feat: 新增HFC处理器自定义项和思考间隔项

新增了 HFC不同处理器的开启关闭可选项
新增了思考间隔调整
移除无用工具
This commit is contained in:
SengokuCola
2025-05-20 22:56:42 +08:00
parent 25d9032e62
commit af8edd0ef7
9 changed files with 25 additions and 242 deletions

View File

@@ -25,6 +25,7 @@ from src.chat.focus_chat.info_processors.self_processor import SelfProcessor
from src.chat.focus_chat.planners.planner import ActionPlanner
from src.chat.focus_chat.planners.action_manager import ActionManager
from src.chat.focus_chat.working_memory.working_memory import WorkingMemory
from src.config.config import global_config
install(extra_lines=3)
@@ -258,6 +259,8 @@ class HeartFChatting:
+ (f"\n详情: {'; '.join(timer_strings)}" if timer_strings else "")
)
await asyncio.sleep(global_config.focus_chat.think_interval)
except asyncio.CancelledError:
# 设置了关闭标志位后被取消是正常流程
if not self._shutting_down:

View File

@@ -86,7 +86,6 @@ class MaiStateManager:
current_time = time.time()
current_status = current_state_info.mai_status
time_in_current_status = current_time - current_state_info.last_status_change_time
_time_since_last_min_check = current_time - current_state_info.last_min_check_time
next_state: Optional[MaiState] = None
def _resolve_offline(candidate_state: MaiState) -> MaiState:

View File

@@ -38,10 +38,8 @@ class NormalChat:
# Interest dict
self.interest_dict = interest_dict or {}
# --- Initialize attributes (defaults) ---
self.is_group_chat: bool = False
self.chat_target_info: Optional[dict] = None
# --- End Initialization ---
# Other sync initializations
self.gpt = NormalChatGenerator()
@@ -51,8 +49,7 @@ class NormalChat:
self._chat_task: Optional[asyncio.Task] = None
self._initialized = False # Track initialization status
# logger.info(f"[{self.stream_name}] NormalChat 实例 __init__ 完成 (同步部分)。")
# Avoid logging here as stream_name might not be final
async def initialize(self):
"""异步初始化,获取聊天类型和目标信息。"""

View File

@@ -148,6 +148,17 @@ class FocusChatConfig(ConfigBase):
compress_length_limit: int = 5
"""最多压缩份数,超过该数值的压缩上下文会被删除"""
think_interval: int = 1
"""思考间隔(秒)"""
self_identify_processor: bool = True
"""是否启用自我识别处理器"""
tool_use_processor: bool = True
"""是否启用工具使用处理器"""
working_memory_processor: bool = True
"""是否启用工作记忆处理器"""
@dataclass
class ExpressionConfig(ConfigBase):

View File

@@ -1,40 +0,0 @@
from src.tools.tool_can_use.base_tool import BaseTool
from src.common.logger import get_module_logger
from typing import Any
logger = get_module_logger("get_mid_memory_tool")
class GetMidMemoryTool(BaseTool):
"""从记忆系统中获取相关记忆的工具"""
name = "mid_chat_mem"
description = "之前的聊天内容概述id中获取具体信息如果没有聊天内容概述id就不要使用"
parameters = {
"type": "object",
"properties": {
"id": {"type": "integer", "description": "要查询的聊天记录概述id"},
},
"required": ["id"],
}
async def execute(self, function_args: dict[str, Any], message_txt: str = "") -> dict[str, Any]:
"""执行记忆获取
Args:
function_args: 工具参数
message_txt: 原始消息文本
Returns:
dict: 工具执行结果
"""
try:
id = function_args.get("id")
return {"name": "mid_chat_mem", "content": str(id)}
except Exception as e:
logger.error(f"聊天记录获取工具执行失败: {str(e)}")
return {"name": "mid_chat_mem", "content": f"聊天记录获取失败: {str(e)}"}
# 注册工具
# register_tool(GetMemoryTool)

View File

@@ -1,25 +0,0 @@
from src.tools.tool_can_use.base_tool import BaseTool
from src.common.logger import get_module_logger
from typing import Any
logger = get_module_logger("send_emoji_tool")
class SendEmojiTool(BaseTool):
"""发送表情包的工具"""
name = "send_emoji"
description = "当你觉得需要表达情感,或者帮助表达,可以使用这个工具发送表情包"
parameters = {
"type": "object",
"properties": {"text": {"type": "string", "description": "要发送的表情包描述"}},
"required": ["text"],
}
async def execute(self, function_args: dict[str, Any], message_txt: str = "") -> dict[str, Any]:
text = function_args.get("text", message_txt)
return {
"name": "send_emoji",
"content": text,
}

View File

@@ -1,39 +0,0 @@
from src.tools.tool_can_use.base_tool import BaseTool
from src.common.logger_manager import get_logger
from typing import Dict, Any
from datetime import datetime
import time
logger = get_logger("get_time_date")
class GetCurrentDateTimeTool(BaseTool):
"""获取当前时间、日期、年份和星期的工具"""
name = "get_current_date_time"
description = "当有人询问或者涉及到具体时间或者日期的时候,必须使用这个工具"
parameters = {
"type": "object",
"properties": {},
"required": [],
}
async def execute(self, function_args: Dict[str, Any]) -> Dict[str, Any]:
"""执行获取当前时间、日期、年份和星期
Args:
function_args: 工具参数(此工具不使用)
Returns:
Dict: 工具执行结果
"""
current_time = datetime.now().strftime("%H:%M:%S")
current_date = datetime.now().strftime("%Y-%m-%d")
current_year = datetime.now().strftime("%Y")
current_weekday = datetime.now().strftime("%A")
return {
"type": "time_info",
"id": f"time_info_{time.time()}",
"content": f"当前时间: {current_time}, 日期: {current_date}, 年份: {current_year}, 星期: {current_weekday}",
}

View File

@@ -3,56 +3,14 @@ from src.config.config import global_config
import json
from src.common.logger_manager import get_logger
from src.tools.tool_can_use import get_all_tool_definitions, get_tool_instance
import traceback
from src.chat.person_info.relationship_manager import relationship_manager
from src.chat.utils.utils import parse_text_timestamps
from src.chat.message_receive.chat_stream import ChatStream
from src.chat.heart_flow.observation.chatting_observation import ChattingObservation
logger = get_logger("tool_use")
class ToolUser:
def __init__(self):
self.llm_model_tool = LLMRequest(
model=global_config.model.tool_use, temperature=0.2, max_tokens=1000, request_type="tool_use"
)
@staticmethod
async def _build_tool_prompt(
message_txt: str, chat_stream: ChatStream = None, observation: ChattingObservation = None
):
"""构建工具使用的提示词
Args:
message_txt: 用户消息文本
subheartflow: 子心流对象
Returns:
str: 构建好的提示词
"""
if observation:
mid_memory_info = observation.mid_memory_info
# print(f"intol111111111111111111111111111111111222222222222mid_memory_info{mid_memory_info}")
# 这些信息应该从调用者传入而不是从self获取
bot_name = global_config.bot.nickname
prompt = ""
prompt += mid_memory_info
prompt += "你正在思考如何回复群里的消息。\n"
prompt += "之前群里进行了如下讨论:\n"
prompt += message_txt
# prompt += f"你注意到{sender_name}刚刚说:{message_txt}\n"
prompt += f"注意你就是{bot_name}{bot_name}是你的名字。根据之前的聊天记录补充问题信息,搜索时避开你的名字。\n"
# prompt += "必须调用 'lpmm_get_knowledge' 工具来获取知识。\n"
prompt += "你现在需要对群里的聊天内容进行回复,请你思考应该使用什么工具,然后选择工具来对消息和你的回复进行处理,你是否需要额外的信息,比如回忆或者搜寻已有的知识,改变关系和情感,或者了解你现在正在做什么。"
prompt = await relationship_manager.convert_all_person_sign_to_person_name(prompt)
prompt = parse_text_timestamps(prompt, mode="lite")
return prompt
@staticmethod
def _define_tools():
"""获取所有已注册工具的定义
@@ -100,93 +58,3 @@ class ToolUser:
except Exception as e:
logger.error(f"执行工具调用时发生错误: {str(e)}")
return None
async def use_tool(self, message_txt: str, chat_stream: ChatStream = None, observation: ChattingObservation = None):
"""使用工具辅助思考,判断是否需要额外信息
Args:
message_txt: 用户消息文本
chat_stream: 聊天流对象
observation: 观察对象(可选)
Returns:
dict: 工具使用结果,包含结构化的信息
"""
try:
# 构建提示词
prompt = await self._build_tool_prompt(
message_txt=message_txt,
chat_stream=chat_stream,
observation=observation,
)
# 定义可用工具
tools = self._define_tools()
logger.trace(f"工具定义: {tools}")
# 使用llm_model_tool发送带工具定义的请求
payload = {
"model": self.llm_model_tool.model_name,
"messages": [{"role": "user", "content": prompt}],
"tools": tools,
"temperature": 0.2,
}
logger.trace(f"发送工具调用请求,模型: {self.llm_model_tool.model_name}")
# 发送请求获取模型是否需要调用工具
response = await self.llm_model_tool._execute_request(
endpoint="/chat/completions", payload=payload, prompt=prompt
)
# 根据返回值数量判断是否有工具调用
if len(response) == 3:
content, reasoning_content, tool_calls = response
# logger.info(f"工具思考: {tool_calls}")
# logger.debug(f"工具思考: {content}")
# 检查响应中工具调用是否有效
if not tool_calls:
logger.debug("模型返回了空的tool_calls列表")
return {"used_tools": False}
tool_calls_str = ""
for tool_call in tool_calls:
tool_calls_str += f"{tool_call['function']['name']}\n"
logger.info(
f"根据:\n{prompt}\n\n内容:{content}\n\n模型请求调用{len(tool_calls)}个工具: {tool_calls_str}"
)
tool_results = []
structured_info = {} # 动态生成键
# 执行所有工具调用
for tool_call in tool_calls:
result = await self._execute_tool_call(tool_call)
if result:
tool_results.append(result)
# 使用工具名称作为键
tool_name = result["name"]
if tool_name not in structured_info:
structured_info[tool_name] = []
structured_info[tool_name].append({"name": result["name"], "content": result["content"]})
# 如果有工具结果,返回结构化的信息
if structured_info:
logger.debug(f"工具调用收集到结构化信息: {json.dumps(structured_info, ensure_ascii=False)}")
return {"used_tools": True, "structured_info": structured_info}
else:
# 没有工具调用
content, reasoning_content = response
logger.debug("模型没有请求调用任何工具")
# 如果没有工具调用或处理失败,直接返回原始思考
return {
"used_tools": False,
}
except Exception as e:
logger.error(f"工具调用过程中出错: {str(e)}")
logger.error(f"工具调用过程中出错: {traceback.format_exc()}")
return {
"used_tools": False,
"error": str(e),
}

View File

@@ -85,10 +85,19 @@ reply_trigger_threshold = 3.0 # 专注聊天触发阈值,越低越容易进入
default_decay_rate_per_second = 0.98 # 默认衰减率,越大衰减越快,越高越难进入专注聊天
consecutive_no_reply_threshold = 3 # 连续不回复的阈值,越低越容易结束专注聊天
think_interval = 1 # 思考间隔 单位秒
observation_context_size = 15 # 观察到的最长上下文大小,建议15太短太长都会导致脑袋尖尖
compressed_length = 5 # 不能大于chat.observation_context_size,心流上下文压缩的最短压缩长度超过心流观察到的上下文长度会压缩最短压缩长度为5
compress_length_limit = 5 #最多压缩份数,超过该数值的压缩上下文会被删除
[focus_chat.processor] # 专注聊天处理器打开可以实现更多功能但是会增加token消耗
self_identify_processor = true # 是否启用自我识别处理器
tool_use_processor = true # 是否启用工具使用处理器
working_memory_processor = true # 是否启用工作记忆处理器
[expression]
# 表达方式
expression_style = "描述麦麦说话的表达风格,表达习惯"