diff --git a/changelogs/changelog.md b/changelogs/changelog.md index 8be62ac08..41c760e85 100644 --- a/changelogs/changelog.md +++ b/changelogs/changelog.md @@ -5,6 +5,11 @@ 优化和修复: - 修复在auto模式下,私聊会转为normal的bug +- 修复一般过滤次序问题 +- 优化normal_chat代码,采用和focus一致的关系构建 +- 优化计时信息和Log +- 添加回复超时检查 +- normal的插件允许llm激活 ## [0.8.1] - 2025-7-5 diff --git a/src/chat/express/exprssion_learner.py b/src/chat/express/exprssion_learner.py index 9fcb69687..9b170d9a3 100644 --- a/src/chat/express/exprssion_learner.py +++ b/src/chat/express/exprssion_learner.py @@ -29,7 +29,7 @@ def init_prompt() -> None: 4. 思考有没有特殊的梗,一并总结成语言风格 5. 例子仅供参考,请严格根据群聊内容总结!!! 注意:总结成如下格式的规律,总结的内容要详细,但具有概括性: -当"xxxxxx"时,可以"xxxxxx", xxxxxx不超过20个字,为特定句式或表达 +例如:当"AAAAA"时,可以"BBBBB", AAAAA代表某个具体的场景,不超过20个字。BBBBB代表对应的语言风格,特定句式或表达方式,不超过20个字。 例如: 当"对某件事表示十分惊叹,有些意外"时,使用"我嘞个xxxx" @@ -69,7 +69,7 @@ class ExpressionLearner: # TODO: API-Adapter修改标记 self.express_learn_model: LLMRequest = LLMRequest( model=global_config.model.replyer_1, - temperature=0.2, + temperature=0.3, request_type="expressor.learner", ) self.llm_model = None diff --git a/src/chat/focus_chat/heartFC_chat.py b/src/chat/focus_chat/heartFC_chat.py index bd4d86aa8..1009edde5 100644 --- a/src/chat/focus_chat/heartFC_chat.py +++ b/src/chat/focus_chat/heartFC_chat.py @@ -21,7 +21,7 @@ from src.chat.heart_flow.observation.actions_observation import ActionObservatio from src.chat.focus_chat.memory_activator import MemoryActivator from src.chat.focus_chat.info_processors.base_processor import BaseProcessor -from src.chat.focus_chat.planners.planner_factory import PlannerFactory +from src.chat.focus_chat.planners.planner_simple import ActionPlanner from src.chat.focus_chat.planners.modify_actions import ActionModifier from src.chat.focus_chat.planners.action_manager import ActionManager from src.config.config import global_config @@ -119,7 +119,7 @@ class HeartFChatting: self._register_default_processors() self.action_manager = ActionManager() - self.action_planner = PlannerFactory.create_planner( + self.action_planner = ActionPlanner( log_prefix=self.log_prefix, action_manager=self.action_manager ) self.action_modifier = ActionModifier(action_manager=self.action_manager) @@ -141,6 +141,9 @@ class HeartFChatting: # 存储回调函数 self.on_stop_focus_chat = on_stop_focus_chat + self.reply_timeout_count = 0 + self.plan_timeout_count = 0 + # 初始化性能记录器 # 如果没有指定版本号,则使用全局版本管理器的版本号 actual_version = performance_version or get_hfc_version() @@ -382,24 +385,12 @@ class HeartFChatting: formatted_time = f"{elapsed * 1000:.2f}毫秒" if elapsed < 1 else f"{elapsed:.2f}秒" timer_strings.append(f"{name}: {formatted_time}") - # 新增:输出每个处理器的耗时 - processor_time_costs = self._current_cycle_detail.loop_processor_info.get( - "processor_time_costs", {} - ) - processor_time_strings = [] - for pname, ptime in processor_time_costs.items(): - formatted_ptime = f"{ptime * 1000:.2f}毫秒" if ptime < 1 else f"{ptime:.2f}秒" - processor_time_strings.append(f"{pname}: {formatted_ptime}") - processor_time_log = ( - ("\n前处理器耗时: " + "; ".join(processor_time_strings)) if processor_time_strings else "" - ) logger.info( f"{self.log_prefix} 第{self._current_cycle_detail.cycle_id}次思考," f"耗时: {self._current_cycle_detail.end_time - self._current_cycle_detail.start_time:.1f}秒, " - f"动作: {self._current_cycle_detail.loop_plan_info.get('action_result', {}).get('action_type', '未知动作')}" + f"选择动作: {self._current_cycle_detail.loop_plan_info.get('action_result', {}).get('action_type', '未知动作')}" + (f"\n详情: {'; '.join(timer_strings)}" if timer_strings else "") - + processor_time_log ) # 记录性能数据 @@ -410,7 +401,6 @@ class HeartFChatting: "action_type": action_result.get("action_type", "unknown"), "total_time": self._current_cycle_detail.end_time - self._current_cycle_detail.start_time, "step_times": cycle_timers.copy(), - "processor_time_costs": processor_time_costs, # 处理器时间 "reasoning": action_result.get("reasoning", ""), "success": self._current_cycle_detail.loop_action_info.get("action_taken", False), } @@ -491,13 +481,12 @@ class HeartFChatting: processor_tasks = [] task_to_name_map = {} - processor_time_costs = {} # 新增: 记录每个处理器耗时 for processor in self.processors: processor_name = processor.__class__.log_prefix async def run_with_timeout(proc=processor): - return await asyncio.wait_for(proc.process_info(observations=observations), 30) + return await proc.process_info(observations=observations) task = asyncio.create_task(run_with_timeout()) @@ -518,39 +507,20 @@ class HeartFChatting: try: result_list = await task - logger.info(f"{self.log_prefix} 处理器 {processor_name} 已完成!") + logger.debug(f"{self.log_prefix} 处理器 {processor_name} 已完成!") if result_list is not None: all_plan_info.extend(result_list) else: logger.warning(f"{self.log_prefix} 处理器 {processor_name} 返回了 None") - # 记录耗时 - processor_time_costs[processor_name] = duration_since_parallel_start - except asyncio.TimeoutError: - logger.info(f"{self.log_prefix} 处理器 {processor_name} 超时(>30s),已跳过") - processor_time_costs[processor_name] = 30 except Exception as e: logger.error( f"{self.log_prefix} 处理器 {processor_name} 执行失败,耗时 (自并行开始): {duration_since_parallel_start:.2f}秒. 错误: {e}", exc_info=True, ) traceback.print_exc() - processor_time_costs[processor_name] = duration_since_parallel_start - if pending_tasks: - current_progress_time = time.time() - elapsed_for_log = current_progress_time - parallel_start_time - pending_names_for_log = [task_to_name_map[t] for t in pending_tasks] - logger.info( - f"{self.log_prefix} 信息处理已进行 {elapsed_for_log:.2f}秒,待完成任务: {', '.join(pending_names_for_log)}" - ) - # 所有任务完成后的最终日志 - parallel_end_time = time.time() - total_duration = parallel_end_time - parallel_start_time - logger.info(f"{self.log_prefix} 所有处理器任务全部完成,总耗时: {total_duration:.2f}秒") - # logger.debug(f"{self.log_prefix} 所有信息处理器处理后的信息: {all_plan_info}") - - return all_plan_info, processor_time_costs + return all_plan_info async def _observe_process_plan_action_loop(self, cycle_timers: dict, thinking_id: str) -> dict: try: @@ -582,19 +552,16 @@ class HeartFChatting: logger.error(f"{self.log_prefix} 动作修改失败: {e}") # 继续执行,不中断流程 - # 第二步:信息处理器 - with Timer("信息处理器", cycle_timers): - try: - all_plan_info, processor_time_costs = await self._process_processors(self.observations) - except Exception as e: - logger.error(f"{self.log_prefix} 信息处理器失败: {e}") - # 设置默认值以继续执行 - all_plan_info = [] - processor_time_costs = {} + + try: + all_plan_info = await self._process_processors(self.observations) + except Exception as e: + logger.error(f"{self.log_prefix} 信息处理器失败: {e}") + # 设置默认值以继续执行 + all_plan_info = [] loop_processor_info = { "all_plan_info": all_plan_info, - "processor_time_costs": processor_time_costs, } logger.debug(f"{self.log_prefix} 并行阶段完成,准备进入规划器,plan_info数量: {len(all_plan_info)}") @@ -737,8 +704,15 @@ class HeartFChatting: logger.info( f"{self.log_prefix} [非auto模式] 已发送 {self._message_count} 条消息,达到疲惫阈值 {current_threshold},但非auto模式不会自动退出" ) - - logger.debug(f"{self.log_prefix} 麦麦执行了'{action}', 返回结果'{success}', '{reply_text}', '{command}'") + else: + if reply_text == "timeout": + self.reply_timeout_count += 1 + if self.reply_timeout_count > 5: + logger.warning( + f"[{self.log_prefix} ] 连续回复超时次数过多,{global_config.chat.thinking_timeout}秒 内大模型没有返回有效内容,请检查你的api是否速度过慢或配置错误。建议不要使用推理模型,推理模型生成速度过慢。或者尝试拉高thinking_timeout参数,这可能导致回复时间过长。" + ) + logger.warning(f"{self.log_prefix} 回复生成超时{global_config.chat.thinking_timeout}s,已跳过") + return False, "", "" return success, reply_text, command diff --git a/src/chat/focus_chat/memory_activator.py b/src/chat/focus_chat/memory_activator.py index bfe6a58e5..eb783d483 100644 --- a/src/chat/focus_chat/memory_activator.py +++ b/src/chat/focus_chat/memory_activator.py @@ -117,14 +117,14 @@ class MemoryActivator: # 添加新的关键词到缓存 self.cached_keywords.update(keywords) - logger.info(f"当前激活的记忆关键词: {self.cached_keywords}") + # 调用记忆系统获取相关记忆 related_memory = await hippocampus_manager.get_memory_from_topic( valid_keywords=keywords, max_memory_num=3, max_memory_length=2, max_depth=3 ) - logger.info(f"获取到的记忆: {related_memory}") + logger.info(f"当前记忆关键词: {self.cached_keywords} 。获取到的记忆: {related_memory}") # 激活时,所有已有记忆的duration+1,达到3则移除 for m in self.running_memory[:]: diff --git a/src/chat/focus_chat/planners/planner_factory.py b/src/chat/focus_chat/planners/planner_factory.py deleted file mode 100644 index 8552dcd20..000000000 --- a/src/chat/focus_chat/planners/planner_factory.py +++ /dev/null @@ -1,45 +0,0 @@ -from typing import Dict, Type -from src.chat.focus_chat.planners.base_planner import BasePlanner -from src.chat.focus_chat.planners.planner_simple import ActionPlanner as SimpleActionPlanner -from src.chat.focus_chat.planners.action_manager import ActionManager -from src.common.logger import get_logger - -logger = get_logger("planner_factory") - - -class PlannerFactory: - """规划器工厂类,用于创建不同类型的规划器实例""" - - # 注册所有可用的规划器类型 - _planner_types: Dict[str, Type[BasePlanner]] = { - "simple": SimpleActionPlanner, - } - - @classmethod - def register_planner(cls, name: str, planner_class: Type[BasePlanner]) -> None: - """ - 注册新的规划器类型 - - Args: - name: 规划器类型名称 - planner_class: 规划器类 - """ - cls._planner_types[name] = planner_class - logger.info(f"注册新的规划器类型: {name}") - - @classmethod - def create_planner(cls, log_prefix: str, action_manager: ActionManager) -> BasePlanner: - """ - 创建规划器实例 - - Args: - log_prefix: 日志前缀 - action_manager: 动作管理器实例 - - Returns: - BasePlanner: 规划器实例 - """ - - planner_class = cls._planner_types["simple"] - logger.info(f"{log_prefix} 使用simple规划器") - return planner_class(log_prefix=log_prefix, action_manager=action_manager) diff --git a/src/chat/focus_chat/planners/planner_simple.py b/src/chat/focus_chat/planners/planner_simple.py index 3d044d6e7..8b06c7bed 100644 --- a/src/chat/focus_chat/planners/planner_simple.py +++ b/src/chat/focus_chat/planners/planner_simple.py @@ -58,6 +58,8 @@ def init_prompt(): Prompt( """ +动作:{action_name} +动作描述:{action_description} {action_require} {{ "action": "{action_name}",{action_parameters} @@ -66,16 +68,6 @@ def init_prompt(): "action_prompt", ) - Prompt( - """ -{action_require} -{{ - "action": "{action_name}",{action_parameters} -}} -""", - "action_prompt_private", - ) - class ActionPlanner(BasePlanner): def __init__(self, log_prefix: str, action_manager: ActionManager): @@ -191,7 +183,8 @@ class ActionPlanner(BasePlanner): logger.info(f"{self.log_prefix}规划器原始提示词: {prompt}") logger.info(f"{self.log_prefix}规划器原始响应: {llm_content}") - logger.info(f"{self.log_prefix}规划器推理: {reasoning_content}") + if reasoning_content: + logger.info(f"{self.log_prefix}规划器推理: {reasoning_content}") except Exception as req_e: logger.error(f"{self.log_prefix}LLM 请求执行失败: {req_e}") diff --git a/src/chat/memory_system/Hippocampus.py b/src/chat/memory_system/Hippocampus.py index bd8a171f4..4b311b8cb 100644 --- a/src/chat/memory_system/Hippocampus.py +++ b/src/chat/memory_system/Hippocampus.py @@ -784,12 +784,12 @@ class Hippocampus: # 计算激活节点数与总节点数的比值 total_activation = sum(activate_map.values()) - logger.debug(f"总激活值: {total_activation:.2f}") + # logger.debug(f"总激活值: {total_activation:.2f}") total_nodes = len(self.memory_graph.G.nodes()) # activated_nodes = len(activate_map) activation_ratio = total_activation / total_nodes if total_nodes > 0 else 0 activation_ratio = activation_ratio * 60 - logger.info(f"总激活值: {total_activation:.2f}, 总节点数: {total_nodes}, 激活: {activation_ratio}") + logger.debug(f"总激活值: {total_activation:.2f}, 总节点数: {total_nodes}, 激活: {activation_ratio}") return activation_ratio diff --git a/src/chat/normal_chat/normal_chat.py b/src/chat/normal_chat/normal_chat.py index 38bc1076e..d81f7f48b 100644 --- a/src/chat/normal_chat/normal_chat.py +++ b/src/chat/normal_chat/normal_chat.py @@ -1,11 +1,12 @@ import asyncio import time from random import random -from typing import List, Dict, Optional -import os -import pickle -from maim_message import UserInfo, Seg +from typing import List, Optional +from src.config.config import global_config from src.common.logger import get_logger +from src.person_info.person_info import get_person_info_manager +from src.plugin_system.apis import generator_api +from maim_message import UserInfo, Seg from src.chat.message_receive.chat_stream import ChatStream, get_chat_manager from src.chat.utils.timer_calculator import Timer @@ -14,20 +15,10 @@ from ..message_receive.message import MessageSending, MessageRecv, MessageThinki from src.chat.message_receive.message_sender import message_manager from src.chat.normal_chat.willing.willing_manager import get_willing_manager from src.chat.normal_chat.normal_chat_utils import get_recent_message_stats -from src.config.config import global_config from src.chat.focus_chat.planners.action_manager import ActionManager -from src.person_info.person_info import PersonInfoManager -from src.person_info.relationship_manager import get_relationship_manager -from src.chat.utils.chat_message_builder import ( - get_raw_msg_by_timestamp_with_chat, - get_raw_msg_by_timestamp_with_chat_inclusive, - get_raw_msg_before_timestamp_with_chat, - num_new_messages_since, -) +from src.person_info.relationship_builder_manager import relationship_builder_manager from .priority_manager import PriorityManager import traceback - -from .normal_chat_generator import NormalChatGenerator from src.chat.normal_chat.normal_chat_planner import NormalChatPlanner from src.chat.normal_chat.normal_chat_action_modifier import NormalChatActionModifier @@ -38,15 +29,6 @@ willing_manager = get_willing_manager() logger = get_logger("normal_chat") -# 消息段清理配置 -SEGMENT_CLEANUP_CONFIG = { - "enable_cleanup": True, # 是否启用清理 - "max_segment_age_days": 7, # 消息段最大保存天数 - "max_segments_per_user": 10, # 每用户最大消息段数 - "cleanup_interval_hours": 1, # 清理间隔(小时) -} - - class NormalChat: """ 普通聊天处理类,负责处理非核心对话的聊天逻辑。 @@ -71,6 +53,8 @@ class NormalChat: self.stream_name = get_chat_manager().get_stream_name(self.stream_id) or self.stream_id + self.relationship_builder = relationship_builder_manager.get_or_create_builder(self.stream_id) + # Interest dict self.interest_dict = interest_dict @@ -78,9 +62,7 @@ class NormalChat: self.willing_amplifier = 1 self.start_time = time.time() - - # Other sync initializations - self.gpt = NormalChatGenerator() + self.mood_manager = mood_manager self.start_time = time.time() @@ -96,18 +78,6 @@ class NormalChat: self.recent_replies = [] self.max_replies_history = 20 # 最多保存最近20条回复记录 - # 新的消息段缓存结构: - # {person_id: [{"start_time": float, "end_time": float, "last_msg_time": float, "message_count": int}, ...]} - self.person_engaged_cache: Dict[str, List[Dict[str, any]]] = {} - - # 持久化存储文件路径 - self.cache_file_path = os.path.join("data", "relationship", f"relationship_cache_{self.stream_id}.pkl") - - # 最后处理的消息时间,避免重复处理相同消息 - self.last_processed_message_time = 0.0 - - # 最后清理时间,用于定期清理老消息段 - self.last_cleanup_time = 0.0 # 添加回调函数,用于在满足条件时通知切换到focus_chat模式 self.on_switch_to_focus_callback = on_switch_to_focus_callback @@ -119,11 +89,6 @@ class NormalChat: self.timeout_count = 0 - # 加载持久化的缓存 - self._load_cache() - - logger.debug(f"[{self.stream_name}] NormalChat 初始化完成 (异步部分)。") - self.action_type: Optional[str] = None # 当前动作类型 self.is_parallel_action: bool = False # 是否是可并行动作 @@ -151,320 +116,25 @@ class NormalChat: self._priority_chat_task.cancel() logger.info(f"[{self.stream_name}] NormalChat 已停用。") - # ================================ - # 缓存管理模块 - # 负责持久化存储、状态管理、缓存读写 - # ================================ - - def _load_cache(self): - """从文件加载持久化的缓存""" - if os.path.exists(self.cache_file_path): - try: - with open(self.cache_file_path, "rb") as f: - cache_data = pickle.load(f) - # 新格式:包含额外信息的缓存 - self.person_engaged_cache = cache_data.get("person_engaged_cache", {}) - self.last_processed_message_time = cache_data.get("last_processed_message_time", 0.0) - self.last_cleanup_time = cache_data.get("last_cleanup_time", 0.0) - - logger.info( - f"[{self.stream_name}] 成功加载关系缓存,包含 {len(self.person_engaged_cache)} 个用户,最后处理时间:{time.strftime('%Y-%m-%d %H:%M:%S', time.localtime(self.last_processed_message_time)) if self.last_processed_message_time > 0 else '未设置'}" - ) - except Exception as e: - logger.error(f"[{self.stream_name}] 加载关系缓存失败: {e}") - self.person_engaged_cache = {} - self.last_processed_message_time = 0.0 - else: - logger.info(f"[{self.stream_name}] 关系缓存文件不存在,使用空缓存") - - def _save_cache(self): - """保存缓存到文件""" - try: - os.makedirs(os.path.dirname(self.cache_file_path), exist_ok=True) - cache_data = { - "person_engaged_cache": self.person_engaged_cache, - "last_processed_message_time": self.last_processed_message_time, - "last_cleanup_time": self.last_cleanup_time, - } - with open(self.cache_file_path, "wb") as f: - pickle.dump(cache_data, f) - logger.debug(f"[{self.stream_name}] 成功保存关系缓存") - except Exception as e: - logger.error(f"[{self.stream_name}] 保存关系缓存失败: {e}") - - # ================================ - # 消息段管理模块 - # 负责跟踪用户消息活动、管理消息段、清理过期数据 - # ================================ - - def _update_message_segments(self, person_id: str, message_time: float): - """更新用户的消息段 - - Args: - person_id: 用户ID - message_time: 消息时间戳 - """ - if person_id not in self.person_engaged_cache: - self.person_engaged_cache[person_id] = [] - - segments = self.person_engaged_cache[person_id] - current_time = time.time() - - # 获取该消息前5条消息的时间作为潜在的开始时间 - before_messages = get_raw_msg_before_timestamp_with_chat(self.stream_id, message_time, limit=5) - if before_messages: - # 由于get_raw_msg_before_timestamp_with_chat返回按时间升序排序的消息,最后一个是最接近message_time的 - # 我们需要第一个消息作为开始时间,但应该确保至少包含5条消息或该用户之前的消息 - potential_start_time = before_messages[0]["time"] - else: - # 如果没有前面的消息,就从当前消息开始 - potential_start_time = message_time - - # 如果没有现有消息段,创建新的 - if not segments: - new_segment = { - "start_time": potential_start_time, - "end_time": message_time, - "last_msg_time": message_time, - "message_count": self._count_messages_in_timerange(potential_start_time, message_time), - } - segments.append(new_segment) - logger.debug( - f"[{self.stream_name}] 为用户 {person_id} 创建新消息段: 时间范围 {time.strftime('%H:%M:%S', time.localtime(potential_start_time))} - {time.strftime('%H:%M:%S', time.localtime(message_time))}, 消息数: {new_segment['message_count']}" - ) - self._save_cache() - return - - # 获取最后一个消息段 - last_segment = segments[-1] - - # 计算从最后一条消息到当前消息之间的消息数量(不包含边界) - messages_between = self._count_messages_between(last_segment["last_msg_time"], message_time) - - if messages_between <= 10: - # 在10条消息内,延伸当前消息段 - last_segment["end_time"] = message_time - last_segment["last_msg_time"] = message_time - # 重新计算整个消息段的消息数量 - last_segment["message_count"] = self._count_messages_in_timerange( - last_segment["start_time"], last_segment["end_time"] - ) - logger.debug(f"[{self.stream_name}] 延伸用户 {person_id} 的消息段: {last_segment}") - else: - # 超过10条消息,结束当前消息段并创建新的 - # 结束当前消息段:延伸到原消息段最后一条消息后5条消息的时间 - after_messages = get_raw_msg_by_timestamp_with_chat( - self.stream_id, last_segment["last_msg_time"], current_time, limit=5, limit_mode="earliest" - ) - if after_messages and len(after_messages) >= 5: - # 如果有足够的后续消息,使用第5条消息的时间作为结束时间 - last_segment["end_time"] = after_messages[4]["time"] - else: - # 如果没有足够的后续消息,保持原有的结束时间 - pass - - # 重新计算当前消息段的消息数量 - last_segment["message_count"] = self._count_messages_in_timerange( - last_segment["start_time"], last_segment["end_time"] - ) - - # 创建新的消息段 - new_segment = { - "start_time": potential_start_time, - "end_time": message_time, - "last_msg_time": message_time, - "message_count": self._count_messages_in_timerange(potential_start_time, message_time), - } - segments.append(new_segment) - logger.debug(f"[{self.stream_name}] 为用户 {person_id} 创建新消息段(超过10条消息间隔): {new_segment}") - - self._save_cache() - - def _count_messages_in_timerange(self, start_time: float, end_time: float) -> int: - """计算指定时间范围内的消息数量(包含边界)""" - messages = get_raw_msg_by_timestamp_with_chat_inclusive(self.stream_id, start_time, end_time) - return len(messages) - - def _count_messages_between(self, start_time: float, end_time: float) -> int: - """计算两个时间点之间的消息数量(不包含边界),用于间隔检查""" - return num_new_messages_since(self.stream_id, start_time, end_time) - - def _get_total_message_count(self, person_id: str) -> int: - """获取用户所有消息段的总消息数量""" - if person_id not in self.person_engaged_cache: - return 0 - - total_count = 0 - for segment in self.person_engaged_cache[person_id]: - total_count += segment["message_count"] - - return total_count - - def _cleanup_old_segments(self) -> bool: - """清理老旧的消息段 - - Returns: - bool: 是否执行了清理操作 - """ - if not SEGMENT_CLEANUP_CONFIG["enable_cleanup"]: - return False - - current_time = time.time() - - # 检查是否需要执行清理(基于时间间隔) - cleanup_interval_seconds = SEGMENT_CLEANUP_CONFIG["cleanup_interval_hours"] * 3600 - if current_time - self.last_cleanup_time < cleanup_interval_seconds: - return False - - logger.info(f"[{self.stream_name}] 开始执行老消息段清理...") - - cleanup_stats = { - "users_cleaned": 0, - "segments_removed": 0, - "total_segments_before": 0, - "total_segments_after": 0, - } - - max_age_seconds = SEGMENT_CLEANUP_CONFIG["max_segment_age_days"] * 24 * 3600 - max_segments_per_user = SEGMENT_CLEANUP_CONFIG["max_segments_per_user"] - - users_to_remove = [] - - for person_id, segments in self.person_engaged_cache.items(): - cleanup_stats["total_segments_before"] += len(segments) - original_segment_count = len(segments) - - # 1. 按时间清理:移除过期的消息段 - segments_after_age_cleanup = [] - for segment in segments: - segment_age = current_time - segment["end_time"] - if segment_age <= max_age_seconds: - segments_after_age_cleanup.append(segment) - else: - cleanup_stats["segments_removed"] += 1 - logger.debug( - f"[{self.stream_name}] 移除用户 {person_id} 的过期消息段: {time.strftime('%Y-%m-%d %H:%M:%S', time.localtime(segment['start_time']))} - {time.strftime('%Y-%m-%d %H:%M:%S', time.localtime(segment['end_time']))}" - ) - - # 2. 按数量清理:如果消息段数量仍然过多,保留最新的 - if len(segments_after_age_cleanup) > max_segments_per_user: - # 按end_time排序,保留最新的 - segments_after_age_cleanup.sort(key=lambda x: x["end_time"], reverse=True) - segments_removed_count = len(segments_after_age_cleanup) - max_segments_per_user - cleanup_stats["segments_removed"] += segments_removed_count - segments_after_age_cleanup = segments_after_age_cleanup[:max_segments_per_user] - logger.debug( - f"[{self.stream_name}] 用户 {person_id} 消息段数量过多,移除 {segments_removed_count} 个最老的消息段" - ) - - # 使用清理后的消息段 - - # 更新缓存 - if len(segments_after_age_cleanup) == 0: - # 如果没有剩余消息段,标记用户为待移除 - users_to_remove.append(person_id) - else: - self.person_engaged_cache[person_id] = segments_after_age_cleanup - cleanup_stats["total_segments_after"] += len(segments_after_age_cleanup) - - if original_segment_count != len(segments_after_age_cleanup): - cleanup_stats["users_cleaned"] += 1 - - # 移除没有消息段的用户 - for person_id in users_to_remove: - del self.person_engaged_cache[person_id] - logger.debug(f"[{self.stream_name}] 移除用户 {person_id}:没有剩余消息段") - - # 更新最后清理时间 - self.last_cleanup_time = current_time - - # 保存缓存 - if cleanup_stats["segments_removed"] > 0 or len(users_to_remove) > 0: - self._save_cache() - logger.info( - f"[{self.stream_name}] 清理完成 - 影响用户: {cleanup_stats['users_cleaned']}, 移除消息段: {cleanup_stats['segments_removed']}, 移除用户: {len(users_to_remove)}" - ) - logger.info( - f"[{self.stream_name}] 消息段统计 - 清理前: {cleanup_stats['total_segments_before']}, 清理后: {cleanup_stats['total_segments_after']}" - ) - else: - logger.debug(f"[{self.stream_name}] 清理完成 - 无需清理任何内容") - - return cleanup_stats["segments_removed"] > 0 or len(users_to_remove) > 0 - - def get_cache_status(self) -> str: - """获取缓存状态信息,用于调试和监控""" - if not self.person_engaged_cache: - return f"[{self.stream_name}] 关系缓存为空" - - status_lines = [f"[{self.stream_name}] 关系缓存状态:"] - status_lines.append( - f"最后处理消息时间:{time.strftime('%Y-%m-%d %H:%M:%S', time.localtime(self.last_processed_message_time)) if self.last_processed_message_time > 0 else '未设置'}" - ) - status_lines.append( - f"最后清理时间:{time.strftime('%Y-%m-%d %H:%M:%S', time.localtime(self.last_cleanup_time)) if self.last_cleanup_time > 0 else '未执行'}" - ) - status_lines.append(f"总用户数:{len(self.person_engaged_cache)}") - status_lines.append( - f"清理配置:{'启用' if SEGMENT_CLEANUP_CONFIG['enable_cleanup'] else '禁用'} (最大保存{SEGMENT_CLEANUP_CONFIG['max_segment_age_days']}天, 每用户最多{SEGMENT_CLEANUP_CONFIG['max_segments_per_user']}段)" - ) - status_lines.append("") - - for person_id, segments in self.person_engaged_cache.items(): - total_count = self._get_total_message_count(person_id) - status_lines.append(f"用户 {person_id}:") - status_lines.append(f" 总消息数:{total_count} ({total_count}/45)") - status_lines.append(f" 消息段数:{len(segments)}") - - for i, segment in enumerate(segments): - start_str = time.strftime("%Y-%m-%d %H:%M:%S", time.localtime(segment["start_time"])) - end_str = time.strftime("%Y-%m-%d %H:%M:%S", time.localtime(segment["end_time"])) - last_str = time.strftime("%Y-%m-%d %H:%M:%S", time.localtime(segment["last_msg_time"])) - status_lines.append( - f" 段{i + 1}: {start_str} -> {end_str} (最后消息: {last_str}, 消息数: {segment['message_count']})" - ) - status_lines.append("") - - return "\n".join(status_lines) - - def _update_user_message_segments(self, message: MessageRecv): - """更新用户消息段信息""" - time.time() - user_id = message.message_info.user_info.user_id - platform = message.message_info.platform - msg_time = message.message_info.time - - # 跳过机器人自己的消息 - if user_id == global_config.bot.qq_account: - return - - # 只处理新消息(避免重复处理) - if msg_time <= self.last_processed_message_time: - return - - person_id = PersonInfoManager.get_person_id(platform, user_id) - self._update_message_segments(person_id, msg_time) - - # 更新最后处理时间 - self.last_processed_message_time = max(self.last_processed_message_time, msg_time) - logger.debug( - f"[{self.stream_name}] 更新用户 {person_id} 的消息段,消息时间:{time.strftime('%Y-%m-%d %H:%M:%S', time.localtime(msg_time))}" - ) - async def _priority_chat_loop_add_message(self): while not self._disabled: try: - ids = list(self.interest_dict.keys()) - for msg_id in ids: - message, interest_value, _ = self.interest_dict[msg_id] + # 创建字典条目的副本以避免在迭代时发生修改 + items_to_process = list(self.interest_dict.items()) + for msg_id, value in items_to_process: + # 尝试从原始字典中弹出条目,如果它已被其他任务处理,则跳过 + if self.interest_dict.pop(msg_id, None) is None: + continue # 条目已被其他任务处理 + + message, interest_value, _ = value if not self._disabled: # 更新消息段信息 - self._update_user_message_segments(message) + # self._update_user_message_segments(message) # 添加消息到优先级管理器 if self.priority_manager: self.priority_manager.add_message(message, interest_value) - self.interest_dict.pop(msg_id, None) + except Exception: logger.error( f"[{self.stream_name}] 优先级聊天循环添加消息时出现错误: {traceback.format_exc()}", exc_info=True @@ -489,9 +159,6 @@ class NormalChat: f"[{self.stream_name}] 从队列中取出消息进行处理: User {message.message_info.user_info.user_id}, Time: {time.strftime('%H:%M:%S', time.localtime(message.message_info.time))}" ) - # 检查是否有用户满足关系构建条件 - asyncio.create_task(self._check_relation_building_conditions(message)) - do_reply = await self.reply_one_message(message) response_set = do_reply if do_reply else [] factor = 0.5 @@ -708,19 +375,12 @@ class NormalChat: async def normal_response(self, message: MessageRecv, is_mentioned: bool, interested_rate: float) -> None: """ 处理接收到的消息。 - 根据回复模式,决定是立即处理还是放入优先级队列。 + 在"兴趣"模式下,判断是否回复并生成内容。 """ if self._disabled: return - # 根据回复模式决定行为 - if self.reply_mode == "priority": - # 优先模式下,所有消息都进入管理器 - if self.priority_manager: - self.priority_manager.add_message(message) - return - - # 新增:在auto模式下检查是否需要直接切换到focus模式 + # 新增:在auto模式下检查是否需要直接切换到focus模式 if global_config.chat.chat_mode == "auto": if await self._check_should_switch_to_focus(): logger.info(f"[{self.stream_name}] 检测到切换到focus聊天模式的条件,尝试执行切换") @@ -734,19 +394,7 @@ class NormalChat: else: logger.warning(f"[{self.stream_name}] 没有设置切换到focus聊天模式的回调函数,无法执行切换") - # --- 以下为原有的 "兴趣" 模式逻辑 --- - await self._process_message(message, is_mentioned, interested_rate) - - async def _process_message(self, message: MessageRecv, is_mentioned: bool, interested_rate: float) -> None: - """ - 实际处理单条消息的逻辑,包括意愿判断、回复生成、动作执行等。 - """ - if self._disabled: - return - - # 检查是否有用户满足关系构建条件 - asyncio.create_task(self._check_relation_building_conditions(message)) - + # --- 以下为 "兴趣" 模式逻辑 (从 _process_message 合并而来) --- timing_results = {} reply_probability = ( 1.0 if is_mentioned and global_config.normal_chat.mentioned_bot_inevitable_reply else 0.0 @@ -804,7 +452,7 @@ class NormalChat: if do_reply and response_set: # 确保 response_set 不是 None timing_str = " | ".join([f"{step}: {duration:.2f}秒" for step, duration in timing_results.items()]) trigger_msg = message.processed_plain_text - response_msg = " ".join(response_set) + response_msg = " ".join([item[1] for item in response_set if item[0] == "text"]) logger.info( f"[{self.stream_name}]回复消息: {trigger_msg[:30]}... | 回复内容: {response_msg[:30]}... | 计时: {timing_str}" ) @@ -816,8 +464,105 @@ class NormalChat: # 意愿管理器:注销当前message信息 (无论是否回复,只要处理过就删除) willing_manager.delete(message.message_info.message_id) + async def _generate_normal_response( + self, message: MessageRecv, available_actions: Optional[list] + ) -> Optional[list]: + """生成普通回复""" + try: + logger.info( + f"NormalChat思考:{message.processed_plain_text[:30] + '...' if len(message.processed_plain_text) > 30 else message.processed_plain_text}" + ) + person_info_manager = get_person_info_manager() + person_id = person_info_manager.get_person_id( + message.chat_stream.user_info.platform, message.chat_stream.user_info.user_id + ) + person_name = await person_info_manager.get_value(person_id, "person_name") + reply_to_str = f"{person_name}:{message.processed_plain_text}" + + success, reply_set = await generator_api.generate_reply( + chat_stream=message.chat_stream, + reply_to=reply_to_str, + available_actions=available_actions, + enable_tool=global_config.tool.enable_in_normal_chat, + request_type="normal.replyer", + ) + + if not success or not reply_set: + logger.info(f"对 {message.processed_plain_text} 的回复生成失败") + return None + + content = " ".join([item[1] for item in reply_set if item[0] == "text"]) + if content: + logger.info(f"{global_config.bot.nickname}的备选回复是:{content}") + + return reply_set + + except Exception as e: + logger.error(f"[{self.stream_name}] 回复生成出现错误:{str(e)} {traceback.format_exc()}") + return None + + async def _plan_and_execute_actions(self, message: MessageRecv, thinking_id: str) -> Optional[dict]: + """规划和执行额外动作""" + no_action = { + "action_result": { + "action_type": "no_action", + "action_data": {}, + "reasoning": "规划器初始化默认", + "is_parallel": True, + }, + "chat_context": "", + "action_prompt": "", + } + + if not self.enable_planner: + logger.debug(f"[{self.stream_name}] Planner未启用,跳过动作规划") + return no_action + + try: + # 检查是否应该跳过规划 + if self.action_modifier.should_skip_planning(): + logger.debug(f"[{self.stream_name}] 没有可用动作,跳过规划") + self.action_type = "no_action" + return no_action + + # 执行规划 + plan_result = await self.planner.plan(message) + action_type = plan_result["action_result"]["action_type"] + action_data = plan_result["action_result"]["action_data"] + reasoning = plan_result["action_result"]["reasoning"] + is_parallel = plan_result["action_result"].get("is_parallel", False) + + logger.info(f"[{self.stream_name}] Planner决策: {action_type}, 理由: {reasoning}, 并行执行: {is_parallel}") + self.action_type = action_type # 更新实例属性 + self.is_parallel_action = is_parallel # 新增:保存并行执行标志 + + # 如果规划器决定不执行任何动作 + if action_type == "no_action": + logger.debug(f"[{self.stream_name}] Planner决定不执行任何额外动作") + return no_action + + # 执行额外的动作(不影响回复生成) + action_result = await self._execute_action(action_type, action_data, message, thinking_id) + if action_result is not None: + logger.info(f"[{self.stream_name}] 额外动作 {action_type} 执行完成") + else: + logger.warning(f"[{self.stream_name}] 额外动作 {action_type} 执行失败") + + return { + "action_type": action_type, + "action_data": action_data, + "reasoning": reasoning, + "is_parallel": is_parallel, + } + + except Exception as e: + logger.error(f"[{self.stream_name}] Planner执行失败: {e}") + return no_action + async def reply_one_message(self, message: MessageRecv) -> None: # 回复前处理 + await self.relationship_builder.build_relation() + thinking_id = await self._create_thinking_message(message) # 如果启用planner,预先修改可用actions(避免在并行任务中重复调用) @@ -832,87 +577,15 @@ class NormalChat: logger.warning(f"[{self.stream_name}] 获取available_actions失败: {e}") available_actions = None - # 定义并行执行的任务 - async def generate_normal_response(): - """生成普通回复""" - try: - return await self.gpt.generate_response( - message=message, - available_actions=available_actions, - ) - except Exception as e: - logger.error(f"[{self.stream_name}] 回复生成出现错误:{str(e)} {traceback.format_exc()}") - return None - - async def plan_and_execute_actions(): - """规划和执行额外动作""" - if not self.enable_planner: - logger.debug(f"[{self.stream_name}] Planner未启用,跳过动作规划") - return None - - try: - no_action = { - "action_result": { - "action_type": "no_action", - "action_data": {}, - "reasoning": "规划器初始化默认", - "is_parallel": True, - }, - "chat_context": "", - "action_prompt": "", - } - - # 检查是否应该跳过规划 - if self.action_modifier.should_skip_planning(): - logger.debug(f"[{self.stream_name}] 没有可用动作,跳过规划") - self.action_type = "no_action" - return no_action - - # 执行规划 - plan_result = await self.planner.plan(message) - action_type = plan_result["action_result"]["action_type"] - action_data = plan_result["action_result"]["action_data"] - reasoning = plan_result["action_result"]["reasoning"] - is_parallel = plan_result["action_result"].get("is_parallel", False) - - logger.info( - f"[{self.stream_name}] Planner决策: {action_type}, 理由: {reasoning}, 并行执行: {is_parallel}" - ) - self.action_type = action_type # 更新实例属性 - self.is_parallel_action = is_parallel # 新增:保存并行执行标志 - - # 如果规划器决定不执行任何动作 - if action_type == "no_action": - logger.debug(f"[{self.stream_name}] Planner决定不执行任何额外动作") - return no_action - - # 执行额外的动作(不影响回复生成) - action_result = await self._execute_action(action_type, action_data, message, thinking_id) - if action_result is not None: - logger.info(f"[{self.stream_name}] 额外动作 {action_type} 执行完成") - else: - logger.warning(f"[{self.stream_name}] 额外动作 {action_type} 执行失败") - - return { - "action_type": action_type, - "action_data": action_data, - "reasoning": reasoning, - "is_parallel": is_parallel, - } - - except Exception as e: - logger.error(f"[{self.stream_name}] Planner执行失败: {e}") - return no_action - # 并行执行回复生成和动作规划 self.action_type = None # 初始化动作类型 self.is_parallel_action = False # 初始化并行动作标志 - gen_task = asyncio.create_task(generate_normal_response()) - plan_task = asyncio.create_task(plan_and_execute_actions()) + gen_task = asyncio.create_task(self._generate_normal_response(message, available_actions)) + plan_task = asyncio.create_task(self._plan_and_execute_actions(message, thinking_id)) try: - gather_timeout = global_config.normal_chat.thinking_timeout + gather_timeout = global_config.chat.thinking_timeout results = await asyncio.wait_for( asyncio.gather(gen_task, plan_task, return_exceptions=True), timeout=gather_timeout, @@ -922,12 +595,12 @@ class NormalChat: logger.warning( f"[{self.stream_name}] 并行执行回复生成和动作规划超时 ({gather_timeout}秒),正在取消相关任务..." ) + print(f"111{self.timeout_count}") self.timeout_count += 1 if self.timeout_count > 5: - logger.error( - f"[{self.stream_name}] 连续回复超时,{global_config.normal_chat.thinking_timeout}秒 内大模型没有返回有效内容,请检查你的api是否速度过慢或配置错误。建议不要使用推理模型,推理模型生成速度过慢。" + logger.warning( + f"[{self.stream_name}] 连续回复超时次数过多,{global_config.chat.thinking_timeout}秒 内大模型没有返回有效内容,请检查你的api是否速度过慢或配置错误。建议不要使用推理模型,推理模型生成速度过慢。或者尝试拉高thinking_timeout参数,这可能导致回复时间过长。" ) - return False # 取消未完成的任务 if not gen_task.done(): @@ -969,8 +642,15 @@ class NormalChat: logger.info(f"[{self.stream_name}] 已停用,忽略 normal_response。") return False + # 提取回复文本 + reply_texts = [item[1] for item in response_set if item[0] == "text"] + if not reply_texts: + logger.info(f"[{self.stream_name}] 回复内容中没有文本,不发送消息") + await self._cleanup_thinking_message_by_id(thinking_id) + return False + # 发送回复 (不再需要传入 chat) - first_bot_msg = await self._add_messages_to_manager(message, response_set, thinking_id) + first_bot_msg = await self._add_messages_to_manager(message, reply_texts, thinking_id) # 检查 first_bot_msg 是否为 None (例如思考消息已被移除的情况) if first_bot_msg: @@ -1252,100 +932,6 @@ class NormalChat: """获取动作管理器实例""" return self.action_manager - async def _check_relation_building_conditions(self, message: MessageRecv): - """检查person_engaged_cache中是否有满足关系构建条件的用户""" - # 执行定期清理 - self._cleanup_old_segments() - - # 更新消息段信息 - self._update_user_message_segments(message) - - users_to_build_relationship = [] - - for person_id, segments in list(self.person_engaged_cache.items()): - total_message_count = self._get_total_message_count(person_id) - if total_message_count >= 45: - users_to_build_relationship.append(person_id) - logger.info( - f"[{self.stream_name}] 用户 {person_id} 满足关系构建条件,总消息数:{total_message_count},消息段数:{len(segments)}" - ) - elif total_message_count > 0: - # 记录进度信息 - logger.debug( - f"[{self.stream_name}] 用户 {person_id} 进度:{total_message_count}/45 条消息,{len(segments)} 个消息段" - ) - - # 为满足条件的用户构建关系 - for person_id in users_to_build_relationship: - segments = self.person_engaged_cache[person_id] - # 异步执行关系构建 - asyncio.create_task(self._build_relation_for_person_segments(person_id, segments)) - # 移除已处理的用户缓存 - del self.person_engaged_cache[person_id] - self._save_cache() - logger.info(f"[{self.stream_name}] 用户 {person_id} 关系构建已启动,缓存已清理") - - async def _build_relation_for_person_segments(self, person_id: str, segments: List[Dict[str, any]]): - """基于消息段更新用户印象,统一使用focus chat的构建方式""" - if not segments: - return - - logger.debug(f"[{self.stream_name}] 开始为 {person_id} 基于 {len(segments)} 个消息段更新印象") - try: - processed_messages = [] - - for i, segment in enumerate(segments): - start_time = segment["start_time"] - end_time = segment["end_time"] - segment["message_count"] - start_date = time.strftime("%Y-%m-%d %H:%M", time.localtime(start_time)) - - # 获取该段的消息(包含边界) - segment_messages = get_raw_msg_by_timestamp_with_chat_inclusive(self.stream_id, start_time, end_time) - logger.debug( - f"[{self.stream_name}] 消息段 {i + 1}: {start_date} - {time.strftime('%Y-%m-%d %H:%M', time.localtime(end_time))}, 消息数: {len(segment_messages)}" - ) - - if segment_messages: - # 如果不是第一个消息段,在消息列表前添加间隔标识 - if i > 0: - # 创建一个特殊的间隔消息 - gap_message = { - "time": start_time - 0.1, # 稍微早于段开始时间 - "user_id": "system", - "user_platform": "system", - "user_nickname": "系统", - "user_cardname": "", - "display_message": f"...(中间省略一些消息){start_date} 之后的消息如下...", - "is_action_record": True, - "chat_info_platform": segment_messages[0].get("chat_info_platform", ""), - "chat_id": self.stream_id, - } - processed_messages.append(gap_message) - - # 添加该段的所有消息 - processed_messages.extend(segment_messages) - - if processed_messages: - # 按时间排序所有消息(包括间隔标识) - processed_messages.sort(key=lambda x: x["time"]) - - logger.debug( - f"[{self.stream_name}] 为 {person_id} 获取到总共 {len(processed_messages)} 条消息(包含间隔标识)用于印象更新" - ) - relationship_manager = get_relationship_manager() - - # 调用统一的更新方法 - await relationship_manager.update_person_impression( - person_id=person_id, timestamp=time.time(), bot_engaged_messages=processed_messages - ) - else: - logger.debug(f"[{self.stream_name}] 没有找到 {person_id} 的消息段对应的消息,不更新印象") - - except Exception as e: - logger.error(f"[{self.stream_name}] 为 {person_id} 更新印象时发生错误: {e}") - logger.error(traceback.format_exc()) - def _get_fatigue_reply_multiplier(self) -> float: """获取疲劳期回复频率调整系数 @@ -1369,7 +955,6 @@ class NormalChat: except Exception as e: logger.warning(f"[{self.stream_name}] 获取疲劳调整系数时出错: {e}") return 1.0 # 出错时返回正常系数 - async def _check_should_switch_to_focus(self) -> bool: """ 检查是否满足切换到focus模式的条件 @@ -1417,3 +1002,4 @@ class NormalChat: break except Exception as e: logger.error(f"[{self.stream_name}] 清理思考消息 {thinking_id} 时出错: {e}") + diff --git a/src/chat/normal_chat/normal_chat_action_modifier.py b/src/chat/normal_chat/normal_chat_action_modifier.py index 8cdde145e..d2f715cb4 100644 --- a/src/chat/normal_chat/normal_chat_action_modifier.py +++ b/src/chat/normal_chat/normal_chat_action_modifier.py @@ -5,6 +5,7 @@ from src.chat.utils.chat_message_builder import build_readable_messages, get_raw from src.config.config import global_config import random import time +import asyncio logger = get_logger("normal_chat_action_modifier") @@ -184,6 +185,7 @@ class NormalChatActionModifier: always_actions = {} random_actions = {} keyword_actions = {} + llm_judge_actions = {} for action_name, action_info in actions_with_info.items(): # 使用normal_activation_type @@ -192,8 +194,10 @@ class NormalChatActionModifier: # 现在统一是字符串格式的激活类型值 if activation_type == "always": always_actions[action_name] = action_info - elif activation_type == "random" or activation_type == "llm_judge": + elif activation_type == "random": random_actions[action_name] = action_info + elif activation_type == "llm_judge": + llm_judge_actions[action_name] = action_info elif activation_type == "keyword": keyword_actions[action_name] = action_info else: @@ -225,6 +229,24 @@ class NormalChatActionModifier: keywords = action_info.get("activation_keywords", []) logger.debug(f"{self.log_prefix}未激活动作: {action_name},原因: KEYWORD类型未匹配关键词({keywords})") + # 4. 处理LLM_JUDGE类型(并行判定) + if llm_judge_actions: + # 直接并行处理所有LLM判定actions + llm_results = await self._process_llm_judge_actions_parallel( + llm_judge_actions, + chat_content, + ) + + # 添加激活的LLM判定actions + for action_name, should_activate in llm_results.items(): + if should_activate: + activated_actions[action_name] = llm_judge_actions[action_name] + logger.debug(f"{self.log_prefix}激活动作: {action_name},原因: LLM_JUDGE类型判定通过") + else: + logger.debug(f"{self.log_prefix}未激活动作: {action_name},原因: LLM_JUDGE类型判定未通过") + + + logger.debug(f"{self.log_prefix}Normal模式激活类型过滤完成: {list(activated_actions.keys())}") return activated_actions @@ -277,6 +299,93 @@ class NormalChatActionModifier: else: logger.debug(f"{self.log_prefix}动作 {action_name} 未匹配到任何关键词: {activation_keywords}") return False + + + async def _process_llm_judge_actions_parallel( + self, + llm_judge_actions: Dict[str, Any], + chat_content: str = "", + ) -> Dict[str, bool]: + """ + 并行处理LLM判定actions,支持智能缓存 + + Args: + llm_judge_actions: 需要LLM判定的actions + chat_content: 聊天内容 + + Returns: + Dict[str, bool]: action名称到激活结果的映射 + """ + + # 生成当前上下文的哈希值 + current_context_hash = self._generate_context_hash(chat_content) + current_time = time.time() + + results = {} + tasks_to_run = {} + + # 检查缓存 + for action_name, action_info in llm_judge_actions.items(): + cache_key = f"{action_name}_{current_context_hash}" + + # 检查是否有有效的缓存 + if ( + cache_key in self._llm_judge_cache + and current_time - self._llm_judge_cache[cache_key]["timestamp"] < self._cache_expiry_time + ): + results[action_name] = self._llm_judge_cache[cache_key]["result"] + logger.debug( + f"{self.log_prefix}使用缓存结果 {action_name}: {'激活' if results[action_name] else '未激活'}" + ) + else: + # 需要进行LLM判定 + tasks_to_run[action_name] = action_info + + # 如果有需要运行的任务,并行执行 + if tasks_to_run: + logger.debug(f"{self.log_prefix}并行执行LLM判定,任务数: {len(tasks_to_run)}") + + # 创建并行任务 + tasks = [] + task_names = [] + + for action_name, action_info in tasks_to_run.items(): + task = self._llm_judge_action( + action_name, + action_info, + chat_content, + ) + tasks.append(task) + task_names.append(action_name) + + # 并行执行所有任务 + try: + task_results = await asyncio.gather(*tasks, return_exceptions=True) + + # 处理结果并更新缓存 + for _, (action_name, result) in enumerate(zip(task_names, task_results)): + if isinstance(result, Exception): + logger.error(f"{self.log_prefix}LLM判定action {action_name} 时出错: {result}") + results[action_name] = False + else: + results[action_name] = result + + # 更新缓存 + cache_key = f"{action_name}_{current_context_hash}" + self._llm_judge_cache[cache_key] = {"result": result, "timestamp": current_time} + + logger.debug(f"{self.log_prefix}并行LLM判定完成,耗时: {time.time() - current_time:.2f}s") + + except Exception as e: + logger.error(f"{self.log_prefix}并行LLM判定失败: {e}") + # 如果并行执行失败,为所有任务返回False + for action_name in tasks_to_run.keys(): + results[action_name] = False + + # 清理过期缓存 + self._cleanup_expired_cache(current_time) + + return results def get_available_actions_count(self) -> int: """获取当前可用动作数量(排除默认的no_action)""" diff --git a/src/chat/normal_chat/normal_chat_generator.py b/src/chat/normal_chat/normal_chat_generator.py deleted file mode 100644 index df7cc6876..000000000 --- a/src/chat/normal_chat/normal_chat_generator.py +++ /dev/null @@ -1,72 +0,0 @@ -from src.llm_models.utils_model import LLMRequest -from src.config.config import global_config -from src.chat.message_receive.message import MessageThinking -from src.common.logger import get_logger -from src.person_info.person_info import PersonInfoManager, get_person_info_manager -from src.chat.utils.utils import process_llm_response -from src.plugin_system.apis import generator_api -from src.chat.focus_chat.memory_activator import MemoryActivator - - -logger = get_logger("normal_chat_response") - - -class NormalChatGenerator: - def __init__(self): - model_config_1 = global_config.model.replyer_1.copy() - model_config_2 = global_config.model.replyer_2.copy() - - prob_first = global_config.chat.replyer_random_probability - - model_config_1["weight"] = prob_first - model_config_2["weight"] = 1.0 - prob_first - - self.model_configs = [model_config_1, model_config_2] - - self.model_sum = LLMRequest(model=global_config.model.memory_summary, temperature=0.7, request_type="relation") - self.memory_activator = MemoryActivator() - - async def generate_response( - self, - message: MessageThinking, - available_actions=None, - ): - logger.info( - f"NormalChat思考:{message.processed_plain_text[:30] + '...' if len(message.processed_plain_text) > 30 else message.processed_plain_text}" - ) - person_id = PersonInfoManager.get_person_id( - message.chat_stream.user_info.platform, message.chat_stream.user_info.user_id - ) - person_info_manager = get_person_info_manager() - person_name = await person_info_manager.get_value(person_id, "person_name") - relation_info = await person_info_manager.get_value(person_id, "short_impression") - reply_to_str = f"{person_name}:{message.processed_plain_text}" - - try: - success, reply_set, prompt = await generator_api.generate_reply( - chat_stream=message.chat_stream, - reply_to=reply_to_str, - relation_info=relation_info, - available_actions=available_actions, - enable_tool=global_config.tool.enable_in_normal_chat, - model_configs=self.model_configs, - request_type="normal.replyer", - return_prompt=True, - ) - - if not success or not reply_set: - logger.info(f"对 {message.processed_plain_text} 的回复生成失败") - return None - - content = " ".join([item[1] for item in reply_set if item[0] == "text"]) - logger.debug(f"对 {message.processed_plain_text} 的回复:{content}") - - if content: - logger.info(f"{global_config.bot.nickname}的备选回复是:{content}") - content = process_llm_response(content) - - return content - - except Exception: - logger.exception("生成回复时出错") - return None diff --git a/src/chat/normal_chat/normal_chat_planner.py b/src/chat/normal_chat/normal_chat_planner.py index 9c4e08433..83d12caa1 100644 --- a/src/chat/normal_chat/normal_chat_planner.py +++ b/src/chat/normal_chat/normal_chat_planner.py @@ -49,10 +49,8 @@ def init_prompt(): Prompt( """ 动作:{action_name} -该动作的描述:{action_description} -使用该动作的场景: +动作描述:{action_description} {action_require} -输出要求: {{ "action": "{action_name}",{action_parameters} }} @@ -160,8 +158,8 @@ class NormalChatPlanner: logger.info(f"{self.log_prefix}规划器原始提示词: {prompt}") logger.info(f"{self.log_prefix}规划器原始响应: {content}") - logger.info(f"{self.log_prefix}规划器推理: {reasoning_content}") - logger.info(f"{self.log_prefix}规划器模型: {model_name}") + if reasoning_content: + logger.info(f"{self.log_prefix}规划器推理: {reasoning_content}") # 解析JSON响应 try: diff --git a/src/chat/replyer/default_generator.py b/src/chat/replyer/default_generator.py index 1fec8646e..dd1b4e8a6 100644 --- a/src/chat/replyer/default_generator.py +++ b/src/chat/replyer/default_generator.py @@ -92,14 +92,12 @@ class DefaultReplyer: def __init__( self, chat_stream: ChatStream, - enable_tool: bool = False, model_configs: Optional[List[Dict[str, Any]]] = None, request_type: str = "focus.replyer", ): self.log_prefix = "replyer" self.request_type = request_type - self.enable_tool = enable_tool if model_configs: self.express_model_configs = model_configs @@ -170,9 +168,10 @@ class DefaultReplyer: self, reply_data: Dict[str, Any] = None, reply_to: str = "", - relation_info: str = "", extra_info: str = "", available_actions: List[str] = None, + enable_tool: bool = True, + enable_timeout: bool = False, ) -> Tuple[bool, Optional[str]]: """ 回复器 (Replier): 核心逻辑,负责生成回复文本。 @@ -186,7 +185,6 @@ class DefaultReplyer: if not reply_data: reply_data = { "reply_to": reply_to, - "relation_info": relation_info, "extra_info": extra_info, } for key, value in reply_data.items(): @@ -198,6 +196,8 @@ class DefaultReplyer: prompt = await self.build_prompt_reply_context( reply_data=reply_data, # 传递action_data available_actions=available_actions, + enable_timeout=enable_timeout, + enable_tool=enable_tool, ) # 4. 调用 LLM 生成回复 @@ -311,7 +311,7 @@ class DefaultReplyer: person_id = person_info_manager.get_person_id_by_person_name(sender) if not person_id: logger.warning(f"{self.log_prefix} 未找到用户 {sender} 的ID,跳过信息提取") - return None + return f"你完全不认识{sender},不理解ta的相关信息。" relation_info = await relationship_fetcher.build_relation_info(person_id, text, chat_history) return relation_info @@ -367,13 +367,12 @@ class DefaultReplyer: for running_memory in running_memorys: memory_str += f"- {running_memory['content']}\n" memory_block = memory_str - logger.info(f"{self.log_prefix} 添加了 {len(running_memorys)} 个激活的记忆到prompt") else: memory_block = "" return memory_block - async def build_tool_info(self, reply_data=None, chat_history=None): + async def build_tool_info(self, reply_data=None, chat_history=None, enable_tool: bool = True): """构建工具信息块 Args: @@ -384,6 +383,9 @@ class DefaultReplyer: str: 工具信息字符串 """ + if not enable_tool: + return "" + if not reply_data: return "" @@ -460,7 +462,15 @@ class DefaultReplyer: return keywords_reaction_prompt - async def build_prompt_reply_context(self, reply_data=None, available_actions: List[str] = None) -> str: + async def _time_and_run_task(self, coro, name: str): + """一个简单的帮助函数,用于计时和运行异步任务,返回任务名、结果和耗时""" + start_time = time.time() + result = await coro + end_time = time.time() + duration = end_time - start_time + return name, result, duration + + async def build_prompt_reply_context(self, reply_data=None, available_actions: List[str] = None, enable_timeout: bool = False, enable_tool: bool = True) -> str: """ 构建回复器上下文 @@ -526,13 +536,26 @@ class DefaultReplyer: ) # 并行执行四个构建任务 - expression_habits_block, relation_info, memory_block, tool_info = await asyncio.gather( - self.build_expression_habits(chat_talking_prompt_half, target), - self.build_relation_info(reply_data, chat_talking_prompt_half), - self.build_memory_block(chat_talking_prompt_half, target), - self.build_tool_info(reply_data, chat_talking_prompt_half), + task_results = await asyncio.gather( + self._time_and_run_task(self.build_expression_habits(chat_talking_prompt_half, target), "build_expression_habits"), + self._time_and_run_task(self.build_relation_info(reply_data, chat_talking_prompt_half), "build_relation_info"), + self._time_and_run_task(self.build_memory_block(chat_talking_prompt_half, target), "build_memory_block"), + self._time_and_run_task(self.build_tool_info(reply_data, chat_talking_prompt_half, enable_tool=enable_tool), "build_tool_info"), ) + # 处理结果 + timing_logs = [] + results_dict = {} + for name, result, duration in task_results: + results_dict[name] = result + timing_logs.append(f"{name}: {duration:.4f}s") + logger.info(f"回复生成前信息获取时间: {'; '.join(timing_logs)}") + + expression_habits_block = results_dict["build_expression_habits"] + relation_info = results_dict["build_relation_info"] + memory_block = results_dict["build_memory_block"] + tool_info = results_dict["build_tool_info"] + keywords_reaction_prompt = await self.build_keywords_reaction_prompt(target) if tool_info: diff --git a/src/chat/replyer/replyer_manager.py b/src/chat/replyer/replyer_manager.py index 76d2a9dc2..6a73b7d4b 100644 --- a/src/chat/replyer/replyer_manager.py +++ b/src/chat/replyer/replyer_manager.py @@ -14,7 +14,6 @@ class ReplyerManager: self, chat_stream: Optional[ChatStream] = None, chat_id: Optional[str] = None, - enable_tool: bool = False, model_configs: Optional[List[Dict[str, Any]]] = None, request_type: str = "replyer", ) -> Optional[DefaultReplyer]: @@ -50,7 +49,6 @@ class ReplyerManager: # model_configs 只在此时(初始化时)生效 replyer = DefaultReplyer( chat_stream=target_stream, - enable_tool=enable_tool, model_configs=model_configs, # 可以是None,此时使用默认模型 request_type=request_type, ) diff --git a/src/chat/utils/utils.py b/src/chat/utils/utils.py index edfb9f31c..a081ad9a5 100644 --- a/src/chat/utils/utils.py +++ b/src/chat/utils/utils.py @@ -81,7 +81,7 @@ def is_mentioned_bot_in_message(message: MessageRecv) -> tuple[bool, float]: if is_at and global_config.normal_chat.at_bot_inevitable_reply: reply_probability = 1.0 - logger.info("被@,回复概率设置为100%") + logger.debug("被@,回复概率设置为100%") else: if not is_mentioned: # 判断是否被回复 @@ -106,7 +106,7 @@ def is_mentioned_bot_in_message(message: MessageRecv) -> tuple[bool, float]: is_mentioned = True if is_mentioned and global_config.normal_chat.mentioned_bot_inevitable_reply: reply_probability = 1.0 - logger.info("被提及,回复概率设置为100%") + logger.debug("被提及,回复概率设置为100%") return is_mentioned, reply_probability diff --git a/src/common/logger.py b/src/common/logger.py index cf6f07407..30a2e4bd7 100644 --- a/src/common/logger.py +++ b/src/common/logger.py @@ -346,7 +346,6 @@ MODULE_COLORS = { # 聊天相关模块 "normal_chat": "\033[38;5;81m", # 亮蓝绿色 "normal_chat_response": "\033[38;5;123m", # 青绿色 - "normal_chat_expressor": "\033[38;5;117m", # 浅蓝色 "normal_chat_action_modifier": "\033[38;5;111m", # 蓝色 "normal_chat_planner": "\033[38;5;75m", # 浅蓝色 "heartflow": "\033[38;5;213m", # 粉色 @@ -362,7 +361,6 @@ MODULE_COLORS = { # 专注聊天模块 "replyer": "\033[38;5;166m", # 橙色 "expressor": "\033[38;5;172m", # 黄橙色 - "planner_factory": "\033[38;5;178m", # 黄色 "processor": "\033[38;5;184m", # 黄绿色 "base_processor": "\033[38;5;190m", # 绿黄色 "working_memory": "\033[38;5;22m", # 深绿色 @@ -370,6 +368,7 @@ MODULE_COLORS = { # 插件系统 "plugin_manager": "\033[38;5;208m", # 红色 "base_plugin": "\033[38;5;202m", # 橙红色 + "send_api": "\033[38;5;208m", # 橙色 "base_command": "\033[38;5;208m", # 橙色 "component_registry": "\033[38;5;214m", # 橙黄色 "stream_api": "\033[38;5;220m", # 黄色 @@ -388,10 +387,8 @@ MODULE_COLORS = { "willing": "\033[38;5;147m", # 浅紫色 # 工具模块 "tool_use": "\033[38;5;64m", # 深绿色 + "tool_executor": "\033[38;5;64m", # 深绿色 "base_tool": "\033[38;5;70m", # 绿色 - "compare_numbers_tool": "\033[38;5;76m", # 浅绿色 - "change_mood_tool": "\033[38;5;82m", # 绿色 - "relationship_tool": "\033[38;5;88m", # 深红色 # 工具和实用模块 "prompt": "\033[38;5;99m", # 紫色 "prompt_build": "\033[38;5;105m", # 紫色 @@ -417,6 +414,8 @@ MODULE_COLORS = { "confirm": "\033[1;93m", # 黄色+粗体 # 模型相关 "model_utils": "\033[38;5;164m", # 紫红色 + + "relationship_builder": "\033[38;5;117m", # 浅蓝色 } RESET_COLOR = "\033[0m" diff --git a/src/config/official_configs.py b/src/config/official_configs.py index 7dc63089b..a07bc25f5 100644 --- a/src/config/official_configs.py +++ b/src/config/official_configs.py @@ -84,6 +84,9 @@ class ChatConfig(ConfigBase): 选择普通模型的概率为 1 - reasoning_normal_model_probability """ + thinking_timeout: int = 30 + """麦麦最长思考规划时间,超过这个时间的思考会放弃(往往是api反应太慢)""" + talk_frequency: float = 1 """回复频率阈值""" @@ -276,8 +279,6 @@ class NormalChatConfig(ConfigBase): emoji_chance: float = 0.2 """发送表情包的基础概率""" - thinking_timeout: int = 120 - """最长思考时间""" willing_mode: str = "classical" """意愿模式""" diff --git a/src/person_info/relationship_builder_manager.py b/src/person_info/relationship_builder_manager.py index ce8d254e0..926d67fca 100644 --- a/src/person_info/relationship_builder_manager.py +++ b/src/person_info/relationship_builder_manager.py @@ -25,7 +25,7 @@ class RelationshipBuilderManager: """ if chat_id not in self.builders: self.builders[chat_id] = RelationshipBuilder(chat_id) - logger.info(f"创建聊天 {chat_id} 的关系构建器") + logger.debug(f"创建聊天 {chat_id} 的关系构建器") return self.builders[chat_id] @@ -51,7 +51,7 @@ class RelationshipBuilderManager: """ if chat_id in self.builders: del self.builders[chat_id] - logger.info(f"移除聊天 {chat_id} 的关系构建器") + logger.debug(f"移除聊天 {chat_id} 的关系构建器") return True return False diff --git a/src/person_info/relationship_fetcher.py b/src/person_info/relationship_fetcher.py index 15bc6cc81..006f99e18 100644 --- a/src/person_info/relationship_fetcher.py +++ b/src/person_info/relationship_fetcher.py @@ -106,7 +106,15 @@ class RelationshipFetcher: await self._extract_single_info(person_id, info_type, person_name) relation_info = self._organize_known_info() - relation_info = f"你对{person_name}的印象是:{short_impression}\n{relation_info}" + if short_impression and relation_info: + relation_info = f"你对{person_name}的印象是:{short_impression}。具体来说:{relation_info}" + elif short_impression: + relation_info = f"你对{person_name}的印象是:{short_impression}" + elif relation_info: + relation_info = f"你对{person_name}的了解:{relation_info}" + else: + relation_info = "" + return relation_info async def _build_fetch_query(self, person_id, target_message, chat_history): diff --git a/src/plugin_system/apis/database_api.py b/src/plugin_system/apis/database_api.py index 3921443df..085df997f 100644 --- a/src/plugin_system/apis/database_api.py +++ b/src/plugin_system/apis/database_api.py @@ -374,7 +374,7 @@ async def store_action_info( ) if saved_record: - logger.info(f"[DatabaseAPI] 成功存储动作信息: {action_name} (ID: {record_data['action_id']})") + logger.debug(f"[DatabaseAPI] 成功存储动作信息: {action_name} (ID: {record_data['action_id']})") else: logger.error(f"[DatabaseAPI] 存储动作信息失败: {action_name}") diff --git a/src/plugin_system/apis/generator_api.py b/src/plugin_system/apis/generator_api.py index 9f7f136be..ead002064 100644 --- a/src/plugin_system/apis/generator_api.py +++ b/src/plugin_system/apis/generator_api.py @@ -27,7 +27,6 @@ logger = get_logger("generator_api") def get_replyer( chat_stream: Optional[ChatStream] = None, chat_id: Optional[str] = None, - enable_tool: bool = False, model_configs: Optional[List[Dict[str, Any]]] = None, request_type: str = "replyer", ) -> Optional[DefaultReplyer]: @@ -52,7 +51,6 @@ def get_replyer( chat_id=chat_id, model_configs=model_configs, request_type=request_type, - enable_tool=enable_tool, ) except Exception as e: logger.error(f"[GeneratorAPI] 获取回复器时发生意外错误: {e}", exc_info=True) @@ -70,7 +68,6 @@ async def generate_reply( chat_id: str = None, action_data: Dict[str, Any] = None, reply_to: str = "", - relation_info: str = "", extra_info: str = "", available_actions: List[str] = None, enable_tool: bool = False, @@ -79,6 +76,7 @@ async def generate_reply( return_prompt: bool = False, model_configs: Optional[List[Dict[str, Any]]] = None, request_type: str = "", + enable_timeout: bool = False, ) -> Tuple[bool, List[Tuple[str, Any]]]: """生成回复 @@ -95,27 +93,28 @@ async def generate_reply( try: # 获取回复器 replyer = get_replyer( - chat_stream, chat_id, model_configs=model_configs, request_type=request_type, enable_tool=enable_tool + chat_stream, chat_id, model_configs=model_configs, request_type=request_type ) if not replyer: logger.error("[GeneratorAPI] 无法获取回复器") return False, [] - logger.info("[GeneratorAPI] 开始生成回复") + logger.debug("[GeneratorAPI] 开始生成回复") # 调用回复器生成回复 success, content, prompt = await replyer.generate_reply_with_context( reply_data=action_data or {}, reply_to=reply_to, - relation_info=relation_info, extra_info=extra_info, available_actions=available_actions, + enable_timeout=enable_timeout, + enable_tool=enable_tool, ) reply_set = await process_human_text(content, enable_splitter, enable_chinese_typo) if success: - logger.info(f"[GeneratorAPI] 回复生成成功,生成了 {len(reply_set)} 个回复项") + logger.debug(f"[GeneratorAPI] 回复生成成功,生成了 {len(reply_set)} 个回复项") else: logger.warning("[GeneratorAPI] 回复生成失败") diff --git a/src/plugin_system/apis/send_api.py b/src/plugin_system/apis/send_api.py index 645f2b4dc..d9b1eff7c 100644 --- a/src/plugin_system/apis/send_api.py +++ b/src/plugin_system/apis/send_api.py @@ -66,7 +66,7 @@ async def _send_to_target( bool: 是否发送成功 """ try: - logger.info(f"[SendAPI] 发送{message_type}消息到 {stream_id}") + logger.debug(f"[SendAPI] 发送{message_type}消息到 {stream_id}") # 查找目标聊天流 target_stream = get_chat_manager().get_stream(stream_id) diff --git a/src/plugins/built_in/core_actions/no_reply.py b/src/plugins/built_in/core_actions/no_reply.py index f480886ce..3e98ed32e 100644 --- a/src/plugins/built_in/core_actions/no_reply.py +++ b/src/plugins/built_in/core_actions/no_reply.py @@ -77,7 +77,7 @@ class NoReplyAction(BaseAction): reason = self.action_data.get("reason", "") start_time = time.time() - last_judge_time = 0 # 上次进行LLM判断的时间 + last_judge_time = start_time # 上次进行LLM判断的时间 min_judge_interval = self._min_judge_interval # 最小判断间隔,从配置获取 check_interval = 0.2 # 检查新消息的间隔,设为0.2秒提高响应性 @@ -357,7 +357,7 @@ class NoReplyAction(BaseAction): judge_history.append((current_time, judge_result, reason)) if judge_result == "需要回复": - logger.info(f"{self.log_prefix} 模型判断需要回复,结束等待") + # logger.info(f"{self.log_prefix} 模型判断需要回复,结束等待") full_prompt = f"{global_config.bot.nickname}(你)的想法是:{reason}" await self.store_action_info( diff --git a/src/plugins/built_in/core_actions/plugin.py b/src/plugins/built_in/core_actions/plugin.py index 217405c0e..a96d3ab13 100644 --- a/src/plugins/built_in/core_actions/plugin.py +++ b/src/plugins/built_in/core_actions/plugin.py @@ -8,6 +8,7 @@ import random import time from typing import List, Tuple, Type +import asyncio # 导入新插件系统 from src.plugin_system import BasePlugin, register_plugin, BaseAction, ComponentInfo, ActionActivationType, ChatMode @@ -55,17 +56,24 @@ class ReplyAction(BaseAction): async def execute(self) -> Tuple[bool, str]: """执行回复动作""" - logger.info(f"{self.log_prefix} 决定回复: {self.reasoning}") + logger.info(f"{self.log_prefix} 决定进行回复") start_time = self.action_data.get("loop_start_time", time.time()) try: - success, reply_set = await generator_api.generate_reply( - action_data=self.action_data, - chat_id=self.chat_id, - request_type="focus.replyer", - enable_tool=global_config.tool.enable_in_focus_chat, - ) + try: + success, reply_set = await asyncio.wait_for( + generator_api.generate_reply( + action_data=self.action_data, + chat_id=self.chat_id, + request_type="focus.replyer", + enable_tool=global_config.tool.enable_in_focus_chat, + ), + timeout=global_config.chat.thinking_timeout, + ) + except asyncio.TimeoutError: + logger.warning(f"{self.log_prefix} 回复生成超时 ({global_config.chat.thinking_timeout}s)") + return False, "timeout" # 检查从start_time以来的新消息数量 # 获取动作触发时间或使用默认值 @@ -77,7 +85,7 @@ class ReplyAction(BaseAction): # 根据新消息数量决定是否使用reply_to need_reply = new_message_count >= random.randint(2, 5) logger.info( - f"{self.log_prefix} 从{start_time}到{current_time}共有{new_message_count}条新消息,{'使用' if need_reply else '不使用'}reply_to" + f"{self.log_prefix} 从思考到回复,共有{new_message_count}条新消息,{'使用' if need_reply else '不使用'}引用回复" ) # 构建回复文本 diff --git a/src/tools/tool_executor.py b/src/tools/tool_executor.py index 0673068cf..34a35ae3b 100644 --- a/src/tools/tool_executor.py +++ b/src/tools/tool_executor.py @@ -6,6 +6,7 @@ from src.chat.utils.prompt_builder import Prompt, global_prompt_manager from src.tools.tool_use import ToolUser from src.chat.utils.json_utils import process_llm_tool_calls from typing import List, Dict, Tuple, Optional +from src.chat.message_receive.chat_stream import get_chat_manager logger = get_logger("tool_executor") @@ -42,7 +43,9 @@ class ToolExecutor: cache_ttl: 缓存生存时间(周期数) """ self.chat_id = chat_id - self.log_prefix = f"[ToolExecutor:{self.chat_id}] " + self.chat_stream = get_chat_manager().get_stream(self.chat_id) + self.log_prefix = f"[{get_chat_manager().get_stream_name(self.chat_id) or self.chat_id}]" + self.llm_model = LLMRequest( model=global_config.model.tool_use, request_type="tool_executor", diff --git a/template/bot_config_template.toml b/template/bot_config_template.toml index c4ddd21d8..40ab3b36f 100644 --- a/template/bot_config_template.toml +++ b/template/bot_config_template.toml @@ -1,5 +1,5 @@ [inner] -version = "3.2.0" +version = "3.3.0" #----以下是给开发人员阅读的,如果你只是部署了麦麦,不需要阅读---- #如果你想要修改配置文件,请在修改后将version的值进行变更 @@ -102,6 +102,8 @@ exit_focus_threshold = 1 # 自动退出专注聊天的阈值,越低越容易 # 专注模式下,麦麦会进行主动的观察和回复,并给出回复,token消耗量较高 # 自动模式下,麦麦会根据消息内容自动切换到专注模式或普通模式 +thinking_timeout = 30 # 麦麦一次回复最长思考规划时间,超过这个时间的思考会放弃(往往是api反应太慢) + [message_receive] # 以下是消息过滤,可以根据规则过滤特定消息,将不会读取这些消息 ban_words = [ @@ -117,18 +119,12 @@ ban_msgs_regex = [ [normal_chat] #普通聊天 #一般回复参数 emoji_chance = 0.2 # 麦麦一般回复时使用表情包的概率 -thinking_timeout = 30 # 麦麦最长思考规划时间,超过这个时间的思考会放弃(往往是api反应太慢) - willing_mode = "classical" # 回复意愿模式 —— 经典模式:classical,mxp模式:mxp,自定义模式:custom(需要你自己实现) - response_interested_rate_amplifier = 1 # 麦麦回复兴趣度放大系数 - mentioned_bot_inevitable_reply = true # 提及 bot 必然回复 at_bot_inevitable_reply = true # @bot 必然回复(包含提及) - enable_planner = true # 是否启用动作规划器(与focus_chat共享actions) - [focus_chat] #专注聊天 think_interval = 3 # 思考间隔 单位秒,可以有效减少消耗 consecutive_replies = 1 # 连续回复能力,值越高,麦麦连续回复的概率越高 @@ -228,7 +224,7 @@ console_log_level = "INFO" # 控制台日志级别,可选: DEBUG, INFO, WARNIN file_log_level = "DEBUG" # 文件日志级别,可选: DEBUG, INFO, WARNING, ERROR, CRITICAL # 第三方库日志控制 -suppress_libraries = ["faiss","httpx", "urllib3", "asyncio", "websockets", "httpcore", "requests", "peewee", "openai","uvicorn"] # 完全屏蔽的库 +suppress_libraries = ["faiss","httpx", "urllib3", "asyncio", "websockets", "httpcore", "requests", "peewee", "openai","uvicorn","jieba"] # 完全屏蔽的库 library_log_levels = { "aiohttp" = "WARNING"} # 设置特定库的日志级别 #下面的模型若使用硅基流动则不需要更改,使用ds官方则改成.env自定义的宏,使用自定义模型则选择定位相似的模型自己填写