diff --git a/src/common/logger.py b/src/common/logger.py
index a8fcd6603..29be8c756 100644
--- a/src/common/logger.py
+++ b/src/common/logger.py
@@ -81,13 +81,15 @@ MEMORY_STYLE_CONFIG = {
"file_format": ("{time:YYYY-MM-DD HH:mm:ss} | {level: <8} | {extra[module]: <15} | 海马体 | {message}"),
},
"simple": {
- "console_format": ("{time:MM-DD HH:mm} | 海马体 | {message}"),
+ "console_format": (
+ "{time:MM-DD HH:mm} | 海马体 | {message}"
+ ),
"file_format": ("{time:YYYY-MM-DD HH:mm:ss} | {level: <8} | {extra[module]: <15} | 海马体 | {message}"),
},
}
-#MOOD
+# MOOD
MOOD_STYLE_CONFIG = {
"advanced": {
"console_format": (
@@ -152,7 +154,9 @@ HEARTFLOW_STYLE_CONFIG = {
"file_format": ("{time:YYYY-MM-DD HH:mm:ss} | {level: <8} | {extra[module]: <15} | 麦麦大脑袋 | {message}"),
},
"simple": {
- "console_format": ("{time:MM-DD HH:mm} | 麦麦大脑袋 | {message}"), # noqa: E501
+ "console_format": (
+ "{time:MM-DD HH:mm} | 麦麦大脑袋 | {message}"
+ ), # noqa: E501
"file_format": ("{time:YYYY-MM-DD HH:mm:ss} | {level: <8} | {extra[module]: <15} | 麦麦大脑袋 | {message}"),
},
}
@@ -223,7 +227,9 @@ CHAT_STYLE_CONFIG = {
"file_format": ("{time:YYYY-MM-DD HH:mm:ss} | {level: <8} | {extra[module]: <15} | 见闻 | {message}"),
},
"simple": {
- "console_format": ("{time:MM-DD HH:mm} | 见闻 | {message}"), # noqa: E501
+ "console_format": (
+ "{time:MM-DD HH:mm} | 见闻 | {message}"
+ ), # noqa: E501
"file_format": ("{time:YYYY-MM-DD HH:mm:ss} | {level: <8} | {extra[module]: <15} | 见闻 | {message}"),
},
}
@@ -240,7 +246,9 @@ SUB_HEARTFLOW_STYLE_CONFIG = {
"file_format": ("{time:YYYY-MM-DD HH:mm:ss} | {level: <8} | {extra[module]: <15} | 麦麦小脑袋 | {message}"),
},
"simple": {
- "console_format": ("{time:MM-DD HH:mm} | 麦麦小脑袋 | {message}"), # noqa: E501
+ "console_format": (
+ "{time:MM-DD HH:mm} | 麦麦小脑袋 | {message}"
+ ), # noqa: E501
"file_format": ("{time:YYYY-MM-DD HH:mm:ss} | {level: <8} | {extra[module]: <15} | 麦麦小脑袋 | {message}"),
},
}
@@ -257,17 +265,17 @@ WILLING_STYLE_CONFIG = {
"file_format": ("{time:YYYY-MM-DD HH:mm:ss} | {level: <8} | {extra[module]: <15} | 意愿 | {message}"),
},
"simple": {
- "console_format": ("{time:MM-DD HH:mm} | 意愿 | {message}"), # noqa: E501
+ "console_format": (
+ "{time:MM-DD HH:mm} | 意愿 | {message}"
+ ), # noqa: E501
"file_format": ("{time:YYYY-MM-DD HH:mm:ss} | {level: <8} | {extra[module]: <15} | 意愿 | {message}"),
},
}
-
-
# 根据SIMPLE_OUTPUT选择配置
MEMORY_STYLE_CONFIG = MEMORY_STYLE_CONFIG["simple"] if SIMPLE_OUTPUT else MEMORY_STYLE_CONFIG["advanced"]
-TOPIC_STYLE_CONFIG = TOPIC_STYLE_CONFIG["simple"] if SIMPLE_OUTPUT else TOPIC_STYLE_CONFIG["advanced"]
+TOPIC_STYLE_CONFIG = TOPIC_STYLE_CONFIG["simple"] if SIMPLE_OUTPUT else TOPIC_STYLE_CONFIG["advanced"]
SENDER_STYLE_CONFIG = SENDER_STYLE_CONFIG["simple"] if SIMPLE_OUTPUT else SENDER_STYLE_CONFIG["advanced"]
LLM_STYLE_CONFIG = LLM_STYLE_CONFIG["simple"] if SIMPLE_OUTPUT else LLM_STYLE_CONFIG["advanced"]
CHAT_STYLE_CONFIG = CHAT_STYLE_CONFIG["simple"] if SIMPLE_OUTPUT else CHAT_STYLE_CONFIG["advanced"]
@@ -275,7 +283,9 @@ MOOD_STYLE_CONFIG = MOOD_STYLE_CONFIG["simple"] if SIMPLE_OUTPUT else MOOD_STYLE
RELATION_STYLE_CONFIG = RELATION_STYLE_CONFIG["simple"] if SIMPLE_OUTPUT else RELATION_STYLE_CONFIG["advanced"]
SCHEDULE_STYLE_CONFIG = SCHEDULE_STYLE_CONFIG["simple"] if SIMPLE_OUTPUT else SCHEDULE_STYLE_CONFIG["advanced"]
HEARTFLOW_STYLE_CONFIG = HEARTFLOW_STYLE_CONFIG["simple"] if SIMPLE_OUTPUT else HEARTFLOW_STYLE_CONFIG["advanced"]
-SUB_HEARTFLOW_STYLE_CONFIG = SUB_HEARTFLOW_STYLE_CONFIG["simple"] if SIMPLE_OUTPUT else SUB_HEARTFLOW_STYLE_CONFIG["advanced"] # noqa: E501
+SUB_HEARTFLOW_STYLE_CONFIG = (
+ SUB_HEARTFLOW_STYLE_CONFIG["simple"] if SIMPLE_OUTPUT else SUB_HEARTFLOW_STYLE_CONFIG["advanced"]
+) # noqa: E501
WILLING_STYLE_CONFIG = WILLING_STYLE_CONFIG["simple"] if SIMPLE_OUTPUT else WILLING_STYLE_CONFIG["advanced"]
diff --git a/src/gui/reasoning_gui.py b/src/gui/reasoning_gui.py
index 9a35e8142..d018216a2 100644
--- a/src/gui/reasoning_gui.py
+++ b/src/gui/reasoning_gui.py
@@ -6,8 +6,9 @@ import time
from datetime import datetime
from typing import Dict, List
from typing import Optional
-sys.path.insert(0, sys.path[0]+"/../")
-sys.path.insert(0, sys.path[0]+"/../")
+
+sys.path.insert(0, sys.path[0] + "/../")
+sys.path.insert(0, sys.path[0] + "/../")
from src.common.logger import get_module_logger
import customtkinter as ctk
diff --git a/src/main.py b/src/main.py
index 4f0361998..1395273d4 100644
--- a/src/main.py
+++ b/src/main.py
@@ -90,8 +90,8 @@ class MainSystem:
# 启动心流系统
asyncio.create_task(heartflow.heartflow_start_working())
logger.success("心流系统启动成功")
-
- init_time = int(1000*(time.time()- init_start_time))
+
+ init_time = int(1000 * (time.time() - init_start_time))
logger.success(f"初始化完成,神经元放电{init_time}次")
except Exception as e:
logger.error(f"启动大脑和外部世界失败: {e}")
diff --git a/src/plugins/chat/bot.py b/src/plugins/chat/bot.py
index d043204e0..a94b88fda 100644
--- a/src/plugins/chat/bot.py
+++ b/src/plugins/chat/bot.py
@@ -56,7 +56,7 @@ class ChatBot:
5. 更新关系
6. 更新情绪
"""
-
+
message = MessageRecv(message_data)
groupinfo = message.message_info.group_info
userinfo = message.message_info.user_info
@@ -68,7 +68,7 @@ class ChatBot:
chat = await chat_manager.get_or_create_stream(
platform=messageinfo.platform,
user_info=userinfo,
- group_info=groupinfo,
+ group_info=groupinfo,
)
message.update_chat_stream(chat)
@@ -81,15 +81,12 @@ class ChatBot:
logger.debug(f"2消息处理时间: {timer2 - timer1}秒")
# 过滤词/正则表达式过滤
- if (
- self._check_ban_words(message.processed_plain_text, chat, userinfo)
- or self._check_ban_regex(message.raw_message, chat, userinfo)
+ if self._check_ban_words(message.processed_plain_text, chat, userinfo) or self._check_ban_regex(
+ message.raw_message, chat, userinfo
):
return
-
await self.storage.store_message(message, chat)
-
timer1 = time.time()
interested_rate = 0
@@ -99,7 +96,6 @@ class ChatBot:
timer2 = time.time()
logger.debug(f"3记忆激活时间: {timer2 - timer1}秒")
-
is_mentioned = is_mentioned_bot_in_message(message)
if global_config.enable_think_flow:
@@ -124,17 +120,17 @@ class ChatBot:
timer2 = time.time()
logger.debug(f"4计算意愿激活时间: {timer2 - timer1}秒")
- #神秘的消息流数据结构处理
+ # 神秘的消息流数据结构处理
if chat.group_info:
if chat.group_info.group_name:
mes_name_dict = chat.group_info.group_name
- mes_name = mes_name_dict.get('group_name', '无名群聊')
+ mes_name = mes_name_dict.get("group_name", "无名群聊")
else:
- mes_name = '群聊'
+ mes_name = "群聊"
else:
- mes_name = '私聊'
-
- #打印收到的信息的信息
+ mes_name = "私聊"
+
+ # 打印收到的信息的信息
current_time = time.strftime("%H:%M:%S", time.localtime(messageinfo.time))
logger.info(
f"[{current_time}][{mes_name}]"
@@ -145,48 +141,47 @@ class ChatBot:
if message.message_info.additional_config:
if "maimcore_reply_probability_gain" in message.message_info.additional_config.keys():
reply_probability += message.message_info.additional_config["maimcore_reply_probability_gain"]
-
-
+
# 开始组织语言
if random() < reply_probability:
timer1 = time.time()
response_set, thinking_id = await self._generate_response_from_message(message, chat, userinfo, messageinfo)
timer2 = time.time()
logger.info(f"5生成回复时间: {timer2 - timer1}秒")
-
+
if not response_set:
logger.info("为什么生成回复失败?")
return
-
+
# 发送消息
timer1 = time.time()
await self._send_response_messages(message, chat, response_set, thinking_id)
timer2 = time.time()
logger.info(f"7发送消息时间: {timer2 - timer1}秒")
-
+
# 处理表情包
timer1 = time.time()
await self._handle_emoji(message, chat, response_set)
timer2 = time.time()
logger.debug(f"8处理表情包时间: {timer2 - timer1}秒")
-
+
timer1 = time.time()
await self._update_using_response(message, chat, response_set)
timer2 = time.time()
logger.info(f"6更新htfl时间: {timer2 - timer1}秒")
-
+
# 更新情绪和关系
# await self._update_emotion_and_relationship(message, chat, response_set)
async def _generate_response_from_message(self, message, chat, userinfo, messageinfo):
"""生成回复内容
-
+
Args:
message: 接收到的消息
chat: 聊天流对象
userinfo: 用户信息对象
messageinfo: 消息信息对象
-
+
Returns:
tuple: (response, raw_content) 回复内容和原始内容
"""
@@ -195,7 +190,7 @@ class ChatBot:
user_nickname=global_config.BOT_NICKNAME,
platform=messageinfo.platform,
)
-
+
thinking_time_point = round(time.time(), 2)
thinking_id = "mt" + str(thinking_time_point)
thinking_message = MessageThinking(
@@ -208,9 +203,9 @@ class ChatBot:
message_manager.add_message(thinking_message)
willing_manager.change_reply_willing_sent(chat)
-
+
response_set = await self.gpt.generate_response(message)
-
+
return response_set, thinking_id
async def _update_using_response(self, message, response_set):
@@ -221,14 +216,13 @@ class ChatBot:
chat_talking_prompt = get_recent_group_detailed_plain_text(
stream_id, limit=global_config.MAX_CONTEXT_SIZE, combine=True
)
-
- heartflow.get_subheartflow(stream_id).do_after_reply(response_set, chat_talking_prompt)
+ heartflow.get_subheartflow(stream_id).do_after_reply(response_set, chat_talking_prompt)
async def _send_response_messages(self, message, chat, response_set, thinking_id):
container = message_manager.get_container(chat.stream_id)
thinking_message = None
-
+
# logger.info(f"开始发送消息准备")
for msg in container.messages:
if isinstance(msg, MessageThinking) and msg.message_info.message_id == thinking_id:
@@ -243,7 +237,7 @@ class ChatBot:
# logger.info(f"开始发送消息")
thinking_start_time = thinking_message.thinking_start_time
message_set = MessageSet(chat, thinking_id)
-
+
mark_head = False
for msg in response_set:
message_segment = Seg(type="text", data=msg)
@@ -270,7 +264,7 @@ class ChatBot:
async def _handle_emoji(self, message, chat, response):
"""处理表情包
-
+
Args:
message: 接收到的消息
chat: 聊天流对象
@@ -281,10 +275,10 @@ class ChatBot:
if emoji_raw:
emoji_path, description = emoji_raw
emoji_cq = image_path_to_base64(emoji_path)
-
+
thinking_time_point = round(message.message_info.time, 2)
bot_response_time = thinking_time_point + (1 if random() < 0.5 else -1)
-
+
message_segment = Seg(type="emoji", data=emoji_cq)
bot_message = MessageSending(
message_id="mt" + str(thinking_time_point),
@@ -304,7 +298,7 @@ class ChatBot:
async def _update_emotion_and_relationship(self, message, chat, response, raw_content):
"""更新情绪和关系
-
+
Args:
message: 接收到的消息
chat: 聊天流对象
@@ -313,27 +307,24 @@ class ChatBot:
"""
stance, emotion = await self.gpt._get_emotion_tags(raw_content, message.processed_plain_text)
logger.debug(f"为 '{response}' 立场为:{stance} 获取到的情感标签为:{emotion}")
- await relationship_manager.calculate_update_relationship_value(
- chat_stream=chat, label=emotion, stance=stance
- )
+ await relationship_manager.calculate_update_relationship_value(chat_stream=chat, label=emotion, stance=stance)
self.mood_manager.update_mood_from_emotion(emotion, global_config.mood_intensity_factor)
def _check_ban_words(self, text: str, chat, userinfo) -> bool:
"""检查消息中是否包含过滤词
-
+
Args:
text: 要检查的文本
chat: 聊天流对象
userinfo: 用户信息对象
-
+
Returns:
bool: 如果包含过滤词返回True,否则返回False
"""
for word in global_config.ban_words:
if word in text:
logger.info(
- f"[{chat.group_info.group_name if chat.group_info else '私聊'}]"
- f"{userinfo.user_nickname}:{text}"
+ f"[{chat.group_info.group_name if chat.group_info else '私聊'}]{userinfo.user_nickname}:{text}"
)
logger.info(f"[过滤词识别]消息中含有{word},filtered")
return True
@@ -341,24 +332,24 @@ class ChatBot:
def _check_ban_regex(self, text: str, chat, userinfo) -> bool:
"""检查消息是否匹配过滤正则表达式
-
+
Args:
text: 要检查的文本
chat: 聊天流对象
userinfo: 用户信息对象
-
+
Returns:
bool: 如果匹配过滤正则返回True,否则返回False
"""
for pattern in global_config.ban_msgs_regex:
if re.search(pattern, text):
logger.info(
- f"[{chat.group_info.group_name if chat.group_info else '私聊'}]"
- f"{userinfo.user_nickname}:{text}"
+ f"[{chat.group_info.group_name if chat.group_info else '私聊'}]{userinfo.user_nickname}:{text}"
)
logger.info(f"[正则表达式过滤]消息匹配到{pattern},filtered")
return True
return False
+
# 创建全局ChatBot实例
chat_bot = ChatBot()
diff --git a/src/plugins/chat/emoji_manager.py b/src/plugins/chat/emoji_manager.py
index 7c42d4bff..18a54b1ec 100644
--- a/src/plugins/chat/emoji_manager.py
+++ b/src/plugins/chat/emoji_manager.py
@@ -343,7 +343,7 @@ class EmojiManager:
while True:
logger.info("[扫描] 开始扫描新表情包...")
await self.scan_new_emojis()
- await asyncio.sleep(global_config.EMOJI_CHECK_INTERVAL * 60)
+ await asyncio.sleep(global_config.EMOJI_CHECK_INTERVAL * 60)
def check_emoji_file_integrity(self):
"""检查表情包文件完整性
diff --git a/src/plugins/chat/llm_generator.py b/src/plugins/chat/llm_generator.py
index 10d73b8f1..c5b2d197d 100644
--- a/src/plugins/chat/llm_generator.py
+++ b/src/plugins/chat/llm_generator.py
@@ -31,12 +31,9 @@ class ResponseGenerator:
request_type="response",
)
self.model_normal = LLM_request(
- model=global_config.llm_normal,
- temperature=0.7,
- max_tokens=3000,
- request_type="response"
+ model=global_config.llm_normal, temperature=0.7, max_tokens=3000, request_type="response"
)
-
+
self.model_sum = LLM_request(
model=global_config.llm_summary_by_topic, temperature=0.7, max_tokens=3000, request_type="relation"
)
@@ -53,8 +50,9 @@ class ResponseGenerator:
self.current_model_type = "浅浅的"
current_model = self.model_normal
- logger.info(f"{self.current_model_type}思考:{message.processed_plain_text[:30] + '...' if len(message.processed_plain_text) > 30 else message.processed_plain_text}") # noqa: E501
-
+ logger.info(
+ f"{self.current_model_type}思考:{message.processed_plain_text[:30] + '...' if len(message.processed_plain_text) > 30 else message.processed_plain_text}"
+ ) # noqa: E501
model_response = await self._generate_response_with_model(message, current_model)
@@ -64,7 +62,6 @@ class ResponseGenerator:
logger.info(f"{global_config.BOT_NICKNAME}的回复是:{model_response}")
model_response = await self._process_response(model_response)
-
return model_response
else:
logger.info(f"{self.current_model_type}思考,失败")
@@ -93,7 +90,7 @@ class ResponseGenerator:
)
timer2 = time.time()
logger.info(f"构建prompt时间: {timer2 - timer1}秒")
-
+
try:
content, reasoning_content, self.current_model_name = await model.generate_response(prompt)
except Exception:
diff --git a/src/plugins/chat/prompt_builder.py b/src/plugins/chat/prompt_builder.py
index bad09d87d..ea81a14c8 100644
--- a/src/plugins/chat/prompt_builder.py
+++ b/src/plugins/chat/prompt_builder.py
@@ -37,7 +37,6 @@ class PromptBuilder:
current_mind_info = heartflow.get_subheartflow(stream_id).current_mind
-
# relation_prompt = ""
# for person in who_chat_in_group:
# relation_prompt += relationship_manager.build_relationship_info(person)
@@ -52,7 +51,7 @@ class PromptBuilder:
# 心情
mood_manager = MoodManager.get_instance()
mood_prompt = mood_manager.get_prompt()
-
+
logger.info(f"心情prompt: {mood_prompt}")
# 日程构建
@@ -72,13 +71,12 @@ class PromptBuilder:
chat_in_group = False
chat_talking_prompt = chat_talking_prompt
# print(f"\033[1;34m[调试]\033[0m 已从数据库获取群 {group_id} 的消息记录:{chat_talking_prompt}")
-
# 使用新的记忆获取方法
memory_prompt = ""
start_time = time.time()
- #调用 hippocampus 的 get_relevant_memories 方法
+ # 调用 hippocampus 的 get_relevant_memories 方法
relevant_memories = await HippocampusManager.get_instance().get_memory_from_text(
text=message_txt, max_memory_num=3, max_memory_length=2, max_depth=2, fast_retrieval=False
)
@@ -165,11 +163,8 @@ class PromptBuilder:
请注意不要输出多余内容(包括前后缀,冒号和引号,括号,表情等),只输出回复内容。
{moderation_prompt}不要输出多余内容(包括前后缀,冒号和引号,括号,表情包,at或 @等 )。"""
-
return prompt
-
-
def _build_initiative_prompt_select(self, group_id, probability_1=0.8, probability_2=0.1):
current_date = time.strftime("%Y-%m-%d", time.localtime())
current_time = time.strftime("%H:%M:%S", time.localtime())
diff --git a/src/plugins/chat/storage.py b/src/plugins/chat/storage.py
index 555ac997c..7275722da 100644
--- a/src/plugins/chat/storage.py
+++ b/src/plugins/chat/storage.py
@@ -9,9 +9,7 @@ logger = get_module_logger("message_storage")
class MessageStorage:
- async def store_message(
- self, message: Union[MessageSending, MessageRecv], chat_stream: ChatStream
- ) -> None:
+ async def store_message(self, message: Union[MessageSending, MessageRecv], chat_stream: ChatStream) -> None:
"""存储消息到数据库"""
try:
message_data = {
diff --git a/src/plugins/memory_system/Hippocampus.py b/src/plugins/memory_system/Hippocampus.py
index 0032fe886..aff35f002 100644
--- a/src/plugins/memory_system/Hippocampus.py
+++ b/src/plugins/memory_system/Hippocampus.py
@@ -11,7 +11,7 @@ from collections import Counter
from ...common.database import db
from ...plugins.models.utils_model import LLM_request
from src.common.logger import get_module_logger, LogConfig, MEMORY_STYLE_CONFIG
-from src.plugins.memory_system.sample_distribution import MemoryBuildScheduler #分布生成器
+from src.plugins.memory_system.sample_distribution import MemoryBuildScheduler # 分布生成器
from .memory_config import MemoryConfig
@@ -56,6 +56,7 @@ def get_closest_chat_from_db(length: int, timestamp: str):
return []
+
def calculate_information_content(text):
"""计算文本的信息量(熵)"""
char_count = Counter(text)
@@ -68,6 +69,7 @@ def calculate_information_content(text):
return entropy
+
def cosine_similarity(v1, v2):
"""计算余弦相似度"""
dot_product = np.dot(v1, v2)
@@ -223,7 +225,8 @@ class Memory_graph:
return None
-#负责海马体与其他部分的交互
+
+# 负责海马体与其他部分的交互
class EntorhinalCortex:
def __init__(self, hippocampus):
self.hippocampus = hippocampus
@@ -243,7 +246,7 @@ class EntorhinalCortex:
n_hours2=self.config.memory_build_distribution[3],
std_hours2=self.config.memory_build_distribution[4],
weight2=self.config.memory_build_distribution[5],
- total_samples=self.config.build_memory_sample_num
+ total_samples=self.config.build_memory_sample_num,
)
timestamps = sample_scheduler.get_timestamp_array()
@@ -251,9 +254,7 @@ class EntorhinalCortex:
chat_samples = []
for timestamp in timestamps:
messages = self.random_get_msg_snippet(
- timestamp,
- self.config.build_memory_sample_length,
- max_memorized_time_per_msg
+ timestamp, self.config.build_memory_sample_length, max_memorized_time_per_msg
)
if messages:
time_diff = (datetime.datetime.now().timestamp() - timestamp) / 3600
@@ -455,25 +456,25 @@ class EntorhinalCortex:
"""清空数据库并重新同步所有记忆数据"""
start_time = time.time()
logger.info("[数据库] 开始重新同步所有记忆数据...")
-
+
# 清空数据库
clear_start = time.time()
db.graph_data.nodes.delete_many({})
db.graph_data.edges.delete_many({})
clear_end = time.time()
logger.info(f"[数据库] 清空数据库耗时: {clear_end - clear_start:.2f}秒")
-
+
# 获取所有节点和边
memory_nodes = list(self.memory_graph.G.nodes(data=True))
memory_edges = list(self.memory_graph.G.edges(data=True))
-
+
# 重新写入节点
node_start = time.time()
for concept, data in memory_nodes:
memory_items = data.get("memory_items", [])
if not isinstance(memory_items, list):
memory_items = [memory_items] if memory_items else []
-
+
node_data = {
"concept": concept,
"memory_items": memory_items,
@@ -484,7 +485,7 @@ class EntorhinalCortex:
db.graph_data.nodes.insert_one(node_data)
node_end = time.time()
logger.info(f"[数据库] 写入 {len(memory_nodes)} 个节点耗时: {node_end - node_start:.2f}秒")
-
+
# 重新写入边
edge_start = time.time()
for source, target, data in memory_edges:
@@ -499,12 +500,13 @@ class EntorhinalCortex:
db.graph_data.edges.insert_one(edge_data)
edge_end = time.time()
logger.info(f"[数据库] 写入 {len(memory_edges)} 条边耗时: {edge_end - edge_start:.2f}秒")
-
+
end_time = time.time()
logger.success(f"[数据库] 重新同步完成,总耗时: {end_time - start_time:.2f}秒")
logger.success(f"[数据库] 同步了 {len(memory_nodes)} 个节点和 {len(memory_edges)} 条边")
-#负责整合,遗忘,合并记忆
+
+# 负责整合,遗忘,合并记忆
class ParahippocampalGyrus:
def __init__(self, hippocampus):
self.hippocampus = hippocampus
@@ -567,26 +569,26 @@ class ParahippocampalGyrus:
topic_num = self.hippocampus.calculate_topic_num(input_text, compress_rate)
topics_response = await self.hippocampus.llm_topic_judge.generate_response(
- self.hippocampus.find_topic_llm(input_text, topic_num))
+ self.hippocampus.find_topic_llm(input_text, topic_num)
+ )
# 使用正则表达式提取<>中的内容
- topics = re.findall(r'<([^>]+)>', topics_response[0])
-
+ topics = re.findall(r"<([^>]+)>", topics_response[0])
+
# 如果没有找到<>包裹的内容,返回['none']
if not topics:
- topics = ['none']
+ topics = ["none"]
else:
# 处理提取出的话题
topics = [
topic.strip()
- for topic in ','.join(topics).replace(",", ",").replace("、", ",").replace(" ", ",").split(",")
+ for topic in ",".join(topics).replace(",", ",").replace("、", ",").replace(" ", ",").split(",")
if topic.strip()
]
# 过滤掉包含禁用关键词的topic
filtered_topics = [
- topic for topic in topics
- if not any(keyword in topic for keyword in self.config.memory_ban_words)
+ topic for topic in topics if not any(keyword in topic for keyword in self.config.memory_ban_words)
]
logger.debug(f"过滤后话题: {filtered_topics}")
@@ -601,12 +603,12 @@ class ParahippocampalGyrus:
# 等待所有任务完成
compressed_memory = set()
similar_topics_dict = {}
-
+
for topic, task in tasks:
response = await task
if response:
compressed_memory.add((topic, response[0]))
-
+
existing_topics = list(self.memory_graph.G.nodes())
similar_topics = []
@@ -651,7 +653,7 @@ class ParahippocampalGyrus:
current_time = datetime.datetime.now().timestamp()
logger.debug(f"添加节点: {', '.join(topic for topic, _ in compressed_memory)}")
all_added_nodes.extend(topic for topic, _ in compressed_memory)
-
+
for topic, memory in compressed_memory:
self.memory_graph.add_dot(topic, memory)
all_topics.append(topic)
@@ -661,13 +663,13 @@ class ParahippocampalGyrus:
for similar_topic, similarity in similar_topics:
if topic != similar_topic:
strength = int(similarity * 10)
-
+
logger.debug(f"连接相似节点: {topic} 和 {similar_topic} (强度: {strength})")
all_added_edges.append(f"{topic}-{similar_topic}")
-
+
all_connected_nodes.append(topic)
all_connected_nodes.append(similar_topic)
-
+
self.memory_graph.G.add_edge(
topic,
similar_topic,
@@ -685,14 +687,11 @@ class ParahippocampalGyrus:
logger.success(f"更新记忆: {', '.join(all_added_nodes)}")
logger.debug(f"强化连接: {', '.join(all_added_edges)}")
logger.info(f"强化连接节点: {', '.join(all_connected_nodes)}")
-
+
await self.hippocampus.entorhinal_cortex.sync_memory_to_db()
-
+
end_time = time.time()
- logger.success(
- f"---------------------记忆构建耗时: {end_time - start_time:.2f} "
- "秒---------------------"
- )
+ logger.success(f"---------------------记忆构建耗时: {end_time - start_time:.2f} 秒---------------------")
async def operation_forget_topic(self, percentage=0.005):
start_time = time.time()
@@ -714,11 +713,11 @@ class ParahippocampalGyrus:
# 使用列表存储变化信息
edge_changes = {
"weakened": [], # 存储减弱的边
- "removed": [] # 存储移除的边
+ "removed": [], # 存储移除的边
}
node_changes = {
- "reduced": [], # 存储减少记忆的节点
- "removed": [] # 存储移除的节点
+ "reduced": [], # 存储减少记忆的节点
+ "removed": [], # 存储移除的节点
}
current_time = datetime.datetime.now().timestamp()
@@ -771,35 +770,40 @@ class ParahippocampalGyrus:
if any(edge_changes.values()) or any(node_changes.values()):
sync_start = time.time()
-
+
await self.hippocampus.entorhinal_cortex.resync_memory_to_db()
-
+
sync_end = time.time()
logger.info(f"[遗忘] 数据库同步耗时: {sync_end - sync_start:.2f}秒")
-
+
# 汇总输出所有变化
logger.info("[遗忘] 遗忘操作统计:")
if edge_changes["weakened"]:
logger.info(
- f"[遗忘] 减弱的连接 ({len(edge_changes['weakened'])}个): {', '.join(edge_changes['weakened'])}")
-
+ f"[遗忘] 减弱的连接 ({len(edge_changes['weakened'])}个): {', '.join(edge_changes['weakened'])}"
+ )
+
if edge_changes["removed"]:
logger.info(
- f"[遗忘] 移除的连接 ({len(edge_changes['removed'])}个): {', '.join(edge_changes['removed'])}")
-
+ f"[遗忘] 移除的连接 ({len(edge_changes['removed'])}个): {', '.join(edge_changes['removed'])}"
+ )
+
if node_changes["reduced"]:
logger.info(
- f"[遗忘] 减少记忆的节点 ({len(node_changes['reduced'])}个): {', '.join(node_changes['reduced'])}")
-
+ f"[遗忘] 减少记忆的节点 ({len(node_changes['reduced'])}个): {', '.join(node_changes['reduced'])}"
+ )
+
if node_changes["removed"]:
logger.info(
- f"[遗忘] 移除的节点 ({len(node_changes['removed'])}个): {', '.join(node_changes['removed'])}")
+ f"[遗忘] 移除的节点 ({len(node_changes['removed'])}个): {', '.join(node_changes['removed'])}"
+ )
else:
logger.info("[遗忘] 本次检查没有节点或连接满足遗忘条件")
end_time = time.time()
logger.info(f"[遗忘] 总耗时: {end_time - start_time:.2f}秒")
+
# 海马体
class Hippocampus:
def __init__(self):
@@ -817,8 +821,8 @@ class Hippocampus:
self.parahippocampal_gyrus = ParahippocampalGyrus(self)
# 从数据库加载记忆图
self.entorhinal_cortex.sync_memory_from_db()
- self.llm_topic_judge = LLM_request(self.config.llm_topic_judge,request_type="memory")
- self.llm_summary_by_topic = LLM_request(self.config.llm_summary_by_topic,request_type="memory")
+ self.llm_topic_judge = LLM_request(self.config.llm_topic_judge, request_type="memory")
+ self.llm_summary_by_topic = LLM_request(self.config.llm_summary_by_topic, request_type="memory")
def get_all_node_names(self) -> list:
"""获取记忆图中所有节点的名字列表"""
@@ -901,16 +905,21 @@ class Hippocampus:
memory_items = node_data.get("memory_items", [])
if not isinstance(memory_items, list):
memory_items = [memory_items] if memory_items else []
-
+
memories.append((node, memory_items, similarity))
# 按相似度降序排序
memories.sort(key=lambda x: x[2], reverse=True)
return memories
- async def get_memory_from_text(self, text: str, max_memory_num: int = 3, max_memory_length: int = 2,
- max_depth: int = 3,
- fast_retrieval: bool = False) -> list:
+ async def get_memory_from_text(
+ self,
+ text: str,
+ max_memory_num: int = 3,
+ max_memory_length: int = 2,
+ max_depth: int = 3,
+ fast_retrieval: bool = False,
+ ) -> list:
"""从文本中提取关键词并获取相关记忆。
Args:
@@ -943,18 +952,16 @@ class Hippocampus:
# 使用LLM提取关键词
topic_num = min(5, max(1, int(len(text) * 0.1))) # 根据文本长度动态调整关键词数量
# logger.info(f"提取关键词数量: {topic_num}")
- topics_response = await self.llm_topic_judge.generate_response(
- self.find_topic_llm(text, topic_num)
- )
+ topics_response = await self.llm_topic_judge.generate_response(self.find_topic_llm(text, topic_num))
# 提取关键词
- keywords = re.findall(r'<([^>]+)>', topics_response[0])
+ keywords = re.findall(r"<([^>]+)>", topics_response[0])
if not keywords:
keywords = []
else:
keywords = [
keyword.strip()
- for keyword in ','.join(keywords).replace(",", ",").replace("、", ",").replace(" ", ",").split(",")
+ for keyword in ",".join(keywords).replace(",", ",").replace("、", ",").replace(" ", ",").split(",")
if keyword.strip()
]
@@ -965,7 +972,7 @@ class Hippocampus:
if not valid_keywords:
logger.info("没有找到有效的关键词节点")
return []
-
+
logger.info(f"有效的关键词: {', '.join(valid_keywords)}")
# 从每个关键词获取记忆
@@ -981,35 +988,36 @@ class Hippocampus:
visited_nodes = {keyword}
# 待处理的节点队列,每个元素是(节点, 激活值, 当前深度)
nodes_to_process = [(keyword, 1.0, 0)]
-
+
while nodes_to_process:
current_node, current_activation, current_depth = nodes_to_process.pop(0)
-
+
# 如果激活值小于0或超过最大深度,停止扩散
if current_activation <= 0 or current_depth >= max_depth:
continue
-
+
# 获取当前节点的所有邻居
neighbors = list(self.memory_graph.G.neighbors(current_node))
-
+
for neighbor in neighbors:
if neighbor in visited_nodes:
continue
-
+
# 获取连接强度
edge_data = self.memory_graph.G[current_node][neighbor]
strength = edge_data.get("strength", 1)
-
+
# 计算新的激活值
new_activation = current_activation - (1 / strength)
-
+
if new_activation > 0:
activation_values[neighbor] = new_activation
visited_nodes.add(neighbor)
nodes_to_process.append((neighbor, new_activation, current_depth + 1))
logger.debug(
- f"节点 '{neighbor}' 被激活,激活值: {new_activation:.2f} (通过 '{current_node}' 连接,强度: {strength}, 深度: {current_depth + 1})") # noqa: E501
-
+ f"节点 '{neighbor}' 被激活,激活值: {new_activation:.2f} (通过 '{current_node}' 连接,强度: {strength}, 深度: {current_depth + 1})"
+ ) # noqa: E501
+
# 更新激活映射
for node, activation_value in activation_values.items():
if activation_value > 0:
@@ -1017,7 +1025,7 @@ class Hippocampus:
activate_map[node] += activation_value
else:
activate_map[node] = activation_value
-
+
# 输出激活映射
# logger.info("激活映射统计:")
# for node, total_activation in sorted(activate_map.items(), key=lambda x: x[1], reverse=True):
@@ -1026,28 +1034,24 @@ class Hippocampus:
# 基于激活值平方的独立概率选择
remember_map = {}
# logger.info("基于激活值平方的归一化选择:")
-
+
# 计算所有激活值的平方和
- total_squared_activation = sum(activation ** 2 for activation in activate_map.values())
+ total_squared_activation = sum(activation**2 for activation in activate_map.values())
if total_squared_activation > 0:
# 计算归一化的激活值
normalized_activations = {
- node: (activation ** 2) / total_squared_activation
- for node, activation in activate_map.items()
+ node: (activation**2) / total_squared_activation for node, activation in activate_map.items()
}
-
+
# 按归一化激活值排序并选择前max_memory_num个
- sorted_nodes = sorted(
- normalized_activations.items(),
- key=lambda x: x[1],
- reverse=True
- )[:max_memory_num]
-
+ sorted_nodes = sorted(normalized_activations.items(), key=lambda x: x[1], reverse=True)[:max_memory_num]
+
# 将选中的节点添加到remember_map
for node, normalized_activation in sorted_nodes:
remember_map[node] = activate_map[node] # 使用原始激活值
logger.debug(
- f"节点 '{node}' (归一化激活值: {normalized_activation:.2f}, 激活值: {activate_map[node]:.2f})")
+ f"节点 '{node}' (归一化激活值: {normalized_activation:.2f}, 激活值: {activate_map[node]:.2f})"
+ )
else:
logger.info("没有有效的激活值")
@@ -1060,7 +1064,7 @@ class Hippocampus:
memory_items = node_data.get("memory_items", [])
if not isinstance(memory_items, list):
memory_items = [memory_items] if memory_items else []
-
+
if memory_items:
logger.debug(f"节点包含 {len(memory_items)} 条记忆")
# 计算每条记忆与输入文本的相似度
@@ -1079,7 +1083,7 @@ class Hippocampus:
memory_similarities.sort(key=lambda x: x[1], reverse=True)
# 获取最匹配的记忆
top_memories = memory_similarities[:max_memory_length]
-
+
# 添加到结果中
for memory, similarity in top_memories:
all_memories.append((node, [memory], similarity))
@@ -1106,11 +1110,10 @@ class Hippocampus:
memory = memory_items[0] # 因为每个topic只有一条记忆
result.append((topic, memory))
logger.info(f"选中记忆: {memory} (来自节点: {topic})")
-
+
return result
-
- async def get_activate_from_text(self, text: str, max_depth: int = 3,
- fast_retrieval: bool = False) -> float:
+
+ async def get_activate_from_text(self, text: str, max_depth: int = 3, fast_retrieval: bool = False) -> float:
"""从文本中提取关键词并获取相关记忆。
Args:
@@ -1140,18 +1143,16 @@ class Hippocampus:
# 使用LLM提取关键词
topic_num = min(5, max(1, int(len(text) * 0.1))) # 根据文本长度动态调整关键词数量
# logger.info(f"提取关键词数量: {topic_num}")
- topics_response = await self.llm_topic_judge.generate_response(
- self.find_topic_llm(text, topic_num)
- )
+ topics_response = await self.llm_topic_judge.generate_response(self.find_topic_llm(text, topic_num))
# 提取关键词
- keywords = re.findall(r'<([^>]+)>', topics_response[0])
+ keywords = re.findall(r"<([^>]+)>", topics_response[0])
if not keywords:
keywords = []
else:
keywords = [
keyword.strip()
- for keyword in ','.join(keywords).replace(",", ",").replace("、", ",").replace(" ", ",").split(",")
+ for keyword in ",".join(keywords).replace(",", ",").replace("、", ",").replace(" ", ",").split(",")
if keyword.strip()
]
@@ -1162,7 +1163,7 @@ class Hippocampus:
if not valid_keywords:
logger.info("没有找到有效的关键词节点")
return 0
-
+
logger.info(f"有效的关键词: {', '.join(valid_keywords)}")
# 从每个关键词获取记忆
@@ -1177,35 +1178,35 @@ class Hippocampus:
visited_nodes = {keyword}
# 待处理的节点队列,每个元素是(节点, 激活值, 当前深度)
nodes_to_process = [(keyword, 1.0, 0)]
-
+
while nodes_to_process:
current_node, current_activation, current_depth = nodes_to_process.pop(0)
-
+
# 如果激活值小于0或超过最大深度,停止扩散
if current_activation <= 0 or current_depth >= max_depth:
continue
-
+
# 获取当前节点的所有邻居
neighbors = list(self.memory_graph.G.neighbors(current_node))
-
+
for neighbor in neighbors:
if neighbor in visited_nodes:
continue
-
+
# 获取连接强度
edge_data = self.memory_graph.G[current_node][neighbor]
strength = edge_data.get("strength", 1)
-
+
# 计算新的激活值
new_activation = current_activation - (1 / strength)
-
+
if new_activation > 0:
activation_values[neighbor] = new_activation
visited_nodes.add(neighbor)
nodes_to_process.append((neighbor, new_activation, current_depth + 1))
# logger.debug(
- # f"节点 '{neighbor}' 被激活,激活值: {new_activation:.2f} (通过 '{current_node}' 连接,强度: {strength}, 深度: {current_depth + 1})") # noqa: E501
-
+ # f"节点 '{neighbor}' 被激活,激活值: {new_activation:.2f} (通过 '{current_node}' 连接,强度: {strength}, 深度: {current_depth + 1})") # noqa: E501
+
# 更新激活映射
for node, activation_value in activation_values.items():
if activation_value > 0:
@@ -1213,23 +1214,24 @@ class Hippocampus:
activate_map[node] += activation_value
else:
activate_map[node] = activation_value
-
+
# 输出激活映射
# logger.info("激活映射统计:")
# for node, total_activation in sorted(activate_map.items(), key=lambda x: x[1], reverse=True):
# logger.info(f"节点 '{node}': 累计激活值 = {total_activation:.2f}")
-
+
# 计算激活节点数与总节点数的比值
total_activation = sum(activate_map.values())
logger.info(f"总激活值: {total_activation:.2f}")
total_nodes = len(self.memory_graph.G.nodes())
# activated_nodes = len(activate_map)
activation_ratio = total_activation / total_nodes if total_nodes > 0 else 0
- activation_ratio = activation_ratio*60
+ activation_ratio = activation_ratio * 60
logger.info(f"总激活值: {total_activation:.2f}, 总节点数: {total_nodes}, 激活: {activation_ratio}")
-
+
return activation_ratio
+
class HippocampusManager:
_instance = None
_hippocampus = None
@@ -1252,12 +1254,12 @@ class HippocampusManager:
"""初始化海马体实例"""
if self._initialized:
return self._hippocampus
-
+
self._global_config = global_config
self._hippocampus = Hippocampus()
self._hippocampus.initialize(global_config)
self._initialized = True
-
+
# 输出记忆系统参数信息
config = self._hippocampus.config
@@ -1265,16 +1267,15 @@ class HippocampusManager:
memory_graph = self._hippocampus.memory_graph.G
node_count = len(memory_graph.nodes())
edge_count = len(memory_graph.edges())
-
- logger.success(f'''--------------------------------
+
+ logger.success(f"""--------------------------------
记忆系统参数配置:
构建间隔: {global_config.build_memory_interval}秒|样本数: {config.build_memory_sample_num},长度: {config.build_memory_sample_length}|压缩率: {config.memory_compress_rate}
记忆构建分布: {config.memory_build_distribution}
遗忘间隔: {global_config.forget_memory_interval}秒|遗忘比例: {global_config.memory_forget_percentage}|遗忘: {config.memory_forget_time}小时之后
记忆图统计信息: 节点数量: {node_count}, 连接数量: {edge_count}
- --------------------------------''') #noqa: E501
-
-
+ --------------------------------""") # noqa: E501
+
return self._hippocampus
async def build_memory(self):
@@ -1289,17 +1290,22 @@ class HippocampusManager:
raise RuntimeError("HippocampusManager 尚未初始化,请先调用 initialize 方法")
return await self._hippocampus.parahippocampal_gyrus.operation_forget_topic(percentage)
- async def get_memory_from_text(self, text: str, max_memory_num: int = 3,
- max_memory_length: int = 2, max_depth: int = 3,
- fast_retrieval: bool = False) -> list:
+ async def get_memory_from_text(
+ self,
+ text: str,
+ max_memory_num: int = 3,
+ max_memory_length: int = 2,
+ max_depth: int = 3,
+ fast_retrieval: bool = False,
+ ) -> list:
"""从文本中获取相关记忆的公共接口"""
if not self._initialized:
raise RuntimeError("HippocampusManager 尚未初始化,请先调用 initialize 方法")
return await self._hippocampus.get_memory_from_text(
- text, max_memory_num, max_memory_length, max_depth, fast_retrieval)
+ text, max_memory_num, max_memory_length, max_depth, fast_retrieval
+ )
- async def get_activate_from_text(self, text: str, max_depth: int = 3,
- fast_retrieval: bool = False) -> float:
+ async def get_activate_from_text(self, text: str, max_depth: int = 3, fast_retrieval: bool = False) -> float:
"""从文本中获取激活值的公共接口"""
if not self._initialized:
raise RuntimeError("HippocampusManager 尚未初始化,请先调用 initialize 方法")
@@ -1316,5 +1322,3 @@ class HippocampusManager:
if not self._initialized:
raise RuntimeError("HippocampusManager 尚未初始化,请先调用 initialize 方法")
return self._hippocampus.get_all_node_names()
-
-
diff --git a/src/plugins/memory_system/debug_memory.py b/src/plugins/memory_system/debug_memory.py
index 9baf2e520..657811ac6 100644
--- a/src/plugins/memory_system/debug_memory.py
+++ b/src/plugins/memory_system/debug_memory.py
@@ -3,11 +3,13 @@ import asyncio
import time
import sys
import os
+
# 添加项目根目录到系统路径
sys.path.append(os.path.dirname(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))))
from src.plugins.memory_system.Hippocampus import HippocampusManager
from src.plugins.config.config import global_config
+
async def test_memory_system():
"""测试记忆系统的主要功能"""
try:
@@ -24,7 +26,7 @@ async def test_memory_system():
# 测试记忆检索
test_text = "千石可乐在群里聊天"
- test_text = '''[03-24 10:39:37] 麦麦(ta的id:2814567326): 早说散步结果下雨改成室内运动啊
+ test_text = """[03-24 10:39:37] 麦麦(ta的id:2814567326): 早说散步结果下雨改成室内运动啊
[03-24 10:39:37] 麦麦(ta的id:2814567326): [回复:变量] 变量就像今天计划总变
[03-24 10:39:44] 状态异常(ta的id:535554838): 要把本地文件改成弹出来的路径吗
[03-24 10:40:35] 状态异常(ta的id:535554838): [图片:这张图片显示的是Windows系统的环境变量设置界面。界面左侧列出了多个环境变量的值,包括Intel Dev Redist、Windows、Windows PowerShell、OpenSSH、NVIDIA Corporation的目录等。右侧有新建、编辑、浏览、删除、上移、下移和编辑文本等操作按钮。图片下方有一个错误提示框,显示"Windows找不到文件'mongodb\\bin\\mongod.exe'。请确定文件名是否正确后,再试一次。"这意味着用户试图运行MongoDB的mongod.exe程序时,系统找不到该文件。这可能是因为MongoDB的安装路径未正确添加到系统环境变量中,或者文件路径有误。
@@ -39,28 +41,21 @@ async def test_memory_system():
[03-24 10:46:12] (ta的id:3229291803): [表情包:这张表情包显示了一只手正在做"点赞"的动作,通常表示赞同、喜欢或支持。这个表情包所表达的情感是积极的、赞同的或支持的。]
[03-24 10:46:37] 星野風禾(ta的id:2890165435): 还能思考高达
[03-24 10:46:39] 星野風禾(ta的id:2890165435): 什么知识库
-[03-24 10:46:49] ❦幻凌慌てない(ta的id:2459587037): 为什么改了回复系数麦麦还是不怎么回复?大佬们''' # noqa: E501
-
+[03-24 10:46:49] ❦幻凌慌てない(ta的id:2459587037): 为什么改了回复系数麦麦还是不怎么回复?大佬们""" # noqa: E501
# test_text = '''千石可乐:分不清AI的陪伴和人类的陪伴,是这样吗?'''
print(f"开始测试记忆检索,测试文本: {test_text}\n")
memories = await hippocampus_manager.get_memory_from_text(
- text=test_text,
- max_memory_num=3,
- max_memory_length=2,
- max_depth=3,
- fast_retrieval=False
+ text=test_text, max_memory_num=3, max_memory_length=2, max_depth=3, fast_retrieval=False
)
-
+
await asyncio.sleep(1)
-
+
print("检索到的记忆:")
for topic, memory_items in memories:
print(f"主题: {topic}")
print(f"- {memory_items}")
-
-
# 测试记忆遗忘
# forget_start_time = time.time()
# # print("开始测试记忆遗忘...")
@@ -80,6 +75,7 @@ async def test_memory_system():
print(f"测试过程中出现错误: {e}")
raise
+
async def main():
"""主函数"""
try:
@@ -91,5 +87,6 @@ async def main():
print(f"程序执行出错: {e}")
raise
+
if __name__ == "__main__":
- asyncio.run(main())
\ No newline at end of file
+ asyncio.run(main())
diff --git a/src/plugins/memory_system/memory_config.py b/src/plugins/memory_system/memory_config.py
index 6c49d15fc..73f9c1dbd 100644
--- a/src/plugins/memory_system/memory_config.py
+++ b/src/plugins/memory_system/memory_config.py
@@ -1,24 +1,26 @@
from dataclasses import dataclass
from typing import List
+
@dataclass
class MemoryConfig:
"""记忆系统配置类"""
+
# 记忆构建相关配置
memory_build_distribution: List[float] # 记忆构建的时间分布参数
build_memory_sample_num: int # 每次构建记忆的样本数量
build_memory_sample_length: int # 每个样本的消息长度
memory_compress_rate: float # 记忆压缩率
-
+
# 记忆遗忘相关配置
memory_forget_time: int # 记忆遗忘时间(小时)
-
+
# 记忆过滤相关配置
memory_ban_words: List[str] # 记忆过滤词列表
llm_topic_judge: str # 话题判断模型
llm_summary_by_topic: str # 话题总结模型
-
+
@classmethod
def from_global_config(cls, global_config):
"""从全局配置创建记忆系统配置"""
@@ -30,5 +32,5 @@ class MemoryConfig:
memory_forget_time=global_config.memory_forget_time,
memory_ban_words=global_config.memory_ban_words,
llm_topic_judge=global_config.llm_topic_judge,
- llm_summary_by_topic=global_config.llm_summary_by_topic
- )
\ No newline at end of file
+ llm_summary_by_topic=global_config.llm_summary_by_topic,
+ )
diff --git a/src/plugins/memory_system/sample_distribution.py b/src/plugins/memory_system/sample_distribution.py
index dbe4b88a4..29218d21f 100644
--- a/src/plugins/memory_system/sample_distribution.py
+++ b/src/plugins/memory_system/sample_distribution.py
@@ -2,11 +2,12 @@ import numpy as np
from scipy import stats
from datetime import datetime, timedelta
+
class DistributionVisualizer:
def __init__(self, mean=0, std=1, skewness=0, sample_size=10):
"""
初始化分布可视化器
-
+
参数:
mean (float): 期望均值
std (float): 标准差
@@ -18,7 +19,7 @@ class DistributionVisualizer:
self.skewness = skewness
self.sample_size = sample_size
self.samples = None
-
+
def generate_samples(self):
"""生成具有指定参数的样本"""
if self.skewness == 0:
@@ -26,37 +27,28 @@ class DistributionVisualizer:
self.samples = np.random.normal(loc=self.mean, scale=self.std, size=self.sample_size)
else:
# 使用 scipy.stats 生成具有偏度的分布
- self.samples = stats.skewnorm.rvs(a=self.skewness,
- loc=self.mean,
- scale=self.std,
- size=self.sample_size)
-
+ self.samples = stats.skewnorm.rvs(a=self.skewness, loc=self.mean, scale=self.std, size=self.sample_size)
+
def get_weighted_samples(self):
"""获取加权后的样本数列"""
if self.samples is None:
self.generate_samples()
# 将样本值乘以样本大小
return self.samples * self.sample_size
-
+
def get_statistics(self):
"""获取分布的统计信息"""
if self.samples is None:
self.generate_samples()
-
- return {
- "均值": np.mean(self.samples),
- "标准差": np.std(self.samples),
- "实际偏度": stats.skew(self.samples)
- }
+
+ return {"均值": np.mean(self.samples), "标准差": np.std(self.samples), "实际偏度": stats.skew(self.samples)}
+
class MemoryBuildScheduler:
- def __init__(self,
- n_hours1, std_hours1, weight1,
- n_hours2, std_hours2, weight2,
- total_samples=50):
+ def __init__(self, n_hours1, std_hours1, weight1, n_hours2, std_hours2, weight2, total_samples=50):
"""
初始化记忆构建调度器
-
+
参数:
n_hours1 (float): 第一个分布的均值(距离现在的小时数)
std_hours1 (float): 第一个分布的标准差(小时)
@@ -70,39 +62,31 @@ class MemoryBuildScheduler:
total_weight = weight1 + weight2
self.weight1 = weight1 / total_weight
self.weight2 = weight2 / total_weight
-
+
self.n_hours1 = n_hours1
self.std_hours1 = std_hours1
self.n_hours2 = n_hours2
self.std_hours2 = std_hours2
self.total_samples = total_samples
self.base_time = datetime.now()
-
+
def generate_time_samples(self):
"""生成混合分布的时间采样点"""
# 根据权重计算每个分布的样本数
samples1 = int(self.total_samples * self.weight1)
samples2 = self.total_samples - samples1
-
+
# 生成两个正态分布的小时偏移
- hours_offset1 = np.random.normal(
- loc=self.n_hours1,
- scale=self.std_hours1,
- size=samples1
- )
-
- hours_offset2 = np.random.normal(
- loc=self.n_hours2,
- scale=self.std_hours2,
- size=samples2
- )
-
+ hours_offset1 = np.random.normal(loc=self.n_hours1, scale=self.std_hours1, size=samples1)
+
+ hours_offset2 = np.random.normal(loc=self.n_hours2, scale=self.std_hours2, size=samples2)
+
# 合并两个分布的偏移
hours_offset = np.concatenate([hours_offset1, hours_offset2])
-
+
# 将偏移转换为实际时间戳(使用绝对值确保时间点在过去)
timestamps = [self.base_time - timedelta(hours=abs(offset)) for offset in hours_offset]
-
+
# 按时间排序(从最早到最近)
return sorted(timestamps)
@@ -111,54 +95,56 @@ class MemoryBuildScheduler:
timestamps = self.generate_time_samples()
return [int(t.timestamp()) for t in timestamps]
+
def print_time_samples(timestamps, show_distribution=True):
"""打印时间样本和分布信息"""
print(f"\n生成的{len(timestamps)}个时间点分布:")
print("序号".ljust(5), "时间戳".ljust(25), "距现在(小时)")
print("-" * 50)
-
+
now = datetime.now()
time_diffs = []
-
+
for i, timestamp in enumerate(timestamps, 1):
hours_diff = (now - timestamp).total_seconds() / 3600
time_diffs.append(hours_diff)
print(f"{str(i).ljust(5)} {timestamp.strftime('%Y-%m-%d %H:%M:%S').ljust(25)} {hours_diff:.2f}")
-
+
# 打印统计信息
print("\n统计信息:")
print(f"平均时间偏移:{np.mean(time_diffs):.2f}小时")
print(f"标准差:{np.std(time_diffs):.2f}小时")
print(f"最早时间:{min(timestamps).strftime('%Y-%m-%d %H:%M:%S')} ({max(time_diffs):.2f}小时前)")
print(f"最近时间:{max(timestamps).strftime('%Y-%m-%d %H:%M:%S')} ({min(time_diffs):.2f}小时前)")
-
+
if show_distribution:
# 计算时间分布的直方图
hist, bins = np.histogram(time_diffs, bins=40)
print("\n时间分布(每个*代表一个时间点):")
for i in range(len(hist)):
if hist[i] > 0:
- print(f"{bins[i]:6.1f}-{bins[i+1]:6.1f}小时: {'*' * int(hist[i])}")
+ print(f"{bins[i]:6.1f}-{bins[i + 1]:6.1f}小时: {'*' * int(hist[i])}")
+
# 使用示例
if __name__ == "__main__":
# 创建一个双峰分布的记忆调度器
scheduler = MemoryBuildScheduler(
- n_hours1=12, # 第一个分布均值(12小时前)
- std_hours1=8, # 第一个分布标准差
- weight1=0.7, # 第一个分布权重 70%
- n_hours2=36, # 第二个分布均值(36小时前)
- std_hours2=24, # 第二个分布标准差
- weight2=0.3, # 第二个分布权重 30%
- total_samples=50 # 总共生成50个时间点
+ n_hours1=12, # 第一个分布均值(12小时前)
+ std_hours1=8, # 第一个分布标准差
+ weight1=0.7, # 第一个分布权重 70%
+ n_hours2=36, # 第二个分布均值(36小时前)
+ std_hours2=24, # 第二个分布标准差
+ weight2=0.3, # 第二个分布权重 30%
+ total_samples=50, # 总共生成50个时间点
)
-
+
# 生成时间分布
timestamps = scheduler.generate_time_samples()
-
+
# 打印结果,包含分布可视化
print_time_samples(timestamps, show_distribution=True)
-
+
# 打印时间戳数组
timestamp_array = scheduler.get_timestamp_array()
print("\n时间戳数组(Unix时间戳):")
@@ -167,4 +153,4 @@ if __name__ == "__main__":
if i > 0:
print(", ", end="")
print(ts, end="")
- print("]")
\ No newline at end of file
+ print("]")
diff --git a/src/plugins/message/test.py b/src/plugins/message/test.py
index bc4ba4d8c..1efd6c63f 100644
--- a/src/plugins/message/test.py
+++ b/src/plugins/message/test.py
@@ -54,9 +54,7 @@ class TestLiveAPI(unittest.IsolatedAsyncioTestCase):
# 准备测试消息
user_info = UserInfo(user_id=12345678, user_nickname="测试用户", platform="qq")
group_info = GroupInfo(group_id=12345678, group_name="测试群", platform="qq")
- format_info = FormatInfo(
- content_format=["text"], accept_format=["text", "emoji", "reply"]
- )
+ format_info = FormatInfo(content_format=["text"], accept_format=["text", "emoji", "reply"])
template_info = None
message_info = BaseMessageInfo(
platform="qq",
diff --git a/src/plugins/personality/can_i_recog_u.py b/src/plugins/personality/can_i_recog_u.py
index d340f8a1b..c21048e6d 100644
--- a/src/plugins/personality/can_i_recog_u.py
+++ b/src/plugins/personality/can_i_recog_u.py
@@ -35,6 +35,7 @@ else:
print(f"未找到环境变量文件: {env_path}")
print("将使用默认配置")
+
class ChatBasedPersonalityEvaluator:
def __init__(self):
self.personality_traits = {"开放性": 0, "严谨性": 0, "外向性": 0, "宜人性": 0, "神经质": 0}
@@ -50,16 +51,14 @@ class ChatBasedPersonalityEvaluator:
continue
scene_keys = list(scenes.keys())
selected_scenes = random.sample(scene_keys, min(3, len(scene_keys)))
-
+
for scene_key in selected_scenes:
scene = scenes[scene_key]
other_traits = [t for t in PERSONALITY_SCENES if t != trait]
secondary_trait = random.choice(other_traits)
- self.scenarios.append({
- "场景": scene["scenario"],
- "评估维度": [trait, secondary_trait],
- "场景编号": scene_key
- })
+ self.scenarios.append(
+ {"场景": scene["scenario"], "评估维度": [trait, secondary_trait], "场景编号": scene_key}
+ )
def analyze_chat_context(self, messages: List[Dict]) -> str:
"""
@@ -67,20 +66,21 @@ class ChatBasedPersonalityEvaluator:
"""
context = ""
for msg in messages:
- nickname = msg.get('user_info', {}).get('user_nickname', '未知用户')
- content = msg.get('processed_plain_text', msg.get('detailed_plain_text', ''))
+ nickname = msg.get("user_info", {}).get("user_nickname", "未知用户")
+ content = msg.get("processed_plain_text", msg.get("detailed_plain_text", ""))
if content:
context += f"{nickname}: {content}\n"
return context
def evaluate_chat_response(
- self, user_nickname: str, chat_context: str, dimensions: List[str] = None) -> Dict[str, float]:
+ self, user_nickname: str, chat_context: str, dimensions: List[str] = None
+ ) -> Dict[str, float]:
"""
评估聊天内容在各个人格维度上的得分
"""
# 使用所有维度进行评估
dimensions = list(self.personality_traits.keys())
-
+
dimension_descriptions = []
for dim in dimensions:
desc = FACTOR_DESCRIPTIONS.get(dim, "")
@@ -136,18 +136,19 @@ class ChatBasedPersonalityEvaluator:
def evaluate_user_personality(self, qq_id: str, num_samples: int = 10, context_length: int = 5) -> Dict:
"""
基于用户的聊天记录评估人格特征
-
+
Args:
qq_id (str): 用户QQ号
num_samples (int): 要分析的聊天片段数量
context_length (int): 每个聊天片段的上下文长度
-
+
Returns:
Dict: 评估结果
"""
# 获取用户的随机消息及其上下文
chat_contexts, user_nickname = self.message_analyzer.get_user_random_contexts(
- qq_id, num_messages=num_samples, context_length=context_length)
+ qq_id, num_messages=num_samples, context_length=context_length
+ )
if not chat_contexts:
return {"error": f"没有找到QQ号 {qq_id} 的消息记录"}
@@ -155,7 +156,7 @@ class ChatBasedPersonalityEvaluator:
final_scores = defaultdict(float)
dimension_counts = defaultdict(int)
chat_samples = []
-
+
# 清空历史记录
self.trait_scores_history.clear()
@@ -163,13 +164,11 @@ class ChatBasedPersonalityEvaluator:
for chat_context in chat_contexts:
# 评估这段聊天内容的所有维度
scores = self.evaluate_chat_response(user_nickname, chat_context)
-
+
# 记录样本
- chat_samples.append({
- "聊天内容": chat_context,
- "评估维度": list(self.personality_traits.keys()),
- "评分": scores
- })
+ chat_samples.append(
+ {"聊天内容": chat_context, "评估维度": list(self.personality_traits.keys()), "评分": scores}
+ )
# 更新总分和历史记录
for dimension, score in scores.items():
@@ -196,7 +195,7 @@ class ChatBasedPersonalityEvaluator:
"人格特征评分": average_scores,
"维度评估次数": dict(dimension_counts),
"详细样本": chat_samples,
- "特质得分历史": {k: v for k, v in self.trait_scores_history.items()}
+ "特质得分历史": {k: v for k, v in self.trait_scores_history.items()},
}
# 保存结果
@@ -215,40 +214,41 @@ class ChatBasedPersonalityEvaluator:
chinese_fonts = []
for f in fm.fontManager.ttflist:
try:
- if '简' in f.name or 'SC' in f.name or '黑' in f.name or '宋' in f.name or '微软' in f.name:
+ if "简" in f.name or "SC" in f.name or "黑" in f.name or "宋" in f.name or "微软" in f.name:
chinese_fonts.append(f.name)
except Exception:
continue
-
+
if chinese_fonts:
- plt.rcParams['font.sans-serif'] = chinese_fonts + ['SimHei', 'Microsoft YaHei', 'Arial Unicode MS']
+ plt.rcParams["font.sans-serif"] = chinese_fonts + ["SimHei", "Microsoft YaHei", "Arial Unicode MS"]
else:
# 如果没有找到中文字体,使用默认字体,并将中文昵称转换为拼音或英文
try:
from pypinyin import lazy_pinyin
- user_nickname = ''.join(lazy_pinyin(user_nickname))
+
+ user_nickname = "".join(lazy_pinyin(user_nickname))
except ImportError:
user_nickname = "User" # 如果无法转换为拼音,使用默认英文
-
- plt.rcParams['axes.unicode_minus'] = False # 解决负号显示问题
-
+
+ plt.rcParams["axes.unicode_minus"] = False # 解决负号显示问题
+
plt.figure(figsize=(12, 6))
- plt.style.use('bmh') # 使用内置的bmh样式,它有类似seaborn的美观效果
-
+ plt.style.use("bmh") # 使用内置的bmh样式,它有类似seaborn的美观效果
+
colors = {
"开放性": "#FF9999",
"严谨性": "#66B2FF",
"外向性": "#99FF99",
"宜人性": "#FFCC99",
- "神经质": "#FF99CC"
+ "神经质": "#FF99CC",
}
-
+
# 计算每个维度在每个时间点的累计平均分
cumulative_averages = {}
for trait, scores in self.trait_scores_history.items():
if not scores:
continue
-
+
averages = []
total = 0
valid_count = 0
@@ -264,25 +264,25 @@ class ChatBasedPersonalityEvaluator:
averages.append(averages[-1])
else:
continue # 跳过无效分数
-
+
if averages: # 只有在有有效分数的情况下才添加到累计平均中
cumulative_averages[trait] = averages
-
+
# 绘制每个维度的累计平均分变化趋势
for trait, averages in cumulative_averages.items():
x = range(1, len(averages) + 1)
- plt.plot(x, averages, 'o-', label=trait, color=colors.get(trait), linewidth=2, markersize=8)
-
+ plt.plot(x, averages, "o-", label=trait, color=colors.get(trait), linewidth=2, markersize=8)
+
# 添加趋势线
z = np.polyfit(x, averages, 1)
p = np.poly1d(z)
- plt.plot(x, p(x), '--', color=colors.get(trait), alpha=0.5)
+ plt.plot(x, p(x), "--", color=colors.get(trait), alpha=0.5)
plt.title(f"{user_nickname} 的人格特质累计平均分变化趋势", fontsize=14, pad=20)
plt.xlabel("评估次数", fontsize=12)
plt.ylabel("累计平均分", fontsize=12)
- plt.grid(True, linestyle='--', alpha=0.7)
- plt.legend(loc='center left', bbox_to_anchor=(1, 0.5))
+ plt.grid(True, linestyle="--", alpha=0.7)
+ plt.legend(loc="center left", bbox_to_anchor=(1, 0.5))
plt.ylim(0, 7)
plt.tight_layout()
@@ -290,38 +290,39 @@ class ChatBasedPersonalityEvaluator:
os.makedirs("results/plots", exist_ok=True)
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
plot_file = f"results/plots/personality_trend_{qq_id}_{timestamp}.png"
- plt.savefig(plot_file, dpi=300, bbox_inches='tight')
+ plt.savefig(plot_file, dpi=300, bbox_inches="tight")
plt.close()
+
def analyze_user_personality(qq_id: str, num_samples: int = 10, context_length: int = 5) -> str:
"""
分析用户人格特征的便捷函数
-
+
Args:
qq_id (str): 用户QQ号
num_samples (int): 要分析的聊天片段数量
context_length (int): 每个聊天片段的上下文长度
-
+
Returns:
str: 格式化的分析结果
"""
evaluator = ChatBasedPersonalityEvaluator()
result = evaluator.evaluate_user_personality(qq_id, num_samples, context_length)
-
+
if "error" in result:
return result["error"]
-
+
# 格式化输出
output = f"QQ号 {qq_id} ({result['用户昵称']}) 的人格特征分析结果:\n"
output += "=" * 50 + "\n\n"
-
+
output += "人格特征评分:\n"
for trait, score in result["人格特征评分"].items():
if score == 0:
output += f"{trait}: 数据不足,无法判断 (评估次数: {result['维度评估次数'].get(trait, 0)})\n"
else:
output += f"{trait}: {score}/6 (评估次数: {result['维度评估次数'].get(trait, 0)})\n"
-
+
# 添加变化趋势描述
if trait in result["特质得分历史"] and len(result["特质得分历史"][trait]) > 1:
scores = [s for s in result["特质得分历史"][trait] if s != 0] # 过滤掉无效分数
@@ -334,13 +335,14 @@ def analyze_user_personality(qq_id: str, num_samples: int = 10, context_length:
else:
trend_desc = "呈下降趋势"
output += f" 变化趋势: {trend_desc} (斜率: {trend:.2f})\n"
-
+
output += f"\n分析样本数量:{result['样本数量']}\n"
output += f"结果已保存至:results/personality_result_{qq_id}.json\n"
output += "变化趋势图已保存至:results/plots/目录\n"
-
+
return output
+
if __name__ == "__main__":
# 测试代码
# test_qq = "" # 替换为要测试的QQ号
diff --git a/src/plugins/personality/renqingziji_with_mymy.py b/src/plugins/personality/renqingziji_with_mymy.py
index 92c1341a8..04cbec099 100644
--- a/src/plugins/personality/renqingziji_with_mymy.py
+++ b/src/plugins/personality/renqingziji_with_mymy.py
@@ -82,7 +82,6 @@ class PersonalityEvaluator_direct:
dimensions_text = "\n".join(dimension_descriptions)
-
prompt = f"""请根据以下场景和用户描述,评估用户在大五人格模型中的相关维度得分(1-6分)。
场景描述:
diff --git a/src/plugins/personality/who_r_u.py b/src/plugins/personality/who_r_u.py
index 34c134472..4877fb8c9 100644
--- a/src/plugins/personality/who_r_u.py
+++ b/src/plugins/personality/who_r_u.py
@@ -14,18 +14,19 @@ sys.path.append(root_path)
from src.common.database import db # noqa: E402
+
class MessageAnalyzer:
def __init__(self):
self.messages_collection = db["messages"]
-
+
def get_message_context(self, message_id: int, context_length: int = 5) -> Optional[List[Dict]]:
"""
获取指定消息ID的上下文消息列表
-
+
Args:
message_id (int): 消息ID
context_length (int): 上下文长度(单侧,总长度为 2*context_length + 1)
-
+
Returns:
Optional[List[Dict]]: 消息列表,如果未找到则返回None
"""
@@ -33,110 +34,110 @@ class MessageAnalyzer:
target_message = self.messages_collection.find_one({"message_id": message_id})
if not target_message:
return None
-
+
# 获取该消息的stream_id
- stream_id = target_message.get('chat_info', {}).get('stream_id')
+ stream_id = target_message.get("chat_info", {}).get("stream_id")
if not stream_id:
return None
-
+
# 获取同一stream_id的所有消息
- stream_messages = list(self.messages_collection.find({
- "chat_info.stream_id": stream_id
- }).sort("time", 1))
-
+ stream_messages = list(self.messages_collection.find({"chat_info.stream_id": stream_id}).sort("time", 1))
+
# 找到目标消息在列表中的位置
target_index = None
for i, msg in enumerate(stream_messages):
- if msg['message_id'] == message_id:
+ if msg["message_id"] == message_id:
target_index = i
break
-
+
if target_index is None:
return None
-
+
# 获取目标消息前后的消息
start_index = max(0, target_index - context_length)
end_index = min(len(stream_messages), target_index + context_length + 1)
-
+
return stream_messages[start_index:end_index]
-
+
def format_messages(self, messages: List[Dict], target_message_id: Optional[int] = None) -> str:
"""
格式化消息列表为可读字符串
-
+
Args:
messages (List[Dict]): 消息列表
target_message_id (Optional[int]): 目标消息ID,用于标记
-
+
Returns:
str: 格式化的消息字符串
"""
if not messages:
return "没有消息记录"
-
+
reply = ""
for msg in messages:
# 消息时间
- msg_time = datetime.datetime.fromtimestamp(int(msg['time'])).strftime("%Y-%m-%d %H:%M:%S")
-
+ msg_time = datetime.datetime.fromtimestamp(int(msg["time"])).strftime("%Y-%m-%d %H:%M:%S")
+
# 获取消息内容
- message_text = msg.get('processed_plain_text', msg.get('detailed_plain_text', '无消息内容'))
- nickname = msg.get('user_info', {}).get('user_nickname', '未知用户')
-
+ message_text = msg.get("processed_plain_text", msg.get("detailed_plain_text", "无消息内容"))
+ nickname = msg.get("user_info", {}).get("user_nickname", "未知用户")
+
# 标记当前消息
- is_target = "→ " if target_message_id and msg['message_id'] == target_message_id else " "
-
+ is_target = "→ " if target_message_id and msg["message_id"] == target_message_id else " "
+
reply += f"{is_target}[{msg_time}] {nickname}: {message_text}\n"
-
- if target_message_id and msg['message_id'] == target_message_id:
+
+ if target_message_id and msg["message_id"] == target_message_id:
reply += " " + "-" * 50 + "\n"
-
+
return reply
-
+
def get_user_random_contexts(
- self, qq_id: str, num_messages: int = 10, context_length: int = 5) -> tuple[List[str], str]: # noqa: E501
+ self, qq_id: str, num_messages: int = 10, context_length: int = 5
+ ) -> tuple[List[str], str]: # noqa: E501
"""
获取用户的随机消息及其上下文
-
+
Args:
qq_id (str): QQ号
num_messages (int): 要获取的随机消息数量
context_length (int): 每条消息的上下文长度(单侧)
-
+
Returns:
tuple[List[str], str]: (每个消息上下文的格式化字符串列表, 用户昵称)
"""
if not qq_id:
return [], ""
-
+
# 获取用户所有消息
all_messages = list(self.messages_collection.find({"user_info.user_id": int(qq_id)}))
if not all_messages:
return [], ""
-
+
# 获取用户昵称
- user_nickname = all_messages[0].get('chat_info', {}).get('user_info', {}).get('user_nickname', '未知用户')
-
+ user_nickname = all_messages[0].get("chat_info", {}).get("user_info", {}).get("user_nickname", "未知用户")
+
# 随机选择指定数量的消息
selected_messages = random.sample(all_messages, min(num_messages, len(all_messages)))
# 按时间排序
- selected_messages.sort(key=lambda x: int(x['time']))
-
+ selected_messages.sort(key=lambda x: int(x["time"]))
+
# 存储所有上下文消息
context_list = []
-
+
# 获取每条消息的上下文
for msg in selected_messages:
- message_id = msg['message_id']
-
+ message_id = msg["message_id"]
+
# 获取消息上下文
context_messages = self.get_message_context(message_id, context_length)
if context_messages:
formatted_context = self.format_messages(context_messages, message_id)
context_list.append(formatted_context)
-
+
return context_list, user_nickname
+
if __name__ == "__main__":
# 测试代码
analyzer = MessageAnalyzer()
@@ -145,7 +146,7 @@ if __name__ == "__main__":
print("-" * 50)
# 获取5条消息,每条消息前后各3条上下文
contexts, nickname = analyzer.get_user_random_contexts(test_qq, num_messages=5, context_length=3)
-
+
print(f"用户昵称: {nickname}\n")
# 打印每个上下文
for i, context in enumerate(contexts, 1):
diff --git a/src/plugins/utils/statistic.py b/src/plugins/utils/statistic.py
index b9efafd03..5548d1812 100644
--- a/src/plugins/utils/statistic.py
+++ b/src/plugins/utils/statistic.py
@@ -46,17 +46,15 @@ class LLMStatistics:
"""记录在线时间"""
current_time = datetime.now()
# 检查5分钟内是否已有记录
- recent_record = db.online_time.find_one({
- "timestamp": {
- "$gte": current_time - timedelta(minutes=5)
- }
- })
-
+ recent_record = db.online_time.find_one({"timestamp": {"$gte": current_time - timedelta(minutes=5)}})
+
if not recent_record:
- db.online_time.insert_one({
- "timestamp": current_time,
- "duration": 5 # 5分钟
- })
+ db.online_time.insert_one(
+ {
+ "timestamp": current_time,
+ "duration": 5, # 5分钟
+ }
+ )
def _collect_statistics_for_period(self, start_time: datetime) -> Dict[str, Any]:
"""收集指定时间段的LLM请求统计数据
diff --git a/src/plugins/willing/mode_custom.py b/src/plugins/willing/mode_custom.py
index a131b576d..0f32c0c75 100644
--- a/src/plugins/willing/mode_custom.py
+++ b/src/plugins/willing/mode_custom.py
@@ -41,10 +41,9 @@ class WillingManager:
interested_rate = interested_rate * config.response_interested_rate_amplifier
-
if interested_rate > 0.4:
current_willing += interested_rate - 0.3
-
+
if is_mentioned_bot and current_willing < 1.0:
current_willing += 1
elif is_mentioned_bot:
diff --git a/src/think_flow_demo/heartflow.py b/src/think_flow_demo/heartflow.py
index f8eda6237..3551340f2 100644
--- a/src/think_flow_demo/heartflow.py
+++ b/src/think_flow_demo/heartflow.py
@@ -5,38 +5,41 @@ from src.plugins.models.utils_model import LLM_request
from src.plugins.config.config import global_config
from src.plugins.schedule.schedule_generator import bot_schedule
import asyncio
-from src.common.logger import get_module_logger, LogConfig, HEARTFLOW_STYLE_CONFIG # noqa: E402
+from src.common.logger import get_module_logger, LogConfig, HEARTFLOW_STYLE_CONFIG # noqa: E402
import time
heartflow_config = LogConfig(
# 使用海马体专用样式
console_format=HEARTFLOW_STYLE_CONFIG["console_format"],
file_format=HEARTFLOW_STYLE_CONFIG["file_format"],
-)
+)
logger = get_module_logger("heartflow", config=heartflow_config)
+
class CuttentState:
def __init__(self):
self.willing = 0
self.current_state_info = ""
-
+
self.mood_manager = MoodManager()
self.mood = self.mood_manager.get_prompt()
-
+
def update_current_state_info(self):
self.current_state_info = self.mood_manager.get_current_mood()
+
class Heartflow:
def __init__(self):
self.current_mind = "你什么也没想"
self.past_mind = []
- self.current_state : CuttentState = CuttentState()
+ self.current_state: CuttentState = CuttentState()
self.llm_model = LLM_request(
- model=global_config.llm_heartflow, temperature=0.6, max_tokens=1000, request_type="heart_flow")
-
+ model=global_config.llm_heartflow, temperature=0.6, max_tokens=1000, request_type="heart_flow"
+ )
+
self._subheartflows = {}
self.active_subheartflows_nums = 0
-
+
self.personality_info = " ".join(global_config.PROMPT_PERSONALITY)
async def _cleanup_inactive_subheartflows(self):
@@ -44,46 +47,46 @@ class Heartflow:
while True:
current_time = time.time()
inactive_subheartflows = []
-
+
# 检查所有子心流
for subheartflow_id, subheartflow in self._subheartflows.items():
if current_time - subheartflow.last_active_time > 600: # 10分钟 = 600秒
inactive_subheartflows.append(subheartflow_id)
logger.info(f"发现不活跃的子心流: {subheartflow_id}")
-
+
# 清理不活跃的子心流
for subheartflow_id in inactive_subheartflows:
del self._subheartflows[subheartflow_id]
logger.info(f"已清理不活跃的子心流: {subheartflow_id}")
-
+
await asyncio.sleep(30) # 每分钟检查一次
async def heartflow_start_working(self):
# 启动清理任务
asyncio.create_task(self._cleanup_inactive_subheartflows())
-
+
while True:
# 检查是否存在子心流
if not self._subheartflows:
logger.info("当前没有子心流,等待新的子心流创建...")
await asyncio.sleep(60) # 每分钟检查一次是否有新的子心流
continue
-
+
await self.do_a_thinking()
await asyncio.sleep(300) # 5分钟思考一次
-
+
async def do_a_thinking(self):
logger.debug("麦麦大脑袋转起来了")
self.current_state.update_current_state_info()
-
+
personality_info = self.personality_info
current_thinking_info = self.current_mind
mood_info = self.current_state.mood
- related_memory_info = 'memory'
+ related_memory_info = "memory"
sub_flows_info = await self.get_all_subheartflows_minds()
-
- schedule_info = bot_schedule.get_current_num_task(num = 4,time_info = True)
-
+
+ schedule_info = bot_schedule.get_current_num_task(num=4, time_info=True)
+
prompt = ""
prompt += f"你刚刚在做的事情是:{schedule_info}\n"
prompt += f"{personality_info}\n"
@@ -93,49 +96,46 @@ class Heartflow:
prompt += f"你现在{mood_info}。"
prompt += "现在你接下去继续思考,产生新的想法,但是要基于原有的主要想法,不要分点输出,"
prompt += "输出连贯的内心独白,不要太长,但是记得结合上述的消息,关注新内容:"
-
+
reponse, reasoning_content = await self.llm_model.generate_response_async(prompt)
-
+
self.update_current_mind(reponse)
-
+
self.current_mind = reponse
logger.info(f"麦麦的总体脑内状态:{self.current_mind}")
# logger.info("麦麦想了想,当前活动:")
await bot_schedule.move_doing(self.current_mind)
-
-
+
for _, subheartflow in self._subheartflows.items():
subheartflow.main_heartflow_info = reponse
- def update_current_mind(self,reponse):
+ def update_current_mind(self, reponse):
self.past_mind.append(self.current_mind)
self.current_mind = reponse
-
-
-
+
async def get_all_subheartflows_minds(self):
sub_minds = ""
for _, subheartflow in self._subheartflows.items():
sub_minds += subheartflow.current_mind
-
+
return await self.minds_summary(sub_minds)
-
- async def minds_summary(self,minds_str):
+
+ async def minds_summary(self, minds_str):
personality_info = self.personality_info
mood_info = self.current_state.mood
-
+
prompt = ""
prompt += f"{personality_info}\n"
prompt += f"现在{global_config.BOT_NICKNAME}的想法是:{self.current_mind}\n"
prompt += f"现在{global_config.BOT_NICKNAME}在qq群里进行聊天,聊天的话题如下:{minds_str}\n"
prompt += f"你现在{mood_info}\n"
- prompt += '''现在请你总结这些聊天内容,注意关注聊天内容对原有的想法的影响,输出连贯的内心独白
- 不要太长,但是记得结合上述的消息,要记得你的人设,关注新内容:'''
+ prompt += """现在请你总结这些聊天内容,注意关注聊天内容对原有的想法的影响,输出连贯的内心独白
+ 不要太长,但是记得结合上述的消息,要记得你的人设,关注新内容:"""
reponse, reasoning_content = await self.llm_model.generate_response_async(prompt)
return reponse
-
+
def create_subheartflow(self, subheartflow_id):
"""
创建一个新的SubHeartflow实例
@@ -145,10 +145,10 @@ class Heartflow:
if subheartflow_id not in self._subheartflows:
logger.debug(f"创建 subheartflow: {subheartflow_id}")
subheartflow = SubHeartflow(subheartflow_id)
- #创建一个观察对象,目前只可以用chat_id创建观察对象
+ # 创建一个观察对象,目前只可以用chat_id创建观察对象
logger.debug(f"创建 observation: {subheartflow_id}")
observation = ChattingObservation(subheartflow_id)
-
+
logger.debug(f"添加 observation ")
subheartflow.add_observation(observation)
logger.debug(f"添加 observation 成功")
@@ -159,11 +159,11 @@ class Heartflow:
self._subheartflows[subheartflow_id] = subheartflow
logger.info(f"添加 subheartflow 成功")
return self._subheartflows[subheartflow_id]
-
+
def get_subheartflow(self, observe_chat_id):
"""获取指定ID的SubHeartflow实例"""
return self._subheartflows.get(observe_chat_id)
# 创建一个全局的管理器实例
-heartflow = Heartflow()
+heartflow = Heartflow()
diff --git a/src/think_flow_demo/observation.py b/src/think_flow_demo/observation.py
index 2dc31c694..c71b58d05 100644
--- a/src/think_flow_demo/observation.py
+++ b/src/think_flow_demo/observation.py
@@ -1,119 +1,123 @@
-#定义了来自外部世界的信息
-#外部世界可以是某个聊天 不同平台的聊天 也可以是任意媒体
+# 定义了来自外部世界的信息
+# 外部世界可以是某个聊天 不同平台的聊天 也可以是任意媒体
import asyncio
from datetime import datetime
from src.plugins.models.utils_model import LLM_request
from src.plugins.config.config import global_config
from src.common.database import db
+
# 所有观察的基类
class Observation:
- def __init__(self,observe_type,observe_id):
+ def __init__(self, observe_type, observe_id):
self.observe_info = ""
self.observe_type = observe_type
self.observe_id = observe_id
self.last_observe_time = datetime.now().timestamp() # 初始化为当前时间
+
# 聊天观察
class ChattingObservation(Observation):
- def __init__(self,chat_id):
- super().__init__("chat",chat_id)
+ def __init__(self, chat_id):
+ super().__init__("chat", chat_id)
self.chat_id = chat_id
-
+
self.talking_message = []
self.talking_message_str = ""
-
+
self.observe_times = 0
-
+
self.summary_count = 0 # 30秒内的更新次数
- self.max_update_in_30s = 2 #30秒内最多更新2次
- self.last_summary_time = 0 #上次更新summary的时间
-
+ self.max_update_in_30s = 2 # 30秒内最多更新2次
+ self.last_summary_time = 0 # 上次更新summary的时间
+
self.sub_observe = None
-
+
self.llm_summary = LLM_request(
- model=global_config.llm_outer_world, temperature=0.7, max_tokens=300, request_type="outer_world")
-
+ model=global_config.llm_outer_world, temperature=0.7, max_tokens=300, request_type="outer_world"
+ )
+
# 进行一次观察 返回观察结果observe_info
async def observe(self):
# 查找新消息,限制最多30条
- new_messages = list(db.messages.find({
- "chat_id": self.chat_id,
- "time": {"$gt": self.last_observe_time}
- }).sort("time", 1).limit(20)) # 按时间正序排列,最多20条
-
+ new_messages = list(
+ db.messages.find({"chat_id": self.chat_id, "time": {"$gt": self.last_observe_time}})
+ .sort("time", 1)
+ .limit(20)
+ ) # 按时间正序排列,最多20条
+
if not new_messages:
- return self.observe_info #没有新消息,返回上次观察结果
-
+ return self.observe_info # 没有新消息,返回上次观察结果
+
# 将新消息转换为字符串格式
new_messages_str = ""
for msg in new_messages:
if "sender_name" in msg and "content" in msg:
new_messages_str += f"{msg['sender_name']}: {msg['content']}\n"
-
+
# 将新消息添加到talking_message,同时保持列表长度不超过20条
self.talking_message.extend(new_messages)
if len(self.talking_message) > 20:
self.talking_message = self.talking_message[-20:] # 只保留最新的20条
self.translate_message_list_to_str()
-
+
# 更新观察次数
self.observe_times += 1
self.last_observe_time = new_messages[-1]["time"]
-
+
# 检查是否需要更新summary
current_time = int(datetime.now().timestamp())
if current_time - self.last_summary_time >= 30: # 如果超过30秒,重置计数
self.summary_count = 0
self.last_summary_time = current_time
-
+
if self.summary_count < self.max_update_in_30s: # 如果30秒内更新次数小于2次
await self.update_talking_summary(new_messages_str)
self.summary_count += 1
-
+
return self.observe_info
-
+
async def carefully_observe(self):
# 查找新消息,限制最多40条
- new_messages = list(db.messages.find({
- "chat_id": self.chat_id,
- "time": {"$gt": self.last_observe_time}
- }).sort("time", 1).limit(30)) # 按时间正序排列,最多30条
-
+ new_messages = list(
+ db.messages.find({"chat_id": self.chat_id, "time": {"$gt": self.last_observe_time}})
+ .sort("time", 1)
+ .limit(30)
+ ) # 按时间正序排列,最多30条
+
if not new_messages:
- return self.observe_info #没有新消息,返回上次观察结果
-
+ return self.observe_info # 没有新消息,返回上次观察结果
+
# 将新消息转换为字符串格式
new_messages_str = ""
for msg in new_messages:
if "sender_name" in msg and "content" in msg:
new_messages_str += f"{msg['sender_name']}: {msg['content']}\n"
-
+
# 将新消息添加到talking_message,同时保持列表长度不超过30条
self.talking_message.extend(new_messages)
if len(self.talking_message) > 30:
self.talking_message = self.talking_message[-30:] # 只保留最新的30条
self.translate_message_list_to_str()
-
+
# 更新观察次数
self.observe_times += 1
self.last_observe_time = new_messages[-1]["time"]
await self.update_talking_summary(new_messages_str)
return self.observe_info
-
-
- async def update_talking_summary(self,new_messages_str):
- #基于已经有的talking_summary,和新的talking_message,生成一个summary
+
+ async def update_talking_summary(self, new_messages_str):
+ # 基于已经有的talking_summary,和新的talking_message,生成一个summary
# print(f"更新聊天总结:{self.talking_summary}")
prompt = ""
prompt = f"你正在参与一个qq群聊的讨论,这个群之前在聊的内容是:{self.observe_info}\n"
prompt += f"现在群里的群友们产生了新的讨论,有了新的发言,具体内容如下:{new_messages_str}\n"
- prompt += '''以上是群里在进行的聊天,请你对这个聊天内容进行总结,总结内容要包含聊天的大致内容,
- 以及聊天中的一些重要信息,记得不要分点,不要太长,精简的概括成一段文本\n'''
+ prompt += """以上是群里在进行的聊天,请你对这个聊天内容进行总结,总结内容要包含聊天的大致内容,
+ 以及聊天中的一些重要信息,记得不要分点,不要太长,精简的概括成一段文本\n"""
prompt += "总结概括:"
self.observe_info, reasoning_content = await self.llm_summary.generate_response_async(prompt)
-
+
def translate_message_list_to_str(self):
self.talking_message_str = ""
for message in self.talking_message:
diff --git a/src/think_flow_demo/sub_heartflow.py b/src/think_flow_demo/sub_heartflow.py
index 0766077aa..879d3a3a6 100644
--- a/src/think_flow_demo/sub_heartflow.py
+++ b/src/think_flow_demo/sub_heartflow.py
@@ -7,13 +7,13 @@ import re
import time
from src.plugins.schedule.schedule_generator import bot_schedule
from src.plugins.memory_system.Hippocampus import HippocampusManager
-from src.common.logger import get_module_logger, LogConfig, SUB_HEARTFLOW_STYLE_CONFIG # noqa: E402
+from src.common.logger import get_module_logger, LogConfig, SUB_HEARTFLOW_STYLE_CONFIG # noqa: E402
subheartflow_config = LogConfig(
# 使用海马体专用样式
console_format=SUB_HEARTFLOW_STYLE_CONFIG["console_format"],
file_format=SUB_HEARTFLOW_STYLE_CONFIG["file_format"],
-)
+)
logger = get_module_logger("subheartflow", config=subheartflow_config)
@@ -21,38 +21,39 @@ class CuttentState:
def __init__(self):
self.willing = 0
self.current_state_info = ""
-
+
self.mood_manager = MoodManager()
self.mood = self.mood_manager.get_prompt()
-
+
def update_current_state_info(self):
self.current_state_info = self.mood_manager.get_current_mood()
class SubHeartflow:
- def __init__(self,subheartflow_id):
+ def __init__(self, subheartflow_id):
self.subheartflow_id = subheartflow_id
-
+
self.current_mind = ""
self.past_mind = []
- self.current_state : CuttentState = CuttentState()
+ self.current_state: CuttentState = CuttentState()
self.llm_model = LLM_request(
- model=global_config.llm_sub_heartflow, temperature=0.7, max_tokens=600, request_type="sub_heart_flow")
-
+ model=global_config.llm_sub_heartflow, temperature=0.7, max_tokens=600, request_type="sub_heart_flow"
+ )
+
self.main_heartflow_info = ""
-
+
self.last_reply_time = time.time()
self.last_active_time = time.time() # 添加最后激活时间
-
+
if not self.current_mind:
self.current_mind = "你什么也没想"
-
+
self.personality_info = " ".join(global_config.PROMPT_PERSONALITY)
-
+
self.is_active = False
-
- self.observations : list[Observation] = []
-
+
+ self.observations: list[Observation] = []
+
def add_observation(self, observation: Observation):
"""添加一个新的observation对象到列表中,如果已存在相同id的observation则不添加"""
# 查找是否存在相同id的observation
@@ -62,16 +63,16 @@ class SubHeartflow:
return
# 如果没有找到相同id的observation,则添加新的
self.observations.append(observation)
-
+
def remove_observation(self, observation: Observation):
"""从列表中移除一个observation对象"""
if observation in self.observations:
self.observations.remove(observation)
-
+
def get_all_observations(self) -> list[Observation]:
"""获取所有observation对象"""
return self.observations
-
+
def clear_observations(self):
"""清空所有observation对象"""
self.observations.clear()
@@ -85,50 +86,45 @@ class SubHeartflow:
else:
self.is_active = True
self.last_active_time = current_time # 更新最后激活时间
-
+
observation = self.observations[0]
await observation.observe()
-
+
self.current_state.update_current_state_info()
-
+
await self.do_a_thinking()
await self.judge_willing()
await asyncio.sleep(60)
-
+
# 检查是否超过10分钟没有激活
if current_time - self.last_active_time > 600: # 5分钟无回复/不在场,销毁
logger.info(f"子心流 {self.subheartflow_id} 已经5分钟没有激活,正在销毁...")
break # 退出循环,销毁自己
-
+
async def do_a_thinking(self):
-
current_thinking_info = self.current_mind
mood_info = self.current_state.mood
-
+
observation = self.observations[0]
chat_observe_info = observation.observe_info
print(f"chat_observe_info:{chat_observe_info}")
-
+
# 调取记忆
related_memory = await HippocampusManager.get_instance().get_memory_from_text(
- text=chat_observe_info,
- max_memory_num=2,
- max_memory_length=2,
- max_depth=3,
- fast_retrieval=False
+ text=chat_observe_info, max_memory_num=2, max_memory_length=2, max_depth=3, fast_retrieval=False
)
-
+
if related_memory:
related_memory_info = ""
for memory in related_memory:
related_memory_info += memory[1]
else:
- related_memory_info = ''
-
+ related_memory_info = ""
+
# print(f"相关记忆:{related_memory_info}")
-
- schedule_info = bot_schedule.get_current_num_task(num = 1,time_info = False)
-
+
+ schedule_info = bot_schedule.get_current_num_task(num=1, time_info=False)
+
prompt = ""
prompt += f"你刚刚在做的事情是:{schedule_info}\n"
# prompt += f"麦麦的总体想法是:{self.main_heartflow_info}\n\n"
@@ -142,25 +138,25 @@ class SubHeartflow:
prompt += "现在你接下去继续思考,产生新的想法,不要分点输出,输出连贯的内心独白,不要太长,"
prompt += "但是记得结合上述的消息,要记得维持住你的人设,关注聊天和新内容,不要思考太多:"
reponse, reasoning_content = await self.llm_model.generate_response_async(prompt)
-
+
self.update_current_mind(reponse)
-
+
self.current_mind = reponse
logger.debug(f"prompt:\n{prompt}\n")
logger.info(f"麦麦的脑内状态:{self.current_mind}")
-
- async def do_after_reply(self,reply_content,chat_talking_prompt):
+
+ async def do_after_reply(self, reply_content, chat_talking_prompt):
# print("麦麦脑袋转起来了")
current_thinking_info = self.current_mind
mood_info = self.current_state.mood
-
+
observation = self.observations[0]
chat_observe_info = observation.observe_info
-
+
message_new_info = chat_talking_prompt
reply_info = reply_content
- schedule_info = bot_schedule.get_current_num_task(num = 1,time_info = False)
-
+ schedule_info = bot_schedule.get_current_num_task(num=1, time_info=False)
+
prompt = ""
prompt += f"你现在正在做的事情是:{schedule_info}\n"
prompt += f"你{self.personality_info}\n"
@@ -171,16 +167,16 @@ class SubHeartflow:
prompt += f"你现在{mood_info}"
prompt += "现在你接下去继续思考,产生新的想法,记得保留你刚刚的想法,不要分点输出,输出连贯的内心独白"
prompt += "不要太长,但是记得结合上述的消息,要记得你的人设,关注聊天和新内容,关注你回复的内容,不要思考太多:"
-
+
reponse, reasoning_content = await self.llm_model.generate_response_async(prompt)
-
+
self.update_current_mind(reponse)
-
+
self.current_mind = reponse
logger.info(f"麦麦回复后的脑内状态:{self.current_mind}")
-
+
self.last_reply_time = time.time()
-
+
async def judge_willing(self):
# print("麦麦闹情绪了1")
current_thinking_info = self.current_mind
@@ -193,21 +189,20 @@ class SubHeartflow:
prompt += f"你现在{mood_info}。"
prompt += "现在请你思考,你想不想发言或者回复,请你输出一个数字,1-10,1表示非常不想,10表示非常想。"
prompt += "请你用<>包裹你的回复意愿,输出<1>表示不想回复,输出<10>表示非常想回复。请你考虑,你完全可以不回复"
-
+
response, reasoning_content = await self.llm_model.generate_response_async(prompt)
# 解析willing值
- willing_match = re.search(r'<(\d+)>', response)
+ willing_match = re.search(r"<(\d+)>", response)
if willing_match:
self.current_state.willing = int(willing_match.group(1))
else:
self.current_state.willing = 0
-
+
return self.current_state.willing
- def update_current_mind(self,reponse):
+ def update_current_mind(self, reponse):
self.past_mind.append(self.current_mind)
self.current_mind = reponse
# subheartflow = SubHeartflow()
-