diff --git a/bot.py b/bot.py index 84ce5067b..c2ed3dfdf 100644 --- a/bot.py +++ b/bot.py @@ -100,7 +100,7 @@ def load_logger(): "#777777>| {name:.<8}:{function:.<8}:{line: >4} - {message}", colorize=True, - level=os.getenv("LOG_LEVEL", "INFO") # 根据环境设置日志级别,默认为INFO + level=os.getenv("LOG_LEVEL", "DEBUG") # 根据环境设置日志级别,默认为INFO ) @@ -149,6 +149,7 @@ if __name__ == "__main__": init_config() init_env() load_env() + load_logger() env_config = {key: os.getenv(key) for key in os.environ} scan_provider(env_config) diff --git a/src/gui/reasoning_gui.py b/src/gui/reasoning_gui.py index 572e4ece9..514a95dfb 100644 --- a/src/gui/reasoning_gui.py +++ b/src/gui/reasoning_gui.py @@ -5,6 +5,9 @@ import threading import time from datetime import datetime from typing import Dict, List +from loguru import logger +from typing import Optional +from pymongo import MongoClient import customtkinter as ctk from dotenv import load_dotenv @@ -17,23 +20,20 @@ root_dir = os.path.abspath(os.path.join(current_dir, '..', '..')) # 加载环境变量 if os.path.exists(os.path.join(root_dir, '.env.dev')): load_dotenv(os.path.join(root_dir, '.env.dev')) - print("成功加载开发环境配置") + logger.info("成功加载开发环境配置") elif os.path.exists(os.path.join(root_dir, '.env.prod')): load_dotenv(os.path.join(root_dir, '.env.prod')) - print("成功加载生产环境配置") + logger.info("成功加载生产环境配置") else: - print("未找到环境配置文件") + logger.error("未找到环境配置文件") sys.exit(1) -from typing import Optional - -from pymongo import MongoClient - class Database: _instance: Optional["Database"] = None - - def __init__(self, host: str, port: int, db_name: str, username: str = None, password: str = None, auth_source: str = None): + + def __init__(self, host: str, port: int, db_name: str, username: str = None, password: str = None, + auth_source: str = None): if username and password: self.client = MongoClient( host=host, @@ -45,96 +45,96 @@ class Database: else: self.client = MongoClient(host, port) self.db = self.client[db_name] - + @classmethod - def initialize(cls, host: str, port: int, db_name: str, username: str = None, password: str = None, auth_source: str = None) -> "Database": + def initialize(cls, host: str, port: int, db_name: str, username: str = None, password: str = None, + auth_source: str = None) -> "Database": if cls._instance is None: cls._instance = cls(host, port, db_name, username, password, auth_source) return cls._instance - + @classmethod def get_instance(cls) -> "Database": if cls._instance is None: raise RuntimeError("Database not initialized") - return cls._instance - + return cls._instance class ReasoningGUI: def __init__(self): # 记录启动时间戳,转换为Unix时间戳 self.start_timestamp = datetime.now().timestamp() - print(f"程序启动时间戳: {self.start_timestamp}") - + logger.info(f"程序启动时间戳: {self.start_timestamp}") + # 设置主题 ctk.set_appearance_mode("dark") ctk.set_default_color_theme("blue") - + # 创建主窗口 self.root = ctk.CTk() self.root.title('麦麦推理') self.root.geometry('800x600') self.root.protocol("WM_DELETE_WINDOW", self._on_closing) - + # 初始化数据库连接 try: self.db = Database.get_instance().db - print("数据库连接成功") + logger.success("数据库连接成功") except RuntimeError: - print("数据库未初始化,正在尝试初始化...") + logger.warning("数据库未初始化,正在尝试初始化...") try: Database.initialize("127.0.0.1", 27017, "maimai_bot") self.db = Database.get_instance().db - print("数据库初始化成功") - except Exception as e: - print(f"数据库初始化失败: {e}") + logger.success("数据库初始化成功") + except Exception: + logger.exception(f"数据库初始化失败") sys.exit(1) - + # 存储群组数据 self.group_data: Dict[str, List[dict]] = {} - + # 创建更新队列 self.update_queue = queue.Queue() - + # 创建主框架 self.frame = ctk.CTkFrame(self.root) self.frame.pack(pady=20, padx=20, fill="both", expand=True) - + # 添加标题 self.title = ctk.CTkLabel(self.frame, text="麦麦的脑内所想", font=("Arial", 24)) self.title.pack(pady=10, padx=10) - + # 创建左右分栏 self.paned = ctk.CTkFrame(self.frame) self.paned.pack(fill="both", expand=True, padx=10, pady=10) - + # 左侧群组列表 self.left_frame = ctk.CTkFrame(self.paned, width=200) self.left_frame.pack(side="left", fill="y", padx=5, pady=5) - + self.group_label = ctk.CTkLabel(self.left_frame, text="群组列表", font=("Arial", 16)) self.group_label.pack(pady=5) - + # 创建可滚动框架来容纳群组按钮 self.group_scroll_frame = ctk.CTkScrollableFrame(self.left_frame, width=180, height=400) self.group_scroll_frame.pack(pady=5, padx=5, fill="both", expand=True) - + # 存储群组按钮的字典 self.group_buttons: Dict[str, ctk.CTkButton] = {} # 当前选中的群组ID self.selected_group_id: Optional[str] = None - + # 右侧内容显示 self.right_frame = ctk.CTkFrame(self.paned) self.right_frame.pack(side="right", fill="both", expand=True, padx=5, pady=5) - + self.content_label = ctk.CTkLabel(self.right_frame, text="推理内容", font=("Arial", 16)) self.content_label.pack(pady=5) - + # 创建富文本显示框 self.content_text = ctk.CTkTextbox(self.right_frame, width=500, height=400) self.content_text.pack(pady=5, padx=5, fill="both", expand=True) - + # 配置文本标签 - 只使用颜色 self.content_text.tag_config("timestamp", foreground="#888888") # 时间戳使用灰色 self.content_text.tag_config("user", foreground="#4CAF50") # 用户名使用绿色 @@ -144,11 +144,11 @@ class ReasoningGUI: self.content_text.tag_config("reasoning", foreground="#FF9800") # 推理过程使用橙色 self.content_text.tag_config("response", foreground="#E91E63") # 回复使用粉色 self.content_text.tag_config("separator", foreground="#666666") # 分隔符使用深灰色 - + # 底部控制栏 self.control_frame = ctk.CTkFrame(self.frame) self.control_frame.pack(fill="x", padx=10, pady=5) - + self.clear_button = ctk.CTkButton( self.control_frame, text="清除显示", @@ -156,19 +156,19 @@ class ReasoningGUI: width=120 ) self.clear_button.pack(side="left", padx=5) - + # 启动自动更新线程 self.update_thread = threading.Thread(target=self._auto_update, daemon=True) self.update_thread.start() - + # 启动GUI更新检查 self.root.after(100, self._process_queue) - + def _on_closing(self): """处理窗口关闭事件""" self.root.quit() sys.exit(0) - + def _process_queue(self): """处理更新队列中的任务""" try: @@ -183,14 +183,14 @@ class ReasoningGUI: finally: # 继续检查队列 self.root.after(100, self._process_queue) - + def _update_group_list_gui(self): """在主线程中更新群组列表""" # 清除现有按钮 for button in self.group_buttons.values(): button.destroy() self.group_buttons.clear() - + # 创建新的群组按钮 for group_id in self.group_data.keys(): button = ctk.CTkButton( @@ -203,16 +203,16 @@ class ReasoningGUI: ) button.pack(pady=2, padx=5) self.group_buttons[group_id] = button - + # 如果有选中的群组,保持其高亮状态 if self.selected_group_id and self.selected_group_id in self.group_buttons: self._highlight_selected_group(self.selected_group_id) - + def _on_group_select(self, group_id: str): """处理群组选择事件""" self._highlight_selected_group(group_id) self._update_display_gui(group_id) - + def _highlight_selected_group(self, group_id: str): """高亮显示选中的群组按钮""" # 重置所有按钮的颜色 @@ -223,9 +223,9 @@ class ReasoningGUI: else: # 恢复其他按钮的默认颜色 button.configure(fg_color="#2B2B2B", hover_color="#404040") - + self.selected_group_id = group_id - + def _update_display_gui(self, group_id: str): """在主线程中更新显示内容""" if group_id in self.group_data: @@ -234,19 +234,19 @@ class ReasoningGUI: # 时间戳 time_str = item['time'].strftime("%Y-%m-%d %H:%M:%S") self.content_text.insert("end", f"[{time_str}]\n", "timestamp") - + # 用户信息 self.content_text.insert("end", "用户: ", "timestamp") self.content_text.insert("end", f"{item.get('user', '未知')}\n", "user") - + # 消息内容 self.content_text.insert("end", "消息: ", "timestamp") self.content_text.insert("end", f"{item.get('message', '')}\n", "message") - + # 模型信息 self.content_text.insert("end", "模型: ", "timestamp") self.content_text.insert("end", f"{item.get('model', '')}\n", "model") - + # Prompt内容 self.content_text.insert("end", "Prompt内容:\n", "timestamp") prompt_text = item.get('prompt', '') @@ -257,7 +257,7 @@ class ReasoningGUI: self.content_text.insert("end", " " + line + "\n", "prompt") else: self.content_text.insert("end", " 无Prompt内容\n", "prompt") - + # 推理过程 self.content_text.insert("end", "推理过程:\n", "timestamp") reasoning_text = item.get('reasoning', '') @@ -268,53 +268,53 @@ class ReasoningGUI: self.content_text.insert("end", " " + line + "\n", "reasoning") else: self.content_text.insert("end", " 无推理过程\n", "reasoning") - + # 回复内容 self.content_text.insert("end", "回复: ", "timestamp") self.content_text.insert("end", f"{item.get('response', '')}\n", "response") - + # 分隔符 - self.content_text.insert("end", f"\n{'='*50}\n\n", "separator") - + self.content_text.insert("end", f"\n{'=' * 50}\n\n", "separator") + # 滚动到顶部 self.content_text.see("1.0") - + def _auto_update(self): """自动更新函数""" while True: try: # 从数据库获取最新数据,只获取启动时间之后的记录 query = {"time": {"$gt": self.start_timestamp}} - print(f"查询条件: {query}") - + logger.debug(f"查询条件: {query}") + # 先获取一条记录检查时间格式 sample = self.db.reasoning_logs.find_one() if sample: - print(f"样本记录时间格式: {type(sample['time'])} 值: {sample['time']}") - + logger.debug(f"样本记录时间格式: {type(sample['time'])} 值: {sample['time']}") + cursor = self.db.reasoning_logs.find(query).sort("time", -1) new_data = {} total_count = 0 - + for item in cursor: # 调试输出 if total_count == 0: - print(f"记录时间: {item['time']}, 类型: {type(item['time'])}") - + logger.debug(f"记录时间: {item['time']}, 类型: {type(item['time'])}") + total_count += 1 group_id = str(item.get('group_id', 'unknown')) if group_id not in new_data: new_data[group_id] = [] - + # 转换时间戳为datetime对象 if isinstance(item['time'], (int, float)): time_obj = datetime.fromtimestamp(item['time']) elif isinstance(item['time'], datetime): time_obj = item['time'] else: - print(f"未知的时间格式: {type(item['time'])}") + logger.warning(f"未知的时间格式: {type(item['time'])}") time_obj = datetime.now() # 使用当前时间作为后备 - + new_data[group_id].append({ 'time': time_obj, 'user': item.get('user', '未知'), @@ -324,13 +324,13 @@ class ReasoningGUI: 'response': item.get('response', ''), 'prompt': item.get('prompt', '') # 添加prompt字段 }) - - print(f"从数据库加载了 {total_count} 条记录,分布在 {len(new_data)} 个群组中") - + + logger.info(f"从数据库加载了 {total_count} 条记录,分布在 {len(new_data)} 个群组中") + # 更新数据 if new_data != self.group_data: self.group_data = new_data - print("数据已更新,正在刷新显示...") + logger.info("数据已更新,正在刷新显示...") # 将更新任务添加到队列 self.update_queue.put({'type': 'update_group_list'}) if self.group_data: @@ -341,16 +341,16 @@ class ReasoningGUI: 'type': 'update_display', 'group_id': self.selected_group_id }) - except Exception as e: - print(f"自动更新出错: {e}") - + except Exception: + logger.exception(f"自动更新出错") + # 每5秒更新一次 time.sleep(5) - + def clear_display(self): """清除显示内容""" self.content_text.delete("1.0", "end") - + def run(self): """运行GUI""" self.root.mainloop() @@ -359,18 +359,17 @@ class ReasoningGUI: def main(): """主函数""" Database.initialize( - host= os.getenv("MONGODB_HOST"), - port= int(os.getenv("MONGODB_PORT")), - db_name= os.getenv("DATABASE_NAME"), - username= os.getenv("MONGODB_USERNAME"), - password= os.getenv("MONGODB_PASSWORD"), + host=os.getenv("MONGODB_HOST"), + port=int(os.getenv("MONGODB_PORT")), + db_name=os.getenv("DATABASE_NAME"), + username=os.getenv("MONGODB_USERNAME"), + password=os.getenv("MONGODB_PASSWORD"), auth_source=os.getenv("MONGODB_AUTH_SOURCE") ) - + app = ReasoningGUI() app.run() - if __name__ == "__main__": main() diff --git a/src/plugins/chat/__init__.py b/src/plugins/chat/__init__.py index 485d9d759..bd71be019 100644 --- a/src/plugins/chat/__init__.py +++ b/src/plugins/chat/__init__.py @@ -2,9 +2,8 @@ import asyncio import time from loguru import logger -from nonebot import get_driver, on_command, on_message, require +from nonebot import get_driver, on_message, require from nonebot.adapters.onebot.v11 import Bot, GroupMessageEvent, Message, MessageSegment -from nonebot.rule import to_me from nonebot.typing import T_State from ...common.database import Database @@ -16,6 +15,10 @@ from .config import global_config from .emoji_manager import emoji_manager from .relationship_manager import relationship_manager from .willing_manager import willing_manager +from ..memory_system.memory import hippocampus, memory_graph +from .bot import ChatBot +from .message_sender import message_manager, message_sender + # 创建LLM统计实例 llm_stats = LLMStatistics("llm_statistics.txt") @@ -35,19 +38,13 @@ Database.initialize( password=config.MONGODB_PASSWORD, auth_source=config.MONGODB_AUTH_SOURCE ) -print("\033[1;32m[初始化数据库完成]\033[0m") +logger.success("初始化数据库成功") -# 导入其他模块 -from ..memory_system.memory import hippocampus, memory_graph -from .bot import ChatBot - -# from .message_send_control import message_sender -from .message_sender import message_manager, message_sender # 初始化表情管理器 emoji_manager.initialize() -print(f"\033[1;32m正在唤醒{global_config.BOT_NICKNAME}......\033[0m") +logger.debug(f"正在唤醒{global_config.BOT_NICKNAME}......") # 创建机器人实例 chat_bot = ChatBot() # 注册群消息处理器 @@ -61,12 +58,12 @@ async def start_background_tasks(): """启动后台任务""" # 启动LLM统计 llm_stats.start() - logger.success("[初始化]LLM统计功能已启动") + logger.success("LLM统计功能启动成功") # 初始化并启动情绪管理器 mood_manager = MoodManager.get_instance() mood_manager.start_mood_update(update_interval=global_config.mood_update_interval) - logger.success("[初始化]情绪管理器已启动") + logger.success("情绪管理器启动成功") # 只启动表情包管理任务 asyncio.create_task(emoji_manager.start_periodic_check(interval_MINS=global_config.EMOJI_CHECK_INTERVAL)) @@ -77,7 +74,7 @@ async def start_background_tasks(): @driver.on_startup async def init_relationships(): """在 NoneBot2 启动时初始化关系管理器""" - print("\033[1;32m[初始化]\033[0m 正在加载用户关系数据...") + logger.debug("正在加载用户关系数据...") await relationship_manager.load_all_relationships() asyncio.create_task(relationship_manager._start_relationship_manager()) @@ -86,19 +83,19 @@ async def init_relationships(): async def _(bot: Bot): """Bot连接成功时的处理""" global _message_manager_started - print(f"\033[1;38;5;208m-----------{global_config.BOT_NICKNAME}成功连接!-----------\033[0m") + logger.debug(f"-----------{global_config.BOT_NICKNAME}成功连接!-----------") await willing_manager.ensure_started() message_sender.set_bot(bot) - print("\033[1;38;5;208m-----------消息发送器已启动!-----------\033[0m") + logger.success("-----------消息发送器已启动!-----------") if not _message_manager_started: asyncio.create_task(message_manager.start_processor()) _message_manager_started = True - print("\033[1;38;5;208m-----------消息处理器已启动!-----------\033[0m") + logger.success("-----------消息处理器已启动!-----------") asyncio.create_task(emoji_manager._periodic_scan(interval_MINS=global_config.EMOJI_REGISTER_INTERVAL)) - print("\033[1;38;5;208m-----------开始偷表情包!-----------\033[0m") + logger.success("-----------开始偷表情包!-----------") @group_msg.handle() @@ -110,13 +107,15 @@ async def _(bot: Bot, event: GroupMessageEvent, state: T_State): @scheduler.scheduled_job("interval", seconds=global_config.build_memory_interval, id="build_memory") async def build_memory_task(): """每build_memory_interval秒执行一次记忆构建""" - print( - "\033[1;32m[记忆构建]\033[0m -------------------------------------------开始构建记忆-------------------------------------------") + logger.debug( + "[记忆构建]" + "------------------------------------开始构建记忆--------------------------------------") start_time = time.time() await hippocampus.operation_build_memory(chat_size=20) end_time = time.time() - print( - f"\033[1;32m[记忆构建]\033[0m -------------------------------------------记忆构建完成:耗时: {end_time - start_time:.2f} 秒-------------------------------------------") + logger.success( + f"[记忆构建]--------------------------记忆构建完成:耗时: {end_time - start_time:.2f} " + "秒-------------------------------------------") @scheduler.scheduled_job("interval", seconds=global_config.forget_memory_interval, id="forget_memory") diff --git a/src/plugins/chat/bot.py b/src/plugins/chat/bot.py index a02c4a059..c510fe4bf 100644 --- a/src/plugins/chat/bot.py +++ b/src/plugins/chat/bot.py @@ -31,10 +31,10 @@ class ChatBot: self._started = False self.mood_manager = MoodManager.get_instance() # 获取情绪管理器单例 self.mood_manager.start_mood_update() # 启动情绪更新 - + self.emoji_chance = 0.2 # 发送表情包的基础概率 # self.message_streams = MessageStreamContainer() - + async def _ensure_started(self): """确保所有任务已启动""" if not self._started: @@ -42,26 +42,26 @@ class ChatBot: async def handle_message(self, event: GroupMessageEvent, bot: Bot) -> None: """处理收到的群消息""" - + if event.group_id not in global_config.talk_allowed_groups: return self.bot = bot # 更新 bot 实例 - + if event.user_id in global_config.ban_user_id: return group_info = await bot.get_group_info(group_id=event.group_id) sender_info = await bot.get_group_member_info(group_id=event.group_id, user_id=event.user_id, no_cache=True) - - await relationship_manager.update_relationship(user_id = event.user_id, data = sender_info) - await relationship_manager.update_relationship_value(user_id = event.user_id, relationship_value = 0.5) - + + await relationship_manager.update_relationship(user_id=event.user_id, data=sender_info) + await relationship_manager.update_relationship_value(user_id=event.user_id, relationship_value=0.5) + message = Message( group_id=event.group_id, user_id=event.user_id, message_id=event.message_id, user_cardname=sender_info['card'], - raw_message=str(event.original_message), + raw_message=str(event.original_message), plain_text=event.get_plaintext(), reply_message=event.reply, ) @@ -70,26 +70,26 @@ class ChatBot: # 过滤词 for word in global_config.ban_words: if word in message.detailed_plain_text: - logger.info(f"\033[1;32m[{message.group_name}]{message.user_nickname}:\033[0m {message.processed_plain_text}") - logger.info(f"\033[1;32m[过滤词识别]\033[0m 消息中含有{word},filtered") + logger.info( + f"[{message.group_name}]{message.user_nickname}:{message.processed_plain_text}") + logger.info(f"[过滤词识别]消息中含有{word},filtered") return - + current_time = time.strftime("%Y-%m-%d %H:%M:%S", time.localtime(message.time)) - - # topic=await topic_identifier.identify_topic_llm(message.processed_plain_text) topic = '' interested_rate = 0 - interested_rate = await hippocampus.memory_activate_value(message.processed_plain_text)/100 - print(f"\033[1;32m[记忆激活]\033[0m 对{message.processed_plain_text}的激活度:---------------------------------------{interested_rate}\n") + interested_rate = await hippocampus.memory_activate_value(message.processed_plain_text) / 100 + logger.debug(f"对{message.processed_plain_text}" + f"的激活度:{interested_rate}") # logger.info(f"\033[1;32m[主题识别]\033[0m 使用{global_config.topic_extract}主题: {topic}") - + await self.storage.store_message(message, topic[0] if topic else None) is_mentioned = is_mentioned_bot_in_txt(message.processed_plain_text) reply_probability = willing_manager.change_reply_willing_received( - event.group_id, + event.group_id, topic[0] if topic else None, is_mentioned, global_config, @@ -98,25 +98,24 @@ class ChatBot: interested_rate ) current_willing = willing_manager.get_willing(event.group_id) - - - print(f"\033[1;32m[{current_time}][{message.group_name}]{message.user_nickname}:\033[0m {message.processed_plain_text}\033[1;36m[回复意愿:{current_willing:.2f}][概率:{reply_probability * 100:.1f}%]\033[0m") + + logger.info( + f"[{current_time}][{message.group_name}]{message.user_nickname}:" + f"{message.processed_plain_text}[回复意愿:{current_willing:.2f}][概率:{reply_probability * 100:.1f}%]") response = "" - + if random() < reply_probability: - - tinking_time_point = round(time.time(), 2) think_id = 'mt' + str(tinking_time_point) - thinking_message = Message_Thinking(message=message,message_id=think_id) - + thinking_message = Message_Thinking(message=message, message_id=think_id) + message_manager.add_message(thinking_message) willing_manager.change_reply_willing_sent(thinking_message.group_id) - - response,raw_content = await self.gpt.generate_response(message) - + + response, raw_content = await self.gpt.generate_response(message) + if response: container = message_manager.get_container(event.group_id) thinking_message = None @@ -127,27 +126,28 @@ class ChatBot: container.messages.remove(msg) # print(f"\033[1;32m[思考消息删除]\033[0m 已找到思考消息对象,开始删除") break - + # 如果找不到思考消息,直接返回 if not thinking_message: - print(f"\033[1;33m[警告]\033[0m 未找到对应的思考消息,可能已超时被移除") + logger.warning(f"未找到对应的思考消息,可能已超时被移除") return - - #记录开始思考的时间,避免从思考到回复的时间太久 + + # 记录开始思考的时间,避免从思考到回复的时间太久 thinking_start_time = thinking_message.thinking_start_time - message_set = MessageSet(event.group_id, global_config.BOT_QQ, think_id) # 发送消息的id和产生发送消息的message_thinking是一致的 - #计算打字时间,1是为了模拟打字,2是避免多条回复乱序 + message_set = MessageSet(event.group_id, global_config.BOT_QQ, + think_id) # 发送消息的id和产生发送消息的message_thinking是一致的 + # 计算打字时间,1是为了模拟打字,2是避免多条回复乱序 accu_typing_time = 0 - + # print(f"\033[1;32m[开始回复]\033[0m 开始将回复1载入发送容器") mark_head = False for msg in response: # print(f"\033[1;32m[回复内容]\033[0m {msg}") - #通过时间改变时间戳 + # 通过时间改变时间戳 typing_time = calculate_typing_time(msg) accu_typing_time += typing_time timepoint = tinking_time_point + accu_typing_time - + bot_message = Message_Sending( group_id=event.group_id, user_id=global_config.BOT_QQ, @@ -157,8 +157,8 @@ class ChatBot: processed_plain_text=msg, user_nickname=global_config.BOT_NICKNAME, group_name=message.group_name, - time=timepoint, #记录了回复生成的时间 - thinking_start_time=thinking_start_time, #记录了思考开始的时间 + time=timepoint, # 记录了回复生成的时间 + thinking_start_time=thinking_start_time, # 记录了思考开始的时间 reply_message_id=message.message_id ) await bot_message.initialize() @@ -166,27 +166,27 @@ class ChatBot: bot_message.is_head = True mark_head = True message_set.add_message(bot_message) - - #message_set 可以直接加入 message_manager + + # message_set 可以直接加入 message_manager # print(f"\033[1;32m[回复]\033[0m 将回复载入发送容器") message_manager.add_message(message_set) - + bot_response_time = tinking_time_point if random() < global_config.emoji_chance: emoji_raw = await emoji_manager.get_emoji_for_text(response) - + # 检查是否 <没有找到> emoji if emoji_raw != None: - emoji_path,discription = emoji_raw + emoji_path, discription = emoji_raw emoji_cq = CQCode.create_emoji_cq(emoji_path) - + if random() < 0.5: bot_response_time = tinking_time_point - 1 else: bot_response_time = bot_response_time + 1 - + bot_message = Message_Sending( group_id=event.group_id, user_id=global_config.BOT_QQ, @@ -206,8 +206,8 @@ class ChatBot: await bot_message.initialize() message_manager.add_message(bot_message) emotion = await self.gpt._get_emotion_tags(raw_content) - print(f"为 '{response}' 获取到的情感标签为:{emotion}") - valuedict={ + logger.debug(f"为 '{response}' 获取到的情感标签为:{emotion}") + valuedict = { 'happy': 0.5, 'angry': -1, 'sad': -0.5, @@ -216,11 +216,13 @@ class ChatBot: 'fearful': -0.7, 'neutral': 0.1 } - await relationship_manager.update_relationship_value(message.user_id, relationship_value=valuedict[emotion[0]]) + await relationship_manager.update_relationship_value(message.user_id, + relationship_value=valuedict[emotion[0]]) # 使用情绪管理器更新情绪 self.mood_manager.update_mood_from_emotion(emotion[0], global_config.mood_intensity_factor) - + # willing_manager.change_reply_willing_after_sent(event.group_id) + # 创建全局ChatBot实例 -chat_bot = ChatBot() \ No newline at end of file +chat_bot = ChatBot() diff --git a/src/plugins/chat/config.py b/src/plugins/chat/config.py index 49963ad3b..c37d23a46 100644 --- a/src/plugins/chat/config.py +++ b/src/plugins/chat/config.py @@ -135,7 +135,7 @@ class BotConfig: try: config_version: str = toml["inner"]["version"] except KeyError as e: - logger.error(f"配置文件中 inner 段 不存在 {e}, 这是错误的配置文件") + logger.error(f"配置文件中 inner 段 不存在, 这是错误的配置文件") raise KeyError(f"配置文件中 inner 段 不存在 {e}, 这是错误的配置文件") else: toml["inner"] = {"version": "0.0.0"} @@ -162,7 +162,7 @@ class BotConfig: personality_config = parent['personality'] personality = personality_config.get('prompt_personality') if len(personality) >= 2: - logger.info(f"载入自定义人格:{personality}") + logger.debug(f"载入自定义人格:{personality}") config.PROMPT_PERSONALITY = personality_config.get('prompt_personality', config.PROMPT_PERSONALITY) logger.info(f"载入自定义日程prompt:{personality_config.get('prompt_schedule', config.PROMPT_SCHEDULE_GEN)}") config.PROMPT_SCHEDULE_GEN = personality_config.get('prompt_schedule', config.PROMPT_SCHEDULE_GEN) @@ -246,11 +246,11 @@ class BotConfig: try: cfg_target[i] = cfg_item[i] except KeyError as e: - logger.error(f"{item} 中的必要字段 {e} 不存在,请检查") + logger.error(f"{item} 中的必要字段不存在,请检查") raise KeyError(f"{item} 中的必要字段 {e} 不存在,请检查") provider = cfg_item.get("provider") - if provider == None: + if provider is None: logger.error(f"provider 字段在模型配置 {item} 中不存在,请检查") raise KeyError(f"provider 字段在模型配置 {item} 中不存在,请检查") diff --git a/src/plugins/chat/cq_code.py b/src/plugins/chat/cq_code.py index 4a295e3d5..b13e33e48 100644 --- a/src/plugins/chat/cq_code.py +++ b/src/plugins/chat/cq_code.py @@ -4,6 +4,7 @@ import os import time from dataclasses import dataclass from typing import Dict, Optional +from loguru import logger import requests @@ -151,11 +152,11 @@ class CQCode: except (requests.exceptions.SSLError, requests.exceptions.HTTPError) as e: if retry == max_retries - 1: - print(f"\033[1;31m[致命错误]\033[0m 最终请求失败: {str(e)}") + logger.error(f"最终请求失败: {str(e)}") time.sleep(1.5 ** retry) # 指数退避 except Exception as e: - print(f"\033[1;33m[未知错误]\033[0m {str(e)}") + logger.exception(f"[未知错误]") return None return None @@ -194,7 +195,7 @@ class CQCode: description, _ = await self._llm.generate_response_for_image(prompt, image_base64) return f"[表情包:{description}]" except Exception as e: - print(f"\033[1;31m[错误]\033[0m AI接口调用失败: {str(e)}") + logger.exception(f"AI接口调用失败: {str(e)}") return "[表情包]" async def get_image_description(self, image_base64: str) -> str: @@ -205,7 +206,7 @@ class CQCode: description, _ = await self._llm.generate_response_for_image(prompt, image_base64) return f"[图片:{description}]" except Exception as e: - print(f"\033[1;31m[错误]\033[0m AI接口调用失败: {str(e)}") + logger.exception(f"AI接口调用失败: {str(e)}") return "[图片]" async def translate_forward(self) -> str: @@ -222,7 +223,7 @@ class CQCode: try: messages = ast.literal_eval(content) except ValueError as e: - print(f"\033[1;31m[错误]\033[0m 解析转发消息内容失败: {str(e)}") + logger.error(f"解析转发消息内容失败: {str(e)}") return '[转发消息]' # 处理每条消息 @@ -277,11 +278,11 @@ class CQCode: # 合并所有消息 combined_messages = '\n'.join(formatted_messages) - print(f"\033[1;34m[调试信息]\033[0m 合并后的转发消息: {combined_messages}") + logger.debug(f"合并后的转发消息: {combined_messages}") return f"[转发消息:\n{combined_messages}]" except Exception as e: - print(f"\033[1;31m[错误]\033[0m 处理转发消息失败: {str(e)}") + logger.exception("处理转发消息失败") return '[转发消息]' async def translate_reply(self) -> str: @@ -307,7 +308,7 @@ class CQCode: return f"[回复 {self.reply_message.sender.nickname} 的消息: {message_obj.processed_plain_text}]" else: - print("\033[1;31m[错误]\033[0m 回复消息的sender.user_id为空") + logger.error("回复消息的sender.user_id为空") return '[回复某人消息]' @staticmethod diff --git a/src/plugins/chat/emoji_manager.py b/src/plugins/chat/emoji_manager.py index 614bfe025..414eaf74d 100644 --- a/src/plugins/chat/emoji_manager.py +++ b/src/plugins/chat/emoji_manager.py @@ -21,24 +21,26 @@ config = driver.config class EmojiManager: _instance = None EMOJI_DIR = "data/emoji" # 表情包存储目录 - + def __new__(cls): if cls._instance is None: cls._instance = super().__new__(cls) cls._instance.db = None cls._instance._initialized = False return cls._instance - + def __init__(self): self.db = Database.get_instance() self._scan_task = None self.vlm = LLM_request(model=global_config.vlm, temperature=0.3, max_tokens=1000) - self.llm_emotion_judge = LLM_request(model=global_config.llm_emotion_judge, max_tokens=60,temperature=0.8) #更高的温度,更少的token(后续可以根据情绪来调整温度) - + self.llm_emotion_judge = LLM_request(model=global_config.llm_normal_minor, max_tokens=60, + temperature=0.8) # 更高的温度,更少的token(后续可以根据情绪来调整温度) + + def _ensure_emoji_dir(self): """确保表情存储目录存在""" os.makedirs(self.EMOJI_DIR, exist_ok=True) - + def initialize(self): """初始化数据库连接和表情目录""" if not self._initialized: @@ -50,15 +52,15 @@ class EmojiManager: # 启动时执行一次完整性检查 self.check_emoji_file_integrity() except Exception as e: - logger.error(f"初始化表情管理器失败: {str(e)}") - + logger.exception(f"初始化表情管理器失败") + def _ensure_db(self): """确保数据库已初始化""" if not self._initialized: self.initialize() if not self._initialized: raise RuntimeError("EmojiManager not initialized") - + def _ensure_emoji_collection(self): """确保emoji集合存在并创建索引 @@ -76,7 +78,7 @@ class EmojiManager: self.db.db.emoji.create_index([('embedding', '2dsphere')]) self.db.db.emoji.create_index([('tags', 1)]) self.db.db.emoji.create_index([('filename', 1)], unique=True) - + def record_usage(self, emoji_id: str): """记录表情使用次数""" try: @@ -86,8 +88,8 @@ class EmojiManager: {'$inc': {'usage_count': 1}} ) except Exception as e: - logger.error(f"记录表情使用失败: {str(e)}") - + logger.exception(f"记录表情使用失败") + async def get_emoji_for_text(self, text: str) -> Optional[str]: """根据文本内容获取相关表情包 Args: @@ -102,9 +104,9 @@ class EmojiManager: """ try: self._ensure_db() - + # 获取文本的embedding - text_for_search= await self._get_kimoji_for_text(text) + text_for_search = await self._get_kimoji_for_text(text) if not text_for_search: logger.error("无法获取文本的情绪") return None @@ -112,15 +114,15 @@ class EmojiManager: if not text_embedding: logger.error("无法获取文本的embedding") return None - + try: # 获取所有表情包 all_emojis = list(self.db.db.emoji.find({}, {'_id': 1, 'path': 1, 'embedding': 1, 'discription': 1})) - + if not all_emojis: logger.warning("数据库中没有任何表情包") return None - + # 计算余弦相似度并排序 def cosine_similarity(v1, v2): if not v1 or not v2: @@ -131,42 +133,43 @@ class EmojiManager: if norm_v1 == 0 or norm_v2 == 0: return 0 return dot_product / (norm_v1 * norm_v2) - + # 计算所有表情包与输入文本的相似度 emoji_similarities = [ (emoji, cosine_similarity(text_embedding, emoji.get('embedding', []))) for emoji in all_emojis ] - + # 按相似度降序排序 emoji_similarities.sort(key=lambda x: x[1], reverse=True) - + # 获取前3个最相似的表情包 top_3_emojis = emoji_similarities[:3] - + if not top_3_emojis: logger.warning("未找到匹配的表情包") return None - + # 从前3个中随机选择一个 selected_emoji, similarity = random.choice(top_3_emojis) - + if selected_emoji and 'path' in selected_emoji: # 更新使用次数 self.db.db.emoji.update_one( {'_id': selected_emoji['_id']}, {'$inc': {'usage_count': 1}} ) - logger.success(f"找到匹配的表情包: {selected_emoji.get('discription', '无描述')} (相似度: {similarity:.4f})") + logger.success( + f"找到匹配的表情包: {selected_emoji.get('discription', '无描述')} (相似度: {similarity:.4f})") # 稍微改一下文本描述,不然容易产生幻觉,描述已经包含 表情包 了 - return selected_emoji['path'],"[ %s ]" % selected_emoji.get('discription', '无描述') - + return selected_emoji['path'], "[ %s ]" % selected_emoji.get('discription', '无描述') + except Exception as search_error: logger.error(f"搜索表情包失败: {str(search_error)}") return None - + return None - + except Exception as e: logger.error(f"获取表情包失败: {str(e)}") return None @@ -175,39 +178,39 @@ class EmojiManager: """获取表情包的标签""" try: prompt = '这是一个表情包,使用中文简洁的描述一下表情包的内容和表情包所表达的情感' - + content, _ = await self.vlm.generate_response_for_image(prompt, image_base64) logger.debug(f"输出描述: {content}") return content - + except Exception as e: logger.error(f"获取标签失败: {str(e)}") return None - + async def _check_emoji(self, image_base64: str) -> str: try: prompt = f'这是一个表情包,请回答这个表情包是否满足\"{global_config.EMOJI_CHECK_PROMPT}\"的要求,是则回答是,否则回答否,不要出现任何其他内容' - + content, _ = await self.vlm.generate_response_for_image(prompt, image_base64) logger.debug(f"输出描述: {content}") return content - + except Exception as e: logger.error(f"获取标签失败: {str(e)}") return None - - async def _get_kimoji_for_text(self, text:str): + + async def _get_kimoji_for_text(self, text: str): try: prompt = f'这是{global_config.BOT_NICKNAME}将要发送的消息内容:\n{text}\n若要为其配上表情包,请你输出这个表情包应该表达怎样的情感,应该给人什么样的感觉,不要太简洁也不要太长,注意不要输出任何对消息内容的分析内容,只输出\"一种什么样的感觉\"中间的形容词部分。' - + content, _ = await self.llm_emotion_judge.generate_response_async(prompt) logger.info(f"输出描述: {content}") return content - + except Exception as e: logger.error(f"获取标签失败: {str(e)}") return None - + async def scan_new_emojis(self): """扫描新的表情包""" try: @@ -215,22 +218,23 @@ class EmojiManager: os.makedirs(emoji_dir, exist_ok=True) # 获取所有支持的图片文件 - files_to_process = [f for f in os.listdir(emoji_dir) if f.lower().endswith(('.jpg', '.jpeg', '.png', '.gif'))] - + files_to_process = [f for f in os.listdir(emoji_dir) if + f.lower().endswith(('.jpg', '.jpeg', '.png', '.gif'))] + for filename in files_to_process: image_path = os.path.join(emoji_dir, filename) - + # 检查是否已经注册过 existing_emoji = self.db.db['emoji'].find_one({'filename': filename}) if existing_emoji: continue - + # 压缩图片并获取base64编码 image_base64 = image_path_to_base64(image_path) if image_base64 is None: os.remove(image_path) continue - + # 获取表情包的描述 discription = await self._get_emoji_discription(image_base64) if global_config.EMOJI_CHECK: @@ -247,30 +251,28 @@ class EmojiManager: emoji_record = { 'filename': filename, 'path': image_path, - 'embedding':embedding, + 'embedding': embedding, 'discription': discription, 'timestamp': int(time.time()) } - + # 保存到数据库 self.db.db['emoji'].insert_one(emoji_record) logger.success(f"注册新表情包: {filename}") logger.info(f"描述: {discription}") else: logger.warning(f"跳过表情包: {filename}") - + except Exception as e: - logger.error(f"扫描表情包失败: {str(e)}") - logger.error(traceback.format_exc()) - + logger.exception(f"扫描表情包失败") + async def _periodic_scan(self, interval_MINS: int = 10): """定期扫描新表情包""" while True: - print("\033[1;36m[表情包]\033[0m 开始扫描新表情包...") + logger.info("开始扫描新表情包...") await self.scan_new_emojis() await asyncio.sleep(interval_MINS * 60) # 每600秒扫描一次 - def check_emoji_file_integrity(self): """检查表情包文件完整性 如果文件已被删除,则从数据库中移除对应记录 @@ -281,7 +283,7 @@ class EmojiManager: all_emojis = list(self.db.db.emoji.find()) removed_count = 0 total_count = len(all_emojis) - + for emoji in all_emojis: try: if 'path' not in emoji: @@ -289,27 +291,27 @@ class EmojiManager: self.db.db.emoji.delete_one({'_id': emoji['_id']}) removed_count += 1 continue - + if 'embedding' not in emoji: logger.warning(f"发现过时记录(缺少embedding字段),ID: {emoji.get('_id', 'unknown')}") self.db.db.emoji.delete_one({'_id': emoji['_id']}) removed_count += 1 continue - + # 检查文件是否存在 if not os.path.exists(emoji['path']): logger.warning(f"表情包文件已被删除: {emoji['path']}") # 从数据库中删除记录 result = self.db.db.emoji.delete_one({'_id': emoji['_id']}) if result.deleted_count > 0: - logger.success(f"成功删除数据库记录: {emoji['_id']}") + logger.debug(f"成功删除数据库记录: {emoji['_id']}") removed_count += 1 else: logger.error(f"删除数据库记录失败: {emoji['_id']}") except Exception as item_error: logger.error(f"处理表情包记录时出错: {str(item_error)}") continue - + # 验证清理结果 remaining_count = self.db.db.emoji.count_documents({}) if removed_count > 0: @@ -317,7 +319,7 @@ class EmojiManager: logger.info(f"清理前总数: {total_count} | 清理后总数: {remaining_count}") else: logger.info(f"已检查 {total_count} 个表情包记录") - + except Exception as e: logger.error(f"检查表情包完整性失败: {str(e)}") logger.error(traceback.format_exc()) @@ -328,6 +330,6 @@ class EmojiManager: await asyncio.sleep(interval_MINS * 60) - # 创建全局单例 -emoji_manager = EmojiManager() +emoji_manager = EmojiManager() + diff --git a/src/plugins/chat/llm_generator.py b/src/plugins/chat/llm_generator.py index 1ac421e6b..f40c9a441 100644 --- a/src/plugins/chat/llm_generator.py +++ b/src/plugins/chat/llm_generator.py @@ -3,6 +3,7 @@ import time from typing import List, Optional, Tuple, Union from nonebot import get_driver +from loguru import logger from ...common.database import Database from ..models.utils_model import LLM_request @@ -39,13 +40,13 @@ class ResponseGenerator: self.current_model_type = 'r1_distill' current_model = self.model_r1_distill - print(f"+++++++++++++++++{global_config.BOT_NICKNAME}{self.current_model_type}思考中+++++++++++++++++") + logger.info(f"{global_config.BOT_NICKNAME}{self.current_model_type}思考中") model_response = await self._generate_response_with_model(message, current_model) raw_content=model_response if model_response: - print(f'{global_config.BOT_NICKNAME}的回复是:{model_response}') + logger.info(f'{global_config.BOT_NICKNAME}的回复是:{model_response}') model_response = await self._process_response(model_response) if model_response: @@ -92,8 +93,8 @@ class ResponseGenerator: # 生成回复 try: content, reasoning_content = await model.generate_response(prompt) - except Exception as e: - print(f"生成回复时出错: {e}") + except Exception: + logger.exception(f"生成回复时出错") return None # 保存到数据库 @@ -144,8 +145,8 @@ class ResponseGenerator: else: return ["neutral"] - except Exception as e: - print(f"获取情感标签时出错: {e}") + except Exception: + logger.exception(f"获取情感标签时出错") return ["neutral"] async def _process_response(self, content: str) -> Tuple[List[str], List[str]]: @@ -172,7 +173,7 @@ class InitiativeMessageGenerate: prompt_builder._build_initiative_prompt_select(message.group_id) ) content_select, reasoning = self.model_v3.generate_response(topic_select_prompt) - print(f"[DEBUG] {content_select} {reasoning}") + logger.debug(f"{content_select} {reasoning}") topics_list = [dot[0] for dot in dots_for_select] if content_select: if content_select in topics_list: @@ -185,12 +186,12 @@ class InitiativeMessageGenerate: select_dot[1], prompt_template ) content_check, reasoning_check = self.model_v3.generate_response(prompt_check) - print(f"[DEBUG] {content_check} {reasoning_check}") + logger.info(f"{content_check} {reasoning_check}") if "yes" not in content_check.lower(): return None prompt = prompt_builder._build_initiative_prompt( select_dot, prompt_template, memory ) content, reasoning = self.model_r1.generate_response_async(prompt) - print(f"[DEBUG] {content} {reasoning}") + logger.debug(f"[DEBUG] {content} {reasoning}") return content diff --git a/src/plugins/chat/message_sender.py b/src/plugins/chat/message_sender.py index 050c59d74..4abbd3b3f 100644 --- a/src/plugins/chat/message_sender.py +++ b/src/plugins/chat/message_sender.py @@ -2,6 +2,7 @@ import asyncio import time from typing import Dict, List, Optional, Union +from loguru import logger from nonebot.adapters.onebot.v11 import Bot from .cq_code import cq_code_tool @@ -13,45 +14,45 @@ from .config import global_config class Message_Sender: """发送器""" + def __init__(self): self.message_interval = (0.5, 1) # 消息间隔时间范围(秒) self.last_send_time = 0 self._current_bot = None - + def set_bot(self, bot: Bot): """设置当前bot实例""" self._current_bot = bot - + async def send_group_message( - self, - group_id: int, - send_text: str, - auto_escape: bool = False, - reply_message_id: int = None, - at_user_id: int = None + self, + group_id: int, + send_text: str, + auto_escape: bool = False, + reply_message_id: int = None, + at_user_id: int = None ) -> None: if not self._current_bot: raise RuntimeError("Bot未设置,请先调用set_bot方法设置bot实例") - + message = send_text - + # 如果需要回复 if reply_message_id: reply_cq = cq_code_tool.create_reply_cq(reply_message_id) message = reply_cq + message - + # 如果需要at # if at_user_id: # at_cq = cq_code_tool.create_at_cq(at_user_id) # message = at_cq + " " + message - - + typing_time = calculate_typing_time(message) if typing_time > 10: typing_time = 10 await asyncio.sleep(typing_time) - + # 发送消息 try: await self._current_bot.send_group_msg( @@ -59,49 +60,49 @@ class Message_Sender: message=message, auto_escape=auto_escape ) - print(f"\033[1;34m[调试]\033[0m 发送消息{message}成功") + logger.debug(f"发送消息{message}成功") except Exception as e: - print(f"发生错误 {e}") - print(f"\033[1;34m[调试]\033[0m 发送消息{message}失败") + logger.exception(f"发送消息{message}失败") class MessageContainer: """单个群的发送/思考消息容器""" + def __init__(self, group_id: int, max_size: int = 100): self.group_id = group_id self.max_size = max_size self.messages = [] self.last_send_time = 0 self.thinking_timeout = 20 # 思考超时时间(秒) - + def get_timeout_messages(self) -> List[Message_Sending]: """获取所有超时的Message_Sending对象(思考时间超过30秒),按thinking_start_time排序""" current_time = time.time() timeout_messages = [] - + for msg in self.messages: if isinstance(msg, Message_Sending): if current_time - msg.thinking_start_time > self.thinking_timeout: timeout_messages.append(msg) - + # 按thinking_start_time排序,时间早的在前面 timeout_messages.sort(key=lambda x: x.thinking_start_time) - + return timeout_messages - + def get_earliest_message(self) -> Optional[Union[Message_Thinking, Message_Sending]]: """获取thinking_start_time最早的消息对象""" if not self.messages: return None earliest_time = float('inf') earliest_message = None - for msg in self.messages: + for msg in self.messages: msg_time = msg.thinking_start_time if msg_time < earliest_time: earliest_time = msg_time - earliest_message = msg + earliest_message = msg return earliest_message - + def add_message(self, message: Union[Message_Thinking, Message_Sending]) -> None: """添加消息到队列""" # print(f"\033[1;32m[添加消息]\033[0m 添加消息到对应群") @@ -110,7 +111,7 @@ class MessageContainer: self.messages.append(single_message) else: self.messages.append(message) - + def remove_message(self, message: Union[Message_Thinking, Message_Sending]) -> bool: """移除消息,如果消息存在则返回True,否则返回False""" try: @@ -118,98 +119,104 @@ class MessageContainer: self.messages.remove(message) return True return False - except Exception as e: - print(f"\033[1;31m[错误]\033[0m 移除消息时发生错误: {e}") + except Exception: + logger.exception(f"移除消息时发生错误") return False - + def has_messages(self) -> bool: """检查是否有待发送的消息""" return bool(self.messages) - + def get_all_messages(self) -> List[Union[Message, Message_Thinking]]: """获取所有消息""" return list(self.messages) - + class MessageManager: """管理所有群的消息容器""" + def __init__(self): self.containers: Dict[int, MessageContainer] = {} self.storage = MessageStorage() self._running = True - + def get_container(self, group_id: int) -> MessageContainer: """获取或创建群的消息容器""" if group_id not in self.containers: self.containers[group_id] = MessageContainer(group_id) return self.containers[group_id] - + def add_message(self, message: Union[Message_Thinking, Message_Sending, MessageSet]) -> None: container = self.get_container(message.group_id) container.add_message(message) - + async def process_group_messages(self, group_id: int): """处理群消息""" # if int(time.time() / 3) == time.time() / 3: - # print(f"\033[1;34m[调试]\033[0m 开始处理群{group_id}的消息") + # print(f"\033[1;34m[调试]\033[0m 开始处理群{group_id}的消息") container = self.get_container(group_id) if container.has_messages(): - #最早的对象,可能是思考消息,也可能是发送消息 - message_earliest = container.get_earliest_message() #一个message_thinking or message_sending - - #如果是思考消息 + # 最早的对象,可能是思考消息,也可能是发送消息 + message_earliest = container.get_earliest_message() # 一个message_thinking or message_sending + + # 如果是思考消息 if isinstance(message_earliest, Message_Thinking): - #优先等待这条消息 + # 优先等待这条消息 message_earliest.update_thinking_time() thinking_time = message_earliest.thinking_time - print(f"\033[1;34m[调试]\033[0m 消息正在思考中,已思考{int(thinking_time)}秒\033[K\r", end='', flush=True) - + print(f"消息正在思考中,已思考{int(thinking_time)}秒\r", end='', flush=True) + # 检查是否超时 if thinking_time > global_config.thinking_timeout: - print(f"\033[1;33m[警告]\033[0m 消息思考超时({thinking_time}秒),移除该消息") + logger.warning(f"消息思考超时({thinking_time}秒),移除该消息") container.remove_message(message_earliest) - else:# 如果不是message_thinking就只能是message_sending - print(f"\033[1;34m[调试]\033[0m 消息'{message_earliest.processed_plain_text}'正在发送中") - #直接发,等什么呢 - if message_earliest.is_head and message_earliest.update_thinking_time() >30: - await message_sender.send_group_message(group_id, message_earliest.processed_plain_text, auto_escape=False, reply_message_id=message_earliest.reply_message_id) + else: # 如果不是message_thinking就只能是message_sending + logger.debug(f"消息'{message_earliest.processed_plain_text}'正在发送中") + # 直接发,等什么呢 + if message_earliest.is_head and message_earliest.update_thinking_time() > 30: + await message_sender.send_group_message(group_id, message_earliest.processed_plain_text, + auto_escape=False, + reply_message_id=message_earliest.reply_message_id) else: - await message_sender.send_group_message(group_id, message_earliest.processed_plain_text, auto_escape=False) - #移除消息 + await message_sender.send_group_message(group_id, message_earliest.processed_plain_text, + auto_escape=False) + # 移除消息 if message_earliest.is_emoji: message_earliest.processed_plain_text = "[表情包]" await self.storage.store_message(message_earliest, None) - + container.remove_message(message_earliest) - - #获取并处理超时消息 - message_timeout = container.get_timeout_messages() #也许是一堆message_sending + + # 获取并处理超时消息 + message_timeout = container.get_timeout_messages() # 也许是一堆message_sending if message_timeout: - print(f"\033[1;34m[调试]\033[0m 发现{len(message_timeout)}条超时消息") + logger.warning(f"发现{len(message_timeout)}条超时消息") for msg in message_timeout: if msg == message_earliest: continue # 跳过已经处理过的消息 - + try: - #发送 - if msg.is_head and msg.update_thinking_time() >30: - await message_sender.send_group_message(group_id, msg.processed_plain_text, auto_escape=False, reply_message_id=msg.reply_message_id) + # 发送 + if msg.is_head and msg.update_thinking_time() > 30: + await message_sender.send_group_message(group_id, msg.processed_plain_text, + auto_escape=False, + reply_message_id=msg.reply_message_id) else: - await message_sender.send_group_message(group_id, msg.processed_plain_text, auto_escape=False) - - - #如果是表情包,则替换为"[表情包]" + await message_sender.send_group_message(group_id, msg.processed_plain_text, + auto_escape=False) + + # 如果是表情包,则替换为"[表情包]" if msg.is_emoji: msg.processed_plain_text = "[表情包]" await self.storage.store_message(msg, None) - + # 安全地移除消息 if not container.remove_message(msg): - print("\033[1;33m[警告]\033[0m 尝试删除不存在的消息") - except Exception as e: - print(f"\033[1;31m[错误]\033[0m 处理超时消息时发生错误: {e}") + logger.warning("尝试删除不存在的消息") + except Exception: + logger.exception(f"处理超时消息时发生错误") continue - + async def start_processor(self): """启动消息处理器""" while self._running: @@ -217,9 +224,10 @@ class MessageManager: tasks = [] for group_id in self.containers.keys(): tasks.append(self.process_group_messages(group_id)) - + await asyncio.gather(*tasks) + # 创建全局消息管理器实例 message_manager = MessageManager() # 创建全局发送器实例 diff --git a/src/plugins/chat/prompt_builder.py b/src/plugins/chat/prompt_builder.py index fdb887af5..4cf21af19 100644 --- a/src/plugins/chat/prompt_builder.py +++ b/src/plugins/chat/prompt_builder.py @@ -1,6 +1,7 @@ import random import time from typing import Optional +from loguru import logger from ...common.database import Database from ..memory_system.memory import hippocampus, memory_graph @@ -16,13 +17,11 @@ class PromptBuilder: self.activate_messages = '' self.db = Database.get_instance() - - - async def _build_prompt(self, - message_txt: str, - sender_name: str = "某人", - relationship_value: float = 0.0, - group_id: Optional[int] = None) -> tuple[str, str]: + async def _build_prompt(self, + message_txt: str, + sender_name: str = "某人", + relationship_value: float = 0.0, + group_id: Optional[int] = None) -> tuple[str, str]: """构建prompt Args: @@ -33,57 +32,56 @@ class PromptBuilder: Returns: str: 构建好的prompt - """ - #先禁用关系 + """ + # 先禁用关系 if 0 > 30: relation_prompt = "关系特别特别好,你很喜欢喜欢他" relation_prompt_2 = "热情发言或者回复" - elif 0 <-20: + elif 0 < -20: relation_prompt = "关系很差,你很讨厌他" relation_prompt_2 = "骂他" else: relation_prompt = "关系一般" relation_prompt_2 = "发言或者回复" - - #开始构建prompt - - - #心情 + + # 开始构建prompt + + # 心情 mood_manager = MoodManager.get_instance() mood_prompt = mood_manager.get_prompt() - - - #日程构建 + + # 日程构建 current_date = time.strftime("%Y-%m-%d", time.localtime()) current_time = time.strftime("%H:%M:%S", time.localtime()) - bot_schedule_now_time,bot_schedule_now_activity = bot_schedule.get_current_task() + bot_schedule_now_time, bot_schedule_now_activity = bot_schedule.get_current_task() prompt_date = f'''今天是{current_date},现在是{current_time},你今天的日程是:\n{bot_schedule.today_schedule}\n你现在正在{bot_schedule_now_activity}\n''' - #知识构建 + # 知识构建 start_time = time.time() - + prompt_info = '' promt_info_prompt = '' - prompt_info = await self.get_prompt_info(message_txt,threshold=0.5) + prompt_info = await self.get_prompt_info(message_txt, threshold=0.5) if prompt_info: - prompt_info = f'''\n----------------------------------------------------\n你有以下这些[知识]:\n{prompt_info}\n请你记住上面的[知识],之后可能会用到\n----------------------------------------------------\n''' - + prompt_info = f'''你有以下这些[知识]:{prompt_info}请你记住上面的[ + 知识],之后可能会用到-''' + end_time = time.time() - print(f"\033[1;32m[知识检索]\033[0m 耗时: {(end_time - start_time):.3f}秒") - + logger.debug(f"知识检索耗时: {(end_time - start_time):.3f}秒") + # 获取聊天上下文 chat_talking_prompt = '' if group_id: - chat_talking_prompt = get_recent_group_detailed_plain_text(self.db, group_id, limit=global_config.MAX_CONTEXT_SIZE,combine = True) - + chat_talking_prompt = get_recent_group_detailed_plain_text(self.db, group_id, + limit=global_config.MAX_CONTEXT_SIZE, + combine=True) + chat_talking_prompt = f"以下是群里正在聊天的内容:\n{chat_talking_prompt}" - - - + # 使用新的记忆获取方法 memory_prompt = '' start_time = time.time() - + # 调用 hippocampus 的 get_relevant_memories 方法 relevant_memories = await hippocampus.get_relevant_memories( text=message_txt, @@ -91,30 +89,28 @@ class PromptBuilder: similarity_threshold=0.4, max_memory_num=5 ) - + if relevant_memories: # 格式化记忆内容 memory_items = [] for memory in relevant_memories: memory_items.append(f"关于「{memory['topic']}」的记忆:{memory['content']}") - + memory_prompt = "看到这些聊天,你想起来:\n" + "\n".join(memory_items) + "\n" - + # 打印调试信息 - print("\n\033[1;32m[记忆检索]\033[0m 找到以下相关记忆:") + logger.debug("[记忆检索]找到以下相关记忆:") for memory in relevant_memories: - print(f"- 主题「{memory['topic']}」[相似度: {memory['similarity']:.2f}]: {memory['content']}") - + logger.debug(f"- 主题「{memory['topic']}」[相似度: {memory['similarity']:.2f}]: {memory['content']}") + end_time = time.time() - print(f"\033[1;32m[回忆耗时]\033[0m 耗时: {(end_time - start_time):.3f}秒") - - - - #激活prompt构建 + logger.info(f"回忆耗时: {(end_time - start_time):.3f}秒") + + # 激活prompt构建 activate_prompt = '' - activate_prompt = f"以上是群里正在进行的聊天,{memory_prompt} 现在昵称为 '{sender_name}' 的用户说的:{message_txt}。引起了你的注意,你和他{relation_prompt},{mood_prompt},你想要{relation_prompt_2}。" - - #检测机器人相关词汇,改为关键词检测与反应功能了,提取到全局配置中 + activate_prompt = f"以上是群里正在进行的聊天,{memory_prompt} 现在昵称为 '{sender_name}' 的用户说的:{message_txt}。引起了你的注意,你和他{relation_prompt},{mood_prompt},你想要{relation_prompt_2}。" + + # 检测机器人相关词汇,改为关键词检测与反应功能了,提取到全局配置中 # bot_keywords = ['人机', 'bot', '机器', '入机', 'robot', '机器人'] # is_bot = any(keyword in message_txt.lower() for keyword in bot_keywords) # if is_bot: @@ -127,12 +123,11 @@ class PromptBuilder: for rule in global_config.keywords_reaction_rules: if rule.get("enable", False): if any(keyword in message_txt.lower() for keyword in rule.get("keywords", [])): - print(f"检测到以下关键词之一:{rule.get('keywords', [])},触发反应:{rule.get('reaction', '')}") + logger.info(f"检测到以下关键词之一:{rule.get('keywords', [])},触发反应:{rule.get('reaction', '')}") keywords_reaction_prompt += rule.get("reaction", "") + ',' - - #人格选择 - personality=global_config.PROMPT_PERSONALITY + # 人格选择 + personality = global_config.PROMPT_PERSONALITY probability_1 = global_config.PERSONALITY_1 probability_2 = global_config.PERSONALITY_2 probability_3 = global_config.PERSONALITY_3 @@ -150,8 +145,8 @@ class PromptBuilder: prompt_personality = f'''{activate_prompt}你的网名叫{global_config.BOT_NICKNAME},{personality[2]}, 你正在浏览qq群,{promt_info_prompt}, 现在请你给出日常且口语化的回复,请表现你自己的见解,不要一昧迎合,尽量简短一些。{keywords_reaction_prompt} 请你表达自己的见解和观点。可以有个性。''' - - #中文高手(新加的好玩功能) + + # 中文高手(新加的好玩功能) prompt_ger = '' if random.random() < 0.04: prompt_ger += '你喜欢用倒装句' @@ -159,23 +154,23 @@ class PromptBuilder: prompt_ger += '你喜欢用反问句' if random.random() < 0.01: prompt_ger += '你喜欢用文言文' - - #额外信息要求 - extra_info = '''但是记得回复平淡一些,简短一些,尤其注意在没明确提到时不要过多提及自身的背景, 不要直接回复别人发的表情包,记住不要输出多余内容(包括前后缀,冒号和引号,括号,表情等),只需要输出回复内容就好,不要输出其他任何内容''' - - #合并prompt + + # 额外信息要求 + extra_info = '''但是记得回复平淡一些,简短一些,尤其注意在没明确提到时不要过多提及自身的背景, 不要直接回复别人发的表情包,记住不要输出多余内容(包括前后缀,冒号和引号,括号,表情等),只需要输出回复内容就好,不要输出其他任何内容''' + + # 合并prompt prompt = "" prompt += f"{prompt_info}\n" prompt += f"{prompt_date}\n" - prompt += f"{chat_talking_prompt}\n" + prompt += f"{chat_talking_prompt}\n" prompt += f"{prompt_personality}\n" prompt += f"{prompt_ger}\n" - prompt += f"{extra_info}\n" - - '''读空气prompt处理''' - activate_prompt_check=f"以上是群里正在进行的聊天,昵称为 '{sender_name}' 的用户说的:{message_txt}。引起了你的注意,你和他{relation_prompt},你想要{relation_prompt_2},但是这不一定是合适的时机,请你决定是否要回应这条消息。" + prompt += f"{extra_info}\n" + + '''读空气prompt处理''' + activate_prompt_check = f"以上是群里正在进行的聊天,昵称为 '{sender_name}' 的用户说的:{message_txt}。引起了你的注意,你和他{relation_prompt},你想要{relation_prompt_2},但是这不一定是合适的时机,请你决定是否要回应这条消息。" prompt_personality_check = '' - extra_check_info=f"请注意把握群里的聊天内容的基础上,综合群内的氛围,例如,和{global_config.BOT_NICKNAME}相关的话题要积极回复,如果是at自己的消息一定要回复,如果自己正在和别人聊天一定要回复,其他话题如果合适搭话也可以回复,如果认为应该回复请输出yes,否则输出no,请注意是决定是否需要回复,而不是编写回复内容,除了yes和no不要输出任何回复内容。" + extra_check_info = f"请注意把握群里的聊天内容的基础上,综合群内的氛围,例如,和{global_config.BOT_NICKNAME}相关的话题要积极回复,如果是at自己的消息一定要回复,如果自己正在和别人聊天一定要回复,其他话题如果合适搭话也可以回复,如果认为应该回复请输出yes,否则输出no,请注意是决定是否需要回复,而不是编写回复内容,除了yes和no不要输出任何回复内容。" if personality_choice < probability_1: # 第一种人格 prompt_personality_check = f'''你的网名叫{global_config.BOT_NICKNAME},{personality[0]}, 你正在浏览qq群,{promt_info_prompt} {activate_prompt_check} {extra_check_info}''' elif personality_choice < probability_1 + probability_2: # 第二种人格 @@ -183,34 +178,36 @@ class PromptBuilder: else: # 第三种人格 prompt_personality_check = f'''你的网名叫{global_config.BOT_NICKNAME},{personality[2]}, 你正在浏览qq群,{promt_info_prompt} {activate_prompt_check} {extra_check_info}''' - prompt_check_if_response=f"{prompt_info}\n{prompt_date}\n{chat_talking_prompt}\n{prompt_personality_check}" - - return prompt,prompt_check_if_response - - def _build_initiative_prompt_select(self,group_id): + prompt_check_if_response = f"{prompt_info}\n{prompt_date}\n{chat_talking_prompt}\n{prompt_personality_check}" + + return prompt, prompt_check_if_response + + def _build_initiative_prompt_select(self, group_id, probability_1=0.8, probability_2=0.1): current_date = time.strftime("%Y-%m-%d", time.localtime()) current_time = time.strftime("%H:%M:%S", time.localtime()) - bot_schedule_now_time,bot_schedule_now_activity = bot_schedule.get_current_task() + bot_schedule_now_time, bot_schedule_now_activity = bot_schedule.get_current_task() prompt_date = f'''今天是{current_date},现在是{current_time},你今天的日程是:\n{bot_schedule.today_schedule}\n你现在正在{bot_schedule_now_activity}\n''' chat_talking_prompt = '' if group_id: - chat_talking_prompt = get_recent_group_detailed_plain_text(self.db, group_id, limit=global_config.MAX_CONTEXT_SIZE,combine = True) - + chat_talking_prompt = get_recent_group_detailed_plain_text(self.db, group_id, + limit=global_config.MAX_CONTEXT_SIZE, + combine=True) + chat_talking_prompt = f"以下是群里正在聊天的内容:\n{chat_talking_prompt}" - # print(f"\033[1;34m[调试]\033[0m 已从数据库获取群 {group_id} 的消息记录:{chat_talking_prompt}") + # print(f"\033[1;34m[调试]\033[0m 已从数据库获取群 {group_id} 的消息记录:{chat_talking_prompt}") # 获取主动发言的话题 - all_nodes=memory_graph.dots - all_nodes=filter(lambda dot:len(dot[1]['memory_items'])>3,all_nodes) - nodes_for_select=random.sample(all_nodes,5) - topics=[info[0] for info in nodes_for_select] - infos=[info[1] for info in nodes_for_select] + all_nodes = memory_graph.dots + all_nodes = filter(lambda dot: len(dot[1]['memory_items']) > 3, all_nodes) + nodes_for_select = random.sample(all_nodes, 5) + topics = [info[0] for info in nodes_for_select] + infos = [info[1] for info in nodes_for_select] - #激活prompt构建 + # 激活prompt构建 activate_prompt = '' activate_prompt = "以上是群里正在进行的聊天。" - personality=global_config.PROMPT_PERSONALITY + personality = global_config.PROMPT_PERSONALITY prompt_personality = '' personality_choice = random.random() if personality_choice < probability_1: # 第一种人格 @@ -219,32 +216,31 @@ class PromptBuilder: prompt_personality = f'''{activate_prompt}你的网名叫{global_config.BOT_NICKNAME},{personality[1]}''' else: # 第三种人格 prompt_personality = f'''{activate_prompt}你的网名叫{global_config.BOT_NICKNAME},{personality[2]}''' - - topics_str=','.join(f"\"{topics}\"") - prompt_for_select=f"你现在想在群里发言,回忆了一下,想到几个话题,分别是{topics_str},综合当前状态以及群内气氛,请你在其中选择一个合适的话题,注意只需要输出话题,除了话题什么也不要输出(双引号也不要输出)" - - prompt_initiative_select=f"{prompt_date}\n{prompt_personality}\n{prompt_for_select}" - prompt_regular=f"{prompt_date}\n{prompt_personality}" - return prompt_initiative_select,nodes_for_select,prompt_regular - - def _build_initiative_prompt_check(self,selected_node,prompt_regular): - memory=random.sample(selected_node['memory_items'],3) - memory='\n'.join(memory) - prompt_for_check=f"{prompt_regular}你现在想在群里发言,回忆了一下,想到一个话题,是{selected_node['concept']},关于这个话题的记忆有\n{memory}\n,以这个作为主题发言合适吗?请在把握群里的聊天内容的基础上,综合群内的氛围,如果认为应该发言请输出yes,否则输出no,请注意是决定是否需要发言,而不是编写回复内容,除了yes和no不要输出任何回复内容。" - return prompt_for_check,memory - - def _build_initiative_prompt(self,selected_node,prompt_regular,memory): - prompt_for_initiative=f"{prompt_regular}你现在想在群里发言,回忆了一下,想到一个话题,是{selected_node['concept']},关于这个话题的记忆有\n{memory}\n,请在把握群里的聊天内容的基础上,综合群内的氛围,以日常且口语化的口吻,简短且随意一点进行发言,不要说的太有条理,可以有个性。记住不要输出多余内容(包括前后缀,冒号和引号,括号,表情等)" + topics_str = ','.join(f"\"{topics}\"") + prompt_for_select = f"你现在想在群里发言,回忆了一下,想到几个话题,分别是{topics_str},综合当前状态以及群内气氛,请你在其中选择一个合适的话题,注意只需要输出话题,除了话题什么也不要输出(双引号也不要输出)" + + prompt_initiative_select = f"{prompt_date}\n{prompt_personality}\n{prompt_for_select}" + prompt_regular = f"{prompt_date}\n{prompt_personality}" + + return prompt_initiative_select, nodes_for_select, prompt_regular + + def _build_initiative_prompt_check(self, selected_node, prompt_regular): + memory = random.sample(selected_node['memory_items'], 3) + memory = '\n'.join(memory) + prompt_for_check = f"{prompt_regular}你现在想在群里发言,回忆了一下,想到一个话题,是{selected_node['concept']},关于这个话题的记忆有\n{memory}\n,以这个作为主题发言合适吗?请在把握群里的聊天内容的基础上,综合群内的氛围,如果认为应该发言请输出yes,否则输出no,请注意是决定是否需要发言,而不是编写回复内容,除了yes和no不要输出任何回复内容。" + return prompt_for_check, memory + + def _build_initiative_prompt(self, selected_node, prompt_regular, memory): + prompt_for_initiative = f"{prompt_regular}你现在想在群里发言,回忆了一下,想到一个话题,是{selected_node['concept']},关于这个话题的记忆有\n{memory}\n,请在把握群里的聊天内容的基础上,综合群内的氛围,以日常且口语化的口吻,简短且随意一点进行发言,不要说的太有条理,可以有个性。记住不要输出多余内容(包括前后缀,冒号和引号,括号,表情等)" return prompt_for_initiative - - async def get_prompt_info(self,message:str,threshold:float): + async def get_prompt_info(self, message: str, threshold: float): related_info = '' - print(f"\033[1;34m[调试]\033[0m 获取知识库内容,元消息:{message[:30]}...,消息长度: {len(message)}") + logger.debug(f"获取知识库内容,元消息:{message[:30]}...,消息长度: {len(message)}") embedding = await get_embedding(message) - related_info += self.get_info_from_db(embedding,threshold=threshold) - + related_info += self.get_info_from_db(embedding, threshold=threshold) + return related_info def get_info_from_db(self, query_embedding: list, limit: int = 1, threshold: float = 0.5) -> str: @@ -305,14 +301,15 @@ class PromptBuilder: {"$limit": limit}, {"$project": {"content": 1, "similarity": 1}} ] - + results = list(self.db.db.knowledges.aggregate(pipeline)) # print(f"\033[1;34m[调试]\033[0m获取知识库内容结果: {results}") - + if not results: return '' - + # 返回所有找到的内容,用换行分隔 return '\n'.join(str(result['content']) for result in results) - -prompt_builder = PromptBuilder() \ No newline at end of file + + +prompt_builder = PromptBuilder() diff --git a/src/plugins/chat/relationship_manager.py b/src/plugins/chat/relationship_manager.py index 4ed7a2f11..4d82184c8 100644 --- a/src/plugins/chat/relationship_manager.py +++ b/src/plugins/chat/relationship_manager.py @@ -1,4 +1,5 @@ import asyncio +from loguru import logger from typing import Optional from ...common.database import Database @@ -8,9 +9,10 @@ class Impression: traits: str = None called: str = None know_time: float = None - + relationship_value: float = None + class Relationship: user_id: int = None # impression: Impression = None @@ -21,7 +23,7 @@ class Relationship: nickname: str = None relationship_value: float = None saved = False - + def __init__(self, user_id: int, data=None, **kwargs): if isinstance(data, dict): # 如果输入是字典,使用字典解析 @@ -39,14 +41,12 @@ class Relationship: self.nickname = kwargs.get('nickname') self.relationship_value = kwargs.get('relationship_value', 0.0) self.saved = kwargs.get('saved', False) - - class RelationshipManager: def __init__(self): - self.relationships: dict[int, Relationship] = {} - + self.relationships: dict[int, Relationship] = {} + async def update_relationship(self, user_id: int, data=None, **kwargs): # 检查是否在内存中已存在 relationship = self.relationships.get(user_id) @@ -62,7 +62,8 @@ class RelationshipManager: setattr(relationship, key, value) else: # 如果不存在,创建新对象 - relationship = Relationship(user_id, data=data) if isinstance(data, dict) else Relationship(user_id, **kwargs) + relationship = Relationship(user_id, data=data) if isinstance(data, dict) else Relationship(user_id, + **kwargs) self.relationships[user_id] = relationship # 更新 id_name_nickname_table @@ -71,9 +72,9 @@ class RelationshipManager: # 保存到数据库 await self.storage_relationship(relationship) relationship.saved = True - + return relationship - + async def update_relationship_value(self, user_id: int, **kwargs): # 检查是否在内存中已存在 relationship = self.relationships.get(user_id) @@ -85,31 +86,30 @@ class RelationshipManager: relationship.saved = True return relationship else: - print(f"\033[1;31m[关系管理]\033[0m 用户 {user_id} 不存在,无法更新") + logger.warning(f"用户 {user_id} 不存在,无法更新") return None - - + def get_relationship(self, user_id: int) -> Optional[Relationship]: """获取用户关系对象""" if user_id in self.relationships: return self.relationships[user_id] else: return 0 - + async def load_relationship(self, data: dict) -> Relationship: - """从数据库加载或创建新的关系对象""" + """从数据库加载或创建新的关系对象""" rela = Relationship(user_id=data['user_id'], data=data) rela.saved = True self.relationships[rela.user_id] = rela return rela - + async def load_all_relationships(self): """加载所有关系对象""" db = Database.get_instance() all_relationships = db.db.relationships.find({}) for data in all_relationships: await self.load_relationship(data) - + async def _start_relationship_manager(self): """每5分钟自动保存一次关系数据""" db = Database.get_instance() @@ -119,23 +119,23 @@ class RelationshipManager: for data in all_relationships: user_id = data['user_id'] relationship = await self.load_relationship(data) - self.relationships[user_id] = relationship - print(f"\033[1;32m[关系管理]\033[0m 已加载 {len(self.relationships)} 条关系记录") - + self.relationships[user_id] = relationship + logger.debug(f"已加载 {len(self.relationships)} 条关系记录") + while True: - print("\033[1;32m[关系管理]\033[0m 正在自动保存关系") + logger.debug("正在自动保存关系") await asyncio.sleep(300) # 等待300秒(5分钟) await self._save_all_relationships() - + async def _save_all_relationships(self): - """将所有关系数据保存到数据库""" + """将所有关系数据保存到数据库""" # 保存所有关系数据 for userid, relationship in self.relationships.items(): if not relationship.saved: relationship.saved = True await self.storage_relationship(relationship) - - async def storage_relationship(self,relationship: Relationship): + + async def storage_relationship(self, relationship: Relationship): """ 将关系记录存储到数据库中 """ @@ -145,7 +145,7 @@ class RelationshipManager: gender = relationship.gender age = relationship.age saved = relationship.saved - + db = Database.get_instance() db.db.relationships.update_one( {'user_id': user_id}, @@ -158,7 +158,7 @@ class RelationshipManager: }}, upsert=True ) - + def get_name(self, user_id: int) -> str: # 确保user_id是整数类型 user_id = int(user_id) @@ -169,4 +169,4 @@ class RelationshipManager: return "某人" -relationship_manager = RelationshipManager() \ No newline at end of file +relationship_manager = RelationshipManager() diff --git a/src/plugins/chat/storage.py b/src/plugins/chat/storage.py index 6a87480b7..1c2d05071 100644 --- a/src/plugins/chat/storage.py +++ b/src/plugins/chat/storage.py @@ -2,12 +2,13 @@ from typing import Optional from ...common.database import Database from .message import Message +from loguru import logger class MessageStorage: def __init__(self): self.db = Database.get_instance() - + async def store_message(self, message: Message, topic: Optional[str] = None) -> None: """存储消息到数据库""" try: @@ -41,9 +42,9 @@ class MessageStorage: "topic": topic, "detailed_plain_text": message.detailed_plain_text, } - - self.db.db.messages.insert_one(message_data) - except Exception as e: - print(f"\033[1;31m[错误]\033[0m 存储消息失败: {e}") -# 如果需要其他存储相关的函数,可以在这里添加 \ No newline at end of file + self.db.db.messages.insert_one(message_data) + except Exception: + logger.exception(f"存储消息失败") + +# 如果需要其他存储相关的函数,可以在这里添加 diff --git a/src/plugins/chat/topic_identifier.py b/src/plugins/chat/topic_identifier.py index 3296d0895..a0c5bae30 100644 --- a/src/plugins/chat/topic_identifier.py +++ b/src/plugins/chat/topic_identifier.py @@ -4,9 +4,11 @@ from nonebot import get_driver from ..models.utils_model import LLM_request from .config import global_config +from loguru import logger driver = get_driver() -config = driver.config +config = driver.config + class TopicIdentifier: def __init__(self): @@ -23,19 +25,20 @@ class TopicIdentifier: # 使用 LLM_request 类进行请求 topic, _ = await self.llm_topic_judge.generate_response(prompt) - + if not topic: - print("\033[1;31m[错误]\033[0m LLM API 返回为空") + logger.error("LLM API 返回为空") return None - + # 直接在这里处理主题解析 if not topic or topic == "无主题": return None - + # 解析主题字符串为列表 topic_list = [t.strip() for t in topic.split(",") if t.strip()] - - print(f"\033[1;32m[主题识别]\033[0m 主题: {topic_list}") + + logger.info(f"主题: {topic_list}") return topic_list if topic_list else None -topic_identifier = TopicIdentifier() \ No newline at end of file + +topic_identifier = TopicIdentifier() diff --git a/src/plugins/chat/utils.py b/src/plugins/chat/utils.py index f8331a148..054526e94 100644 --- a/src/plugins/chat/utils.py +++ b/src/plugins/chat/utils.py @@ -7,6 +7,7 @@ from typing import Dict, List import jieba import numpy as np from nonebot import get_driver +from loguru import logger from ..models.utils_model import LLM_request from ..utils.typo_generator import ChineseTypoGenerator @@ -39,16 +40,16 @@ def combine_messages(messages: List[Message]) -> str: def db_message_to_str(message_dict: Dict) -> str: - print(f"message_dict: {message_dict}") + logger.debug(f"message_dict: {message_dict}") time_str = time.strftime("%m-%d %H:%M:%S", time.localtime(message_dict["time"])) try: name = "[(%s)%s]%s" % ( - message_dict['user_id'], message_dict.get("user_nickname", ""), message_dict.get("user_cardname", "")) + message_dict['user_id'], message_dict.get("user_nickname", ""), message_dict.get("user_cardname", "")) except: name = message_dict.get("user_nickname", "") or f"用户{message_dict['user_id']}" content = message_dict.get("processed_plain_text", "") result = f"[{time_str}] {name}: {content}\n" - print(f"result: {result}") + logger.debug(f"result: {result}") return result @@ -182,7 +183,7 @@ async def get_recent_group_messages(db, group_id: int, limit: int = 12) -> list: await msg.initialize() message_objects.append(msg) except KeyError: - print("[WARNING] 数据库中存在无效的消息") + logger.warning("数据库中存在无效的消息") continue # 按时间正序排列 @@ -298,11 +299,10 @@ def split_into_sentences_w_remove_punctuation(text: str) -> List[str]: sentence = sentence.replace(',', ' ').replace(',', ' ') sentences_done.append(sentence) - print(f"处理后的句子: {sentences_done}") + logger.info(f"处理后的句子: {sentences_done}") return sentences_done - def random_remove_punctuation(text: str) -> str: """随机处理标点符号,模拟人类打字习惯 @@ -330,11 +330,10 @@ def random_remove_punctuation(text: str) -> str: return result - def process_llm_response(text: str) -> List[str]: # processed_response = process_text_with_typos(content) if len(text) > 200: - print(f"回复过长 ({len(text)} 字符),返回默认回复") + logger.warning(f"回复过长 ({len(text)} 字符),返回默认回复") return ['懒得说'] # 处理长消息 typo_generator = ChineseTypoGenerator( @@ -354,9 +353,9 @@ def process_llm_response(text: str) -> List[str]: else: sentences.append(sentence) # 检查分割后的消息数量是否过多(超过3条) - + if len(sentences) > 5: - print(f"分割后消息数量过多 ({len(sentences)} 条),返回默认回复") + logger.warning(f"分割后消息数量过多 ({len(sentences)} 条),返回默认回复") return [f'{global_config.BOT_NICKNAME}不知道哦'] return sentences @@ -378,15 +377,15 @@ def calculate_typing_time(input_string: str, chinese_time: float = 0.4, english_ mood_arousal = mood_manager.current_mood.arousal # 映射到0.5到2倍的速度系数 typing_speed_multiplier = 1.5 ** mood_arousal # 唤醒度为1时速度翻倍,为-1时速度减半 - chinese_time *= 1/typing_speed_multiplier - english_time *= 1/typing_speed_multiplier + chinese_time *= 1 / typing_speed_multiplier + english_time *= 1 / typing_speed_multiplier # 计算中文字符数 chinese_chars = sum(1 for char in input_string if '\u4e00' <= char <= '\u9fff') - + # 如果只有一个中文字符,使用3倍时间 if chinese_chars == 1 and len(input_string.strip()) == 1: return chinese_time * 3 + 0.3 # 加上回车时间 - + # 正常计算所有字符的输入时间 total_time = 0.0 for char in input_string: diff --git a/src/plugins/chat/willing_manager.py b/src/plugins/chat/willing_manager.py index 001b66207..4f8bec7dc 100644 --- a/src/plugins/chat/willing_manager.py +++ b/src/plugins/chat/willing_manager.py @@ -1,5 +1,6 @@ import asyncio from .config import global_config +from loguru import logger class WillingManager: @@ -30,16 +31,16 @@ class WillingManager: # print(f"初始意愿: {current_willing}") if is_mentioned_bot and current_willing < 1.0: current_willing += 0.9 - print(f"被提及, 当前意愿: {current_willing}") + logger.info(f"被提及, 当前意愿: {current_willing}") elif is_mentioned_bot: current_willing += 0.05 - print(f"被重复提及, 当前意愿: {current_willing}") + logger.info(f"被重复提及, 当前意愿: {current_willing}") if is_emoji: current_willing *= 0.1 - print(f"表情包, 当前意愿: {current_willing}") + logger.info(f"表情包, 当前意愿: {current_willing}") - print(f"放大系数_interested_rate: {global_config.response_interested_rate_amplifier}") + logger.debug(f"放大系数_interested_rate: {global_config.response_interested_rate_amplifier}") interested_rate *= global_config.response_interested_rate_amplifier #放大回复兴趣度 if interested_rate > 0.4: # print(f"兴趣度: {interested_rate}, 当前意愿: {current_willing}") diff --git a/src/plugins/memory_system/draw_memory.py b/src/plugins/memory_system/draw_memory.py index c2d04064d..6da330d95 100644 --- a/src/plugins/memory_system/draw_memory.py +++ b/src/plugins/memory_system/draw_memory.py @@ -7,6 +7,7 @@ import jieba import matplotlib.pyplot as plt import networkx as nx from dotenv import load_dotenv +from loguru import logger sys.path.append("C:/GitHub/MaiMBot") # 添加项目根目录到 Python 路径 from src.common.database import Database # 使用正确的导入语法 @@ -15,15 +16,15 @@ from src.common.database import Database # 使用正确的导入语法 env_path = os.path.join(os.path.dirname(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))), '.env.dev') load_dotenv(env_path) - + class Memory_graph: def __init__(self): self.G = nx.Graph() # 使用 networkx 的图结构 self.db = Database.get_instance() - + def connect_dot(self, concept1, concept2): self.G.add_edge(concept1, concept2) - + def add_dot(self, concept, memory): if concept in self.G: # 如果节点已存在,将新记忆添加到现有列表中 @@ -37,7 +38,7 @@ class Memory_graph: else: # 如果是新节点,创建新的记忆列表 self.G.add_node(concept, memory_items=[memory]) - + def get_dot(self, concept): # 检查节点是否存在于图中 if concept in self.G: @@ -45,20 +46,20 @@ class Memory_graph: node_data = self.G.nodes[concept] # print(node_data) # 创建新的Memory_dot对象 - return concept,node_data + return concept, node_data return None def get_related_item(self, topic, depth=1): if topic not in self.G: return [], [] - + first_layer_items = [] second_layer_items = [] - + # 获取相邻节点 neighbors = list(self.G.neighbors(topic)) # print(f"第一层: {topic}") - + # 获取当前节点的记忆项 node_data = self.get_dot(topic) if node_data: @@ -69,7 +70,7 @@ class Memory_graph: first_layer_items.extend(memory_items) else: first_layer_items.append(memory_items) - + # 只在depth=2时获取第二层记忆 if depth >= 2: # 获取相邻节点的记忆项 @@ -84,42 +85,44 @@ class Memory_graph: second_layer_items.extend(memory_items) else: second_layer_items.append(memory_items) - + return first_layer_items, second_layer_items - + def store_memory(self): for node in self.G.nodes(): dot_data = { "concept": node } self.db.db.store_memory_dots.insert_one(dot_data) - + @property def dots(self): # 返回所有节点对应的 Memory_dot 对象 return [self.get_dot(node) for node in self.G.nodes()] - - + def get_random_chat_from_db(self, length: int, timestamp: str): # 从数据库中根据时间戳获取离其最近的聊天记录 chat_text = '' closest_record = self.db.db.messages.find_one({"time": {"$lte": timestamp}}, sort=[('time', -1)]) # 调试输出 - print(f"距离time最近的消息时间: {time.strftime('%Y-%m-%d %H:%M:%S', time.localtime(int(closest_record['time'])))}") - + logger.info( + f"距离time最近的消息时间: {time.strftime('%Y-%m-%d %H:%M:%S', time.localtime(int(closest_record['time'])))}") + if closest_record: closest_time = closest_record['time'] group_id = closest_record['group_id'] # 获取groupid # 获取该时间戳之后的length条消息,且groupid相同 - chat_record = list(self.db.db.messages.find({"time": {"$gt": closest_time}, "group_id": group_id}).sort('time', 1).limit(length)) + chat_record = list( + self.db.db.messages.find({"time": {"$gt": closest_time}, "group_id": group_id}).sort('time', 1).limit( + length)) for record in chat_record: time_str = time.strftime('%Y-%m-%d %H:%M:%S', time.localtime(int(record['time']))) try: - displayname="[(%s)%s]%s" % (record["user_id"],record["user_nickname"],record["user_cardname"]) + displayname = "[(%s)%s]%s" % (record["user_id"], record["user_nickname"], record["user_cardname"]) except: - displayname=record["user_nickname"] or "用户" + str(record["user_id"]) + displayname = record["user_nickname"] or "用户" + str(record["user_id"]) chat_text += f'[{time_str}] {displayname}: {record["processed_plain_text"]}\n' # 添加发送者和时间信息 return chat_text - + return [] # 如果没有找到记录,返回空列表 def save_graph_to_db(self): @@ -166,53 +169,54 @@ def main(): password=os.getenv("MONGODB_PASSWORD", ""), auth_source=os.getenv("MONGODB_AUTH_SOURCE", "") ) - + memory_graph = Memory_graph() memory_graph.load_graph_from_db() - + # 只显示一次优化后的图形 visualize_graph_lite(memory_graph) - + while True: query = input("请输入新的查询概念(输入'退出'以结束):") if query.lower() == '退出': break first_layer_items, second_layer_items = memory_graph.get_related_item(query) if first_layer_items or second_layer_items: - print("\n第一层记忆:") + logger.debug("第一层记忆:") for item in first_layer_items: - print(item) - print("\n第二层记忆:") + logger.debug(item) + logger.debug("第二层记忆:") for item in second_layer_items: - print(item) + logger.debug(item) else: - print("未找到相关记忆。") - + logger.debug("未找到相关记忆。") + def segment_text(text): seg_text = list(jieba.cut(text)) - return seg_text + return seg_text + def find_topic(text, topic_num): prompt = f'这是一段文字:{text}。请你从这段话中总结出{topic_num}个话题,帮我列出来,用逗号隔开,尽可能精简。只需要列举{topic_num}个话题就好,不要告诉我其他内容。' return prompt + def topic_what(text, topic): prompt = f'这是一段文字:{text}。我想知道这记忆里有什么关于{topic}的话题,帮我总结成一句自然的话,可以包含时间和人物。只输出这句话就好' return prompt - def visualize_graph_lite(memory_graph: Memory_graph, color_by_memory: bool = False): # 设置中文字体 plt.rcParams['font.sans-serif'] = ['SimHei'] # 用来正常显示中文标签 plt.rcParams['axes.unicode_minus'] = False # 用来正常显示负号 - + G = memory_graph.G - + # 创建一个新图用于可视化 H = G.copy() - + # 移除只有一条记忆的节点和连接数少于3的节点 nodes_to_remove = [] for node in H.nodes(): @@ -221,14 +225,14 @@ def visualize_graph_lite(memory_graph: Memory_graph, color_by_memory: bool = Fal degree = H.degree(node) if memory_count < 3 or degree < 2: # 改为小于2而不是小于等于2 nodes_to_remove.append(node) - + H.remove_nodes_from(nodes_to_remove) - + # 如果过滤后没有节点,则返回 if len(H.nodes()) == 0: - print("过滤后没有符合条件的节点可显示") + logger.debug("过滤后没有符合条件的节点可显示") return - + # 保存图到本地 # nx.write_gml(H, "memory_graph.gml") # 保存为 GML 格式 @@ -236,7 +240,7 @@ def visualize_graph_lite(memory_graph: Memory_graph, color_by_memory: bool = Fal node_colors = [] node_sizes = [] nodes = list(H.nodes()) - + # 获取最大记忆数和最大度数用于归一化 max_memories = 1 max_degree = 1 @@ -246,7 +250,7 @@ def visualize_graph_lite(memory_graph: Memory_graph, color_by_memory: bool = Fal degree = H.degree(node) max_memories = max(max_memories, memory_count) max_degree = max(max_degree, degree) - + # 计算每个节点的大小和颜色 for node in nodes: # 计算节点大小(基于记忆数量) @@ -254,9 +258,9 @@ def visualize_graph_lite(memory_graph: Memory_graph, color_by_memory: bool = Fal memory_count = len(memory_items) if isinstance(memory_items, list) else (1 if memory_items else 0) # 使用指数函数使变化更明显 ratio = memory_count / max_memories - size = 500 + 5000 * (ratio ) # 使用1.5次方函数使差异不那么明显 + size = 500 + 5000 * (ratio) # 使用1.5次方函数使差异不那么明显 node_sizes.append(size) - + # 计算节点颜色(基于连接数) degree = H.degree(node) # 红色分量随着度数增加而增加 @@ -267,26 +271,25 @@ def visualize_graph_lite(memory_graph: Memory_graph, color_by_memory: bool = Fal # blue = 1 color = (red, 0.1, blue) node_colors.append(color) - + # 绘制图形 plt.figure(figsize=(12, 8)) pos = nx.spring_layout(H, k=1, iterations=50) # 增加k值使节点分布更开 - nx.draw(H, pos, - with_labels=True, - node_color=node_colors, - node_size=node_sizes, - font_size=10, - font_family='SimHei', - font_weight='bold', - edge_color='gray', - width=0.5, - alpha=0.9) - + nx.draw(H, pos, + with_labels=True, + node_color=node_colors, + node_size=node_sizes, + font_size=10, + font_family='SimHei', + font_weight='bold', + edge_color='gray', + width=0.5, + alpha=0.9) + title = '记忆图谱可视化 - 节点大小表示记忆数量,颜色表示连接数' plt.title(title, fontsize=16, fontfamily='SimHei') plt.show() - - - + + if __name__ == "__main__": - main() \ No newline at end of file + main() diff --git a/src/plugins/memory_system/memory.py b/src/plugins/memory_system/memory.py index 08fc6d30c..9b325b36d 100644 --- a/src/plugins/memory_system/memory.py +++ b/src/plugins/memory_system/memory.py @@ -7,6 +7,7 @@ import time import jieba import networkx as nx +from loguru import logger from ...common.database import Database # 使用正确的导入语法 from ..chat.config import global_config from ..chat.utils import ( @@ -22,7 +23,7 @@ class Memory_graph: def __init__(self): self.G = nx.Graph() # 使用 networkx 的图结构 self.db = Database.get_instance() - + def connect_dot(self, concept1, concept2): # 如果边已存在,增加 strength if self.G.has_edge(concept1, concept2): @@ -30,7 +31,7 @@ class Memory_graph: else: # 如果是新边,初始化 strength 为 1 self.G.add_edge(concept1, concept2, strength=1) - + def add_dot(self, concept, memory): if concept in self.G: # 如果节点已存在,将新记忆添加到现有列表中 @@ -44,7 +45,7 @@ class Memory_graph: else: # 如果是新节点,创建新的记忆列表 self.G.add_node(concept, memory_items=[memory]) - + def get_dot(self, concept): # 检查节点是否存在于图中 if concept in self.G: @@ -56,13 +57,13 @@ class Memory_graph: def get_related_item(self, topic, depth=1): if topic not in self.G: return [], [] - + first_layer_items = [] second_layer_items = [] - + # 获取相邻节点 neighbors = list(self.G.neighbors(topic)) - + # 获取当前节点的记忆项 node_data = self.get_dot(topic) if node_data: @@ -73,7 +74,7 @@ class Memory_graph: first_layer_items.extend(memory_items) else: first_layer_items.append(memory_items) - + # 只在depth=2时获取第二层记忆 if depth >= 2: # 获取相邻节点的记忆项 @@ -87,9 +88,9 @@ class Memory_graph: second_layer_items.extend(memory_items) else: second_layer_items.append(memory_items) - + return first_layer_items, second_layer_items - + @property def dots(self): # 返回所有节点对应的 Memory_dot 对象 @@ -99,43 +100,43 @@ class Memory_graph: """随机删除指定话题中的一条记忆,如果话题没有记忆则移除该话题节点""" if topic not in self.G: return None - + # 获取话题节点数据 node_data = self.G.nodes[topic] - + # 如果节点存在memory_items if 'memory_items' in node_data: memory_items = node_data['memory_items'] - + # 确保memory_items是列表 if not isinstance(memory_items, list): memory_items = [memory_items] if memory_items else [] - + # 如果有记忆项可以删除 if memory_items: # 随机选择一个记忆项删除 removed_item = random.choice(memory_items) memory_items.remove(removed_item) - + # 更新节点的记忆项 if memory_items: self.G.nodes[topic]['memory_items'] = memory_items else: # 如果没有记忆项了,删除整个节点 self.G.remove_node(topic) - + return removed_item - + return None # 海马体 class Hippocampus: - def __init__(self,memory_graph:Memory_graph): + def __init__(self, memory_graph: Memory_graph): self.memory_graph = memory_graph - self.llm_topic_judge = LLM_request(model = global_config.llm_topic_judge,temperature=0.5) - self.llm_summary_by_topic = LLM_request(model = global_config.llm_summary_by_topic,temperature=0.5) - + self.llm_topic_judge = LLM_request(model=global_config.llm_topic_judge, temperature=0.5) + self.llm_summary_by_topic = LLM_request(model=global_config.llm_summary_by_topic, temperature=0.5) + def get_all_node_names(self) -> list: """获取记忆图中所有节点的名字列表 @@ -156,8 +157,8 @@ class Hippocampus: """计算边的特征值""" nodes = sorted([source, target]) return hash(f"{nodes[0]}:{nodes[1]}") - - def get_memory_sample(self, chat_size=20, time_frequency:dict={'near':2,'mid':4,'far':3}): + + def get_memory_sample(self, chat_size=20, time_frequency: dict = {'near': 2, 'mid': 4, 'far': 3}): """获取记忆样本 Returns: @@ -165,26 +166,26 @@ class Hippocampus: """ current_timestamp = datetime.datetime.now().timestamp() chat_samples = [] - + # 短期:1h 中期:4h 长期:24h for _ in range(time_frequency.get('near')): random_time = current_timestamp - random.randint(1, 3600) messages = get_cloest_chat_from_db(db=self.memory_graph.db, length=chat_size, timestamp=random_time) if messages: chat_samples.append(messages) - + for _ in range(time_frequency.get('mid')): - random_time = current_timestamp - random.randint(3600, 3600*4) + random_time = current_timestamp - random.randint(3600, 3600 * 4) messages = get_cloest_chat_from_db(db=self.memory_graph.db, length=chat_size, timestamp=random_time) if messages: chat_samples.append(messages) - + for _ in range(time_frequency.get('far')): - random_time = current_timestamp - random.randint(3600*4, 3600*24) + random_time = current_timestamp - random.randint(3600 * 4, 3600 * 24) messages = get_cloest_chat_from_db(db=self.memory_graph.db, length=chat_size, timestamp=random_time) if messages: chat_samples.append(messages) - + return chat_samples async def memory_compress(self, messages: list, compress_rate=0.1): @@ -199,17 +200,17 @@ class Hippocampus: """ if not messages: return set() - + # 合并消息文本,同时保留时间信息 input_text = "" time_info = "" # 计算最早和最晚时间 earliest_time = min(msg['time'] for msg in messages) latest_time = max(msg['time'] for msg in messages) - + earliest_dt = datetime.datetime.fromtimestamp(earliest_time) latest_dt = datetime.datetime.fromtimestamp(latest_time) - + # 如果是同一年 if earliest_dt.year == latest_dt.year: earliest_str = earliest_dt.strftime("%m-%d %H:%M:%S") @@ -217,54 +218,57 @@ class Hippocampus: time_info += f"是在{earliest_dt.year}年,{earliest_str} 到 {latest_str} 的对话:\n" else: earliest_str = earliest_dt.strftime("%Y-%m-%d %H:%M:%S") - latest_str = latest_dt.strftime("%Y-%m-%d %H:%M:%S") + latest_str = latest_dt.strftime("%Y-%m-%d %H:%M:%S") time_info += f"是从 {earliest_str} 到 {latest_str} 的对话:\n" - + for msg in messages: input_text += f"{msg['text']}\n" - - print(input_text) - + + logger.debug(input_text) + topic_num = self.calculate_topic_num(input_text, compress_rate) topics_response = await self.llm_topic_judge.generate_response(self.find_topic_llm(input_text, topic_num)) - + # 过滤topics filter_keywords = global_config.memory_ban_words - topics = [topic.strip() for topic in topics_response[0].replace(",", ",").replace("、", ",").replace(" ", ",").split(",") if topic.strip()] + topics = [topic.strip() for topic in + topics_response[0].replace(",", ",").replace("、", ",").replace(" ", ",").split(",") if topic.strip()] filtered_topics = [topic for topic in topics if not any(keyword in topic for keyword in filter_keywords)] - - print(f"过滤后话题: {filtered_topics}") - + + logger.info(f"过滤后话题: {filtered_topics}") + # 创建所有话题的请求任务 tasks = [] for topic in filtered_topics: topic_what_prompt = self.topic_what(input_text, topic, time_info) task = self.llm_summary_by_topic.generate_response_async(topic_what_prompt) tasks.append((topic.strip(), task)) - + # 等待所有任务完成 compressed_memory = set() for topic, task in tasks: response = await task if response: compressed_memory.add((topic, response[0])) - + return compressed_memory - def calculate_topic_num(self,text, compress_rate): + def calculate_topic_num(self, text, compress_rate): """计算文本的话题数量""" information_content = calculate_information_content(text) - topic_by_length = text.count('\n')*compress_rate - topic_by_information_content = max(1, min(5, int((information_content-3) * 2))) - topic_num = int((topic_by_length + topic_by_information_content)/2) - print(f"topic_by_length: {topic_by_length}, topic_by_information_content: {topic_by_information_content}, topic_num: {topic_num}") + topic_by_length = text.count('\n') * compress_rate + topic_by_information_content = max(1, min(5, int((information_content - 3) * 2))) + topic_num = int((topic_by_length + topic_by_information_content) / 2) + logger.debug( + f"topic_by_length: {topic_by_length}, topic_by_information_content: {topic_by_information_content}, " + f"topic_num: {topic_num}") return topic_num - async def operation_build_memory(self,chat_size=20): + async def operation_build_memory(self, chat_size=20): # 最近消息获取频率 - time_frequency = {'near':2,'mid':4,'far':2} - memory_sample = self.get_memory_sample(chat_size,time_frequency) - + time_frequency = {'near': 2, 'mid': 4, 'far': 2} + memory_sample = self.get_memory_sample(chat_size, time_frequency) + for i, input_text in enumerate(memory_sample, 1): # 加载进度可视化 all_topics = [] @@ -272,24 +276,24 @@ class Hippocampus: bar_length = 30 filled_length = int(bar_length * i // len(memory_sample)) bar = '█' * filled_length + '-' * (bar_length - filled_length) - print(f"\n进度: [{bar}] {progress:.1f}% ({i}/{len(memory_sample)})") + logger.debug(f"进度: [{bar}] {progress:.1f}% ({i}/{len(memory_sample)})") # 生成压缩后记忆 ,表现为 (话题,记忆) 的元组 compressed_memory = set() compress_rate = 0.1 compressed_memory = await self.memory_compress(input_text, compress_rate) - print(f"\033[1;33m压缩后记忆数量\033[0m: {len(compressed_memory)}") - + logger.info(f"压缩后记忆数量: {len(compressed_memory)}") + # 将记忆加入到图谱中 for topic, memory in compressed_memory: - print(f"\033[1;32m添加节点\033[0m: {topic}") + logger.info(f"添加节点: {topic}") self.memory_graph.add_dot(topic, memory) all_topics.append(topic) # 收集所有话题 for i in range(len(all_topics)): for j in range(i + 1, len(all_topics)): - print(f"\033[1;32m连接节点\033[0m: {all_topics[i]} 和 {all_topics[j]}") + logger.info(f"连接节点: {all_topics[i]} 和 {all_topics[j]}") self.memory_graph.connect_dot(all_topics[i], all_topics[j]) - + self.sync_memory_to_db() def sync_memory_to_db(self): @@ -297,19 +301,19 @@ class Hippocampus: # 获取数据库中所有节点和内存中所有节点 db_nodes = list(self.memory_graph.db.db.graph_data.nodes.find()) memory_nodes = list(self.memory_graph.G.nodes(data=True)) - + # 转换数据库节点为字典格式,方便查找 db_nodes_dict = {node['concept']: node for node in db_nodes} - + # 检查并更新节点 for concept, data in memory_nodes: memory_items = data.get('memory_items', []) if not isinstance(memory_items, list): memory_items = [memory_items] if memory_items else [] - + # 计算内存中节点的特征值 memory_hash = self.calculate_node_hash(concept, memory_items) - + if concept not in db_nodes_dict: # 数据库中缺少的节点,添加 node_data = { @@ -322,7 +326,7 @@ class Hippocampus: # 获取数据库中节点的特征值 db_node = db_nodes_dict[concept] db_hash = db_node.get('hash', None) - + # 如果特征值不同,则更新节点 if db_hash != memory_hash: self.memory_graph.db.db.graph_data.nodes.update_one( @@ -332,17 +336,17 @@ class Hippocampus: 'hash': memory_hash }} ) - + # 检查并删除数据库中多余的节点 memory_concepts = set(node[0] for node in memory_nodes) for db_node in db_nodes: if db_node['concept'] not in memory_concepts: self.memory_graph.db.db.graph_data.nodes.delete_one({'concept': db_node['concept']}) - + # 处理边的信息 db_edges = list(self.memory_graph.db.db.graph_data.edges.find()) memory_edges = list(self.memory_graph.G.edges()) - + # 创建边的哈希值字典 db_edge_dict = {} for edge in db_edges: @@ -351,13 +355,13 @@ class Hippocampus: 'hash': edge_hash, 'strength': edge.get('strength', 1) } - + # 检查并更新边 for source, target in memory_edges: edge_hash = self.calculate_edge_hash(source, target) edge_key = (source, target) strength = self.memory_graph.G[source][target].get('strength', 1) - + if edge_key not in db_edge_dict: # 添加新边 edge_data = { @@ -377,7 +381,7 @@ class Hippocampus: 'strength': strength }} ) - + # 删除多余的边 memory_edge_set = set(memory_edges) for edge_key in db_edge_dict: @@ -392,7 +396,7 @@ class Hippocampus: """从数据库同步数据到内存中的图结构""" # 清空当前图 self.memory_graph.G.clear() - + # 从数据库加载所有节点 nodes = self.memory_graph.db.db.graph_data.nodes.find() for node in nodes: @@ -403,7 +407,7 @@ class Hippocampus: memory_items = [memory_items] if memory_items else [] # 添加节点到图中 self.memory_graph.G.add_node(concept, memory_items=memory_items) - + # 从数据库加载所有边 edges = self.memory_graph.db.db.graph_data.edges.find() for edge in edges: @@ -413,7 +417,7 @@ class Hippocampus: # 只有当源节点和目标节点都存在时才添加边 if source in self.memory_graph.G and target in self.memory_graph.G: self.memory_graph.G.add_edge(source, target, strength=strength) - + async def operation_forget_topic(self, percentage=0.1): """随机选择图中一定比例的节点进行检查,根据条件决定是否遗忘""" # 获取所有节点 @@ -422,18 +426,18 @@ class Hippocampus: check_count = max(1, int(len(all_nodes) * percentage)) # 随机选择节点 nodes_to_check = random.sample(all_nodes, check_count) - + forgotten_nodes = [] for node in nodes_to_check: # 获取节点的连接数 connections = self.memory_graph.G.degree(node) - + # 获取节点的内容条数 memory_items = self.memory_graph.G.nodes[node].get('memory_items', []) if not isinstance(memory_items, list): memory_items = [memory_items] if memory_items else [] content_count = len(memory_items) - + # 检查连接强度 weak_connections = True if connections > 1: # 只有当连接数大于1时才检查强度 @@ -442,20 +446,20 @@ class Hippocampus: if strength > 2: weak_connections = False break - + # 如果满足遗忘条件 if (connections <= 1 and weak_connections) or content_count <= 2: removed_item = self.memory_graph.forget_topic(node) if removed_item: forgotten_nodes.append((node, removed_item)) - print(f"遗忘节点 {node} 的记忆: {removed_item}") - + logger.debug(f"遗忘节点 {node} 的记忆: {removed_item}") + # 同步到数据库 if forgotten_nodes: self.sync_memory_to_db() - print(f"完成遗忘操作,共遗忘 {len(forgotten_nodes)} 个节点的记忆") + logger.debug(f"完成遗忘操作,共遗忘 {len(forgotten_nodes)} 个节点的记忆") else: - print("本次检查没有节点满足遗忘条件") + logger.debug("本次检查没有节点满足遗忘条件") async def merge_memory(self, topic): """ @@ -468,35 +472,35 @@ class Hippocampus: memory_items = self.memory_graph.G.nodes[topic].get('memory_items', []) if not isinstance(memory_items, list): memory_items = [memory_items] if memory_items else [] - + # 如果记忆项不足,直接返回 if len(memory_items) < 10: return - + # 随机选择10条记忆 selected_memories = random.sample(memory_items, 10) - + # 拼接成文本 merged_text = "\n".join(selected_memories) - print(f"\n[合并记忆] 话题: {topic}") - print(f"选择的记忆:\n{merged_text}") - + logger.debug(f"\n[合并记忆] 话题: {topic}") + logger.debug(f"选择的记忆:\n{merged_text}") + # 使用memory_compress生成新的压缩记忆 compressed_memories = await self.memory_compress(selected_memories, 0.1) - + # 从原记忆列表中移除被选中的记忆 for memory in selected_memories: memory_items.remove(memory) - + # 添加新的压缩记忆 for _, compressed_memory in compressed_memories: memory_items.append(compressed_memory) - print(f"添加压缩记忆: {compressed_memory}") - + logger.info(f"添加压缩记忆: {compressed_memory}") + # 更新节点的记忆项 self.memory_graph.G.nodes[topic]['memory_items'] = memory_items - print(f"完成记忆合并,当前记忆数量: {len(memory_items)}") - + logger.debug(f"完成记忆合并,当前记忆数量: {len(memory_items)}") + async def operation_merge_memory(self, percentage=0.1): """ 随机检查一定比例的节点,对内容数量超过100的节点进行记忆合并 @@ -510,7 +514,7 @@ class Hippocampus: check_count = max(1, int(len(all_nodes) * percentage)) # 随机选择节点 nodes_to_check = random.sample(all_nodes, check_count) - + merged_nodes = [] for node in nodes_to_check: # 获取节点的内容条数 @@ -518,25 +522,25 @@ class Hippocampus: if not isinstance(memory_items, list): memory_items = [memory_items] if memory_items else [] content_count = len(memory_items) - + # 如果内容数量超过100,进行合并 if content_count > 100: - print(f"\n检查节点: {node}, 当前记忆数量: {content_count}") + logger.debug(f"检查节点: {node}, 当前记忆数量: {content_count}") await self.merge_memory(node) merged_nodes.append(node) - + # 同步到数据库 if merged_nodes: self.sync_memory_to_db() - print(f"\n完成记忆合并操作,共处理 {len(merged_nodes)} 个节点") + logger.debug(f"完成记忆合并操作,共处理 {len(merged_nodes)} 个节点") else: - print("\n本次检查没有需要合并的节点") + logger.debug("本次检查没有需要合并的节点") - def find_topic_llm(self,text, topic_num): + def find_topic_llm(self, text, topic_num): prompt = f'这是一段文字:{text}。请你从这段话中总结出{topic_num}个关键的概念,可以是名词,动词,或者特定人物,帮我列出来,用逗号,隔开,尽可能精简。只需要列举{topic_num}个话题就好,不要有序号,不要告诉我其他内容。' return prompt - def topic_what(self,text, topic, time_info): + def topic_what(self, text, topic, time_info): prompt = f'这是一段文字,{time_info}:{text}。我想让你基于这段文字来概括"{topic}"这个概念,帮我总结成一句自然的话,可以包含时间和人物,以及具体的观点。只输出这句话就好' return prompt @@ -551,11 +555,12 @@ class Hippocampus: """ topics_response = await self.llm_topic_judge.generate_response(self.find_topic_llm(text, 5)) # print(f"话题: {topics_response[0]}") - topics = [topic.strip() for topic in topics_response[0].replace(",", ",").replace("、", ",").replace(" ", ",").split(",") if topic.strip()] + topics = [topic.strip() for topic in + topics_response[0].replace(",", ",").replace("、", ",").replace(" ", ",").split(",") if topic.strip()] # print(f"话题: {topics}") - + return topics - + def _find_similar_topics(self, topics: list, similarity_threshold: float = 0.4, debug_info: str = "") -> list: """查找与给定主题相似的记忆主题 @@ -569,16 +574,16 @@ class Hippocampus: """ all_memory_topics = self.get_all_node_names() all_similar_topics = [] - + # 计算每个识别出的主题与记忆主题的相似度 for topic in topics: if debug_info: # print(f"\033[1;32m[{debug_info}]\033[0m 正在思考有没有见过: {topic}") pass - + topic_vector = text_to_vector(topic) has_similar_topic = False - + for memory_topic in all_memory_topics: memory_vector = text_to_vector(memory_topic) # 获取所有唯一词 @@ -588,20 +593,20 @@ class Hippocampus: v2 = [memory_vector.get(word, 0) for word in all_words] # 计算相似度 similarity = cosine_similarity(v1, v2) - + if similarity >= similarity_threshold: has_similar_topic = True if debug_info: # print(f"\033[1;32m[{debug_info}]\033[0m 找到相似主题: {topic} -> {memory_topic} (相似度: {similarity:.2f})") pass all_similar_topics.append((memory_topic, similarity)) - + if not has_similar_topic and debug_info: # print(f"\033[1;31m[{debug_info}]\033[0m 没有见过: {topic} ,呃呃") pass - + return all_similar_topics - + def _get_top_topics(self, similar_topics: list, max_topics: int = 5) -> list: """获取相似度最高的主题 @@ -614,36 +619,36 @@ class Hippocampus: """ seen_topics = set() top_topics = [] - + for topic, score in sorted(similar_topics, key=lambda x: x[1], reverse=True): if topic not in seen_topics and len(top_topics) < max_topics: seen_topics.add(topic) top_topics.append((topic, score)) - + return top_topics async def memory_activate_value(self, text: str, max_topics: int = 5, similarity_threshold: float = 0.3) -> int: """计算输入文本对记忆的激活程度""" - print(f"\033[1;32m[记忆激活]\033[0m 识别主题: {await self._identify_topics(text)}") - + logger.info(f"识别主题: {await self._identify_topics(text)}") + # 识别主题 identified_topics = await self._identify_topics(text) if not identified_topics: return 0 - + # 查找相似主题 all_similar_topics = self._find_similar_topics( - identified_topics, + identified_topics, similarity_threshold=similarity_threshold, debug_info="记忆激活" ) - + if not all_similar_topics: return 0 - + # 获取最相关的主题 top_topics = self._get_top_topics(all_similar_topics, max_topics) - + # 如果只找到一个主题,进行惩罚 if len(top_topics) == 1: topic, score = top_topics[0] @@ -653,15 +658,16 @@ class Hippocampus: memory_items = [memory_items] if memory_items else [] content_count = len(memory_items) penalty = 1.0 / (1 + math.log(content_count + 1)) - + activation = int(score * 50 * penalty) - print(f"\033[1;32m[记忆激活]\033[0m 单主题「{topic}」- 相似度: {score:.3f}, 内容数: {content_count}, 激活值: {activation}") + logger.info( + f"[记忆激活]单主题「{topic}」- 相似度: {score:.3f}, 内容数: {content_count}, 激活值: {activation}") return activation - + # 计算关键词匹配率,同时考虑内容数量 matched_topics = set() topic_similarities = {} - + for memory_topic, similarity in top_topics: # 计算内容数量惩罚 memory_items = self.memory_graph.G.nodes[memory_topic].get('memory_items', []) @@ -669,7 +675,7 @@ class Hippocampus: memory_items = [memory_items] if memory_items else [] content_count = len(memory_items) penalty = 1.0 / (1 + math.log(content_count + 1)) - + # 对每个记忆主题,检查它与哪些输入主题相似 for input_topic in identified_topics: topic_vector = text_to_vector(input_topic) @@ -682,33 +688,36 @@ class Hippocampus: matched_topics.add(input_topic) adjusted_sim = sim * penalty topic_similarities[input_topic] = max(topic_similarities.get(input_topic, 0), adjusted_sim) - print(f"\033[1;32m[记忆激活]\033[0m 主题「{input_topic}」-> 「{memory_topic}」(内容数: {content_count}, 相似度: {adjusted_sim:.3f})") - + logger.info( + f"[记忆激活]主题「{input_topic}」-> 「{memory_topic}」(内容数: {content_count}, 相似度: {adjusted_sim:.3f})") + # 计算主题匹配率和平均相似度 topic_match = len(matched_topics) / len(identified_topics) average_similarities = sum(topic_similarities.values()) / len(topic_similarities) if topic_similarities else 0 - + # 计算最终激活值 activation = int((topic_match + average_similarities) / 2 * 100) - print(f"\033[1;32m[记忆激活]\033[0m 匹配率: {topic_match:.3f}, 平均相似度: {average_similarities:.3f}, 激活值: {activation}") - + logger.info( + f"[记忆激活]匹配率: {topic_match:.3f}, 平均相似度: {average_similarities:.3f}, 激活值: {activation}") + return activation - async def get_relevant_memories(self, text: str, max_topics: int = 5, similarity_threshold: float = 0.4, max_memory_num: int = 5) -> list: + async def get_relevant_memories(self, text: str, max_topics: int = 5, similarity_threshold: float = 0.4, + max_memory_num: int = 5) -> list: """根据输入文本获取相关的记忆内容""" # 识别主题 identified_topics = await self._identify_topics(text) - + # 查找相似主题 all_similar_topics = self._find_similar_topics( - identified_topics, + identified_topics, similarity_threshold=similarity_threshold, debug_info="记忆检索" ) - + # 获取最相关的主题 relevant_topics = self._get_top_topics(all_similar_topics, max_topics) - + # 获取相关记忆内容 relevant_memories = [] for topic, score in relevant_topics: @@ -716,8 +725,8 @@ class Hippocampus: first_layer, _ = self.memory_graph.get_related_item(topic, depth=1) if first_layer: # 如果记忆条数超过限制,随机选择指定数量的记忆 - if len(first_layer) > max_memory_num/2: - first_layer = random.sample(first_layer, max_memory_num//2) + if len(first_layer) > max_memory_num / 2: + first_layer = random.sample(first_layer, max_memory_num // 2) # 为每条记忆添加来源主题和相似度信息 for memory in first_layer: relevant_memories.append({ @@ -725,20 +734,20 @@ class Hippocampus: 'similarity': score, 'content': memory }) - + # 如果记忆数量超过5个,随机选择5个 # 按相似度排序 relevant_memories.sort(key=lambda x: x['similarity'], reverse=True) - + if len(relevant_memories) > max_memory_num: relevant_memories = random.sample(relevant_memories, max_memory_num) - + return relevant_memories def segment_text(text): seg_text = list(jieba.cut(text)) - return seg_text + return seg_text from nonebot import get_driver @@ -749,19 +758,19 @@ config = driver.config start_time = time.time() Database.initialize( - host= config.MONGODB_HOST, - port= config.MONGODB_PORT, - db_name= config.DATABASE_NAME, - username= config.MONGODB_USERNAME, - password= config.MONGODB_PASSWORD, + host=config.MONGODB_HOST, + port=config.MONGODB_PORT, + db_name=config.DATABASE_NAME, + username=config.MONGODB_USERNAME, + password=config.MONGODB_PASSWORD, auth_source=config.MONGODB_AUTH_SOURCE ) -#创建记忆图 +# 创建记忆图 memory_graph = Memory_graph() -#创建海马体 +# 创建海马体 hippocampus = Hippocampus(memory_graph) -#从数据库加载记忆图 +# 从数据库加载记忆图 hippocampus.sync_memory_from_db() end_time = time.time() -print(f"\033[32m[加载海马体耗时: {end_time - start_time:.2f} 秒]\033[0m") \ No newline at end of file +logger.success(f"加载海马体耗时: {end_time - start_time:.2f} 秒") diff --git a/src/plugins/memory_system/memory_manual_build.py b/src/plugins/memory_system/memory_manual_build.py index db88febf2..3c120f21b 100644 --- a/src/plugins/memory_system/memory_manual_build.py +++ b/src/plugins/memory_system/memory_manual_build.py @@ -743,7 +743,7 @@ class Hippocampus: async def memory_activate_value(self, text: str, max_topics: int = 5, similarity_threshold: float = 0.3) -> int: """计算输入文本对记忆的激活程度""" - print(f"\033[1;32m[记忆激活]\033[0m 识别主题: {await self._identify_topics(text)}") + logger.info(f"[记忆激活]识别主题: {await self._identify_topics(text)}") identified_topics = await self._identify_topics(text) if not identified_topics: diff --git a/src/plugins/models/utils_model.py b/src/plugins/models/utils_model.py index bd06fd6dd..fe8e1a100 100644 --- a/src/plugins/models/utils_model.py +++ b/src/plugins/models/utils_model.py @@ -28,10 +28,10 @@ class LLM_request: raise ValueError(f"配置错误:找不到对应的配置项 - {str(e)}") from e self.model_name = model["name"] self.params = kwargs - + self.pri_in = model.get("pri_in", 0) self.pri_out = model.get("pri_out", 0) - + # 获取数据库实例 self.db = Database.get_instance() self._init_database() @@ -45,11 +45,11 @@ class LLM_request: self.db.db.llm_usage.create_index([("user_id", 1)]) self.db.db.llm_usage.create_index([("request_type", 1)]) except Exception as e: - logger.error(f"创建数据库索引失败: {e}") + logger.error(f"创建数据库索引失败") - def _record_usage(self, prompt_tokens: int, completion_tokens: int, total_tokens: int, - user_id: str = "system", request_type: str = "chat", - endpoint: str = "/chat/completions"): + def _record_usage(self, prompt_tokens: int, completion_tokens: int, total_tokens: int, + user_id: str = "system", request_type: str = "chat", + endpoint: str = "/chat/completions"): """记录模型使用情况到数据库 Args: prompt_tokens: 输入token数 @@ -79,8 +79,8 @@ class LLM_request: f"提示词: {prompt_tokens}, 完成: {completion_tokens}, " f"总计: {total_tokens}" ) - except Exception as e: - logger.error(f"记录token使用情况失败: {e}") + except Exception: + logger.error(f"记录token使用情况失败") def _calculate_cost(self, prompt_tokens: int, completion_tokens: int) -> float: """计算API调用成本 @@ -140,12 +140,12 @@ class LLM_request: } api_url = f"{self.base_url.rstrip('/')}/{endpoint.lstrip('/')}" - #判断是否为流式 + # 判断是否为流式 stream_mode = self.params.get("stream", False) if self.params.get("stream", False) is True: - logger.info(f"进入流式输出模式,发送请求到URL: {api_url}") + logger.debug(f"进入流式输出模式,发送请求到URL: {api_url}") else: - logger.info(f"发送请求到URL: {api_url}") + logger.debug(f"发送请求到URL: {api_url}") logger.info(f"使用模型: {self.model_name}") # 构建请求体 @@ -158,7 +158,7 @@ class LLM_request: try: # 使用上下文管理器处理会话 headers = await self._build_headers() - #似乎是openai流式必须要的东西,不过阿里云的qwq-plus加了这个没有影响 + # 似乎是openai流式必须要的东西,不过阿里云的qwq-plus加了这个没有影响 if stream_mode: headers["Accept"] = "text/event-stream" @@ -184,29 +184,31 @@ class LLM_request: logger.error(f"错误码: {response.status} - {error_code_mapping.get(response.status)}") if response.status == 403: # 尝试降级Pro模型 - if self.model_name.startswith("Pro/") and self.base_url == "https://api.siliconflow.cn/v1/": + if self.model_name.startswith( + "Pro/") and self.base_url == "https://api.siliconflow.cn/v1/": old_model_name = self.model_name self.model_name = self.model_name[4:] # 移除"Pro/"前缀 logger.warning(f"检测到403错误,模型从 {old_model_name} 降级为 {self.model_name}") - + # 对全局配置进行更新 - if hasattr(global_config, 'llm_normal') and global_config.llm_normal.get('name') == old_model_name: + if hasattr(global_config, 'llm_normal') and global_config.llm_normal.get( + 'name') == old_model_name: global_config.llm_normal['name'] = self.model_name logger.warning(f"已将全局配置中的 llm_normal 模型降级") - + # 更新payload中的模型名 if payload and 'model' in payload: payload['model'] = self.model_name - + # 重新尝试请求 retry -= 1 # 不计入重试次数 continue - + raise RuntimeError(f"请求被拒绝: {error_code_mapping.get(response.status)}") - + response.raise_for_status() - - #将流式输出转化为非流式输出 + + # 将流式输出转化为非流式输出 if stream_mode: accumulated_content = "" async for line_bytes in response.content: @@ -224,8 +226,8 @@ class LLM_request: if delta_content is None: delta_content = "" accumulated_content += delta_content - except Exception as e: - logger.error(f"解析流式输出错误: {e}") + except Exception: + logger.exception(f"解析流式输出错") content = accumulated_content reasoning_content = "" think_match = re.search(r'(.*?)', content, re.DOTALL) @@ -233,12 +235,15 @@ class LLM_request: reasoning_content = think_match.group(1).strip() content = re.sub(r'.*?', '', content, flags=re.DOTALL).strip() # 构造一个伪result以便调用自定义响应处理器或默认处理器 - result = {"choices": [{"message": {"content": content, "reasoning_content": reasoning_content}}]} - return response_handler(result) if response_handler else self._default_response_handler(result, user_id, request_type, endpoint) + result = { + "choices": [{"message": {"content": content, "reasoning_content": reasoning_content}}]} + return response_handler(result) if response_handler else self._default_response_handler( + result, user_id, request_type, endpoint) else: result = await response.json() # 使用自定义处理器或默认处理 - return response_handler(result) if response_handler else self._default_response_handler(result, user_id, request_type, endpoint) + return response_handler(result) if response_handler else self._default_response_handler( + result, user_id, request_type, endpoint) except Exception as e: if retry < policy["max_retries"] - 1: @@ -252,8 +257,8 @@ class LLM_request: logger.error("达到最大重试次数,请求仍然失败") raise RuntimeError("达到最大重试次数,API请求仍然失败") - - async def _transform_parameters(self, params: dict) ->dict: + + async def _transform_parameters(self, params: dict) -> dict: """ 根据模型名称转换参数: - 对于需要转换的OpenAI CoT系列模型(例如 "o3-mini"),删除 'temprature' 参数, @@ -262,7 +267,8 @@ class LLM_request: # 复制一份参数,避免直接修改原始数据 new_params = dict(params) # 定义需要转换的模型列表 - models_needing_transformation = ["o3-mini", "o1-mini", "o1-preview", "o1-2024-12-17", "o1-preview-2024-09-12", "o3-mini-2025-01-31", "o1-mini-2024-09-12"] + models_needing_transformation = ["o3-mini", "o1-mini", "o1-preview", "o1-2024-12-17", "o1-preview-2024-09-12", + "o3-mini-2025-01-31", "o1-mini-2024-09-12"] if self.model_name.lower() in models_needing_transformation: # 删除 'temprature' 参数(如果存在) new_params.pop("temperature", None) @@ -298,13 +304,13 @@ class LLM_request: **params_copy } # 如果 payload 中依然存在 max_tokens 且需要转换,在这里进行再次检查 - if self.model_name.lower() in ["o3-mini", "o1-mini", "o1-preview", "o1-2024-12-17", "o1-preview-2024-09-12", "o3-mini-2025-01-31", "o1-mini-2024-09-12"] and "max_tokens" in payload: + if self.model_name.lower() in ["o3-mini", "o1-mini", "o1-preview", "o1-2024-12-17", "o1-preview-2024-09-12", + "o3-mini-2025-01-31", "o1-mini-2024-09-12"] and "max_tokens" in payload: payload["max_completion_tokens"] = payload.pop("max_tokens") return payload - - def _default_response_handler(self, result: dict, user_id: str = "system", - request_type: str = "chat", endpoint: str = "/chat/completions") -> Tuple: + def _default_response_handler(self, result: dict, user_id: str = "system", + request_type: str = "chat", endpoint: str = "/chat/completions") -> Tuple: """默认响应解析""" if "choices" in result and result["choices"]: message = result["choices"][0]["message"] @@ -356,8 +362,8 @@ class LLM_request: return { "Authorization": f"Bearer {self.api_key}", "Content-Type": "application/json" - } - # 防止小朋友们截图自己的key + } + # 防止小朋友们截图自己的key async def generate_response(self, prompt: str) -> Tuple[str, str]: """根据输入的提示生成模型的异步响应""" @@ -404,6 +410,7 @@ class LLM_request: Returns: list: embedding向量,如果失败则返回None """ + def embedding_handler(result): """处理响应""" if "data" in result and len(result["data"]) > 0: @@ -425,4 +432,3 @@ class LLM_request: response_handler=embedding_handler ) return embedding - diff --git a/src/plugins/moods/moods.py b/src/plugins/moods/moods.py index c35779f84..c37bfc81d 100644 --- a/src/plugins/moods/moods.py +++ b/src/plugins/moods/moods.py @@ -4,7 +4,7 @@ import time from dataclasses import dataclass from ..chat.config import global_config - +from loguru import logger @dataclass class MoodState: @@ -210,7 +210,7 @@ class MoodManager: def print_mood_status(self) -> None: """打印当前情绪状态""" - print(f"\033[1;35m[情绪状态]\033[0m 愉悦度: {self.current_mood.valence:.2f}, " + logger.info(f"[情绪状态]愉悦度: {self.current_mood.valence:.2f}, " f"唤醒度: {self.current_mood.arousal:.2f}, " f"心情: {self.current_mood.text}") diff --git a/src/plugins/schedule/schedule_generator.py b/src/plugins/schedule/schedule_generator.py index ffe99a2da..fc07a152d 100644 --- a/src/plugins/schedule/schedule_generator.py +++ b/src/plugins/schedule/schedule_generator.py @@ -57,12 +57,12 @@ class ScheduleGenerator: existing_schedule = self.db.db.schedule.find_one({"date": date_str}) if existing_schedule: - logger.info(f"{date_str}的日程已存在:") + logger.debug(f"{date_str}的日程已存在:") schedule_text = existing_schedule["schedule"] # print(self.schedule_text) - elif read_only == False: - logger.info(f"{date_str}的日程不存在,准备生成新的日程。") + elif not read_only: + logger.debug(f"{date_str}的日程不存在,准备生成新的日程。") prompt = f"""我是{global_config.BOT_NICKNAME},{global_config.PROMPT_SCHEDULE_GEN},请为我生成{date_str}({weekday})的日程安排,包括:""" + \ """ 1. 早上的学习和工作安排 @@ -78,7 +78,7 @@ class ScheduleGenerator: schedule_text = "生成日程时出错了" # print(self.schedule_text) else: - logger.info(f"{date_str}的日程不存在。") + logger.debug(f"{date_str}的日程不存在。") schedule_text = "忘了" return schedule_text, None @@ -154,10 +154,10 @@ class ScheduleGenerator: logger.warning("今日日程有误,将在下次运行时重新生成") self.db.db.schedule.delete_one({"date": datetime.datetime.now().strftime("%Y-%m-%d")}) else: - logger.info("\n=== 今日日程安排 ===") + logger.info("=== 今日日程安排 ===") for time_str, activity in self.today_schedule.items(): logger.info(f"时间[{time_str}]: 活动[{activity}]") - logger.info("==================\n") + logger.info("==================") # def main(): diff --git a/src/plugins/utils/statistic.py b/src/plugins/utils/statistic.py index d7248e869..a071355a3 100644 --- a/src/plugins/utils/statistic.py +++ b/src/plugins/utils/statistic.py @@ -3,6 +3,7 @@ import time from collections import defaultdict from datetime import datetime, timedelta from typing import Any, Dict +from loguru import logger from ...common.database import Database @@ -153,8 +154,8 @@ class LLMStatistics: try: all_stats = self._collect_all_statistics() self._save_statistics(all_stats) - except Exception as e: - print(f"\033[1;31m[错误]\033[0m 统计数据处理失败: {e}") + except Exception: + logger.exception(f"统计数据处理失败") # 等待1分钟 for _ in range(60): diff --git a/src/test/typo.py b/src/test/typo.py index 16834200f..1378eae7d 100644 --- a/src/test/typo.py +++ b/src/test/typo.py @@ -11,12 +11,14 @@ from pathlib import Path import random import math import time +from loguru import logger + class ChineseTypoGenerator: - def __init__(self, - error_rate=0.3, - min_freq=5, - tone_error_rate=0.2, + def __init__(self, + error_rate=0.3, + min_freq=5, + tone_error_rate=0.2, word_replace_rate=0.3, max_freq_diff=200): """ @@ -34,27 +36,27 @@ class ChineseTypoGenerator: self.tone_error_rate = tone_error_rate self.word_replace_rate = word_replace_rate self.max_freq_diff = max_freq_diff - + # 加载数据 - print("正在加载汉字数据库,请稍候...") + logger.debug("正在加载汉字数据库,请稍候...") self.pinyin_dict = self._create_pinyin_dict() self.char_frequency = self._load_or_create_char_frequency() - + def _load_or_create_char_frequency(self): """ 加载或创建汉字频率字典 """ cache_file = Path("char_frequency.json") - + # 如果缓存文件存在,直接加载 if cache_file.exists(): with open(cache_file, 'r', encoding='utf-8') as f: return json.load(f) - + # 使用内置的词频文件 char_freq = defaultdict(int) dict_path = os.path.join(os.path.dirname(jieba.__file__), 'dict.txt') - + # 读取jieba的词典文件 with open(dict_path, 'r', encoding='utf-8') as f: for line in f: @@ -63,15 +65,15 @@ class ChineseTypoGenerator: for char in word: if self._is_chinese_char(char): char_freq[char] += int(freq) - + # 归一化频率值 max_freq = max(char_freq.values()) - normalized_freq = {char: freq/max_freq * 1000 for char, freq in char_freq.items()} - + normalized_freq = {char: freq / max_freq * 1000 for char, freq in char_freq.items()} + # 保存到缓存文件 with open(cache_file, 'w', encoding='utf-8') as f: json.dump(normalized_freq, f, ensure_ascii=False, indent=2) - + return normalized_freq def _create_pinyin_dict(self): @@ -81,7 +83,7 @@ class ChineseTypoGenerator: # 常用汉字范围 chars = [chr(i) for i in range(0x4e00, 0x9fff)] pinyin_dict = defaultdict(list) - + # 为每个汉字建立拼音映射 for char in chars: try: @@ -89,7 +91,7 @@ class ChineseTypoGenerator: pinyin_dict[py].append(char) except Exception: continue - + return pinyin_dict def _is_chinese_char(self, char): @@ -107,7 +109,7 @@ class ChineseTypoGenerator: """ # 将句子拆分成单个字符 characters = list(sentence) - + # 获取每个字符的拼音 result = [] for char in characters: @@ -117,7 +119,7 @@ class ChineseTypoGenerator: # 获取拼音(数字声调) py = pinyin(char, style=Style.TONE3)[0][0] result.append((char, py)) - + return result def _get_similar_tone_pinyin(self, py): @@ -127,19 +129,19 @@ class ChineseTypoGenerator: # 检查拼音是否为空或无效 if not py or len(py) < 1: return py - + # 如果最后一个字符不是数字,说明可能是轻声或其他特殊情况 if not py[-1].isdigit(): # 为非数字结尾的拼音添加数字声调1 return py + '1' - + base = py[:-1] # 去掉声调 tone = int(py[-1]) # 获取声调 - + # 处理轻声(通常用5表示)或无效声调 if tone not in [1, 2, 3, 4]: return base + str(random.choice([1, 2, 3, 4])) - + # 正常处理声调 possible_tones = [1, 2, 3, 4] possible_tones.remove(tone) # 移除原声调 @@ -152,11 +154,11 @@ class ChineseTypoGenerator: """ if target_freq > orig_freq: return 1.0 # 如果替换字频率更高,保持原有概率 - + freq_diff = orig_freq - target_freq if freq_diff > self.max_freq_diff: return 0.0 # 频率差太大,不替换 - + # 使用指数衰减函数计算概率 # 频率差为0时概率为1,频率差为max_freq_diff时概率接近0 return math.exp(-3 * freq_diff / self.max_freq_diff) @@ -166,42 +168,42 @@ class ChineseTypoGenerator: 获取与给定字频率相近的同音字,可能包含声调错误 """ homophones = [] - + # 有一定概率使用错误声调 if random.random() < self.tone_error_rate: wrong_tone_py = self._get_similar_tone_pinyin(py) homophones.extend(self.pinyin_dict[wrong_tone_py]) - + # 添加正确声调的同音字 homophones.extend(self.pinyin_dict[py]) - + if not homophones: return None - + # 获取原字的频率 orig_freq = self.char_frequency.get(char, 0) - + # 计算所有同音字与原字的频率差,并过滤掉低频字 - freq_diff = [(h, self.char_frequency.get(h, 0)) - for h in homophones - if h != char and self.char_frequency.get(h, 0) >= self.min_freq] - + freq_diff = [(h, self.char_frequency.get(h, 0)) + for h in homophones + if h != char and self.char_frequency.get(h, 0) >= self.min_freq] + if not freq_diff: return None - + # 计算每个候选字的替换概率 candidates_with_prob = [] for h, freq in freq_diff: prob = self._calculate_replacement_probability(orig_freq, freq) if prob > 0: # 只保留有效概率的候选字 candidates_with_prob.append((h, prob)) - + if not candidates_with_prob: return None - + # 根据概率排序 candidates_with_prob.sort(key=lambda x: x[1], reverse=True) - + # 返回概率最高的几个字 return [char for char, _ in candidates_with_prob[:num_candidates]] @@ -223,10 +225,10 @@ class ChineseTypoGenerator: """ if len(word) == 1: return [] - + # 获取词的拼音 word_pinyin = self._get_word_pinyin(word) - + # 遍历所有可能的同音字组合 candidates = [] for py in word_pinyin: @@ -234,11 +236,11 @@ class ChineseTypoGenerator: if not chars: return [] candidates.append(chars) - + # 生成所有可能的组合 import itertools all_combinations = itertools.product(*candidates) - + # 获取jieba词典和词频信息 dict_path = os.path.join(os.path.dirname(jieba.__file__), 'dict.txt') valid_words = {} # 改用字典存储词语及其频率 @@ -249,11 +251,11 @@ class ChineseTypoGenerator: word_text = parts[0] word_freq = float(parts[1]) # 获取词频 valid_words[word_text] = word_freq - + # 获取原词的词频作为参考 original_word_freq = valid_words.get(word, 0) min_word_freq = original_word_freq * 0.1 # 设置最小词频为原词频的10% - + # 过滤和计算频率 homophones = [] for combo in all_combinations: @@ -268,7 +270,7 @@ class ChineseTypoGenerator: combined_score = (new_word_freq * 0.7 + char_avg_freq * 0.3) if combined_score >= self.min_freq: homophones.append((new_word, combined_score)) - + # 按综合分数排序并限制返回数量 sorted_homophones = sorted(homophones, key=lambda x: x[1], reverse=True) return [word for word, _ in sorted_homophones[:5]] # 限制返回前5个结果 @@ -286,19 +288,19 @@ class ChineseTypoGenerator: """ result = [] typo_info = [] - + # 分词 words = self._segment_sentence(sentence) - + for word in words: # 如果是标点符号或空格,直接添加 if all(not self._is_chinese_char(c) for c in word): result.append(word) continue - + # 获取词语的拼音 word_pinyin = self._get_word_pinyin(word) - + # 尝试整词替换 if len(word) > 1 and random.random() < self.word_replace_rate: word_homophones = self._get_word_homophones(word) @@ -307,15 +309,15 @@ class ChineseTypoGenerator: # 计算词的平均频率 orig_freq = sum(self.char_frequency.get(c, 0) for c in word) / len(word) typo_freq = sum(self.char_frequency.get(c, 0) for c in typo_word) / len(typo_word) - + # 添加到结果中 result.append(typo_word) - typo_info.append((word, typo_word, - ' '.join(word_pinyin), - ' '.join(self._get_word_pinyin(typo_word)), - orig_freq, typo_freq)) + typo_info.append((word, typo_word, + ' '.join(word_pinyin), + ' '.join(self._get_word_pinyin(typo_word)), + orig_freq, typo_freq)) continue - + # 如果不进行整词替换,则进行单字替换 if len(word) == 1: char = word @@ -339,7 +341,7 @@ class ChineseTypoGenerator: for i, (char, py) in enumerate(zip(word, word_pinyin)): # 词中的字替换概率降低 word_error_rate = self.error_rate * (0.7 ** (len(word) - 1)) - + if random.random() < word_error_rate: similar_chars = self._get_similar_frequency_chars(char, py) if similar_chars: @@ -354,7 +356,7 @@ class ChineseTypoGenerator: continue word_result.append(char) result.append(''.join(word_result)) - + return ''.join(result), typo_info def format_typo_info(self, typo_info): @@ -369,7 +371,7 @@ class ChineseTypoGenerator: """ if not typo_info: return "未生成错别字" - + result = [] for orig, typo, orig_py, typo_py, orig_freq, typo_freq in typo_info: # 判断是否为词语替换 @@ -379,12 +381,12 @@ class ChineseTypoGenerator: else: tone_error = orig_py[:-1] == typo_py[:-1] and orig_py[-1] != typo_py[-1] error_type = "声调错误" if tone_error else "同音字替换" - + result.append(f"原文:{orig}({orig_py}) [频率:{orig_freq:.2f}] -> " - f"替换:{typo}({typo_py}) [频率:{typo_freq:.2f}] [{error_type}]") - + f"替换:{typo}({typo_py}) [频率:{typo_freq:.2f}] [{error_type}]") + return "\n".join(result) - + def set_params(self, **kwargs): """ 设置参数 @@ -399,9 +401,10 @@ class ChineseTypoGenerator: for key, value in kwargs.items(): if hasattr(self, key): setattr(self, key, value) - print(f"参数 {key} 已设置为 {value}") + logger.debug(f"参数 {key} 已设置为 {value}") else: - print(f"警告: 参数 {key} 不存在") + logger.warning(f"警告: 参数 {key} 不存在") + def main(): # 创建错别字生成器实例 @@ -411,27 +414,27 @@ def main(): tone_error_rate=0.02, word_replace_rate=0.3 ) - + # 获取用户输入 sentence = input("请输入中文句子:") - + # 创建包含错别字的句子 start_time = time.time() typo_sentence, typo_info = typo_generator.create_typo_sentence(sentence) - + # 打印结果 - print("\n原句:", sentence) - print("错字版:", typo_sentence) - + logger.debug("原句:", sentence) + logger.debug("错字版:", typo_sentence) + # 打印错别字信息 if typo_info: - print("\n错别字信息:") - print(typo_generator.format_typo_info(typo_info)) - + logger.debug(f"错别字信息:{typo_generator.format_typo_info(typo_info)})") + # 计算并打印总耗时 end_time = time.time() total_time = end_time - start_time - print(f"\n总耗时:{total_time:.2f}秒") + logger.debug(f"总耗时:{total_time:.2f}秒") + if __name__ == "__main__": main()