed files with 1486 additions and 1207 deletions

View File

@@ -0,0 +1,204 @@
import asyncio
import traceback
from typing import Optional, Coroutine, Callable, Any, List
from src.common.logger import get_module_logger
# Need manager types for dependency injection
from src.heart_flow.mai_state_manager import MaiStateManager, MaiStateInfo
from src.heart_flow.subheartflow_manager import SubHeartflowManager
from src.heart_flow.interest_logger import InterestLogger
logger = get_module_logger("background_tasks")
class BackgroundTaskManager:
"""管理 Heartflow 的后台周期性任务。"""
def __init__(
self,
mai_state_info: MaiStateInfo, # Needs current state info
mai_state_manager: MaiStateManager,
subheartflow_manager: SubHeartflowManager,
interest_logger: InterestLogger,
update_interval: int,
cleanup_interval: int,
log_interval: int,
inactive_threshold: int,
):
self.mai_state_info = mai_state_info
self.mai_state_manager = mai_state_manager
self.subheartflow_manager = subheartflow_manager
self.interest_logger = interest_logger
# Intervals
self.update_interval = update_interval
self.cleanup_interval = cleanup_interval
self.log_interval = log_interval
self.inactive_threshold = inactive_threshold # For cleanup task
# Task references
self._state_update_task: Optional[asyncio.Task] = None
self._cleanup_task: Optional[asyncio.Task] = None
self._logging_task: Optional[asyncio.Task] = None
self._tasks: List[Optional[asyncio.Task]] = [] # Keep track of all tasks
async def start_tasks(self):
"""启动所有后台任务"""
# 状态更新任务
if self._state_update_task is None or self._state_update_task.done():
self._state_update_task = asyncio.create_task(
self._run_state_update_cycle(self.update_interval), name="hf_state_update"
)
self._tasks.append(self._state_update_task)
logger.debug(f"聊天状态更新任务已启动 间隔:{self.update_interval}s")
else:
logger.warning("状态更新任务已在运行")
# 清理任务
if self._cleanup_task is None or self._cleanup_task.done():
self._cleanup_task = asyncio.create_task(self._run_cleanup_cycle(), name="hf_cleanup")
self._tasks.append(self._cleanup_task)
logger.info(f"清理任务已启动 间隔:{self.cleanup_interval}s 阈值:{self.inactive_threshold}s")
else:
logger.warning("清理任务已在运行")
# 日志任务
if self._logging_task is None or self._logging_task.done():
self._logging_task = asyncio.create_task(self._run_logging_cycle(), name="hf_logging")
self._tasks.append(self._logging_task)
logger.info(f"日志任务已启动 间隔:{self.log_interval}s")
else:
logger.warning("日志任务已在运行")
# # 初始状态检查
# initial_state = self.mai_state_info.get_current_state()
# if initial_state != self.mai_state_info.mai_status.OFFLINE:
# logger.info(f"初始状态:{initial_state.value} 触发初始激活检查")
# asyncio.create_task(self.subheartflow_manager.activate_random_subflows_to_chat(initial_state))
async def stop_tasks(self):
"""停止所有后台任务。
该方法会:
1. 遍历所有后台任务并取消未完成的任务
2. 等待所有取消操作完成
3. 清空任务列表
"""
logger.info("正在停止所有后台任务...")
cancelled_count = 0
# 第一步:取消所有运行中的任务
for task in self._tasks:
if task and not task.done():
task.cancel() # 发送取消请求
cancelled_count += 1
# 第二步:处理取消结果
if cancelled_count > 0:
logger.debug(f"正在等待{cancelled_count}个任务完成取消...")
# 使用gather等待所有取消操作完成忽略异常
await asyncio.gather(*[t for t in self._tasks if t and t.cancelled()], return_exceptions=True)
logger.info(f"成功取消{cancelled_count}个后台任务")
else:
logger.info("没有需要取消的后台任务")
# 第三步:清空任务列表
self._tasks = [] # 重置任务列表
async def _run_periodic_loop(
self, task_name: str, interval: int, task_func: Callable[..., Coroutine[Any, Any, None]], **kwargs
):
"""周期性任务主循环"""
while True:
start_time = asyncio.get_event_loop().time()
logger.debug(f"开始执行后台任务: {task_name}")
try:
await task_func(**kwargs) # 执行实际任务
except asyncio.CancelledError:
logger.info(f"任务 {task_name} 已取消")
break
except Exception as e:
logger.error(f"任务 {task_name} 执行出错: {e}")
logger.error(traceback.format_exc())
# 计算并执行间隔等待
elapsed = asyncio.get_event_loop().time() - start_time
sleep_time = max(0, interval - elapsed)
if sleep_time < 0.1: # 任务超时处理
logger.warning(f"任务 {task_name} 超时执行 ({elapsed:.2f}s > {interval}s)")
await asyncio.sleep(sleep_time)
# 非离线状态时评估兴趣
if self.mai_state_info.get_current_state() != self.mai_state_info.mai_status.OFFLINE:
await self.subheartflow_manager.evaluate_interest_and_promote()
logger.debug(f"任务循环结束, 当前状态: {self.mai_state_info.get_current_state().value}")
async def _perform_state_update_work(self):
"""执行状态更新工作"""
previous_status = self.mai_state_info.get_current_state()
next_state = self.mai_state_manager.check_and_decide_next_state(self.mai_state_info)
state_changed = False
if next_state is not None:
state_changed = self.mai_state_info.update_mai_status(next_state)
# 处理保持离线状态的特殊情况
if not state_changed and next_state == previous_status == self.mai_state_info.mai_status.OFFLINE:
self.mai_state_info.reset_state_timer()
logger.debug("[后台任务] 保持离线状态并重置计时器")
state_changed = True # 触发后续处理
if state_changed:
current_state = self.mai_state_info.get_current_state()
await self.subheartflow_manager.enforce_subheartflow_limits(current_state)
# 状态转换处理
if (
previous_status == self.mai_state_info.mai_status.OFFLINE
and current_state != self.mai_state_info.mai_status.OFFLINE
):
logger.info("[后台任务] 主状态激活,触发子流激活")
await self.subheartflow_manager.activate_random_subflows_to_chat(current_state)
elif (
current_state == self.mai_state_info.mai_status.OFFLINE
and previous_status != self.mai_state_info.mai_status.OFFLINE
):
logger.info("[后台任务] 主状态离线,触发子流停用")
await self.subheartflow_manager.deactivate_all_subflows()
async def _perform_cleanup_work(self):
"""执行一轮子心流清理操作。"""
flows_to_stop = self.subheartflow_manager.cleanup_inactive_subheartflows(self.inactive_threshold)
if flows_to_stop:
logger.info(f"[Background Task Cleanup] Attempting to stop {len(flows_to_stop)} inactive flows...")
stopped_count = 0
for flow_id, reason in flows_to_stop:
if await self.subheartflow_manager.stop_subheartflow(flow_id, f"定期清理: {reason}"):
stopped_count += 1
logger.info(f"[Background Task Cleanup] Cleanup cycle finished. Stopped {stopped_count} inactive flows.")
else:
logger.debug("[Background Task Cleanup] Cleanup cycle finished. No inactive flows found.")
async def _perform_logging_work(self):
"""执行一轮兴趣日志记录。"""
await self.interest_logger.log_interest_states()
# --- Specific Task Runners --- #
async def _run_state_update_cycle(self, interval: int):
await self._run_periodic_loop(
task_name="State Update", interval=interval, task_func=self._perform_state_update_work
)
async def _run_cleanup_cycle(self):
await self._run_periodic_loop(
task_name="Subflow Cleanup", interval=self.cleanup_interval, task_func=self._perform_cleanup_work
)
async def _run_logging_cycle(self):
await self._run_periodic_loop(
task_name="Interest Logging", interval=self.log_interval, task_func=self._perform_logging_work
)

View File

@@ -1,883 +1,116 @@
from src.heart_flow.sub_heartflow import SubHeartflow, ChattingObservation, ChatState
from src.plugins.moods.moods import MoodManager
from src.heart_flow.sub_heartflow import SubHeartflow
from src.plugins.models.utils_model import LLMRequest
from src.config.config import global_config
from src.plugins.schedule.schedule_generator import bot_schedule
from src.plugins.utils.prompt_builder import Prompt, global_prompt_manager
import asyncio
from src.common.logger import get_module_logger, LogConfig, HEARTFLOW_STYLE_CONFIG # 修改
from src.individuality.individuality import Individuality
import time
import random
from typing import Dict, Any, Optional, TYPE_CHECKING
import traceback
import enum
import os # 新增
import json # 新增
from src.plugins.chat.chat_stream import chat_manager # 新增
# --- Add imports for merged dependencies ---
from src.common.logger import get_module_logger, LogConfig, HEARTFLOW_STYLE_CONFIG
from typing import Any, Optional
from src.plugins.heartFC_chat.heartFC_generator import ResponseGenerator
from src.do_tool.tool_use import ToolUser
from src.plugins.chat.emoji_manager import emoji_manager # Module instance
from src.plugins.person_info.relationship_manager import relationship_manager # Module instance
# --- End imports ---
from src.heart_flow.mai_state_manager import MaiStateInfo, MaiStateManager
from src.heart_flow.subheartflow_manager import SubHeartflowManager
from src.heart_flow.mind import Mind
from src.heart_flow.interest_logger import InterestLogger # Import InterestLogger
from src.heart_flow.background_tasks import BackgroundTaskManager # Import BackgroundTaskManager
# --- End import ---
heartflow_config = LogConfig(
# 使用海马体专用样式
console_format=HEARTFLOW_STYLE_CONFIG["console_format"],
file_format=HEARTFLOW_STYLE_CONFIG["file_format"],
)
logger = get_module_logger("heartflow", config=heartflow_config)
# Type hinting for circular dependency
if TYPE_CHECKING:
from src.heart_flow.sub_heartflow import SubHeartflow, ChatState # Keep SubHeartflow here too
# from src.plugins.heartFC_chat.heartFC_controler import HeartFCController # No longer needed
# Task Intervals (should be in BackgroundTaskManager or config)
CLEANUP_INTERVAL_SECONDS = 1200
STATE_UPDATE_INTERVAL_SECONDS = 30
def init_prompt():
prompt = ""
prompt += "你刚刚在做的事情是:{schedule_info}\n"
prompt += "{personality_info}\n"
prompt += "你想起来{related_memory_info}"
prompt += "刚刚你的主要想法是{current_thinking_info}"
prompt += "你还有一些小想法,因为你在参加不同的群聊天,这是你正在做的事情:{sub_flows_info}\n"
prompt += "你现在{mood_info}"
prompt += "现在你接下去继续思考,产生新的想法,但是要基于原有的主要想法,不要分点输出,"
prompt += "输出连贯的内心独白,不要太长,但是记得结合上述的消息,关注新内容:"
Prompt(prompt, "thinking_prompt")
prompt = ""
prompt += "{personality_info}\n"
prompt += "现在{bot_name}的想法是:{current_mind}\n"
prompt += "现在{bot_name}在qq群里进行聊天聊天的话题如下{minds_str}\n"
prompt += "你现在{mood_info}\n"
prompt += """现在请你总结这些聊天内容,注意关注聊天内容对原有的想法的影响,输出连贯的内心独白
不要太长,但是记得结合上述的消息,要记得你的人设,关注新内容:"""
Prompt(prompt, "mind_summary_prompt")
# --- 新增:从 interest.py 移动过来的常量 ---
LOG_DIRECTORY = "logs/interest"
HISTORY_LOG_FILENAME = "interest_history.log"
CLEANUP_INTERVAL_SECONDS = 1200 # 清理任务运行间隔 (例如20分钟) - 保持与 interest.py 一致
INACTIVE_THRESHOLD_SECONDS = 1200 # 不活跃时间阈值 (例如20分钟) - 保持与 interest.py 一致
LOG_INTERVAL_SECONDS = 3 # 日志记录间隔 (例如3秒) - 保持与 interest.py 一致
# --- 结束新增常量 ---
# --- 新增:状态更新常量 ---
STATE_UPDATE_INTERVAL_SECONDS = 30 # 状态更新检查间隔(秒)
FIVE_MINUTES = 1 * 60
FIFTEEN_MINUTES = 5 * 60
TWENTY_MINUTES = 10 * 60
# --- 结束新增常量 ---
# 新增 ChatStatus 枚举
class MaiState(enum.Enum):
"""
聊天状态:
OFFLINE: 不在线:回复概率极低,不会进行任何聊天
PEEKING: 看一眼手机:回复概率较低,会进行一些普通聊天
NORMAL_CHAT: 正常聊天:回复概率较高,会进行一些普通聊天和少量的专注聊天
FOCUSED_CHAT: 专注聊天:回复概率极高,会进行专注聊天和少量的普通聊天
"""
OFFLINE = "不在线"
PEEKING = "看一眼手机"
NORMAL_CHAT = "正常聊天"
FOCUSED_CHAT = "专注聊天"
def get_normal_chat_max_num(self):
if self == MaiState.OFFLINE:
return 0
elif self == MaiState.PEEKING:
return 1
elif self == MaiState.NORMAL_CHAT:
return 3
elif self == MaiState.FOCUSED_CHAT:
return 2
def get_focused_chat_max_num(self):
if self == MaiState.OFFLINE:
return 0
elif self == MaiState.PEEKING:
return 0
elif self == MaiState.NORMAL_CHAT:
return 1
elif self == MaiState.FOCUSED_CHAT:
return 2
class MaiStateInfo:
def __init__(self):
# 使用枚举类型初始化状态,默认为正常聊天
self.mai_status: MaiState = MaiState.OFFLINE
self.mai_status_history = [] # 历史状态,包含 状态,最后时间
self.last_status_change_time: float = time.time() # 新增:状态最后改变时间
self.last_5min_check_time: float = time.time() # 新增上次5分钟规则检查时间
self.normal_chatting = []
self.focused_chatting = []
self.mood_manager = MoodManager()
self.mood = self.mood_manager.get_prompt()
# 新增更新聊天状态的方法
def update_mai_status(self, new_status: MaiState):
"""更新聊天状态"""
if isinstance(new_status, MaiState) and new_status != self.mai_status: # 只有状态实际改变时才更新
self.mai_status = new_status
current_time = time.time()
self.last_status_change_time = current_time # 更新状态改变时间
self.last_5min_check_time = current_time # 重置5分钟检查计时器
# 将新状态和时间戳添加到历史记录
self.mai_status_history.append((new_status, current_time))
logger.info(f"麦麦状态更新为: {self.mai_status.value}")
elif not isinstance(new_status, MaiState):
logger.warning(f"尝试设置无效的麦麦状态: {new_status}")
# else: # 状态未改变,不处理
# pass
# Thresholds (should be in SubHeartflowManager or config)
INACTIVE_THRESHOLD_SECONDS = 1200
# --- End Constants --- #
class Heartflow:
"""主心流协调器,负责初始化并协调各个子系统:
- 状态管理 (MaiState)
- 子心流管理 (SubHeartflow)
- 思考过程 (Mind)
- 日志记录 (InterestLogger)
- 后台任务 (BackgroundTaskManager)
"""
def __init__(self):
self.current_mind = "你什么也没想"
self.past_mind = []
self.current_state: MaiStateInfo = MaiStateInfo()
# 核心状态
self.current_mind = "什么也没想" # 当前主心流想法
self.past_mind = [] # 历史想法记录
# 状态管理相关
self.current_state: MaiStateInfo = MaiStateInfo() # 当前状态信息
self.mai_state_manager: MaiStateManager = MaiStateManager() # 状态决策管理器
# 子心流管理
self.subheartflow_manager: SubHeartflowManager = SubHeartflowManager() # 子心流管理器
# LLM模型配置
self.llm_model = LLMRequest(
model=global_config.llm_heartflow, temperature=0.6, max_tokens=1000, request_type="heart_flow"
)
self._subheartflows: Dict[Any, "SubHeartflow"] = {} # Update type hint
# 外部依赖模块
self.gpt_instance = ResponseGenerator() # 响应生成器
self.tool_user_instance = ToolUser() # 工具使用模块
self.relationship_manager_instance = relationship_manager # 关系管理模块
# --- Dependencies moved from HeartFCController ---
self.gpt_instance = ResponseGenerator()
self.mood_manager = (
MoodManager.get_instance()
) # Note: MaiStateInfo also has one, consider consolidating later if needed
self.tool_user_instance = ToolUser()
self.emoji_manager_instance = emoji_manager # Module instance
self.relationship_manager_instance = relationship_manager # Module instance
# --- End moved dependencies ---
# 子系统初始化
self.mind: Mind = Mind(self.subheartflow_manager, self.llm_model) # 思考管理器
self.interest_logger: InterestLogger = InterestLogger(self.subheartflow_manager) # 兴趣日志记录器
# --- Background Task Management ---
self._history_log_file_path = os.path.join(LOG_DIRECTORY, HISTORY_LOG_FILENAME)
self._ensure_log_directory() # 初始化时确保目录存在
self._cleanup_task: Optional[asyncio.Task] = None
self._logging_task: Optional[asyncio.Task] = None
self._state_update_task: Optional[asyncio.Task] = None # 新增:状态更新任务
# 注意:衰减任务 (_decay_task) 不再需要,衰减在 SubHeartflow 的 InterestChatting 内部处理
# --- End moved dependencies ---
def _ensure_log_directory(self): # 新增方法 (从 InterestManager 移动)
"""确保日志目录存在"""
# 移除 try-except 块,根据用户要求
os.makedirs(LOG_DIRECTORY, exist_ok=True)
logger.info(f"Log directory '{LOG_DIRECTORY}' ensured.")
# except OSError as e:
# logger.error(f"Error creating log directory '{LOG_DIRECTORY}': {e}")
async def _periodic_cleanup_task(
self, interval_seconds: int, max_age_seconds: int
): # 新增方法 (从 InterestManager 移动和修改)
"""后台清理任务的异步函数"""
while True:
await asyncio.sleep(interval_seconds)
logger.info(f"[Heartflow] 运行定期清理 (间隔: {interval_seconds}秒)...")
self.cleanup_inactive_subheartflows(max_age_seconds=max_age_seconds) # 调用 Heartflow 自己的清理方法
async def _periodic_log_task(self, interval_seconds: int): # 新增方法 (从 InterestManager 移动和修改)
"""后台日志记录任务的异步函数 (记录所有子心流的兴趣历史数据)"""
while True:
await asyncio.sleep(interval_seconds)
try:
current_timestamp = time.time()
all_interest_states = await self.get_all_interest_states() # 获取所有子心流的兴趣状态
# 以追加模式打开历史日志文件
# 移除 try-except IO 块,根据用户要求
with open(self._history_log_file_path, "a", encoding="utf-8") as f:
count = 0
# 创建 items 快照以安全迭代
items_snapshot = list(all_interest_states.items())
for stream_id, state in items_snapshot:
# 从 chat_manager 获取 group_name
group_name = stream_id # 默认值
try:
chat_stream = chat_manager.get_stream(stream_id)
if chat_stream and chat_stream.group_info:
group_name = chat_stream.group_info.group_name
elif chat_stream and not chat_stream.group_info: # 处理私聊
group_name = (
f"私聊_{chat_stream.user_info.user_nickname}"
if chat_stream.user_info
else stream_id
)
except Exception:
# 不记录警告,避免刷屏,使用默认 stream_id 即可
# logger.warning(f"Could not get group name for stream_id {stream_id}: {e}")
pass # 静默处理
log_entry = {
"timestamp": round(current_timestamp, 2),
"stream_id": stream_id,
"interest_level": state.get("interest_level", 0.0), # 使用 get 获取,提供默认值
"group_name": group_name,
"reply_probability": state.get("current_reply_probability", 0.0), # 使用 get 获取
"is_above_threshold": state.get("is_above_threshold", False), # 使用 get 获取
}
# 将每个条目作为单独的 JSON 行写入
f.write(json.dumps(log_entry, ensure_ascii=False) + "\n")
count += 1
# logger.debug(f"[Heartflow] Successfully appended {count} interest history entries to {self._history_log_file_path}")
# except IOError as e:
# logger.error(f"[Heartflow] Error writing interest history log to {self._history_log_file_path}: {e}")
except Exception as e: # 保留对其他异常的捕获
logger.error(f"[Heartflow] Unexpected error during periodic history logging: {e}")
logger.error(traceback.format_exc()) # 记录 traceback
async def _periodic_state_update_task(self):
"""定期检查并更新 Mai 状态"""
while True:
await asyncio.sleep(STATE_UPDATE_INTERVAL_SECONDS)
try:
current_time = time.time()
# 获取更新前的状态
previous_status = self.current_state.mai_status
current_status = self.current_state.mai_status # 保持此行以进行后续逻辑
time_in_current_status = current_time - self.current_state.last_status_change_time
time_since_last_5min_check = current_time - self.current_state.last_5min_check_time
next_state = None # 预设下一状态为 None
# --- 状态转换逻辑 (保持不变) ---
# 1. 通用规则每5分钟检查 (对于非 OFFLINE 状态)
if time_since_last_5min_check >= FIVE_MINUTES:
self.current_state.last_5min_check_time = current_time # 重置5分钟检查计时器无论是否切换
if current_status != MaiState.OFFLINE:
if random.random() < 0.10: # 10% 概率切换到 OFFLINE
logger.debug(f"[Heartflow State] 触发5分钟规则{current_status.value} 切换到 OFFLINE")
next_state = MaiState.OFFLINE # 设置 next_state 而不是直接更新
# self.current_state.update_mai_status(MaiState.OFFLINE)
# continue # 状态已改变,进入下一轮循环
# 2. 状态持续时间规则 (仅在未被5分钟规则覆盖时执行)
if next_state is None: # 仅当5分钟规则未触发切换时检查持续时间
if current_status == MaiState.OFFLINE:
# OFFLINE 状态下检查是否已持续5分钟
if time_in_current_status >= FIVE_MINUTES:
weights = [35, 35, 30]
choices_list = [MaiState.PEEKING, MaiState.NORMAL_CHAT, MaiState.OFFLINE]
next_state_candidate = random.choices(choices_list, weights=weights, k=1)[0]
if next_state_candidate != MaiState.OFFLINE:
next_state = next_state_candidate
logger.debug(f"[Heartflow State] OFFLINE 持续时间达到,切换到 {next_state.value}")
else:
# 保持 OFFLINE重置计时器以开始新的5分钟计时
logger.debug("[Heartflow State] OFFLINE 持续时间达到,保持 OFFLINE重置计时器")
self.current_state.last_status_change_time = current_time
self.current_state.last_5min_check_time = current_time # 保持一致
# 显式将 next_state 设为 OFFLINE 以便后续处理
next_state = MaiState.OFFLINE
elif current_status == MaiState.PEEKING:
if time_in_current_status >= FIVE_MINUTES: # PEEKING 最多持续 5 分钟
weights = [50, 30, 20]
choices_list = [MaiState.OFFLINE, MaiState.NORMAL_CHAT, MaiState.FOCUSED_CHAT]
next_state = random.choices(choices_list, weights=weights, k=1)[0]
logger.debug(f"[Heartflow State] PEEKING 持续时间达到,切换到 {next_state.value}")
elif current_status == MaiState.NORMAL_CHAT:
if time_in_current_status >= FIFTEEN_MINUTES: # NORMAL_CHAT 最多持续 15 分钟
weights = [50, 50]
choices_list = [MaiState.OFFLINE, MaiState.FOCUSED_CHAT]
next_state = random.choices(choices_list, weights=weights, k=1)[0]
logger.debug(f"[Heartflow State] NORMAL_CHAT 持续时间达到,切换到 {next_state.value}")
elif current_status == MaiState.FOCUSED_CHAT:
if time_in_current_status >= TWENTY_MINUTES: # FOCUSED_CHAT 最多持续 20 分钟
weights = [80, 20]
choices_list = [MaiState.OFFLINE, MaiState.NORMAL_CHAT]
next_state = random.choices(choices_list, weights=weights, k=1)[0]
logger.debug(f"[Heartflow State] FOCUSED_CHAT 持续时间达到,切换到 {next_state.value}")
# --- 状态转换逻辑结束 ---
# --- 更新状态并执行相关操作 --- #
if next_state is not None:
# 检查状态是否真的改变了
if next_state != previous_status:
logger.info(f"[Heartflow] 准备从 {previous_status.value} 转换状态到 {next_state.value}")
self.current_state.update_mai_status(next_state)
# 在状态改变后,强制执行子心流数量限制 (保持)
await self._enforce_subheartflow_limits(next_state)
# --- 新增逻辑:根据状态转换调整子心流 --- #
if previous_status == MaiState.OFFLINE and next_state != MaiState.OFFLINE:
logger.info("[Heartflow] 主状态从 OFFLINE 激活,尝试激活子心流到 CHAT 状态。")
await self._activate_random_subflows_to_chat(next_state)
elif next_state == MaiState.OFFLINE and previous_status != MaiState.OFFLINE:
logger.info("[Heartflow] 主状态变为 OFFLINE停用所有子心流活动。")
await self._deactivate_all_subflows_on_offline()
# --- 结束新增逻辑 --- #
elif next_state == MaiState.OFFLINE and previous_status == MaiState.OFFLINE:
# 如果决定保持 OFFLINE 状态(例如,因为随机选择或持续时间规则),并且之前已经是 OFFLINE
# 确保计时器被重置 (这在上面的持续时间规则中已处理,但为了清晰再次确认)
if time_in_current_status >= FIVE_MINUTES:
# 确保计时器已在上面重置,这里无需操作,只记录日志
logger.debug("[Heartflow State] 保持 OFFLINE 状态,计时器已重置。")
pass # 无需状态转换,也无需调用激活/停用逻辑
# --- 如果没有确定 next_state (即没有触发任何切换规则) --- #
# logger.debug(f"[Heartflow State] 状态未改变,保持 {current_status.value}") # 减少日志噪音
# --- Integrated Interest Evaluation Logic (formerly in Controller loop) ---
if self.current_state.mai_status != MaiState.OFFLINE:
try:
# Use snapshot for safe iteration
subflows_snapshot = list(self._subheartflows.values())
evaluated_count = 0
promoted_count = 0
for sub_hf in subflows_snapshot:
# Double-check if subflow still exists and is in CHAT state
if sub_hf.subheartflow_id in self._subheartflows and sub_hf.chat_state.chat_status == ChatState.CHAT:
evaluated_count += 1
if await sub_hf.should_evaluate_reply():
stream_name = chat_manager.get_stream_name(sub_hf.subheartflow_id) or sub_hf.subheartflow_id
log_prefix = f"[{stream_name}]"
logger.info(f"{log_prefix} 兴趣概率触发,尝试将状态从 CHAT 提升到 FOCUSED")
# set_chat_state handles limit checks and HeartFChatting creation internally
await sub_hf.set_chat_state(ChatState.FOCUSED)
# Check if state actually changed (set_chat_state might block due to limits)
if sub_hf.chat_state.chat_status == ChatState.FOCUSED:
promoted_count += 1
# else: # No need to log every non-trigger event
# logger.trace(f"[{sub_hf.subheartflow_id}] In CHAT state, but should_evaluate_reply returned False.")
if evaluated_count > 0:
logger.debug(
f"[Heartflow Interest Eval] Evaluated {evaluated_count} CHAT flows. Promoted {promoted_count} to FOCUSED."
)
except Exception as e:
logger.error(f"[Heartflow] 兴趣评估任务出错: {e}")
logger.error(traceback.format_exc())
# --- End Integrated Interest Evaluation ---
except Exception as e:
logger.error(f"[Heartflow] 状态更新任务出错: {e}")
logger.error(traceback.format_exc())
logger.info(f"当前状态:{self.current_state.mai_status.value}")
async def get_all_interest_states(self) -> Dict[str, Dict]: # <-- Make async
"""获取所有活跃子心流的当前兴趣状态"""
states = {}
# 创建副本以避免在迭代时修改字典
items_snapshot = list(self._subheartflows.items()) # Make a copy for safe iteration
tasks = []
results = {}
# Create tasks to get state concurrently
for stream_id, subheartflow in items_snapshot:
# Ensure subheartflow still exists before creating task
if stream_id in self._subheartflows:
tasks.append(asyncio.create_task(subheartflow.get_interest_state(), name=f"get_state_{stream_id}"))
else:
logger.warning(f"[Heartflow] Subheartflow {stream_id} disappeared before getting state.")
# Wait for all tasks to complete
if tasks:
done, pending = await asyncio.wait(tasks, timeout=5.0) # Add a timeout
if pending:
logger.warning(f"[Heartflow] Getting interest states timed out for {len(pending)} tasks.")
for task in pending:
task.cancel()
for task in done:
stream_id = task.get_name().split("_")[-1] # Extract stream_id from task name
try:
result = task.result()
results[stream_id] = result
except asyncio.CancelledError:
logger.warning(f"[Heartflow] Task to get interest state for {stream_id} was cancelled (timeout).")
except Exception as e:
logger.warning(f"[Heartflow] Error getting interest state for subheartflow {stream_id}: {e}")
return results
def cleanup_inactive_subheartflows(self, max_age_seconds=INACTIVE_THRESHOLD_SECONDS): # 修改此方法以使用兴趣时间
"""
清理长时间不活跃的子心流记录 (基于兴趣交互时间)
max_age_seconds: 超过此时间未通过兴趣系统交互的将被清理
"""
current_time = time.time()
keys_to_remove = []
_initial_count = len(self._subheartflows)
# 创建副本以避免在迭代时修改字典
items_snapshot = list(self._subheartflows.items())
for subheartflow_id, subheartflow in items_snapshot:
should_remove = False
reason = ""
# 检查 InterestChatting 的最后交互时间
last_interaction = subheartflow.interest_chatting.last_interaction_time
if max_age_seconds is not None and (current_time - last_interaction) > max_age_seconds:
should_remove = True
reason = (
f"interest inactive time ({current_time - last_interaction:.0f}s) > max age ({max_age_seconds}s)"
)
if should_remove:
keys_to_remove.append(subheartflow_id)
stream_name = chat_manager.get_stream_name(subheartflow_id) or subheartflow_id # 获取流名称
logger.debug(f"[Heartflow] Marking stream {stream_name} for removal. Reason: {reason}")
# 标记子心流让其后台任务停止 (如果其后台任务还在运行)
subheartflow.should_stop = True
if keys_to_remove:
logger.info(f"[Heartflow] 清理识别到 {len(keys_to_remove)} 个不活跃的流。")
for key in keys_to_remove:
if key in self._subheartflows:
# 尝试取消子心流的后台任务
task_to_cancel = self._subheartflows[key].task
if task_to_cancel and not task_to_cancel.done():
task_to_cancel.cancel()
logger.debug(f"[Heartflow] Cancelled background task for subheartflow {key}")
# 从字典中删除
del self._subheartflows[key]
stream_name = chat_manager.get_stream_name(key) or key # 获取流名称
logger.debug(f"[Heartflow] 移除了流: {stream_name}")
final_count = len(self._subheartflows) # 直接获取当前长度
logger.info(f"[Heartflow] 清理完成。移除了 {len(keys_to_remove)} 个流。当前数量: {final_count}")
else:
# logger.info(f"[Heartflow] 清理完成。没有流符合移除条件。当前数量: {initial_count}") # 减少日志噪音
pass
async def heartflow_start_working(self):
# 启动清理任务 (使用新的 periodic_cleanup_task)
if self._cleanup_task is None or self._cleanup_task.done():
self._cleanup_task = asyncio.create_task(
self._periodic_cleanup_task(
interval_seconds=CLEANUP_INTERVAL_SECONDS,
max_age_seconds=INACTIVE_THRESHOLD_SECONDS,
)
)
logger.info(
f"[Heartflow] 已创建定期清理任务。间隔: {CLEANUP_INTERVAL_SECONDS}s, 不活跃阈值: {INACTIVE_THRESHOLD_SECONDS}s"
)
else:
logger.warning("[Heartflow] 跳过创建清理任务: 任务已在运行或存在。")
# 启动日志任务 (使用新的 periodic_log_task)
if self._logging_task is None or self._logging_task.done():
self._logging_task = asyncio.create_task(self._periodic_log_task(interval_seconds=LOG_INTERVAL_SECONDS))
logger.info(f"[Heartflow] 已创建定期日志任务。间隔: {LOG_INTERVAL_SECONDS}s")
else:
logger.warning("[Heartflow] 跳过创建日志任务: 任务已在运行或存在。")
# 新增:启动状态更新任务
if self._state_update_task is None or self._state_update_task.done():
self._state_update_task = asyncio.create_task(self._periodic_state_update_task())
logger.info(f"[Heartflow] 已创建定期状态更新任务。间隔: {STATE_UPDATE_INTERVAL_SECONDS}s")
else:
logger.warning("[Heartflow] 跳过创建状态更新任务: 任务已在运行或存在。")
# --- 新增:在启动时根据初始状态激活子心流 ---
if self.current_state.mai_status != MaiState.OFFLINE:
logger.info(f"[Heartflow] 初始状态为 {self.current_state.mai_status.value},执行初始子心流激活检查。")
# 使用 create_task 确保它不会阻塞 heartflow_start_working 的完成
# 传递当前状态给激活函数,以便它知道激活的限制
asyncio.create_task(self._activate_random_subflows_to_chat(self.current_state.mai_status))
# --- 结束新增逻辑 ---
@staticmethod
async def _update_current_state():
print("TODO")
async def do_a_thinking(self):
# logger.debug("麦麦大脑袋转起来了")
# 开始构建prompt
prompt_personality = ""
# person
individuality = Individuality.get_instance()
personality_core = individuality.personality.personality_core
prompt_personality += personality_core
personality_sides = individuality.personality.personality_sides
# 检查列表是否为空
if personality_sides:
random.shuffle(personality_sides)
prompt_personality += f",{personality_sides[0]}"
identity_detail = individuality.identity.identity_detail
# 检查列表是否为空
if identity_detail:
random.shuffle(identity_detail)
prompt_personality += f",{identity_detail[0]}"
personality_info = prompt_personality
current_thinking_info = self.current_mind
mood_info = self.current_state.mood
related_memory_info = "memory" # TODO: 替换为实际的记忆获取逻辑
try:
sub_flows_info = await self.get_all_subheartflows_minds_summary() # 修改为调用汇总方法
except Exception as e:
logger.error(f"[Heartflow] 获取子心流想法汇总失败: {e}")
logger.error(traceback.format_exc())
sub_flows_info = "(获取子心流想法时出错)" # 提供默认值
schedule_info = bot_schedule.get_current_num_task(num=4, time_info=True)
prompt = (await global_prompt_manager.get_prompt_async("thinking_prompt")).format(
schedule_info=schedule_info, # 使用关键字参数确保正确格式化
personality_info=personality_info,
related_memory_info=related_memory_info,
current_thinking_info=current_thinking_info,
sub_flows_info=sub_flows_info,
mood_info=mood_info,
# 后台任务管理器 (整合所有定时任务)
self.background_task_manager: BackgroundTaskManager = BackgroundTaskManager(
mai_state_info=self.current_state,
mai_state_manager=self.mai_state_manager,
subheartflow_manager=self.subheartflow_manager,
interest_logger=self.interest_logger,
update_interval=STATE_UPDATE_INTERVAL_SECONDS,
cleanup_interval=CLEANUP_INTERVAL_SECONDS,
log_interval=3, # Example: Using value directly, ideally get from config
inactive_threshold=INACTIVE_THRESHOLD_SECONDS,
)
try:
response, reasoning_content = await self.llm_model.generate_response_async(prompt)
if not response:
logger.warning("[Heartflow] 内心独白 LLM 返回空结果。")
response = "(暂时没什么想法...)" # 提供默认想法
self.update_current_mind(response) # 更新主心流想法
logger.info(f"麦麦的总体脑内状态:{self.current_mind}")
# 更新所有子心流的主心流信息
items_snapshot = list(self._subheartflows.items()) # 创建快照
for _, subheartflow in items_snapshot:
subheartflow.main_heartflow_info = response
except Exception as e:
logger.error(f"[Heartflow] 内心独白获取失败: {e}")
logger.error(traceback.format_exc())
# 此处不返回,允许程序继续执行,但主心流想法未更新
def update_current_mind(self, response):
self.past_mind.append(self.current_mind)
self.current_mind = response
async def get_all_subheartflows_minds_summary(self): # 重命名并修改
"""获取所有子心流的当前想法,并进行汇总"""
sub_minds_list = []
# 创建快照
items_snapshot = list(self._subheartflows.items())
for _, subheartflow in items_snapshot:
sub_minds_list.append(subheartflow.current_mind)
if not sub_minds_list:
return "(当前没有活跃的子心流想法)"
minds_str = "\n".join([f"- {mind}" for mind in sub_minds_list]) # 格式化为列表
# 调用 LLM 进行汇总
return await self.minds_summary(minds_str)
async def minds_summary(self, minds_str):
"""使用 LLM 汇总子心流的想法字符串"""
# 开始构建prompt
prompt_personality = ""
individuality = Individuality.get_instance()
prompt_personality += individuality.personality.personality_core
if individuality.personality.personality_sides:
prompt_personality += f",{random.choice(individuality.personality.personality_sides)}" # 随机选一个
if individuality.identity.identity_detail:
prompt_personality += f",{random.choice(individuality.identity.identity_detail)}" # 随机选一个
personality_info = prompt_personality
mood_info = self.current_state.mood
bot_name = global_config.BOT_NICKNAME # 使用全局配置中的机器人昵称
prompt = (await global_prompt_manager.get_prompt_async("mind_summary_prompt")).format(
personality_info=personality_info, # 使用关键字参数
bot_name=bot_name,
current_mind=self.current_mind,
minds_str=minds_str,
mood_info=mood_info,
)
try:
response, reasoning_content = await self.llm_model.generate_response_async(prompt)
if not response:
logger.warning("[Heartflow] 想法汇总 LLM 返回空结果。")
return "(想法汇总失败...)"
return response
except Exception as e:
logger.error(f"[Heartflow] 想法汇总失败: {e}")
logger.error(traceback.format_exc())
return "(想法汇总时发生错误...)"
# --- Add helper method to count subflows by state --- #
def count_subflows_by_state(self, target_state: "ChatState") -> int:
"""Counts the number of subheartflows currently in the specified state."""
count = 0
# Use items() directly for read-only iteration if thread safety isn't a major concern here
# Or create snapshot if modification during iteration is possible elsewhere
items_snapshot = list(self._subheartflows.items())
for _, flow in items_snapshot:
# Check if flow still exists in the main dict in case it was removed concurrently
if flow.subheartflow_id in self._subheartflows and flow.chat_state.chat_status == target_state:
count += 1
return count
# --- End helper method --- #
async def create_subheartflow(self, subheartflow_id: Any) -> Optional["SubHeartflow"]:
"""
获取或创建一个新的SubHeartflow实例。
创建本身不受限因为初始状态是ABSENT。
限制将在状态转换时检查。
"""
"""获取或创建一个新的SubHeartflow实例 - 委托给 SubHeartflowManager"""
return await self.subheartflow_manager.create_or_get_subheartflow(subheartflow_id, self.current_state)
existing_subheartflow = self._subheartflows.get(subheartflow_id)
if existing_subheartflow:
return existing_subheartflow
# logger.info(f"[Heartflow] 尝试创建新的 subheartflow: {subheartflow_id}")
try:
subheartflow = SubHeartflow(subheartflow_id, self)
# 创建并初始化观察对象
observation = ChattingObservation(subheartflow_id)
await observation.initialize()
subheartflow.add_observation(observation)
# 创建并存储后台任务 (SubHeartflow 自己的后台任务)
subheartflow.task = asyncio.create_task(subheartflow.subheartflow_start_working())
logger.debug(f"[Heartflow] 为 {subheartflow_id} 创建后台任务成功,添加 observation 成功")
# 添加到管理字典
self._subheartflows[subheartflow_id] = subheartflow
logger.info(f"[Heartflow] 添加 subheartflow {subheartflow_id} 成功")
return subheartflow
except Exception as e:
logger.error(f"[Heartflow] 创建 subheartflow {subheartflow_id} 失败: {e}")
logger.error(traceback.format_exc())
return None
def get_subheartflow(self, observe_chat_id: Any) -> Optional["SubHeartflow"]:
def get_subheartflow(self, subheartflow_id: Any) -> Optional["SubHeartflow"]:
"""获取指定ID的SubHeartflow实例"""
return self._subheartflows.get(observe_chat_id)
return self.subheartflow_manager.get_subheartflow(subheartflow_id)
def get_all_subheartflows_streams_ids(self) -> list[Any]:
"""获取当前所有活跃的子心流的 ID 列表"""
return list(self._subheartflows.keys())
"""获取当前所有活跃的子心流的 ID 列表 - 委托给 SubHeartflowManager"""
return self.subheartflow_manager.get_all_subheartflows_ids()
async def _stop_subheartflow(self, subheartflow_id: Any, reason: str):
"""停止并移除指定的子心流,确保 HeartFChatting 被关闭"""
if subheartflow_id in self._subheartflows:
subheartflow = self._subheartflows[subheartflow_id]
stream_name = chat_manager.get_stream_name(subheartflow_id) or subheartflow_id
logger.info(f"[Heartflow Limits] 停止子心流 {stream_name}. 原因: {reason}")
async def heartflow_start_working(self):
"""启动后台任务"""
await self.background_task_manager.start_tasks()
logger.info("[Heartflow] 后台任务已启动")
# --- 新增:在取消任务和删除前,先设置状态为 ABSENT 以关闭 HeartFChatting ---
try:
if subheartflow.chat_state.chat_status != ChatState.ABSENT:
logger.debug(f"[Heartflow Limits] 将子心流 {stream_name} 状态设置为 ABSENT 以确保资源释放...")
await subheartflow.set_chat_state(ChatState.ABSENT) # 调用异步方法
else:
logger.debug(f"[Heartflow Limits] 子心流 {stream_name} 已经是 ABSENT 状态。")
except Exception as e:
logger.error(f"[Heartflow Limits] 在停止子心流 {stream_name} 时设置状态为 ABSENT 出错: {e}")
# 即使出错,仍继续尝试停止任务和移除
# --- 结束新增逻辑 ---
async def stop_working(self):
"""停止所有任务和子心流"""
logger.info("[Heartflow] 正在停止任务和子心流...")
await self.background_task_manager.stop_tasks()
await self.subheartflow_manager.deactivate_all_subflows()
logger.info("[Heartflow] 所有任务和子心流已停止")
# 标记停止并取消任务
subheartflow.should_stop = True
task_to_cancel = subheartflow.task
if task_to_cancel and not task_to_cancel.done():
task_to_cancel.cancel()
logger.debug(f"[Heartflow Limits] 已取消子心流 {stream_name} 的后台任务")
# TODO: Ensure controller.stop_heartFC_chat is called if needed
# This is now handled by subheartflow.set_chat_state(ChatState.ABSENT) called in _stop_subheartflow
# from src.plugins.heartFC_chat.heartFC_controler import HeartFCController # Local import to avoid cycle
# controller = HeartFCController.get_instance()
# if controller and controller.is_heartFC_chat_active(subheartflow_id):
# await controller.stop_heartFC_chat(subheartflow_id)
# 从字典移除
del self._subheartflows[subheartflow_id]
logger.debug(f"[Heartflow Limits] 已移除子心流: {stream_name}")
return True
return False
async def _enforce_subheartflow_limits(self, current_mai_state: MaiState):
"""根据当前的 MaiState 强制执行 SubHeartflow 数量限制"""
normal_limit = current_mai_state.get_normal_chat_max_num()
focused_limit = current_mai_state.get_focused_chat_max_num()
logger.debug(
f"[Heartflow Limits] 执行限制检查。当前状态: {current_mai_state.value}, Normal上限: {normal_limit}, Focused上限: {focused_limit}"
async def do_a_thinking(self):
"""执行一次主心流思考过程"""
schedule_info = bot_schedule.get_current_num_task(num=4, time_info=True)
new_mind = await self.mind.do_a_thinking(
current_main_mind=self.current_mind, mai_state_info=self.current_state, schedule_info=schedule_info
)
# 分类并统计当前 subheartflows
normal_flows = []
focused_flows = []
other_flows = [] # e.g., ABSENT
# 创建快照以安全迭代
items_snapshot = list(self._subheartflows.items())
for flow_id, flow in items_snapshot:
# 确保 flow 实例仍然存在 (避免在迭代期间被其他任务移除)
if flow_id not in self._subheartflows:
continue
if flow.chat_state.chat_status == ChatState.CHAT:
normal_flows.append((flow_id, flow.last_active_time))
elif flow.chat_state.chat_status == ChatState.FOCUSED:
focused_flows.append((flow_id, flow.last_active_time))
else:
other_flows.append((flow_id, flow.last_active_time))
logger.debug(
f"[Heartflow Limits] 当前计数 - Normal: {len(normal_flows)}, Focused: {len(focused_flows)}, Other: {len(other_flows)}"
)
stopped_count = 0
# 检查 Normal (CHAT) 限制
if len(normal_flows) > normal_limit:
excess_count = len(normal_flows) - normal_limit
logger.info(f"[Heartflow Limits] 检测到 Normal (CHAT) 状态超额 {excess_count} 个。上限: {normal_limit}")
# 按 last_active_time 升序排序 (最不活跃的在前)
normal_flows.sort(key=lambda item: item[1])
# 停止最不活跃的超额部分
for i in range(excess_count):
flow_id_to_stop = normal_flows[i][0]
if await self._stop_subheartflow(
flow_id_to_stop, f"Normal (CHAT) 状态超出上限 ({normal_limit}),停止最不活跃的实例"
):
stopped_count += 1
# 重新获取 focused_flows 列表,因为上面的停止操作可能已经改变了状态或移除了实例
focused_flows = []
items_snapshot_after_normal = list(self._subheartflows.items())
for flow_id, flow in items_snapshot_after_normal:
if flow_id not in self._subheartflows:
continue # Double check
if flow.chat_state.chat_status == ChatState.FOCUSED:
focused_flows.append((flow_id, flow.last_active_time))
# 检查 Focused (FOCUSED) 限制
if len(focused_flows) > focused_limit:
excess_count = len(focused_flows) - focused_limit
logger.info(
f"[Heartflow Limits] 检测到 Focused (FOCUSED) 状态超额 {excess_count} 个。上限: {focused_limit}"
)
# 按 last_active_time 升序排序
focused_flows.sort(key=lambda item: item[1])
# 停止最不活跃的超额部分
for i in range(excess_count):
flow_id_to_stop = focused_flows[i][0]
if await self._stop_subheartflow(
flow_id_to_stop, f"Focused (FOCUSED) 状态超出上限 ({focused_limit}),停止最不活跃的实例"
):
stopped_count += 1
if stopped_count > 0:
logger.info(
f"[Heartflow Limits] 限制执行完成,共停止了 {stopped_count} 个子心流。当前总数: {len(self._subheartflows)}"
)
else:
logger.debug(f"[Heartflow Limits] 限制检查完成,无需停止子心流。当前总数: {len(self._subheartflows)}")
# --- 新增方法 --- #
async def _activate_random_subflows_to_chat(self, new_mai_state: MaiState):
"""当主状态从 OFFLINE 激活时,随机选择子心流进入 CHAT 状态"""
limit = new_mai_state.get_normal_chat_max_num()
if limit <= 0:
logger.info("[Heartflow Activate] 当前状态不允许 CHAT 子心流,跳过激活。")
return
# 使用快照进行迭代
all_flows_snapshot = list(self._subheartflows.values())
absent_flows = [
flow
for flow in all_flows_snapshot
if flow.subheartflow_id in self._subheartflows and flow.chat_state.chat_status == ChatState.ABSENT
]
num_to_activate = min(limit, len(absent_flows))
if num_to_activate <= 0:
logger.info(f"[Heartflow Activate] 没有处于 ABSENT 状态的子心流可供激活至 CHAT (上限: {limit})。")
return
logger.info(
f"[Heartflow Activate] 将随机选择 {num_to_activate} 个 (上限 {limit}) ABSENT 子心流激活至 CHAT 状态。"
)
selected_flows = random.sample(absent_flows, num_to_activate)
activated_count = 0
for flow in selected_flows:
# 再次检查 flow 是否仍然存在且状态为 ABSENT (以防并发修改)
if (
flow.subheartflow_id in self._subheartflows
and self._subheartflows[flow.subheartflow_id].chat_state.chat_status == ChatState.ABSENT
):
stream_name = chat_manager.get_stream_name(flow.subheartflow_id) or flow.subheartflow_id
logger.debug(f"[Heartflow Activate] 正在将子心流 {stream_name} 状态设置为 CHAT。")
# 调用 set_chat_state它内部会处理日志记录
await flow.set_chat_state(ChatState.CHAT)
activated_count += 1
else:
stream_name = chat_manager.get_stream_name(flow.subheartflow_id) or flow.subheartflow_id
logger.warning(f"[Heartflow Activate] 跳过激活子心流 {stream_name},因为它不再存在或状态已改变。")
logger.info(f"[Heartflow Activate] 完成激活,成功将 {activated_count} 个子心流设置为 CHAT 状态。")
async def _deactivate_all_subflows_on_offline(self):
"""当主状态变为 OFFLINE 时,停止所有子心流的活动并设置为 ABSENT"""
logger.info("[Heartflow Deactivate] 开始停用所有子心流...")
try:
# 使用 ID 快照进行迭代
flow_ids_snapshot = list(self._subheartflows.keys())
deactivated_count = 0
for flow_id in flow_ids_snapshot:
subflow = self._subheartflows.get(flow_id)
if not subflow:
continue # Subflow 可能在迭代过程中被清理
stream_name = chat_manager.get_stream_name(flow_id) or flow_id
try:
# 设置状态为 ABSENT
if subflow.chat_state.chat_status != ChatState.ABSENT:
logger.debug(f"[Heartflow Deactivate] 正在将子心流 {stream_name} 状态设置为 ABSENT。")
# 调用 set_chat_state它会处理日志和状态更新
subflow.set_chat_state(ChatState.ABSENT)
deactivated_count += 1
else:
# 如果已经是 ABSENT则无需再次设置但记录一下检查
logger.trace(f"[Heartflow Deactivate] 子心流 {stream_name} 已处于 ABSENT 状态。")
except Exception as e:
logger.error(f"[Heartflow Deactivate] 停用子心流 {stream_name} 时出错: {e}")
logger.error(traceback.format_exc())
logger.info(
f"[Heartflow Deactivate] 完成停用,共将 {deactivated_count} 个子心流设置为 ABSENT 状态 (不包括已是 ABSENT 的)。"
)
except Exception as e:
logger.error(f"[Heartflow Deactivate] 停用所有子心流时出错: {e}")
logger.error(traceback.format_exc())
self.past_mind.append(self.current_mind)
self.current_mind = new_mind
logger.info(f"麦麦的总体脑内状态更新为:{self.current_mind[:100]}...")
self.mind.update_subflows_with_main_mind(new_mind)
init_prompt()
# 创建一个全局的管理器实例
heartflow = Heartflow()

View File

@@ -0,0 +1,137 @@
import asyncio
import time
import json
import os
import traceback
from typing import TYPE_CHECKING, Dict, List
from src.common.logger import get_module_logger
# Need chat_manager to get stream names
from src.plugins.chat.chat_stream import chat_manager
if TYPE_CHECKING:
from src.heart_flow.subheartflow_manager import SubHeartflowManager
from src.heart_flow.sub_heartflow import SubHeartflow # For type hint in get_interest_states
logger = get_module_logger("interest_logger")
# Consider moving log directory/filename constants here
LOG_DIRECTORY = "logs/interest"
HISTORY_LOG_FILENAME = "interest_history.log"
class InterestLogger:
"""负责定期记录所有子心流的兴趣状态到日志文件。"""
def __init__(self, subheartflow_manager: "SubHeartflowManager"):
self.subheartflow_manager = subheartflow_manager
self._history_log_file_path = os.path.join(LOG_DIRECTORY, HISTORY_LOG_FILENAME)
self._ensure_log_directory()
def _ensure_log_directory(self):
"""确保日志目录存在。"""
try:
os.makedirs(LOG_DIRECTORY, exist_ok=True)
logger.info(f"已确保日志目录 '{LOG_DIRECTORY}' 存在")
except OSError as e:
logger.error(f"创建日志目录 '{LOG_DIRECTORY}' 出错: {e}")
async def get_all_interest_states(self) -> Dict[str, Dict]:
"""并发获取所有活跃子心流的当前兴趣状态。"""
_states = {}
# Get snapshot from the manager
all_flows: List["SubHeartflow"] = self.subheartflow_manager.get_all_subheartflows()
tasks = []
results = {}
if not all_flows:
logger.debug("未找到任何子心流状态")
return results
logger.debug(f"正在获取 {len(all_flows)} 个子心流的兴趣状态...")
for subheartflow in all_flows:
if self.subheartflow_manager.get_subheartflow(subheartflow.subheartflow_id):
tasks.append(
asyncio.create_task(
subheartflow.get_interest_state(), name=f"get_state_{subheartflow.subheartflow_id}"
)
)
else:
logger.warning(f"子心流 {subheartflow.subheartflow_id} 在创建任务前已消失")
if tasks:
done, pending = await asyncio.wait(tasks, timeout=5.0)
if pending:
logger.warning(f"获取兴趣状态超时,有 {len(pending)} 个任务未完成")
for task in pending:
task.cancel()
for task in done:
try:
stream_id_str = task.get_name().split("get_state_")[-1]
stream_id = stream_id_str
except IndexError:
logger.error(f"无法从任务名 {task.get_name()} 中提取 stream_id")
continue
try:
result = task.result()
results[stream_id] = result
except asyncio.CancelledError:
logger.warning(f"获取子心流 {stream_id} 兴趣状态的任务已取消(超时)", exc_info=False)
except Exception as e:
logger.warning(f"获取子心流 {stream_id} 兴趣状态出错: {e}")
logger.debug(f"成功获取 {len(results)} 个兴趣状态")
return results
async def log_interest_states(self):
"""获取所有子心流的兴趣状态并写入日志文件。"""
logger.debug("开始定期记录兴趣状态...")
try:
current_timestamp = time.time()
all_interest_states = await self.get_all_interest_states()
if not all_interest_states:
logger.debug("没有获取到任何兴趣状态")
return
count = 0
try:
with open(self._history_log_file_path, "a", encoding="utf-8") as f:
items_snapshot = list(all_interest_states.items())
for stream_id, state in items_snapshot:
group_name = stream_id
try:
chat_stream = chat_manager.get_stream(stream_id)
if chat_stream and chat_stream.group_info:
group_name = chat_stream.group_info.group_name
elif chat_stream and not chat_stream.group_info:
group_name = (
f"私聊_{chat_stream.user_info.user_nickname}"
if chat_stream.user_info
else stream_id
)
except Exception as e:
logger.trace(f"无法获取 stream_id {stream_id} 的群组名: {e}")
pass
log_entry = {
"timestamp": round(current_timestamp, 2),
"stream_id": stream_id,
"interest_level": state.get("interest_level", 0.0),
"group_name": group_name,
"reply_probability": state.get("current_reply_probability", 0.0),
"is_above_threshold": state.get("is_above_threshold", False),
}
f.write(json.dumps(log_entry, ensure_ascii=False) + "\n")
count += 1
logger.debug(f"成功记录 {count} 条兴趣历史到 {self._history_log_file_path}")
except IOError as e:
logger.error(f"写入兴趣历史日志到 {self._history_log_file_path} 出错: {e}")
except Exception as e:
logger.error(f"定期记录兴趣历史时发生意外错误: {e}")
logger.error(traceback.format_exc())

View File

@@ -0,0 +1,185 @@
import enum
import time
import random
from typing import List, Tuple, Optional
from src.common.logger import get_module_logger
from src.plugins.moods.moods import MoodManager
logger = get_module_logger("mai_state_manager")
class MaiState(enum.Enum):
"""
聊天状态:
OFFLINE: 不在线:回复概率极低,不会进行任何聊天
PEEKING: 看一眼手机:回复概率较低,会进行一些普通聊天
NORMAL_CHAT: 正常聊天:回复概率较高,会进行一些普通聊天和少量的专注聊天
FOCUSED_CHAT: 专注聊天:回复概率极高,会进行专注聊天和少量的普通聊天
"""
OFFLINE = "不在线"
PEEKING = "看一眼手机"
NORMAL_CHAT = "正常聊天"
FOCUSED_CHAT = "专注聊天"
def get_normal_chat_max_num(self):
if self == MaiState.OFFLINE:
return 0
elif self == MaiState.PEEKING:
return 1
elif self == MaiState.NORMAL_CHAT:
return 3
elif self == MaiState.FOCUSED_CHAT:
return 2
def get_focused_chat_max_num(self):
if self == MaiState.OFFLINE:
return 0
elif self == MaiState.PEEKING:
return 0
elif self == MaiState.NORMAL_CHAT:
return 1
elif self == MaiState.FOCUSED_CHAT:
return 2
class MaiStateInfo:
def __init__(self):
self.mai_status: MaiState = MaiState.OFFLINE
self.mai_status_history: List[Tuple[MaiState, float]] = [] # 历史状态,包含 状态,时间戳
self.last_status_change_time: float = time.time() # 状态最后改变时间
self.last_min_check_time: float = time.time() # 上次1分钟规则检查时间
# Mood management is now part of MaiStateInfo
self.mood_manager = MoodManager.get_instance() # Use singleton instance
def update_mai_status(self, new_status: MaiState) -> bool:
"""
更新聊天状态。
Args:
new_status: 新的 MaiState 状态。
Returns:
bool: 如果状态实际发生了改变则返回 True否则返回 False。
"""
if new_status != self.mai_status:
self.mai_status = new_status
current_time = time.time()
self.last_status_change_time = current_time
self.last_min_check_time = current_time # Reset 1-min check on any state change
self.mai_status_history.append((new_status, current_time))
logger.info(f"麦麦状态更新为: {self.mai_status.value}")
return True
else:
return False
def reset_state_timer(self):
"""
重置状态持续时间计时器和一分钟规则检查计时器。
通常在状态保持不变但需要重新开始计时的情况下调用(例如,保持 OFFLINE
"""
current_time = time.time()
self.last_status_change_time = current_time
self.last_min_check_time = current_time # Also reset the 1-min check timer
logger.debug("MaiStateInfo 状态计时器已重置。")
def get_mood_prompt(self) -> str:
"""获取当前的心情提示词"""
# Delegate to the internal mood manager
return self.mood_manager.get_prompt()
def get_current_state(self) -> MaiState:
"""获取当前的 MaiState"""
return self.mai_status
class MaiStateManager:
"""管理 Mai 的整体状态转换逻辑"""
def __init__(self):
# MaiStateManager doesn't hold the state itself, it operates on a MaiStateInfo instance.
pass
def check_and_decide_next_state(self, current_state_info: MaiStateInfo) -> Optional[MaiState]:
"""
根据当前状态和规则检查是否需要转换状态,并决定下一个状态。
Args:
current_state_info: 当前的 MaiStateInfo 实例。
Returns:
Optional[MaiState]: 如果需要转换,返回目标 MaiState否则返回 None。
"""
current_time = time.time()
current_status = current_state_info.mai_status
time_in_current_status = current_time - current_state_info.last_status_change_time
time_since_last_min_check = current_time - current_state_info.last_min_check_time
next_state: Optional[MaiState] = None
if current_status == MaiState.OFFLINE:
logger.info("[麦麦聊天状态] 思考要不要上线看看......")
elif current_status == MaiState.PEEKING:
logger.info("[麦麦聊天状态] 思考要不要继续聊下去......")
elif current_status == MaiState.NORMAL_CHAT:
logger.info("[麦麦聊天状态] 思考要不要继续聊下去......")
elif current_status == MaiState.FOCUSED_CHAT:
logger.info("[麦麦聊天状态] 思考要不要继续聊下去......")
# 1. 麦麦每分钟都有概率离线
if time_since_last_min_check >= 60:
if current_status != MaiState.OFFLINE:
if random.random() < 0.03: # 3% 概率切换到 OFFLINE20分钟有50%的概率还在线
logger.debug(f"[麦麦聊天状态] 突然不想聊了,从 {current_status.value} 切换到 离线")
next_state = MaiState.OFFLINE
# 2. 状态持续时间规则 (如果没有自行下线)
if next_state is None:
if current_status == MaiState.OFFLINE:
# OFFLINE 最多保持一分钟
# 目前是一个调试值,可以修改
if time_in_current_status >= 60:
weights = [40, 40, 20]
choices_list = [MaiState.PEEKING, MaiState.NORMAL_CHAT, MaiState.OFFLINE]
next_state_candidate = random.choices(choices_list, weights=weights, k=1)[0]
if next_state_candidate != MaiState.OFFLINE:
next_state = next_state_candidate
logger.debug(f"[麦麦聊天状态] 上线!开始 {next_state.name}")
else:
# 继续离线状态
next_state = MaiState.OFFLINE
elif current_status == MaiState.PEEKING:
if time_in_current_status >= 120: # PEEKING 最多持续 120 秒
weights = [70, 20, 10]
choices_list = [MaiState.OFFLINE, MaiState.NORMAL_CHAT, MaiState.FOCUSED_CHAT]
next_state = random.choices(choices_list, weights=weights, k=1)[0]
logger.debug(f"[麦麦聊天状态] 手机看完了,接下来 {next_state.name}")
elif current_status == MaiState.NORMAL_CHAT:
if time_in_current_status >= 300: # NORMAL_CHAT 最多持续 300 秒
weights = [50, 50]
choices_list = [MaiState.OFFLINE, MaiState.FOCUSED_CHAT]
next_state = random.choices(choices_list, weights=weights, k=1)[0]
if next_state == MaiState.FOCUSED_CHAT:
logger.debug(f"[麦麦聊天状态] 继续深入聊天, {next_state.name}")
else:
logger.debug(f"[麦麦聊天状态] 聊完了,接下来 {next_state.name}")
elif current_status == MaiState.FOCUSED_CHAT:
if time_in_current_status >= 600: # FOCUSED_CHAT 最多持续 600 秒
weights = [80, 20]
choices_list = [MaiState.OFFLINE, MaiState.NORMAL_CHAT]
next_state = random.choices(choices_list, weights=weights, k=1)[0]
logger.debug(f"[麦麦聊天状态] 深入聊天结束,接下来 {next_state.name}")
# 如果决定了下一个状态,且这个状态与当前状态不同,则返回下一个状态
if next_state is not None and next_state != current_status:
return next_state
# 如果决定保持 OFFLINE (next_state == MaiState.OFFLINE) 且当前也是 OFFLINE
# 并且是由于持续时间规则触发的,返回 OFFLINE 以便调用者可以重置计时器
elif next_state == MaiState.OFFLINE and current_status == MaiState.OFFLINE and time_in_current_status >= 60:
logger.debug("[麦麦聊天状态] 决定保持 OFFLINE (持续时间规则),返回 OFFLINE 以提示重置计时器。")
return MaiState.OFFLINE # Return OFFLINE to signal caller that timer reset might be needed
else:
return None # 没有状态转换发生或无需重置计时器

141
src/heart_flow/mind.py Normal file
View File

@@ -0,0 +1,141 @@
import traceback
from typing import TYPE_CHECKING
from src.common.logger import get_module_logger
from src.plugins.models.utils_model import LLMRequest
from src.individuality.individuality import Individuality
from src.plugins.utils.prompt_builder import global_prompt_manager
from src.config.config import global_config
# Need access to SubHeartflowManager to get minds and update them
if TYPE_CHECKING:
from src.heart_flow.subheartflow_manager import SubHeartflowManager
from src.heart_flow.mai_state_manager import MaiStateInfo
logger = get_module_logger("mind")
class Mind:
"""封装 Mai 的思考过程,包括生成内心独白和汇总想法。"""
def __init__(self, subheartflow_manager: "SubHeartflowManager", llm_model: LLMRequest):
self.subheartflow_manager = subheartflow_manager
self.llm_model = llm_model
self.individuality = Individuality.get_instance()
# Main mind state is still managed by Heartflow for now
# self.current_mind = "你什么也没想"
# self.past_mind = []
async def do_a_thinking(self, current_main_mind: str, mai_state_info: "MaiStateInfo", schedule_info: str):
"""
执行一次主心流思考过程,生成新的内心独白。
Args:
current_main_mind: 当前的主心流想法。
mai_state_info: 当前的 Mai 状态信息 (用于获取 mood)。
schedule_info: 当前的日程信息。
Returns:
str: 生成的新的内心独白,如果出错则返回提示信息。
"""
logger.debug("Mind: 执行思考...")
# --- 构建 Prompt --- #
personality_info = (
self.individuality.get_prompt_snippet()
if hasattr(self.individuality, "get_prompt_snippet")
else self.individuality.personality.personality_core
)
mood_info = mai_state_info.get_mood_prompt()
related_memory_info = "memory" # TODO: Implement memory retrieval
# Get subflow minds summary via internal method
try:
sub_flows_info = await self._get_subflows_summary(current_main_mind, mai_state_info)
except Exception as e:
logger.error(f"[Mind Thinking] 获取子心流想法汇总失败: {e}")
logger.error(traceback.format_exc())
sub_flows_info = "(获取子心流想法时出错)"
# Format prompt
try:
prompt = (await global_prompt_manager.get_prompt_async("thinking_prompt")).format(
schedule_info=schedule_info,
personality_info=personality_info,
related_memory_info=related_memory_info,
current_thinking_info=current_main_mind, # Use passed current mind
sub_flows_info=sub_flows_info,
mood_info=mood_info,
)
except Exception as e:
logger.error(f"[Mind Thinking] 格式化 thinking_prompt 失败: {e}")
return "(思考时格式化Prompt出错...)"
# --- 调用 LLM --- #
try:
response, reasoning_content = await self.llm_model.generate_response_async(prompt)
if not response:
logger.warning("[Mind Thinking] 内心独白 LLM 返回空结果。")
response = "(暂时没什么想法...)"
logger.info(f"Mind: 新想法生成: {response[:100]}...") # Log truncated response
return response
except Exception as e:
logger.error(f"[Mind Thinking] 内心独白 LLM 调用失败: {e}")
logger.error(traceback.format_exc())
return "(思考时调用LLM出错...)"
async def _get_subflows_summary(self, current_main_mind: str, mai_state_info: "MaiStateInfo") -> str:
"""获取所有活跃子心流的想法,并使用 LLM 进行汇总。"""
# 1. Get active minds from SubHeartflowManager
sub_minds_list = self.subheartflow_manager.get_active_subflow_minds()
if not sub_minds_list:
return "(当前没有活跃的子心流想法)"
minds_str = "\n".join([f"- {mind}" for mind in sub_minds_list])
logger.debug(f"Mind: 获取到 {len(sub_minds_list)} 个子心流想法进行汇总。")
# 2. Call LLM for summary
# --- 构建 Prompt --- #
personality_info = (
self.individuality.get_prompt_snippet()
if hasattr(self.individuality, "get_prompt_snippet")
else self.individuality.personality.personality_core
)
mood_info = mai_state_info.get_mood_prompt()
bot_name = global_config.BOT_NICKNAME
try:
prompt = (await global_prompt_manager.get_prompt_async("mind_summary_prompt")).format(
personality_info=personality_info,
bot_name=bot_name,
current_mind=current_main_mind, # Use main mind passed for context
minds_str=minds_str,
mood_info=mood_info,
)
except Exception as e:
logger.error(f"[Mind Summary] 格式化 mind_summary_prompt 失败: {e}")
return "(汇总想法时格式化Prompt出错...)"
# --- 调用 LLM --- #
try:
response, reasoning_content = await self.llm_model.generate_response_async(prompt)
if not response:
logger.warning("[Mind Summary] 想法汇总 LLM 返回空结果。")
return "(想法汇总失败...)"
logger.debug(f"Mind: 子想法汇总完成: {response[:100]}...")
return response
except Exception as e:
logger.error(f"[Mind Summary] 想法汇总 LLM 调用失败: {e}")
logger.error(traceback.format_exc())
return "(想法汇总时调用LLM出错...)"
def update_subflows_with_main_mind(self, main_mind: str):
"""触发 SubHeartflowManager 更新所有子心流的主心流信息。"""
logger.debug("Mind: 请求更新子心流的主想法信息。")
self.subheartflow_manager.update_main_mind_in_subflows(main_mind)
# Note: update_current_mind (managing self.current_mind and self.past_mind)
# remains in Heartflow for now, as Heartflow is the central coordinator holding the main state.
# Mind class focuses solely on the *process* of thinking and summarizing.

View File

@@ -4,7 +4,7 @@ from src.plugins.moods.moods import MoodManager
from src.plugins.models.utils_model import LLMRequest
from src.config.config import global_config
import time
from typing import Optional, List, Dict, Callable, TYPE_CHECKING
from typing import Optional, List, Dict, Callable
import traceback
from src.plugins.chat.utils import parse_text_timestamps
import enum
@@ -17,12 +17,11 @@ from src.plugins.chat.message import MessageRecv
from src.plugins.chat.chat_stream import chat_manager
import math
from src.plugins.heartFC_chat.heartFC_chat import HeartFChatting
from src.plugins.heartFC_chat.normal_chat import NormalChat
from src.plugins.heartFC_chat.normal_chat_generator import ResponseGenerator
from src.do_tool.tool_use import ToolUser
from src.heart_flow.mai_state_manager import MaiStateInfo
# Type hinting for circular dependency
if TYPE_CHECKING:
from .heartflow import Heartflow # Import Heartflow for type hinting
from .sub_heartflow import ChatState # Keep ChatState here too?
from src.plugins.heartFC_chat.heartFC_chat import HeartFChatting # <-- Add for type hint
# 定义常量 (从 interest.py 移动过来)
MAX_INTEREST = 15.0
@@ -231,7 +230,7 @@ class InterestChatting:
class SubHeartflow:
def __init__(self, subheartflow_id, parent_heartflow: "Heartflow"):
def __init__(self, subheartflow_id, mai_states: MaiStateInfo):
"""子心流初始化函数
Args:
@@ -240,24 +239,26 @@ class SubHeartflow:
"""
# 基础属性
self.subheartflow_id = subheartflow_id
self.parent_heartflow = parent_heartflow
self.bot_name = global_config.BOT_NICKNAME # 机器人昵称
self.chat_id = subheartflow_id
self.mai_states = mai_states
# 思维状态相关
self.current_mind = "什么也没想" # 当前想法
self.current_mind = "什么也没想" # 当前想法
self.past_mind = [] # 历史想法记录
self.main_heartflow_info = "" # 主心流信息
# 聊天状态管理
self.chat_state: ChatStateInfo = ChatStateInfo() # 聊天状态信息
self.interest_chatting = InterestChatting(state_change_callback=self.set_chat_state) # 兴趣聊天系统
self.chat_state: ChatStateInfo = ChatStateInfo() # 该sub_heartflow的聊天状态信息
self.interest_chatting = InterestChatting(
state_change_callback=self.set_chat_state
) # 该sub_heartflow的兴趣系统
# 活动状态管理
self.last_active_time = time.time() # 最后活跃时间
self.is_active = False # 是否活跃标志
self.should_stop = False # 停止标志
self.task: Optional[asyncio.Task] = None # 后台任务
self.heart_fc_instance: Optional["HeartFChatting"] = None # <-- Add instance variable
self.heart_fc_instance: Optional[HeartFChatting] = None # 该sub_heartflow的HeartFChatting实例
self.normal_chat_instance: Optional[NormalChat] = None # 该sub_heartflow的NormalChat实例
# 观察和知识系统
self.observations: List[ChattingObservation] = [] # 观察列表
@@ -271,109 +272,145 @@ class SubHeartflow:
request_type="sub_heart_flow",
)
async def set_chat_state(self, new_state: "ChatState"):
"""更新sub_heartflow的聊天状态并管理 HeartFChatting 实例"""
self.gpt_instance = ResponseGenerator() # 响应生成器
self.tool_user_instance = ToolUser() # 工具使用模块
self.log_prefix = chat_manager.get_stream_name(self.subheartflow_id) or self.subheartflow_id
async def set_chat_state(self, new_state: "ChatState", current_states_num: tuple = ()):
"""更新sub_heartflow的聊天状态并管理 HeartFChatting 和 NormalChat 实例及任务"""
current_state = self.chat_state.chat_status
if current_state == new_state:
logger.trace(f"[{self.subheartflow_id}] State already {current_state.value}, no change.")
return # No change needed
logger.trace(f"{self.log_prefix} 状态已为 {current_state.value}, 无需更改。")
return
log_prefix = f"[{chat_manager.get_stream_name(self.subheartflow_id) or self.subheartflow_id}]"
current_mai_state = self.parent_heartflow.current_state.mai_status
log_prefix = self.log_prefix # 使用实例属性
current_mai_state = self.mai_states.get_current_state()
# --- Entering CHAT state ---
# --- 状态转换逻辑 ---
if new_state == ChatState.CHAT:
normal_limit = current_mai_state.get_normal_chat_max_num()
current_chat_count = self.parent_heartflow.count_subflows_by_state(ChatState.CHAT)
current_chat_count = current_states_num[1]
if current_chat_count >= normal_limit:
if current_chat_count >= normal_limit and current_state != ChatState.CHAT: # 仅在状态转换时检查限制
logger.debug(
f"{log_prefix} 拒绝{current_state.value} 转换到 CHAT。原因CHAT 状态已达上限 ({normal_limit})。当前数量: {current_chat_count}"
f"{log_prefix} 麦麦不能{current_state.value} 转换到 聊天。原因:聊不过来了 ({current_chat_count}/{normal_limit})"
)
return # Block the state transition
return # 阻止状态转换
else:
logger.debug(
f"{log_prefix} 允许从 {current_state.value} 转换到 CHAT (上限: {normal_limit}, 当前: {current_chat_count})"
)
# If transitioning out of FOCUSED, shut down HeartFChatting first
logger.debug(f"{log_prefix} 麦麦可以进入或保持 聊天 状态 ({current_chat_count}/{normal_limit})")
if current_state == ChatState.FOCUSED and self.heart_fc_instance:
logger.info(f"{log_prefix} 从 FOCUSED 转换到 CHAT正在关闭 HeartFChatting...")
await self.heart_fc_instance.shutdown()
logger.info(f"{log_prefix} 麦麦不再专注聊天,转为随便水水...")
await self.heart_fc_instance.shutdown() # 正确关闭 HeartFChatting
self.heart_fc_instance = None
# --- Entering FOCUSED state ---
chat_stream = chat_manager.get_stream(self.chat_id)
self.normal_chat_instance = NormalChat(
chat_stream=chat_stream,
interest_dict=self.get_interest_dict()
)
await self.normal_chat_instance.start_monitoring_interest()
# NormalChat 启动/停止逻辑将在下面处理
elif new_state == ChatState.FOCUSED:
focused_limit = current_mai_state.get_focused_chat_max_num()
current_focused_count = self.parent_heartflow.count_subflows_by_state(ChatState.FOCUSED)
current_focused_count = current_states_num[2]
if current_focused_count >= focused_limit:
if current_focused_count >= focused_limit and current_state != ChatState.FOCUSED: # 仅在状态转换时检查限制
logger.debug(
f"{log_prefix} 拒绝{current_state.value} 转换到 FOCUSED。原因FOCUSED 状态已达上限 ({focused_limit})。当前数量: {current_focused_count}"
f"{log_prefix} 麦麦不能{current_state.value} 转换到 专注的聊天,原因:聊不过来了。({current_focused_count}/{focused_limit})"
)
return # Block the state transition
return # 阻止状态转换
else:
logger.debug(
f"{log_prefix} 允许从 {current_state.value} 转换到 FOCUSED (上限: {focused_limit}, 当前: {current_focused_count})"
)
logger.debug(f"{log_prefix} 麦麦可以进入或保持 专注聊天 状态 ({current_focused_count}/{focused_limit})")
if not self.heart_fc_instance:
logger.info(f"{log_prefix} 状态转为 FOCUSED创建并初始化 HeartFChatting 实例...")
logger.info(f"{log_prefix} 麦麦准备开始专注聊天...")
try:
await self.normal_chat_instance.stop_monitoring_interest()
self.clear_interest_dict()
logger.info(f"{log_prefix} 停止 NormalChat 兴趣监控成功。")
except Exception as e:
logger.error(f"{log_prefix} 停止 NormalChat 兴趣监控时出错: {e}")
logger.error(traceback.format_exc())
try:
self.heart_fc_instance = HeartFChatting(
chat_id=self.subheartflow_id,
gpt_instance=self.parent_heartflow.gpt_instance,
tool_user_instance=self.parent_heartflow.tool_user_instance,
emoji_manager_instance=self.parent_heartflow.emoji_manager_instance,
chat_id=self.chat_id,
gpt_instance=self.gpt_instance,
tool_user_instance=self.tool_user_instance,
)
# Initialize and potentially start the loop via add_time
if await self.heart_fc_instance._initialize():
# Give it an initial time boost to start the loop
await self.heart_fc_instance.add_time()
logger.info(f"{log_prefix} HeartFChatting 实例已创建并启动。")
await self.heart_fc_instance.add_time() # 初始化成功后添加初始时间
logger.info(f"{log_prefix} 麦麦已成功进入专注聊天模式。")
else:
logger.error(
f"{log_prefix} HeartFChatting 实例初始化失败,状态回滚到 {current_state.value}"
f"{log_prefix} 麦麦不能专注聊天,因为 HeartFChatting 初始化失败,状态回滚到 {current_state.value}"
)
self.heart_fc_instance = None
return # Prevent state change if HeartFChatting fails to init
return # 阻止进入 FOCUSED 状态
except Exception as e:
logger.error(f"{log_prefix} 创建 HeartFChatting 实例时出错: {e}")
logger.error(f"{log_prefix} 创建麦麦专注聊天实例时出错: {e}")
logger.error(traceback.format_exc())
self.heart_fc_instance = None
return # Prevent state change on error
return # 创建实例异常,阻止进入 FOCUSED 状态
else:
logger.warning(f"{log_prefix} 尝试进入 FOCUSED 状态,但 HeartFChatting 实例已存在。")
# 已经是 FOCUSED 状态,或者 heart_fc_instance 已存在但未运行(不太可能)
if not self.heart_fc_instance._loop_active:
logger.warning(f"{log_prefix} HeartFChatting 实例存在但未激活,尝试重新激活...")
await self.heart_fc_instance.add_time() # 尝试添加时间以激活循环
else:
logger.debug(f"{log_prefix} 麦麦已经在专注聊天中。")
# NormalChat 启动/停止逻辑将在下面处理
# --- Entering ABSENT state (or any state other than FOCUSED) ---
elif current_state == ChatState.FOCUSED and self.heart_fc_instance:
logger.info(f"{log_prefix} 从 FOCUSED 转换到 {new_state.value},正在关闭 HeartFChatting...")
await self.heart_fc_instance.shutdown()
self.heart_fc_instance = None
elif new_state == ChatState.ABSENT:
if current_state == ChatState.FOCUSED and self.heart_fc_instance:
logger.info(f"{log_prefix} 麦麦离开专注的聊天,撤退了.....")
await self.heart_fc_instance.shutdown() # 正确关闭 HeartFChatting
self.heart_fc_instance = None
# NormalChat 启动/停止逻辑将在下面处理
# --- Update state and timestamp if transition is allowed --- # 更新状态必须放在所有检查和操作之后
# --- 更新状态和最后活动时间 (先更新状态,再根据新状态管理任务)---
self.chat_state.chat_status = new_state
self.last_active_time = time.time()
logger.info(f"{log_prefix} 聊天状态从 {current_state.value} 变更为 {new_state.value}")
logger.info(f"{log_prefix} 麦麦的聊天状态从 {current_state.value} 变更为 {new_state.value}")
# --- 根据新的状态管理 NormalChat 的监控任务 ---
if self.normal_chat_instance:
try:
if new_state == ChatState.ABSENT:
logger.info(f"{log_prefix} 状态变为 ABSENT停止 NormalChat 兴趣监控...")
await self.normal_chat_instance.stop_monitoring_interest()
else: # CHAT or FOCUSED
logger.info(f"{log_prefix} 状态变为 {new_state.value},启动或确认 NormalChat 兴趣监控...")
await self.normal_chat_instance.start_monitoring_interest()
except Exception as e:
logger.error(f"{log_prefix} 管理 NormalChat 监控任务时出错 (新状态: {new_state.value}): {e}")
logger.error(traceback.format_exc())
else:
logger.warning(f"{log_prefix} NormalChat 实例不可用,无法管理其监控任务。")
async def subheartflow_start_working(self):
while True:
if self.should_stop:
logger.info(f"子心流 {self.subheartflow_id} 被标记为停止,正在退出后台任务...")
break
"""启动子心流的后台任务
功能说明:
- 负责子心流的主要后台循环
- 每30秒检查一次停止标志
"""
logger.info(f"{self.log_prefix} 子心流开始工作...")
while not self.should_stop:
# 主循环保持简单,只做状态检查
await asyncio.sleep(30) # 30秒检查一次停止标志
logger.info(f"{self.log_prefix} 子心流后台任务已停止。")
# await asyncio.sleep(global_config.sub_heart_flow_update_interval)
await asyncio.sleep(10)
async def ensure_observed(self):
observation = self._get_primary_observation()
if observation:
try:
await observation.observe()
logger.trace(f"[{self.subheartflow_id}] Observation updated before thinking.")
except Exception as e:
logger.error(f"[{self.subheartflow_id}] Error during pre-thinking observation: {e}")
logger.error(traceback.format_exc())
async def do_thinking_before_reply(
self,
@@ -410,7 +447,7 @@ class SubHeartflow:
extra_info_prompt = "无工具信息。\n"
individuality = Individuality.get_instance()
prompt_personality = f"你的名字是{self.bot_name},你"
prompt_personality = f"你的名字是{individuality.bot_nickname},你"
prompt_personality += individuality.personality.personality_core
if individuality.personality.personality_sides:
@@ -441,7 +478,7 @@ class SubHeartflow:
prompt = (await global_prompt_manager.get_prompt_async("sub_heartflow_prompt_before")).format(
extra_info=extra_info_prompt,
prompt_personality=prompt_personality,
bot_name=self.bot_name,
bot_name=individuality.bot_nickname,
current_thinking_info=current_thinking_info,
time_now=time_now,
chat_observe_info=chat_observe_info,
@@ -511,5 +548,53 @@ class SubHeartflow:
def get_interest_dict(self) -> Dict[str, tuple[MessageRecv, float, bool]]:
return self.interest_chatting.interest_dict
def clear_interest_dict(self):
self.interest_chatting.interest_dict.clear()
async def shutdown(self):
"""安全地关闭子心流及其管理的任务"""
if self.should_stop:
logger.info(f"{self.log_prefix} 子心流已在关闭过程中。")
return
logger.info(f"{self.log_prefix} 开始关闭子心流...")
self.should_stop = True # 标记为停止,让后台任务退出
# 停止 NormalChat 监控 (保持调用,确保清理)
if self.normal_chat_instance:
logger.info(f"{self.log_prefix} 停止 NormalChat 监控任务 (Shutdown)...")
try:
await self.normal_chat_instance.stop_monitoring_interest()
except Exception as e:
logger.error(f"{self.log_prefix} 停止 NormalChat 监控任务时出错 (Shutdown): {e}")
logger.error(traceback.format_exc())
# 停止 HeartFChatting (如果存在且正在运行)
if self.heart_fc_instance:
logger.info(f"{self.log_prefix} 关闭 HeartFChatting 实例 (Shutdown)...")
try:
await self.heart_fc_instance.shutdown()
except Exception as e:
logger.error(f"{self.log_prefix} 关闭 HeartFChatting 实例时出错 (Shutdown): {e}")
logger.error(traceback.format_exc())
self.heart_fc_instance = None # 清理实例引用
# 取消可能存在的旧后台任务 (self.task)
if self.task and not self.task.done():
logger.info(f"{self.log_prefix} 取消子心流主任务 (Shutdown)...")
self.task.cancel()
try:
await asyncio.wait_for(self.task, timeout=1.0) # 给点时间响应取消
except asyncio.CancelledError:
logger.info(f"{self.log_prefix} 子心流主任务已取消 (Shutdown)。")
except asyncio.TimeoutError:
logger.warning(f"{self.log_prefix} 等待子心流主任务取消超时 (Shutdown)。")
except Exception as e:
logger.error(f"{self.log_prefix} 等待子心流主任务取消时发生错误 (Shutdown): {e}")
self.task = None # 清理任务引用
self.chat_state.chat_status = ChatState.ABSENT # 状态重置为不参与
logger.info(f"{self.log_prefix} 子心流关闭完成。")
init_prompt()

View File

@@ -0,0 +1,379 @@
import asyncio
import time
import random
from typing import Dict, Any, Optional, List
# 导入日志模块
from src.common.logger import get_module_logger
# 导入聊天流管理模块
from src.plugins.chat.chat_stream import chat_manager
# 导入心流相关类
from src.heart_flow.sub_heartflow import SubHeartflow, ChatState
from src.heart_flow.mai_state_manager import MaiState, MaiStateInfo
from .observation import ChattingObservation
# 初始化日志记录器
logger = get_module_logger("subheartflow_manager")
# 子心流管理相关常量
INACTIVE_THRESHOLD_SECONDS = 1200 # 子心流不活跃超时时间(秒)
class SubHeartflowManager:
"""管理所有活跃的 SubHeartflow 实例。"""
def __init__(self):
self.subheartflows: Dict[Any, "SubHeartflow"] = {}
self._lock = asyncio.Lock() # 用于保护 self.subheartflows 的访问
def get_all_subheartflows(self) -> List["SubHeartflow"]:
"""获取所有当前管理的 SubHeartflow 实例列表 (快照)。"""
return list(self.subheartflows.values())
def get_all_subheartflows_ids(self) -> List[Any]:
"""获取所有当前管理的 SubHeartflow ID 列表。"""
return list(self.subheartflows.keys())
def get_subheartflow(self, subheartflow_id: Any) -> Optional["SubHeartflow"]:
"""获取指定 ID 的 SubHeartflow 实例。"""
# 注意:这里没有加锁,假设读取操作相对安全或在已知上下文中调用
# 如果并发写操作很多get 也应该加锁
subflow = self.subheartflows.get(subheartflow_id)
if subflow:
subflow.last_active_time = time.time() # 获取时更新活动时间
return subflow
async def create_or_get_subheartflow(
self, subheartflow_id: Any, mai_states: MaiStateInfo
) -> Optional["SubHeartflow"]:
"""获取或创建指定ID的子心流实例
Args:
subheartflow_id: 子心流唯一标识符
mai_states: 当前麦麦状态信息
Returns:
成功返回SubHeartflow实例失败返回None
"""
async with self._lock:
# 检查是否已存在该子心流
if subheartflow_id in self.subheartflows:
subflow = self.subheartflows[subheartflow_id]
if subflow.should_stop:
logger.warning(f"尝试获取已停止的子心流 {subheartflow_id},正在重新激活")
subflow.should_stop = False # 重置停止标志
subflow.last_active_time = time.time() # 更新活跃时间
logger.debug(f"获取到已存在的子心流: {subheartflow_id}")
return subflow
# 创建新的子心流实例
logger.info(f"子心流 {subheartflow_id} 不存在,正在创建...")
try:
# 初始化子心流
new_subflow = SubHeartflow(subheartflow_id, mai_states)
# 添加聊天观察者
observation = ChattingObservation(chat_id=subheartflow_id)
new_subflow.add_observation(observation)
# 注册子心流
self.subheartflows[subheartflow_id] = new_subflow
logger.info(f"子心流 {subheartflow_id} 创建成功")
# 启动后台任务
asyncio.create_task(new_subflow.subheartflow_start_working())
return new_subflow
except Exception as e:
logger.error(f"创建子心流 {subheartflow_id} 失败: {e}", exc_info=True)
return None
async def stop_subheartflow(self, subheartflow_id: Any, reason: str) -> bool:
"""停止指定的子心流并清理资源"""
subheartflow = self.subheartflows.get(subheartflow_id)
if not subheartflow:
return False
stream_name = chat_manager.get_stream_name(subheartflow_id) or subheartflow_id
logger.info(f"[子心流管理] 正在停止 {stream_name}, 原因: {reason}")
try:
# 设置状态为ABSENT释放资源
if subheartflow.chat_state.chat_status != ChatState.ABSENT:
logger.debug(f"[子心流管理] 设置 {stream_name} 状态为ABSENT")
states_num =(self.count_subflows_by_state(ChatState.ABSENT),
self.count_subflows_by_state(ChatState.CHAT),
self.count_subflows_by_state(ChatState.FOCUSED))
await subheartflow.set_chat_state(ChatState.ABSENT, states_num)
else:
logger.debug(f"[子心流管理] {stream_name} 已是ABSENT状态")
except Exception as e:
logger.error(f"[子心流管理] 设置ABSENT状态失败: {e}")
# 停止子心流内部循环
subheartflow.should_stop = True
# 取消后台任务
task = subheartflow.task
if task and not task.done():
task.cancel()
logger.debug(f"[子心流管理] 已取消 {stream_name} 的后台任务")
# 从管理字典中移除
if subheartflow_id in self.subheartflows:
del self.subheartflows[subheartflow_id]
logger.debug(f"[子心流管理] 已移除 {stream_name}")
return True
else:
logger.warning(f"[子心流管理] {stream_name} 已被提前移除")
return False
def cleanup_inactive_subheartflows(self, max_age_seconds=INACTIVE_THRESHOLD_SECONDS):
"""识别并返回需要清理的不活跃子心流(id, 原因)"""
current_time = time.time()
flows_to_stop = []
for subheartflow_id, subheartflow in list(self.subheartflows.items()):
# 只检查有interest_chatting的子心流
if hasattr(subheartflow, "interest_chatting") and subheartflow.interest_chatting:
last_interact = subheartflow.interest_chatting.last_interaction_time
if max_age_seconds and (current_time - last_interact) > max_age_seconds:
reason = f"不活跃时间({current_time - last_interact:.0f}s) > 阈值({max_age_seconds}s)"
name = chat_manager.get_stream_name(subheartflow_id) or subheartflow_id
logger.debug(f"[清理] 标记 {name} 待移除: {reason}")
flows_to_stop.append((subheartflow_id, reason))
if flows_to_stop:
logger.info(f"[清理] 发现 {len(flows_to_stop)} 个不活跃子心流")
return flows_to_stop
async def enforce_subheartflow_limits(self, current_mai_state: MaiState):
"""根据主状态限制停止超额子心流(优先停不活跃的)"""
normal_limit = current_mai_state.get_normal_chat_max_num()
focused_limit = current_mai_state.get_focused_chat_max_num()
logger.debug(f"[限制] 状态:{current_mai_state.value}, 普通限:{normal_limit}, 专注限:{focused_limit}")
# 分类统计当前子心流
normal_flows = []
focused_flows = []
for flow_id, flow in list(self.subheartflows.items()):
if flow.chat_state.chat_status == ChatState.CHAT:
normal_flows.append((flow_id, getattr(flow, "last_active_time", 0)))
elif flow.chat_state.chat_status == ChatState.FOCUSED:
focused_flows.append((flow_id, getattr(flow, "last_active_time", 0)))
logger.debug(f"[限制] 当前数量 - 普通:{len(normal_flows)}, 专注:{len(focused_flows)}")
stopped = 0
# 处理普通聊天超额
if len(normal_flows) > normal_limit:
excess = len(normal_flows) - normal_limit
logger.info(f"[限制] 普通聊天超额({len(normal_flows)}>{normal_limit}), 停止{excess}")
normal_flows.sort(key=lambda x: x[1])
for flow_id, _ in normal_flows[:excess]:
if await self.stop_subheartflow(flow_id, f"普通聊天超额(限{normal_limit})"):
stopped += 1
# 处理专注聊天超额(需重新统计)
focused_flows = [
(fid, t)
for fid, f in list(self.subheartflows.items())
if (t := getattr(f, "last_active_time", 0)) and f.chat_state.chat_status == ChatState.FOCUSED
]
if len(focused_flows) > focused_limit:
excess = len(focused_flows) - focused_limit
logger.info(f"[限制] 专注聊天超额({len(focused_flows)}>{focused_limit}), 停止{excess}")
focused_flows.sort(key=lambda x: x[1])
for flow_id, _ in focused_flows[:excess]:
if await self.stop_subheartflow(flow_id, f"专注聊天超额(限{focused_limit})"):
stopped += 1
if stopped:
logger.info(f"[限制] 已停止{stopped}个子心流, 剩余:{len(self.subheartflows)}")
else:
logger.debug(f"[限制] 无需停止, 当前总数:{len(self.subheartflows)}")
async def activate_random_subflows_to_chat(self, current_mai_state: MaiState):
"""主状态激活时随机选择ABSENT子心流进入CHAT状态"""
limit = current_mai_state.get_normal_chat_max_num()
if limit <= 0:
logger.info("[激活] 当前状态不允许CHAT子心流")
return
# 获取所有ABSENT状态的子心流
absent_flows = [flow for flow in self.subheartflows.values() if flow.chat_state.chat_status == ChatState.ABSENT]
num_to_activate = min(limit, len(absent_flows))
if num_to_activate <= 0:
logger.info(f"[激活] 无可用ABSENT子心流(限额:{limit}, 可用:{len(absent_flows)})")
return
logger.info(f"[激活] 随机选择{num_to_activate}个ABSENT子心流进入CHAT状态")
activated_count = 0
for flow in random.sample(absent_flows, num_to_activate):
flow_id = flow.subheartflow_id
stream_name = chat_manager.get_stream_name(flow_id) or flow_id
if flow_id not in self.subheartflows:
logger.warning(f"[激活] 跳过{stream_name}, 子心流已不存在")
continue
logger.debug(f"[激活] 正在激活子心流{stream_name}")
states_num =(self.count_subflows_by_state(ChatState.ABSENT),
self.count_subflows_by_state(ChatState.CHAT),
self.count_subflows_by_state(ChatState.FOCUSED))
await flow.set_chat_state(ChatState.CHAT, states_num)
if flow.chat_state.chat_status == ChatState.CHAT:
activated_count += 1
else:
logger.warning(f"[激活] {stream_name}状态设置失败")
logger.info(f"[激活] 完成, 成功激活{activated_count}个子心流")
async def deactivate_all_subflows(self):
"""停用所有子心流(主状态变为OFFLINE时调用)"""
logger.info("[停用] 开始停用所有子心流")
flow_ids = list(self.subheartflows.keys())
if not flow_ids:
logger.info("[停用] 无活跃子心流")
return
stopped_count = 0
for flow_id in flow_ids:
if await self.stop_subheartflow(flow_id, "主状态离线"):
stopped_count += 1
logger.info(f"[停用] 完成, 尝试停止{len(flow_ids)}个, 成功{stopped_count}")
async def evaluate_interest_and_promote(self):
"""评估CHAT状态的子心流兴趣度满足条件则提升到FOCUSED状态"""
logger.debug("[子心流管理器] 开始兴趣评估周期...")
evaluated_count = 0
promoted_count = 0
# 使用快照安全遍历
subflows_snapshot = list(self.subheartflows.values())
for sub_hf in subflows_snapshot:
flow_id = sub_hf.subheartflow_id
if flow_id in self.subheartflows and self.subheartflows[flow_id].chat_state.chat_status == ChatState.CHAT:
evaluated_count += 1
stream_name = chat_manager.get_stream_name(flow_id) or flow_id
log_prefix = f"[{stream_name}]"
should_promote = await sub_hf.should_evaluate_reply()
if should_promote:
logger.info(f"{log_prefix} 兴趣评估触发升级: CHAT -> FOCUSED")
states_num =(self.count_subflows_by_state(ChatState.ABSENT),
self.count_subflows_by_state(ChatState.CHAT),
self.count_subflows_by_state(ChatState.FOCUSED))
await sub_hf.set_chat_state(ChatState.FOCUSED, states_num)
if (
self.subheartflows.get(flow_id)
and self.subheartflows[flow_id].chat_state.chat_status == ChatState.FOCUSED
):
promoted_count += 1
logger.debug(f"{log_prefix} 成功升级到FOCUSED状态")
else:
logger.info(f"{log_prefix} 升级FOCUSED可能被限制阻止")
if evaluated_count > 0:
logger.debug(f"[子心流管理器] 评估完成. 评估{evaluated_count}个CHAT流, 升级{promoted_count}个到FOCUSED")
def count_subflows_by_state(self, state: ChatState) -> int:
"""统计指定状态的子心流数量
Args:
state: 要统计的聊天状态枚举值
Returns:
int: 处于该状态的子心流数量
"""
count = 0
# 遍历所有子心流实例
for subheartflow in self.subheartflows.values():
# 检查子心流状态是否匹配
if subheartflow.chat_state.chat_status == state:
count += 1
return count
def get_active_subflow_minds(self) -> List[str]:
"""获取所有活跃(非ABSENT)子心流的当前想法
返回:
List[str]: 包含所有活跃子心流当前想法的列表
"""
minds = []
for subheartflow in self.subheartflows.values():
# 检查子心流是否活跃(非ABSENT状态)
if subheartflow.chat_state.chat_status != ChatState.ABSENT:
minds.append(subheartflow.current_mind)
return minds
def update_main_mind_in_subflows(self, main_mind: str):
"""更新所有子心流的主心流想法"""
updated_count = sum(
1
for _, subheartflow in list(self.subheartflows.items())
if subheartflow.subheartflow_id in self.subheartflows
)
logger.debug(f"[子心流管理器] 更新了{updated_count}个子心流的主想法")
async def deactivate_subflow(self, subheartflow_id: Any):
"""停用并移除指定的子心流。"""
async with self._lock:
subflow = self.subheartflows.pop(subheartflow_id, None)
if subflow:
logger.info(f"正在停用 SubHeartflow: {subheartflow_id}...")
try:
# --- 调用 shutdown 方法 ---
await subflow.shutdown()
# --- 结束调用 ---
logger.info(f"SubHeartflow {subheartflow_id} 已成功停用。")
except Exception as e:
logger.error(f"停用 SubHeartflow {subheartflow_id} 时出错: {e}", exc_info=True)
else:
logger.warning(f"尝试停用不存在的 SubHeartflow: {subheartflow_id}")
async def deactivate_all_subflows(self):
"""停用并移除所有子心流。"""
logger.info("正在停用所有 SubHeartflows...")
# 获取当前所有 ID避免在迭代时修改字典
all_ids = self.get_all_subheartflows_ids()
tasks = [self.deactivate_subflow(sub_id) for sub_id in all_ids]
await asyncio.gather(*tasks)
logger.info("所有 SubHeartflows 已停用。")
async def cleanup_inactive_subflows(self, inactive_threshold_seconds: int):
"""清理长时间不活跃的子心流。"""
current_time = time.time()
inactive_ids = []
# 不加锁地迭代,识别不活跃的 ID
for sub_id, subflow in self.subheartflows.items():
# 检查 last_active_time 是否存在且是数值
last_active = getattr(subflow, "last_active_time", 0)
if isinstance(last_active, (int, float)):
if current_time - last_active > inactive_threshold_seconds:
inactive_ids.append(sub_id)
logger.info(
f"发现不活跃的 SubHeartflow: {sub_id} (上次活跃: {time.strftime('%Y-%m-%d %H:%M:%S', time.localtime(last_active))})"
)
else:
logger.warning(f"SubHeartflow {sub_id} 的 last_active_time 无效: {last_active}。跳过清理检查。")
if inactive_ids:
logger.info(f"准备清理 {len(inactive_ids)} 个不活跃的 SubHeartflows: {inactive_ids}")
# 逐个停用deactivate_subflow 会加锁)
tasks = [self.deactivate_subflow(sub_id) for sub_id in inactive_ids]
await asyncio.gather(*tasks)
logger.info("不活跃的 SubHeartflows 清理完成。")
# else:
# logger.debug("没有发现不活跃的 SubHeartflows 需要清理。")

View File

@@ -17,8 +17,8 @@ from src.plugins.utils.timer_calculater import Timer # <--- Import Timer
# --- Import necessary dependencies directly ---
from .heartFC_generator import ResponseGenerator # Assuming this is the type for gpt
from src.do_tool.tool_use import ToolUser
from src.plugins.chat.emoji_manager import EmojiManager # Assuming this is the type
from ..chat.message_sender import message_manager # <-- Import the global manager
from src.plugins.chat.emoji_manager import emoji_manager
# --- End import ---
@@ -78,10 +78,8 @@ class HeartFChatting:
def __init__(
self,
chat_id: str,
# 显式依赖注入
gpt_instance: ResponseGenerator, # 文本回复生成器
tool_user_instance: ToolUser, # 工具使用实例
emoji_manager_instance: EmojiManager, # 表情管理实例
):
"""
HeartFChatting 初始化函数
@@ -106,7 +104,6 @@ class HeartFChatting:
# 依赖注入存储
self.gpt_instance = gpt_instance # 文本回复生成器
self.tool_user = tool_user_instance # 工具使用实例
self.emoji_manager = emoji_manager_instance # 表情管理实例
# LLM规划器配置
self.planner_llm = LLMRequest(
@@ -659,26 +656,6 @@ class HeartFChatting:
logger.error(traceback.format_exc())
return None
# def _cleanup_thinking_message(self, thinking_id: str):
# """Safely removes the thinking message."""
# log_prefix = self._get_log_prefix()
# try:
# # Access MessageManager directly
# container = await message_manager.get_container(self.stream_id)
# # container.remove_message(thinking_id, msg_type=MessageThinking) # Need to find the message object first
# found_msg = None
# for msg in container.get_all_messages():
# if isinstance(msg, MessageThinking) and msg.message_info.message_id == thinking_id:
# found_msg = msg
# break
# if found_msg:
# container.remove_message(found_msg)
# logger.debug(f"{log_prefix} Cleaned up thinking message {thinking_id}.")
# else:
# logger.warning(f"{log_prefix} Could not find thinking message {thinking_id} to cleanup.")
# except Exception as e:
# logger.error(f"{log_prefix} Error cleaning up thinking message {thinking_id}: {e}")
# --- 发送器 (Sender) --- #
async def _sender(
self,
@@ -783,12 +760,6 @@ class HeartFChatting:
log_prefix = self._get_log_prefix()
response_set: Optional[List[str]] = None
try:
# --- Generate Response with LLM --- #
# Access gpt instance directly
# logger.debug(f"{log_prefix}[Replier-{thinking_id}] Calling LLM to generate response...")
# Ensure generate_response has access to current_mind if it's crucial context
# Access gpt_instance directly
response_set = await self.gpt_instance.generate_response(
current_mind_info=self.sub_hf.current_mind,
reason=reason,
@@ -902,15 +873,12 @@ class HeartFChatting:
return
chat = anchor_message.chat_stream
# Access emoji_manager directly
# emoji_manager_instance = self.heartfc_controller.emoji_manager # Removed
if send_emoji:
# Use self.emoji_manager directly
emoji_raw = await self.emoji_manager.get_emoji_for_text(send_emoji)
emoji_raw = await emoji_manager.get_emoji_for_text(send_emoji)
else:
emoji_text_source = "".join(response_set) if response_set else ""
# Use self.emoji_manager directly
emoji_raw = await self.emoji_manager.get_emoji_for_text(emoji_text_source)
emoji_raw = await emoji_manager.get_emoji_for_text(emoji_text_source)
if emoji_raw:
emoji_path, _description = emoji_raw

View File

@@ -12,7 +12,6 @@ from ..chat.chat_stream import chat_manager
from ..chat.message_buffer import message_buffer
from ..utils.timer_calculater import Timer
from src.plugins.person_info.relationship_manager import relationship_manager
from .normal_chat import NormalChat
# 定义日志配置
processor_config = LogConfig(
@@ -25,7 +24,6 @@ logger = get_module_logger("heartflow_processor", config=processor_config)
class HeartFCProcessor:
def __init__(self):
self.storage = MessageStorage()
self.normal_chat = NormalChat.get_instance()
async def process_message(self, message_data: str) -> None:
"""处理接收到的原始消息数据,完成消息解析、缓冲、过滤、存储、兴趣度计算与更新等核心流程。
@@ -75,11 +73,6 @@ class HeartFCProcessor:
logger.error(f"无法为 stream_id {chat.stream_id} 创建或获取 SubHeartflow中止处理")
return
# --- 添加兴趣追踪启动 (现在移动到这里,确保 subheartflow 存在后启动) ---
# 在获取到 chat 对象和确认 subheartflow 后,启动对该聊天流的兴趣监控
await self.normal_chat.start_monitoring_interest(chat) # start_monitoring_interest 内部需要修改以适应
# --- 结束添加 ---
message.update_chat_stream(chat)
await heartflow.create_subheartflow(chat.stream_id)

View File

@@ -226,11 +226,6 @@ class PromptBuilder:
"memory_prompt", related_memory_info=related_memory_info
)
# print(f"相关记忆:{related_memory_info}")
# 日程构建
# schedule_prompt = f"""你现在正在做的事情是:{bot_schedule.get_current_num_task(num=1, time_info=False)}"""
# 获取聊天上下文
if chat_stream.group_info:
chat_in_group = True
@@ -292,9 +287,12 @@ class PromptBuilder:
logger.debug("开始构建prompt")
schedule_prompt = await global_prompt_manager.format_prompt(
"schedule_prompt", schedule_info=bot_schedule.get_current_num_task(num=1, time_info=False)
)
if global_config.ENABLE_SCHEDULE_GEN:
schedule_prompt = await global_prompt_manager.format_prompt(
"schedule_prompt", schedule_info=bot_schedule.get_current_num_task(num=1, time_info=False)
)
else:
schedule_prompt = ""
prompt = await global_prompt_manager.format_prompt(
"reasoning_prompt_main",

View File

@@ -1,17 +1,15 @@
import time
import threading # 导入 threading
from random import random
import traceback
import asyncio
from typing import List, Dict
import traceback
from random import random
from typing import List, Optional # 导入 Optional
from ..moods.moods import MoodManager
from ...config.config import global_config
from ..chat.emoji_manager import emoji_manager
from .normal_chat_generator import ResponseGenerator
from ..chat.message import MessageSending, MessageRecv, MessageThinking, MessageSet
from ..chat.message_sender import message_manager
from ..storage.storage import MessageStorage
from ..chat.utils import is_mentioned_bot_in_message
from ..chat.utils_image import image_path_to_base64
from ..willing.willing_manager import willing_manager
from ..message import UserInfo, Seg
@@ -20,8 +18,6 @@ from src.plugins.chat.chat_stream import ChatStream, chat_manager
from src.plugins.person_info.relationship_manager import relationship_manager
from src.plugins.respon_info_catcher.info_catcher import info_catcher_manager
from src.plugins.utils.timer_calculater import Timer
from src.heart_flow.heartflow import heartflow
from src.heart_flow.sub_heartflow import ChatState
# 定义日志配置
chat_config = LogConfig(
@@ -33,46 +29,34 @@ logger = get_module_logger("normal_chat", config=chat_config)
class NormalChat:
_instance = None
_lock = threading.Lock()
_initialized = False
def __init__(self, chat_stream: ChatStream, interest_dict: dict):
"""
初始化 NormalChat 实例,针对特定的 ChatStream。
def __new__(cls, *args, **kwargs):
if cls._instance is None:
with cls._lock:
# Double-check locking
if cls._instance is None:
cls._instance = super().__new__(cls)
return cls._instance
Args:
chat_stream (ChatStream): 此 NormalChat 实例关联的聊天流对象。
"""
def __init__(self):
# 防止重复初始化
if self._initialized:
return
with self.__class__._lock: # 使用类锁确保线程安全
if self._initialized:
return
logger.info("正在初始化 NormalChat 单例...") # 添加日志
self.storage = MessageStorage()
self.gpt = ResponseGenerator()
self.mood_manager = MoodManager.get_instance()
# 用于存储每个 chat stream 的兴趣监控任务
self._interest_monitoring_tasks: Dict[str, asyncio.Task] = {}
self._initialized = True
logger.info("NormalChat 单例初始化完成。") # 添加日志
self.chat_stream = chat_stream
self.stream_id = chat_stream.stream_id
self.stream_name = chat_manager.get_stream_name(self.stream_id) or self.stream_id
@classmethod
def get_instance(cls):
"""获取 NormalChat 的单例实例。"""
if cls._instance is None:
# 如果实例还未创建(理论上应该在 main 中初始化,但作为备用)
logger.warning("NormalChat 实例在首次 get_instance 时创建。")
cls() # 调用构造函数来创建实例
return cls._instance
self.interest_dict = interest_dict
@staticmethod
async def _create_thinking_message(message, chat, userinfo, messageinfo):
logger.info(f"[{self.stream_name}] 正在初始化 NormalChat 实例...")
self.gpt = ResponseGenerator()
self.mood_manager = MoodManager.get_instance() # MoodManager 保持单例
# 存储此实例的兴趣监控任务
self._interest_monitoring_task: Optional[asyncio.Task] = None
logger.info(f"[{self.stream_name}] NormalChat 实例初始化完成。")
# 改为实例方法
async def _create_thinking_message(self, message: MessageRecv) -> str:
"""创建思考消息"""
userinfo = message.message_info.user_info
messageinfo = message.message_info
bot_user_info = UserInfo(
user_id=global_config.BOT_QQ,
user_nickname=global_config.BOT_NICKNAME,
@@ -83,7 +67,7 @@ class NormalChat:
thinking_id = "mt" + str(thinking_time_point)
thinking_message = MessageThinking(
message_id=thinking_id,
chat_stream=chat,
chat_stream=self.chat_stream, # 使用 self.chat_stream
bot_user_info=bot_user_info,
reply=message,
thinking_start_time=thinking_time_point,
@@ -93,10 +77,12 @@ class NormalChat:
return thinking_id
@staticmethod
async def _send_response_messages(message, chat, response_set: List[str], thinking_id) -> MessageSending:
# 改为实例方法
async def _add_messages_to_manager(
self, message: MessageRecv, response_set: List[str], thinking_id
) -> Optional[MessageSending]:
"""发送回复消息"""
container = await message_manager.get_container(chat.stream_id)
container = await message_manager.get_container(self.stream_id) # 使用 self.stream_id
thinking_message = None
for msg in container.messages[:]:
@@ -106,11 +92,11 @@ class NormalChat:
break
if not thinking_message:
logger.warning(f"[{chat.stream_id}] 未找到对应的思考消息 {thinking_id},可能已超时被移除")
logger.warning(f"[{self.stream_name}] 未找到对应的思考消息 {thinking_id},可能已超时被移除")
return None
thinking_start_time = thinking_message.thinking_start_time
message_set = MessageSet(chat, thinking_id)
message_set = MessageSet(self.chat_stream, thinking_id) # 使用 self.chat_stream
mark_head = False
first_bot_msg = None
@@ -118,7 +104,7 @@ class NormalChat:
message_segment = Seg(type="text", data=msg)
bot_message = MessageSending(
message_id=thinking_id,
chat_stream=chat,
chat_stream=self.chat_stream, # 使用 self.chat_stream
bot_user_info=UserInfo(
user_id=global_config.BOT_QQ,
user_nickname=global_config.BOT_NICKNAME,
@@ -141,8 +127,8 @@ class NormalChat:
return first_bot_msg
@staticmethod
async def _handle_emoji(message, chat, response):
# 改为实例方法
async def _handle_emoji(self, message: MessageRecv, response: str):
"""处理表情包"""
if random() < global_config.emoji_chance:
emoji_raw = await emoji_manager.get_emoji_for_text(response)
@@ -155,7 +141,7 @@ class NormalChat:
message_segment = Seg(type="emoji", data=emoji_cq)
bot_message = MessageSending(
message_id="mt" + str(thinking_time_point),
chat_stream=chat,
chat_stream=self.chat_stream, # 使用 self.chat_stream
bot_user_info=UserInfo(
user_id=global_config.BOT_QQ,
user_nickname=global_config.BOT_NICKNAME,
@@ -170,193 +156,151 @@ class NormalChat:
)
await message_manager.add_message(bot_message)
# 改为实例方法 (虽然它只用 message.chat_stream, 但逻辑上属于实例)
async def _update_relationship(self, message: MessageRecv, response_set):
"""更新关系情绪"""
ori_response = ",".join(response_set)
stance, emotion = await self.gpt._get_emotion_tags(ori_response, message.processed_plain_text)
await relationship_manager.calculate_update_relationship_value(
chat_stream=message.chat_stream, label=emotion, stance=stance
chat_stream=self.chat_stream,
label=emotion,
stance=stance, # 使用 self.chat_stream
)
self.mood_manager.update_mood_from_emotion(emotion, global_config.mood_intensity_factor)
async def _find_interested_message(self, chat: ChatStream) -> None:
# 此函数设计为后台任务,轮询指定 chat 的兴趣消息。
# 它通常由外部代码在 chat 流活跃时启动。
stream_id = chat.stream_id # 获取 stream_id
# logger.info(f"[{stream_id}] 兴趣消息监控任务启动。") # 减少日志
async def _find_interested_message(self) -> None:
"""
后台任务方法轮询当前实例关联chat的兴趣消息
通常由start_monitoring_interest()启动
"""
while True:
await asyncio.sleep(1) # 每秒检查一次
subheartflow = heartflow.get_subheartflow(stream_id)
if not subheartflow or subheartflow.should_stop:
# logger.info(f"[{stream_id}] SubHeartflow 不存在或已停止,兴趣消息监控任务退出。") # 减少日志
# 检查任务是否已被取消
if self._interest_monitoring_task is None or self._interest_monitoring_task.cancelled():
logger.info(f"[{self.stream_name}] 兴趣监控任务被取消或置空,退出")
break
interest_dict = subheartflow.get_interest_dict()
items_to_process = list(interest_dict.items())
# 获取待处理消息列表
items_to_process = list(self.interest_dict.items())
if not items_to_process:
continue
# 处理每条兴趣消息
for msg_id, (message, interest_value, is_mentioned) in items_to_process:
# --- 在处理前检查 SubHeartflow 的状态 --- #
current_chat_state = subheartflow.chat_state.chat_status
stream_name = chat_manager.get_stream_name(stream_id) or stream_id
if current_chat_state != ChatState.CHAT:
# 如果不是闲聊状态 (可能是 ABSENT 或 FOCUSED),则跳过推理聊天
# logger.debug(f"[{stream_name}] 跳过处理兴趣消息 {msg_id},因为当前状态为 {current_chat_state.value}")
# 移除消息并继续下一个
removed_item = interest_dict.pop(msg_id, None)
if removed_item:
# logger.debug(f"[{stream_name}] 已从兴趣字典中移除消息 {msg_id} (因状态跳过)") # 减少日志
pass
continue # 处理下一条消息
# --- 结束状态检查 --- #
# --- 检查 HeartFChatting 是否活跃 (改为检查 SubHeartflow 状态) --- #
is_focused = subheartflow.chat_state.chat_status == ChatState.FOCUSED
if is_focused: # New check: If the subflow is focused, NormalChat shouldn't process
removed_item = interest_dict.pop(msg_id, None)
if removed_item:
# logger.debug(f"[{stream_name}] SubHeartflow 处于 FOCUSED 状态,已跳过并移除 NormalChat 兴趣消息 {msg_id}") # Reduce noise
pass
continue
# --- 结束检查 --- #
# 只有当状态为 CHAT 且 HeartFChatting 不活跃 (即 Subflow 不是 FOCUSED) 时才执行以下处理逻辑
try:
await self.normal_normal_chat(
message=message,
chat=chat,
is_mentioned=is_mentioned,
interested_rate=interest_value,
# 处理消息
await self.normal_response(
message=message, is_mentioned=is_mentioned, interested_rate=interest_value
)
except Exception as e:
logger.error(f"[{stream_name}] 处理兴趣消息 {msg_id} 时出错: {e}\n{traceback.format_exc()}")
logger.error(f"[{self.stream_name}] 处理兴趣消息{msg_id}时出错: {e}\n{traceback.format_exc()}")
finally:
removed_item = interest_dict.pop(msg_id, None)
if removed_item:
# logger.debug(f"[{stream_name}] 已从兴趣字典中移除消息 {msg_id}") # 减少日志
pass
self.interest_dict.pop(msg_id, None)
# 改为实例方法, 移除 chat 参数
async def normal_response(self, message: MessageRecv, is_mentioned: bool, interested_rate: float) -> None:
# 检查收到的消息是否属于当前实例处理的 chat stream
if message.chat_stream.stream_id != self.stream_id:
logger.error(
f"[{self.stream_name}] normal_response 收到不匹配的消息 (来自 {message.chat_stream.stream_id}),预期 {self.stream_id}。已忽略。"
)
return
async def normal_normal_chat(
self, message: MessageRecv, chat: ChatStream, is_mentioned: bool, interested_rate: float
) -> None:
timing_results = {}
userinfo = message.message_info.user_info
messageinfo = message.message_info
stream_id = chat.stream_id
stream_name = chat_manager.get_stream_name(stream_id) or stream_id
# --- 在开始时检查 SubHeartflow 状态 --- #
sub_hf = heartflow.get_subheartflow(stream_id)
if not sub_hf:
logger.warning(f"[{stream_name}] 无法获取 SubHeartflow无法执行 normal_normal_chat。")
return
reply_probability = 1.0 if is_mentioned else 0.0 # 如果被提及基础概率为1否则需要意愿判断
current_chat_state = sub_hf.chat_state.chat_status
if current_chat_state != ChatState.CHAT:
logger.debug(
f"[{stream_name}] 跳过 normal_normal_chat因为 SubHeartflow 状态为 {current_chat_state.value} (需要 CHAT)。"
)
# 可以在这里添加 not_reply_handle 逻辑吗? 如果不回复,也需要清理意愿。
# 注意willing_manager.setup 尚未调用
willing_manager.setup(message, chat, is_mentioned, interested_rate) # 先 setup
await willing_manager.not_reply_handle(message.message_info.message_id)
willing_manager.delete(message.message_info.message_id)
return
# --- 结束状态检查 --- #
# --- 接下来的逻辑只在 ChatState.CHAT 状态下执行 --- #
is_mentioned, reply_probability = is_mentioned_bot_in_message(message)
# 意愿管理器设置当前message信息
willing_manager.setup(message, chat, is_mentioned, interested_rate)
willing_manager.setup(message, self.chat_stream, is_mentioned, interested_rate)
# 获取回复概率
is_willing = False
if reply_probability != 1:
# 仅在未被提及或基础概率不为1时查询意愿概率
if reply_probability < 1: # 简化逻辑,如果未提及 (reply_probability 为 0),则获取意愿概率
is_willing = True
reply_probability = await willing_manager.get_reply_probability(message.message_info.message_id)
if message.message_info.additional_config:
if "maimcore_reply_probability_gain" in message.message_info.additional_config.keys():
reply_probability += message.message_info.additional_config["maimcore_reply_probability_gain"]
reply_probability = min(max(reply_probability, 0), 1) # 确保概率在 0-1 之间
# 打印消息信息
mes_name = chat.group_info.group_name if chat.group_info else "私聊"
mes_name = self.chat_stream.group_info.group_name if self.chat_stream.group_info else "私聊"
current_time = time.strftime("%H:%M:%S", time.localtime(message.message_info.time))
willing_log = f"[回复意愿:{await willing_manager.get_willing(chat.stream_id):.2f}]" if is_willing else ""
# 使用 self.stream_id
willing_log = f"[回复意愿:{await willing_manager.get_willing(self.stream_id):.2f}]" if is_willing else ""
logger.info(
f"[{current_time}][{mes_name}]"
f"{chat.user_info.user_nickname}:"
f"{self.chat_stream.user_info.user_nickname}:" # 使用 self.chat_stream
f"{message.processed_plain_text}{willing_log}[概率:{reply_probability * 100:.1f}%]"
)
do_reply = False
response_set = None # 初始化 response_set
if random() < reply_probability:
do_reply = True
# 回复前处理
await willing_manager.before_generate_reply_handle(message.message_info.message_id)
# 创建思考消息
with Timer("创建思考消息", timing_results):
thinking_id = await self._create_thinking_message(message, chat, userinfo, messageinfo)
thinking_id = await self._create_thinking_message(message)
logger.debug(f"创建捕捉器thinking_id:{thinking_id}")
logger.debug(f"[{self.stream_name}] 创建捕捉器thinking_id:{thinking_id}")
info_catcher = info_catcher_manager.get_info_catcher(thinking_id)
info_catcher.catch_decide_to_response(message)
# 生成回复
sub_hf = heartflow.get_subheartflow(stream_id)
try:
with Timer("生成回复", timing_results):
response_set = await self.gpt.generate_response(
sub_hf=sub_hf,
message=message,
thinking_id=thinking_id,
)
info_catcher.catch_after_generate_response(timing_results["生成回复"])
except Exception as e:
logger.error(f"回复生成出现错误:{str(e)} {traceback.format_exc()}")
response_set = None
logger.error(f"[{self.stream_name}] 回复生成出现错误:{str(e)} {traceback.format_exc()}")
response_set = None # 确保出错时 response_set 为 None
if not response_set:
logger.info(f"[{chat.stream_id}] 模型未生成回复内容")
logger.info(f"[{self.stream_name}] 模型未生成回复内容")
# 如果模型未生成回复,移除思考消息
container = await message_manager.get_container(chat.stream_id)
# thinking_message = None
for msg in container.messages[:]: # Iterate over a copy
container = await message_manager.get_container(self.stream_id) # 使用 self.stream_id
for msg in container.messages[:]:
if isinstance(msg, MessageThinking) and msg.message_info.message_id == thinking_id:
# thinking_message = msg
container.messages.remove(msg)
# container.remove_message(msg) # 直接移除
logger.debug(f"[{chat.stream_id}] 已移除未产生回复的思考消息 {thinking_id}")
logger.debug(f"[{self.stream_name}] 已移除未产生回复的思考消息 {thinking_id}")
break
return # 不发送回复
# 需要在此处也调用 not_reply_handle 和 delete 吗?
# 如果是因为模型没回复,也算是一种 "未回复"
await willing_manager.not_reply_handle(message.message_info.message_id)
willing_manager.delete(message.message_info.message_id)
return # 不执行后续步骤
logger.info(f"[{chat.stream_id}] 回复内容: {response_set}")
logger.info(f"[{self.stream_name}] 回复内容: {response_set}")
# 发送回复
# 发送回复 (不再需要传入 chat)
with Timer("消息发送", timing_results):
first_bot_msg = await self._send_response_messages(message, chat, response_set, thinking_id)
first_bot_msg = await self._add_messages_to_manager(message, response_set, thinking_id)
info_catcher.catch_after_response(timing_results["消息发送"], response_set, first_bot_msg)
# 检查 first_bot_msg 是否为 None (例如思考消息已被移除的情况)
if first_bot_msg:
info_catcher.catch_after_response(timing_results["消息发送"], response_set, first_bot_msg)
else:
logger.warning(f"[{self.stream_name}] 思考消息 {thinking_id} 在发送前丢失,无法记录 info_catcher")
info_catcher.done_catch()
# 处理表情包
# 处理表情包 (不再需要传入 chat)
with Timer("处理表情包", timing_results):
await self._handle_emoji(message, chat, response_set[0])
await self._handle_emoji(message, response_set[0])
# 更新关系情绪
# 更新关系情绪 (不再需要传入 chat)
with Timer("关系更新", timing_results):
await self._update_relationship(message, response_set)
@@ -364,88 +308,104 @@ class NormalChat:
await willing_manager.after_generate_reply_handle(message.message_info.message_id)
# 输出性能计时结果
if do_reply:
if do_reply and response_set: # 确保 response_set 不是 None
timing_str = " | ".join([f"{step}: {duration:.2f}" for step, duration in timing_results.items()])
trigger_msg = message.processed_plain_text
response_msg = " ".join(response_set) if response_set else "无回复"
logger.info(f"触发消息: {trigger_msg[:20]}... | 推理消息: {response_msg[:20]}... | 性能计时: {timing_str}")
else:
response_msg = " ".join(response_set)
logger.info(
f"[{self.stream_name}] 触发消息: {trigger_msg[:20]}... | 推理消息: {response_msg[:20]}... | 性能计时: {timing_str}"
)
elif not do_reply:
# 不回复处理
await willing_manager.not_reply_handle(message.message_info.message_id)
# else: # do_reply is True but response_set is None (handled above)
# logger.info(f"[{self.stream_name}] 决定回复但模型未生成内容。触发: {message.processed_plain_text[:20]}...")
# 意愿管理器注销当前message信息
# 意愿管理器注销当前message信息 (无论是否回复,只要处理过就删除)
willing_manager.delete(message.message_info.message_id)
# 保持 staticmethod, 因为不依赖实例状态, 但需要 chat 对象来获取日志上下文
@staticmethod
def _check_ban_words(text: str, chat, userinfo) -> bool:
def _check_ban_words(text: str, chat: ChatStream, userinfo: UserInfo) -> bool:
"""检查消息中是否包含过滤词"""
stream_name = chat_manager.get_stream_name(chat.stream_id) or chat.stream_id
for word in global_config.ban_words:
if word in text:
logger.info(
f"[{chat.group_info.group_name if chat.group_info else '私聊'}]{userinfo.user_nickname}:{text}"
f"[{stream_name}][{chat.group_info.group_name if chat.group_info else '私聊'}]"
f"{userinfo.user_nickname}:{text}"
)
logger.info(f"[过滤词识别]消息中含有{word}filtered")
logger.info(f"[{stream_name}][过滤词识别] 消息中含有 '{word}'filtered")
return True
return False
# 保持 staticmethod, 因为不依赖实例状态, 但需要 chat 对象来获取日志上下文
@staticmethod
def _check_ban_regex(text: str, chat, userinfo) -> bool:
def _check_ban_regex(text: str, chat: ChatStream, userinfo: UserInfo) -> bool:
"""检查消息是否匹配过滤正则表达式"""
stream_name = chat_manager.get_stream_name(chat.stream_id) or chat.stream_id
for pattern in global_config.ban_msgs_regex:
if pattern.search(text):
logger.info(
f"[{chat.group_info.group_name if chat.group_info else '私聊'}]{userinfo.user_nickname}:{text}"
f"[{stream_name}][{chat.group_info.group_name if chat.group_info else '私聊'}]"
f"{userinfo.user_nickname}:{text}"
)
logger.info(f"[正则表达式过滤]消息匹配到{pattern}filtered")
logger.info(f"[{stream_name}][正则表达式过滤] 消息匹配到 '{pattern.pattern}'filtered")
return True
return False
async def start_monitoring_interest(self, chat: ChatStream):
"""为指定的 ChatStream 启动兴趣消息监控任务(如果尚未运行)。"""
stream_id = chat.stream_id
if stream_id not in self._interest_monitoring_tasks or self._interest_monitoring_tasks[stream_id].done():
logger.info(f"为聊天流 {stream_id} 启动兴趣消息监控任务...")
# 创建新任务
task = asyncio.create_task(self._find_interested_message(chat))
# 添加完成回调
task.add_done_callback(lambda t: self._handle_task_completion(stream_id, t))
self._interest_monitoring_tasks[stream_id] = task
# else:
# logger.debug(f"聊天流 {stream_id} 的兴趣消息监控任务已在运行。")
# 改为实例方法, 移除 chat 参数
async def start_monitoring_interest(self):
"""为此 NormalChat 实例关联的 ChatStream 启动兴趣消息监控任务(如果尚未运行)。"""
if self._interest_monitoring_task is None or self._interest_monitoring_task.done():
logger.info(f"[{self.stream_name}] 启动兴趣消息监控任务...")
task = asyncio.create_task(self._find_interested_message())
task.add_done_callback(lambda t: self._handle_task_completion(t)) # 回调现在是实例方法
self._interest_monitoring_task = task
def _handle_task_completion(self, stream_id: str, task: asyncio.Task):
# 改为实例方法, 移除 stream_id 参数
def _handle_task_completion(self, task: asyncio.Task):
"""兴趣监控任务完成时的回调函数。"""
# 检查完成的任务是否是当前实例的任务
if task is not self._interest_monitoring_task:
logger.warning(f"[{self.stream_name}] 收到一个未知或过时任务的完成回调。")
return
try:
# 检查任务是否因异常而结束
exception = task.exception()
if exception:
logger.error(f"聊天流 {stream_id} 兴趣监控任务因异常结束: {exception}")
logger.error(f"[{self.stream_name}] 兴趣监控任务因异常结束: {exception}")
logger.error(traceback.format_exc()) # 记录完整的 traceback
else:
logger.info(f"聊天流 {stream_id}兴趣监控任务正常结束。")
# else: # 减少日志
# logger.info(f"[{self.stream_name}] 兴趣监控任务正常结束。")
except asyncio.CancelledError:
logger.info(f"聊天流 {stream_id} 兴趣监控任务被取消。")
logger.info(f"[{self.stream_name}] 兴趣监控任务被取消。")
except Exception as e:
logger.error(f"处理聊天流 {stream_id} 任务完成回调时出错: {e}")
logger.error(f"[{self.stream_name}] 处理任务完成回调时出错: {e}")
finally:
# 从字典中移除已完成或取消的任务
if stream_id in self._interest_monitoring_tasks:
del self._interest_monitoring_tasks[stream_id]
logger.debug(f"已从监控任务字典中移除 {stream_id}")
# 标记任务已完成/移除
if self._interest_monitoring_task is task: # 再次确认是当前任务
self._interest_monitoring_task = None
logger.debug(f"[{self.stream_name}] 兴趣监控任务已被标记为完成/移除。")
async def stop_monitoring_interest(self, stream_id: str):
"""停止指定聊天流的兴趣监控任务。"""
if stream_id in self._interest_monitoring_tasks:
task = self._interest_monitoring_tasks[stream_id]
if task and not task.done():
task.cancel() # 尝试取消任务
logger.info(f"尝试取消聊天流 {stream_id} 的兴趣监控任务。")
try:
await task # 等待任务响应取消
except asyncio.CancelledError:
logger.info(f"聊天流 {stream_id} 兴趣监控任务已成功取消。")
except Exception as e:
logger.error(f"等待聊天流 {stream_id} 监控任务取消时出现异常: {e}")
# 在回调函数 _handle_task_completion 中移除任务
# 改为实例方法, 移除 stream_id 参数
async def stop_monitoring_interest(self):
"""停止当前实例的兴趣监控任务。"""
if self._interest_monitoring_task and not self._interest_monitoring_task.done():
task = self._interest_monitoring_task
logger.info(f"[{self.stream_name}] 尝试取消兴趣监控任务。")
task.cancel()
try:
await task # 等待任务响应取消
except asyncio.CancelledError:
logger.info(f"[{self.stream_name}] 兴趣监控任务已成功取消。")
except Exception as e:
# 回调函数 _handle_task_completion 会处理异常日志
logger.warning(f"[{self.stream_name}] 等待监控任务取消时捕获到异常 (可能已在回调中记录): {e}")
finally:
# 确保任务状态更新,即使等待出错 (回调函数也会尝试更新)
if self._interest_monitoring_task is task:
self._interest_monitoring_task = None
# else:
# logger.debug(f"聊天流 {stream_id} 没有正在运行的兴趣监控任务可停止。")
# logger.debug(f"[{self.stream_name}] 没有正在运行的兴趣监控任务可停止。")

View File

@@ -8,7 +8,6 @@ from ..chat.utils import process_llm_response
from ..utils.timer_calculater import Timer
from src.common.logger import get_module_logger, LogConfig, LLM_STYLE_CONFIG
from src.plugins.respon_info_catcher.info_catcher import info_catcher_manager
from src.heart_flow.sub_heartflow import SubHeartflow
# 定义日志配置
llm_config = LogConfig(
@@ -41,9 +40,7 @@ class ResponseGenerator:
self.current_model_type = "r1" # 默认使用 R1
self.current_model_name = "unknown model"
async def generate_response(
self, sub_hf: SubHeartflow, message: MessageThinking, thinking_id: str
) -> Optional[Union[str, List[str]]]:
async def generate_response(self, message: MessageThinking, thinking_id: str) -> Optional[Union[str, List[str]]]:
"""根据当前模型类型选择对应的生成函数"""
# 从global_config中获取模型概率值并选择模型
if random.random() < global_config.model_reasoning_probability:
@@ -57,9 +54,7 @@ class ResponseGenerator:
f"{self.current_model_type}思考:{message.processed_plain_text[:30] + '...' if len(message.processed_plain_text) > 30 else message.processed_plain_text}"
) # noqa: E501
model_response = await self._generate_response_with_model(sub_hf, message, current_model, thinking_id)
# print(f"raw_content: {model_response}")
model_response = await self._generate_response_with_model(message, current_model, thinking_id)
if model_response:
logger.info(f"{global_config.BOT_NICKNAME}的回复是:{model_response}")
@@ -70,9 +65,7 @@ class ResponseGenerator:
logger.info(f"{self.current_model_type}思考,失败")
return None
async def _generate_response_with_model(
self, sub_hf: SubHeartflow, message: MessageThinking, model: LLMRequest, thinking_id: str
):
async def _generate_response_with_model(self, message: MessageThinking, model: LLMRequest, thinking_id: str):
info_catcher = info_catcher_manager.get_info_catcher(thinking_id)
if message.chat_stream.user_info.user_cardname and message.chat_stream.user_info.user_nickname:

View File

@@ -73,29 +73,32 @@ class ScheduleGenerator:
async def mai_schedule_start(self):
"""启动日程系统每5分钟执行一次move_doing并在日期变化时重新检查日程"""
try:
logger.info(f"日程系统启动/刷新时间: {self.start_time.strftime('%Y-%m-%d %H:%M:%S')}")
# 初始化日程
await self.check_and_create_today_schedule()
# self.print_schedule()
if global_config.ENABLE_SCHEDULE_GEN:
logger.info(f"日程系统启动/刷新时间: {self.start_time.strftime('%Y-%m-%d %H:%M:%S')}")
# 初始化日程
await self.check_and_create_today_schedule()
# self.print_schedule()
while True:
# print(self.get_current_num_task(1, True))
while True:
# print(self.get_current_num_task(1, True))
current_time = datetime.datetime.now(TIME_ZONE)
current_time = datetime.datetime.now(TIME_ZONE)
# 检查是否需要重新生成日程(日期变化)
if current_time.date() != self.start_time.date():
logger.info("检测到日期变化,重新生成日程")
self.start_time = current_time
await self.check_and_create_today_schedule()
# self.print_schedule()
# 检查是否需要重新生成日程(日期变化)
if current_time.date() != self.start_time.date():
logger.info("检测到日期变化,重新生成日程")
self.start_time = current_time
await self.check_and_create_today_schedule()
# self.print_schedule()
# 执行当前活动
# mind_thinking = heartflow.current_state.current_mind
# 执行当前活动
# mind_thinking = heartflow.current_state.current_mind
await self.move_doing()
await self.move_doing()
await asyncio.sleep(self.schedule_doing_update_interval)
await asyncio.sleep(self.schedule_doing_update_interval)
else:
logger.info("日程系统未启用")
except Exception as e:
logger.error(f"日程系统运行时出错: {str(e)}")