Merge branch 'dev' of https://github.com/A0000Xz/MaiBot into dev

This commit is contained in:
A0000Xz
2025-07-11 21:52:59 +08:00
53 changed files with 4518 additions and 1902 deletions

View File

@@ -119,7 +119,7 @@ class ExpressionLearner:
min_len = min(len(s1), len(s2))
if min_len < 5:
return False
same = sum(1 for a, b in zip(s1, s2) if a == b)
same = sum(1 for a, b in zip(s1, s2, strict=False) if a == b)
return same / min_len > 0.8
async def learn_and_store_expression(self) -> List[Tuple[str, str, str]]:

View File

@@ -459,7 +459,7 @@ class HeartFChatting:
logger.debug(f"{self.log_prefix} 从action_data中获取系统命令: {command}")
# 新增:消息计数和疲惫检查
if action == "reply" and success:
if action == "reply" and success and self.chat_stream.context.message.message_info.group_info:
self._message_count += 1
current_threshold = self._get_current_fatigue_threshold()
logger.info(
@@ -501,7 +501,7 @@ class HeartFChatting:
Returns:
int: 当前的疲惫阈值
"""
return max(10, int(30 / global_config.chat.exit_focus_threshold))
return max(10, int(30 * global_config.chat.exit_focus_threshold))
def get_message_count_info(self) -> dict:
"""获取消息计数信息

View File

@@ -1,4 +1,3 @@
from src.manager.mood_manager import mood_manager
import enum
@@ -12,6 +11,3 @@ class ChatStateInfo:
def __init__(self):
self.chat_status: ChatState = ChatState.NORMAL
self.current_state_time = 120
self.mood_manager = mood_manager
self.mood = self.mood_manager.get_mood_prompt()

View File

@@ -1,5 +1,6 @@
from src.chat.memory_system.Hippocampus import hippocampus_manager
from src.config.config import global_config
import asyncio
from src.chat.message_receive.message import MessageRecv
from src.chat.message_receive.storage import MessageStorage
from src.chat.heart_flow.heartflow import heartflow
@@ -13,6 +14,7 @@ import traceback
from typing import Tuple
from src.person_info.relationship_manager import get_relationship_manager
from src.mood.mood_manager import mood_manager
logger = get_logger("chat")
@@ -49,13 +51,12 @@ async def _calculate_interest(message: MessageRecv) -> Tuple[float, bool]:
is_mentioned, _ = is_mentioned_bot_in_message(message)
interested_rate = 0.0
if global_config.memory.enable_memory:
with Timer("记忆激活"):
interested_rate = await hippocampus_manager.get_activate_from_text(
message.processed_plain_text,
fast_retrieval=True,
)
logger.debug(f"记忆激活率: {interested_rate:.2f}")
with Timer("记忆激活"):
interested_rate = await hippocampus_manager.get_activate_from_text(
message.processed_plain_text,
fast_retrieval=False,
)
logger.debug(f"记忆激活率: {interested_rate:.2f}")
text_len = len(message.processed_plain_text)
# 根据文本长度调整兴趣度长度越大兴趣度越高但增长率递减最低0.01最高0.05
@@ -105,15 +106,19 @@ class HeartFCMessageReceiver:
group_info=groupinfo,
)
interested_rate, is_mentioned = await _calculate_interest(message)
message.interest_value = interested_rate
await self.storage.store_message(message, chat)
subheartflow = await heartflow.get_or_create_subheartflow(chat.stream_id)
message.update_chat_stream(chat)
# 6. 兴趣度计算与更新
interested_rate, is_mentioned = await _calculate_interest(message)
subheartflow.add_message_to_normal_chat_cache(message, interested_rate, is_mentioned)
chat_mood = mood_manager.get_mood_by_chat_id(subheartflow.chat_id)
asyncio.create_task(chat_mood.update_mood_by_message(message, interested_rate))
# 7. 日志记录
mes_name = chat.group_info.group_name if chat.group_info else "私聊"
# current_time = time.strftime("%H:%M:%S", time.localtime(message.message_info.time))

View File

@@ -26,8 +26,6 @@ class SubHeartflow:
Args:
subheartflow_id: 子心流唯一标识符
mai_states: 麦麦状态信息实例
hfc_no_reply_callback: HFChatting 连续不回复时触发的回调
"""
# 基础属性,两个值是一样的
self.subheartflow_id = subheartflow_id

View File

@@ -59,7 +59,7 @@ EMBEDDING_SIM_THRESHOLD = 0.99
def cosine_similarity(a, b):
# 计算余弦相似度
dot = sum(x * y for x, y in zip(a, b))
dot = sum(x * y for x, y in zip(a, b, strict=False))
norm_a = math.sqrt(sum(x * x for x in a))
norm_b = math.sqrt(sum(x * x for x in b))
if norm_a == 0 or norm_b == 0:
@@ -285,7 +285,7 @@ class EmbeddingStore:
distances = list(distances.flatten())
result = [
(self.idx2hash[str(int(idx))], float(sim))
for (idx, sim) in zip(indices, distances)
for (idx, sim) in zip(indices, distances, strict=False)
if idx in range(len(self.idx2hash))
]

View File

@@ -205,7 +205,7 @@ class Hippocampus:
# 从数据库加载记忆图
self.entorhinal_cortex.sync_memory_from_db()
# TODO: API-Adapter修改标记
self.model_summary = LLMRequest(global_config.model.memory_summary, request_type="memory")
self.model_summary = LLMRequest(global_config.model.memory, request_type="memory")
def get_all_node_names(self) -> list:
"""获取记忆图中所有节点的名字列表"""
@@ -819,7 +819,7 @@ class EntorhinalCortex:
timestamps = sample_scheduler.get_timestamp_array()
# 使用 translate_timestamp_to_human_readable 并指定 mode="normal"
readable_timestamps = [translate_timestamp_to_human_readable(ts, mode="normal") for ts in timestamps]
for _, readable_timestamp in zip(timestamps, readable_timestamps):
for _, readable_timestamp in zip(timestamps, readable_timestamps, strict=False):
logger.debug(f"回忆往事: {readable_timestamp}")
chat_samples = []
for timestamp in timestamps:

View File

@@ -3,7 +3,7 @@ import os
from typing import Dict, Any
from src.common.logger import get_logger
from src.manager.mood_manager import mood_manager # 导入情绪管理器
from src.mood.mood_manager import mood_manager # 导入情绪管理器
from src.chat.message_receive.chat_stream import get_chat_manager
from src.chat.message_receive.message import MessageRecv
from src.experimental.only_message_process import MessageProcessor

View File

@@ -113,6 +113,7 @@ class MessageRecv(Message):
self.is_mentioned = None
self.priority_mode = "interest"
self.priority_info = None
self.interest_value = None
def update_chat_stream(self, chat_stream: "ChatStream"):
self.chat_stream = chat_stream
@@ -337,6 +338,8 @@ class MessageSending(MessageProcessBase):
# 用于显示发送内容与显示不一致的情况
self.display_message = display_message
self.interest_value = 0.0
def build_reply(self):
"""设置回复消息"""
if self.reply:

View File

@@ -1,4 +1,5 @@
import re
import traceback
from typing import Union
# from ...common.database.database import db # db is now Peewee's SqliteDatabase instance
@@ -36,11 +37,11 @@ class MessageStorage:
filtered_display_message = re.sub(pattern, "", display_message, flags=re.DOTALL)
else:
filtered_display_message = ""
interest_value = 0
reply_to = message.reply_to
else:
filtered_display_message = ""
interest_value = message.interest_value
reply_to = ""
chat_info_dict = chat_stream.to_dict()
@@ -85,9 +86,11 @@ class MessageStorage:
processed_plain_text=filtered_processed_plain_text,
display_message=filtered_display_message,
memorized_times=message.memorized_times,
interest_value=interest_value,
)
except Exception:
logger.exception("存储消息失败")
traceback.print_exc()
@staticmethod
async def store_recalled_message(message_id: str, time: str, chat_stream: ChatStream) -> None:

View File

@@ -22,7 +22,7 @@ from src.chat.planner_actions.planner import ActionPlanner
from src.chat.planner_actions.action_modifier import ActionModifier
from src.chat.utils.utils import get_chat_type_and_target_info
from src.manager.mood_manager import mood_manager
from src.mood.mood_manager import mood_manager
willing_manager = get_willing_manager()
@@ -304,7 +304,9 @@ class NormalChat:
semaphore = asyncio.Semaphore(5)
async def process_and_acquire(msg_id, message, interest_value, is_mentioned):
async def process_and_acquire(
msg_id, message, interest_value, is_mentioned, semaphore=semaphore
):
"""处理单个兴趣消息并管理信号量"""
async with semaphore:
try:

View File

@@ -299,7 +299,7 @@ class ActionModifier:
task_results = await asyncio.gather(*tasks, return_exceptions=True)
# 处理结果并更新缓存
for _, (action_name, result) in enumerate(zip(task_names, task_results)):
for _, (action_name, result) in enumerate(zip(task_names, task_results, strict=False)):
if isinstance(result, Exception):
logger.error(f"{self.log_prefix}LLM判定action {action_name} 时出错: {result}")
results[action_name] = False

View File

@@ -11,7 +11,12 @@ from json_repair import repair_json
from src.chat.utils.utils import get_chat_type_and_target_info
from datetime import datetime
from src.chat.message_receive.chat_stream import get_chat_manager
from src.chat.utils.chat_message_builder import build_readable_messages, get_raw_msg_before_timestamp_with_chat
from src.chat.utils.chat_message_builder import (
build_readable_actions,
build_readable_messages,
get_actions_by_timestamp_with_chat,
get_raw_msg_before_timestamp_with_chat,
)
import time
logger = get_logger("planner")
@@ -27,9 +32,14 @@ def init_prompt():
你现在需要根据聊天内容选择的合适的action来参与聊天。
{chat_context_description},以下是具体的聊天内容:
{chat_content_block}
{moderation_prompt}
现在请你根据{by_what}选择合适的action:
你刚刚选择并执行过的action是
{actions_before_now_block}
{no_action_block}
{action_options_text}
@@ -222,6 +232,16 @@ class ActionPlanner:
show_actions=True,
)
actions_before_now = get_actions_by_timestamp_with_chat(
chat_id=self.chat_id,
timestamp_end=time.time(),
limit=5,
)
actions_before_now_block = build_readable_actions(
actions=actions_before_now,
)
self.last_obs_time_mark = time.time()
if self.mode == "focus":
@@ -285,6 +305,7 @@ class ActionPlanner:
by_what=by_what,
chat_context_description=chat_context_description,
chat_content_block=chat_content_block,
actions_before_now_block=actions_before_now_block,
no_action_block=no_action_block,
action_options_text=action_options_block,
moderation_prompt=moderation_prompt_block,

View File

@@ -18,7 +18,7 @@ from src.chat.utils.chat_message_builder import build_readable_messages, get_raw
import time
import asyncio
from src.chat.express.expression_selector import expression_selector
from src.manager.mood_manager import mood_manager
from src.mood.mood_manager import mood_manager
from src.person_info.relationship_fetcher import relationship_fetcher_manager
import random
import ast
@@ -55,9 +55,9 @@ def init_prompt():
{identity}
{action_descriptions}
你正在{chat_target_2},现在请你读读之前的聊天记录,{mood_prompt},请你给出回复
{config_expression_style}
请回复的平淡一些,简短一些,说中文,不要刻意突出自身学科背景,注意不要复读你说过的话
你正在{chat_target_2},现在的心情是:{mood_state}
现在请你读读之前的聊天记录,并给出回复
{config_expression_style}注意不要复读你说过的话
{keywords_reaction_prompt}
请注意不要输出多余内容(包括前后缀冒号和引号at或 @等 )。只输出回复内容。
{moderation_prompt}
@@ -504,6 +504,9 @@ class DefaultReplyer:
reply_to = reply_data.get("reply_to", "none")
extra_info_block = reply_data.get("extra_info", "") or reply_data.get("extra_info_block", "")
chat_mood = mood_manager.get_mood_by_chat_id(chat_id)
mood_prompt = chat_mood.mood_state
sender, target = self._parse_reply_target(reply_to)
# 构建action描述 (如果启用planner)
@@ -639,8 +642,6 @@ class DefaultReplyer:
else:
reply_target_block = ""
mood_prompt = mood_manager.get_mood_prompt()
prompt_info = await get_prompt_info(target, threshold=0.38)
if prompt_info:
prompt_info = await global_prompt_manager.format_prompt("knowledge_prompt", prompt_info=prompt_info)
@@ -682,7 +683,7 @@ class DefaultReplyer:
config_expression_style=global_config.expression.expression_style,
action_descriptions=action_descriptions,
chat_target_2=chat_target_2,
mood_prompt=mood_prompt,
mood_state=mood_prompt,
)
return prompt
@@ -774,8 +775,6 @@ class DefaultReplyer:
else:
reply_target_block = ""
mood_manager.get_mood_prompt()
if is_group_chat:
chat_target_1 = await global_prompt_manager.get_prompt_async("chat_target_group1")
chat_target_2 = await global_prompt_manager.get_prompt_async("chat_target_group2")
@@ -975,7 +974,7 @@ def weighted_sample_no_replacement(items, weights, k) -> list:
2. 不会重复选中同一个元素
"""
selected = []
pool = list(zip(items, weights))
pool = list(zip(items, weights, strict=False))
for _ in range(min(k, len(pool))):
total = sum(w for _, w in pool)
r = random.uniform(0, total)

View File

@@ -77,6 +77,60 @@ def get_raw_msg_by_timestamp_with_chat_users(
return find_messages(message_filter=filter_query, sort=sort_order, limit=limit, limit_mode=limit_mode)
def get_actions_by_timestamp_with_chat(
chat_id: str,
timestamp_start: float = 0,
timestamp_end: float = time.time(),
limit: int = 0,
limit_mode: str = "latest",
) -> List[Dict[str, Any]]:
"""获取在特定聊天从指定时间戳到指定时间戳的动作记录,按时间升序排序,返回动作记录列表"""
query = ActionRecords.select().where(
(ActionRecords.chat_id == chat_id)
& (ActionRecords.time > timestamp_start)
& (ActionRecords.time < timestamp_end)
)
if limit > 0:
if limit_mode == "latest":
query = query.order_by(ActionRecords.time.desc()).limit(limit)
# 获取后需要反转列表,以保持最终输出为时间升序
actions = list(query)
return [action.__data__ for action in reversed(actions)]
else: # earliest
query = query.order_by(ActionRecords.time.asc()).limit(limit)
else:
query = query.order_by(ActionRecords.time.asc())
actions = list(query)
return [action.__data__ for action in actions]
def get_actions_by_timestamp_with_chat_inclusive(
chat_id: str, timestamp_start: float, timestamp_end: float, limit: int = 0, limit_mode: str = "latest"
) -> List[Dict[str, Any]]:
"""获取在特定聊天从指定时间戳到指定时间戳的动作记录(包含边界),按时间升序排序,返回动作记录列表"""
query = ActionRecords.select().where(
(ActionRecords.chat_id == chat_id)
& (ActionRecords.time >= timestamp_start)
& (ActionRecords.time <= timestamp_end)
)
if limit > 0:
if limit_mode == "latest":
query = query.order_by(ActionRecords.time.desc()).limit(limit)
# 获取后需要反转列表,以保持最终输出为时间升序
actions = list(query)
return [action.__data__ for action in reversed(actions)]
else: # earliest
query = query.order_by(ActionRecords.time.asc()).limit(limit)
else:
query = query.order_by(ActionRecords.time.asc())
actions = list(query)
return [action.__data__ for action in actions]
def get_raw_msg_by_timestamp_random(
timestamp_start: float, timestamp_end: float, limit: int = 0, limit_mode: str = "latest"
) -> List[Dict[str, Any]]:
@@ -503,6 +557,45 @@ def build_pic_mapping_info(pic_id_mapping: Dict[str, str]) -> str:
return "\n".join(mapping_lines)
def build_readable_actions(actions: List[Dict[str, Any]]) -> str:
"""
将动作列表转换为可读的文本格式。
格式: 在()分钟前,你使用了(action_name)具体内容是action_prompt_display
Args:
actions: 动作记录字典列表。
Returns:
格式化的动作字符串。
"""
if not actions:
return ""
output_lines = []
current_time = time.time()
# The get functions return actions sorted ascending by time. Let's reverse it to show newest first.
# sorted_actions = sorted(actions, key=lambda x: x.get("time", 0), reverse=True)
for action in actions:
action_time = action.get("time", current_time)
action_name = action.get("action_name", "未知动作")
action_prompt_display = action.get("action_prompt_display", "无具体内容")
time_diff_seconds = current_time - action_time
if time_diff_seconds < 60:
time_ago_str = f"{int(time_diff_seconds)}秒前"
else:
time_diff_minutes = round(time_diff_seconds / 60)
time_ago_str = f"{int(time_diff_minutes)}分钟前"
line = f"{time_ago_str},你使用了“{action_name}”,具体内容是:“{action_prompt_display}"
output_lines.append(line)
return "\n".join(output_lines)
async def build_readable_messages_with_list(
messages: List[Dict[str, Any]],
replace_bot_name: bool = True,

View File

@@ -363,7 +363,7 @@ class ChineseTypoGenerator:
else:
# 处理多字词的单字替换
word_result = []
for _, (char, py) in enumerate(zip(word, word_pinyin)):
for _, (char, py) in enumerate(zip(word, word_pinyin, strict=False)):
# 词中的字替换概率降低
word_error_rate = self.error_rate * (0.7 ** (len(word) - 1))

View File

@@ -8,7 +8,8 @@ import numpy as np
from maim_message import UserInfo
from src.common.logger import get_logger
from src.manager.mood_manager import mood_manager
# from src.mood.mood_manager import mood_manager
from ..message_receive.message import MessageRecv
from src.llm_models.utils_model import LLMRequest
from .typo_generator import ChineseTypoGenerator
@@ -412,12 +413,12 @@ def calculate_typing_time(
- 在所有输入结束后额外加上回车时间0.3秒
- 如果is_emoji为True将使用固定1秒的输入时间
"""
# 将0-1的唤醒度映射到-1到1
mood_arousal = mood_manager.current_mood.arousal
# 映射到0.5到2倍的速度系数
typing_speed_multiplier = 1.5**mood_arousal # 唤醒度为1时速度翻倍,为-1时速度减半
chinese_time *= 1 / typing_speed_multiplier
english_time *= 1 / typing_speed_multiplier
# # 将0-1的唤醒度映射到-1到1
# mood_arousal = mood_manager.current_mood.arousal
# # 映射到0.5到2倍的速度系数
# typing_speed_multiplier = 1.5**mood_arousal # 唤醒度为1时速度翻倍,为-1时速度减半
# chinese_time *= 1 / typing_speed_multiplier
# english_time *= 1 / typing_speed_multiplier
# 计算中文字符数
chinese_chars = sum(1 for char in input_string if "\u4e00" <= char <= "\u9fff")

View File

@@ -33,9 +33,9 @@ class MemoryManager:
self._id_map: Dict[str, MemoryItem] = {}
self.llm_summarizer = LLMRequest(
model=global_config.model.focus_working_memory,
model=global_config.model.memory,
temperature=0.3,
request_type="focus.processor.working_memory",
request_type="working_memory",
)
@property

View File

@@ -129,6 +129,8 @@ class Messages(BaseModel):
reply_to = TextField(null=True)
interest_value = DoubleField(null=True)
# 从 chat_info 扁平化而来的字段
chat_info_stream_id = TextField()
chat_info_platform = TextField()

View File

@@ -94,7 +94,7 @@ class ConfigBase:
raise TypeError(
f"Expected {len(field_type_args)} items for {field_type.__name__}, got {len(value)}"
)
return tuple(cls._convert_field(item, arg) for item, arg in zip(value, field_type_args))
return tuple(cls._convert_field(item, arg) for item, arg in zip(value, field_type_args, strict=False))
if field_origin_type is dict:
# 检查提供的value是否为dict

View File

@@ -57,15 +57,10 @@ class RelationshipConfig(ConfigBase):
"""关系配置类"""
enable_relationship: bool = True
give_name: bool = False
"""是否给其他人取名"""
build_relationship_interval: int = 600
"""构建关系间隔 单位秒如果为0则不构建关系"""
"""是否启用关系系统"""
relation_frequency: int = 1
"""关系频率,麦麦构建关系的速度仅在normal_chat模式下有效"""
"""关系频率,麦麦构建关系的速度"""
@dataclass
@@ -637,32 +632,20 @@ class ModelConfig(ConfigBase):
replyer_2: dict[str, Any] = field(default_factory=lambda: {})
"""normal_chat次要回复模型配置"""
memory_summary: dict[str, Any] = field(default_factory=lambda: {})
"""记忆的概括模型配置"""
memory: dict[str, Any] = field(default_factory=lambda: {})
"""记忆模型配置"""
emotion: dict[str, Any] = field(default_factory=lambda: {})
"""情绪模型配置"""
vlm: dict[str, Any] = field(default_factory=lambda: {})
"""视觉语言模型配置"""
focus_working_memory: dict[str, Any] = field(default_factory=lambda: {})
"""专注工作记忆模型配置"""
tool_use: dict[str, Any] = field(default_factory=lambda: {})
"""专注工具使用模型配置"""
planner: dict[str, Any] = field(default_factory=lambda: {})
"""规划模型配置"""
relation: dict[str, Any] = field(default_factory=lambda: {})
"""关系模型配置"""
embedding: dict[str, Any] = field(default_factory=lambda: {})
"""嵌入模型配置"""
pfc_action_planner: dict[str, Any] = field(default_factory=lambda: {})
"""PFC动作规划模型配置"""
pfc_chat: dict[str, Any] = field(default_factory=lambda: {})
"""PFC聊天模型配置"""
pfc_reply_checker: dict[str, Any] = field(default_factory=lambda: {})
"""PFC回复检查模型配置"""

View File

@@ -6,7 +6,6 @@ from src.chat.express.exprssion_learner import get_expression_learner
from src.common.remote import TelemetryHeartBeatTask
from src.manager.async_task_manager import async_task_manager
from src.chat.utils.statistic import OnlineTimeRecordTask, StatisticOutputTask
from src.manager.mood_manager import MoodPrintTask, MoodUpdateTask
from src.chat.emoji_system.emoji_manager import get_emoji_manager
from src.chat.normal_chat.willing.willing_manager import get_willing_manager
from src.chat.message_receive.chat_stream import get_chat_manager
@@ -17,6 +16,7 @@ from src.chat.message_receive.bot import chat_bot
from src.common.logger import get_logger
from src.individuality.individuality import get_individuality, Individuality
from src.common.server import get_global_server, Server
from src.mood.mood_manager import mood_manager
from rich.traceback import install
# from src.api.main import start_api_server
@@ -95,18 +95,15 @@ class MainSystem:
get_emoji_manager().initialize()
logger.info("表情包管理器初始化成功")
# 添加情绪衰减任务
await async_task_manager.add_task(MoodUpdateTask())
# 添加情绪打印任务
await async_task_manager.add_task(MoodPrintTask())
logger.info("情绪管理器初始化成功")
# 启动愿望管理器
await willing_manager.async_task_starter()
logger.info("willing管理器初始化成功")
# 启动情绪管理器
await mood_manager.start()
logger.info("情绪管理器初始化成功")
# 初始化聊天管理器
await get_chat_manager()._initialize()

View File

@@ -0,0 +1,242 @@
import json
import time
from src.chat.message_receive.message import MessageRecv
from src.llm_models.utils_model import LLMRequest
from src.common.logger import get_logger
from src.chat.utils.chat_message_builder import build_readable_messages, get_raw_msg_by_timestamp_with_chat_inclusive
from src.config.config import global_config
from src.chat.utils.prompt_builder import Prompt, global_prompt_manager
from src.manager.async_task_manager import AsyncTask, async_task_manager
from json_repair import repair_json
logger = get_logger("action")
def init_prompt():
Prompt(
"""
{chat_talking_prompt}
以上是群里正在进行的聊天记录
{indentify_block}
你现在的动作状态是:
- 手部:{hand_action}
- 上半身:{upper_body_action}
- 头部:{head_action}
现在,因为你发送了消息,或者群里其他人发送了消息,引起了你的注意,你对其进行了阅读和思考,请你更新你的动作状态。
请只按照以下json格式输出描述你新的动作状态每个动作一到三个中文词确保每个字段都存在
{{
"hand_action": "...",
"upper_body_action": "...",
"head_action": "..."
}}
""",
"change_action_prompt",
)
Prompt(
"""
{chat_talking_prompt}
以上是群里最近的聊天记录
{indentify_block}
你之前的动作状态是:
- 手部:{hand_action}
- 上半身:{upper_body_action}
- 头部:{head_action}
距离你上次关注群里消息已经过去了一段时间,你冷静了下来,你的动作会趋于平缓或静止,请你输出你现在新的动作状态,用中文。
请只按照以下json格式输出描述你新的动作状态每个动作一到三个词确保每个字段都存在
{{
"hand_action": "...",
"upper_body_action": "...",
"head_action": "..."
}}
""",
"regress_action_prompt",
)
class ChatAction:
def __init__(self, chat_id: str):
self.chat_id: str = chat_id
self.hand_action: str = "双手放在桌面"
self.upper_body_action: str = "坐着"
self.head_action: str = "注视摄像机"
self.regression_count: int = 0
self.action_model = LLMRequest(
model=global_config.model.emotion,
temperature=0.7,
request_type="action",
)
self.last_change_time = 0
async def update_action_by_message(self, message: MessageRecv):
self.regression_count = 0
message_time = message.message_info.time
message_list_before_now = get_raw_msg_by_timestamp_with_chat_inclusive(
chat_id=self.chat_id,
timestamp_start=self.last_change_time,
timestamp_end=message_time,
limit=15,
limit_mode="last",
)
chat_talking_prompt = build_readable_messages(
message_list_before_now,
replace_bot_name=True,
merge_messages=False,
timestamp_mode="normal_no_YMD",
read_mark=0.0,
truncate=True,
show_actions=True,
)
bot_name = global_config.bot.nickname
if global_config.bot.alias_names:
bot_nickname = f",也有人叫你{','.join(global_config.bot.alias_names)}"
else:
bot_nickname = ""
prompt_personality = global_config.personality.personality_core
indentify_block = f"你的名字是{bot_name}{bot_nickname},你{prompt_personality}"
prompt = await global_prompt_manager.format_prompt(
"change_action_prompt",
chat_talking_prompt=chat_talking_prompt,
indentify_block=indentify_block,
hand_action=self.hand_action,
upper_body_action=self.upper_body_action,
head_action=self.head_action,
)
logger.info(f"prompt: {prompt}")
response, (reasoning_content, model_name) = await self.action_model.generate_response_async(prompt=prompt)
logger.info(f"response: {response}")
logger.info(f"reasoning_content: {reasoning_content}")
action_data = json.loads(repair_json(response))
if action_data:
self.hand_action = action_data.get("hand_action", self.hand_action)
self.upper_body_action = action_data.get("upper_body_action", self.upper_body_action)
self.head_action = action_data.get("head_action", self.head_action)
self.last_change_time = message_time
async def regress_action(self):
message_time = time.time()
message_list_before_now = get_raw_msg_by_timestamp_with_chat_inclusive(
chat_id=self.chat_id,
timestamp_start=self.last_change_time,
timestamp_end=message_time,
limit=15,
limit_mode="last",
)
chat_talking_prompt = build_readable_messages(
message_list_before_now,
replace_bot_name=True,
merge_messages=False,
timestamp_mode="normal_no_YMD",
read_mark=0.0,
truncate=True,
show_actions=True,
)
bot_name = global_config.bot.nickname
if global_config.bot.alias_names:
bot_nickname = f",也有人叫你{','.join(global_config.bot.alias_names)}"
else:
bot_nickname = ""
prompt_personality = global_config.personality.personality_core
indentify_block = f"你的名字是{bot_name}{bot_nickname},你{prompt_personality}"
prompt = await global_prompt_manager.format_prompt(
"regress_action_prompt",
chat_talking_prompt=chat_talking_prompt,
indentify_block=indentify_block,
hand_action=self.hand_action,
upper_body_action=self.upper_body_action,
head_action=self.head_action,
)
logger.info(f"prompt: {prompt}")
response, (reasoning_content, model_name) = await self.action_model.generate_response_async(prompt=prompt)
logger.info(f"response: {response}")
logger.info(f"reasoning_content: {reasoning_content}")
action_data = json.loads(repair_json(response))
if action_data:
self.hand_action = action_data.get("hand_action", self.hand_action)
self.upper_body_action = action_data.get("upper_body_action", self.upper_body_action)
self.head_action = action_data.get("head_action", self.head_action)
self.regression_count += 1
class ActionRegressionTask(AsyncTask):
def __init__(self, action_manager: "ActionManager"):
super().__init__(task_name="ActionRegressionTask", run_interval=30)
self.action_manager = action_manager
async def run(self):
logger.debug("Running action regression task...")
now = time.time()
for action_state in self.action_manager.action_state_list:
if action_state.last_change_time == 0:
continue
if now - action_state.last_change_time > 180:
if action_state.regression_count >= 3:
continue
logger.info(f"chat {action_state.chat_id} 开始动作回归, 这是第 {action_state.regression_count + 1}")
await action_state.regress_action()
class ActionManager:
def __init__(self):
self.action_state_list: list[ChatAction] = []
"""当前动作状态"""
self.task_started: bool = False
async def start(self):
"""启动动作回归后台任务"""
if self.task_started:
return
logger.info("启动动作回归任务...")
task = ActionRegressionTask(self)
await async_task_manager.add_task(task)
self.task_started = True
logger.info("动作回归任务已启动")
def get_action_state_by_chat_id(self, chat_id: str) -> ChatAction:
for action_state in self.action_state_list:
if action_state.chat_id == chat_id:
return action_state
new_action_state = ChatAction(chat_id)
self.action_state_list.append(new_action_state)
return new_action_state
def reset_action_state_by_chat_id(self, chat_id: str):
for action_state in self.action_state_list:
if action_state.chat_id == chat_id:
action_state.hand_action = "双手放在桌面"
action_state.upper_body_action = "坐着"
action_state.head_action = "注视摄像机"
action_state.regression_count = 0
return
self.action_state_list.append(ChatAction(chat_id))
init_prompt()
action_manager = ActionManager()
"""全局动作管理器"""

View File

@@ -0,0 +1,363 @@
import asyncio
import json
import time
from src.chat.message_receive.message import MessageRecv
from src.llm_models.utils_model import LLMRequest
from src.common.logger import get_logger
from src.chat.utils.chat_message_builder import build_readable_messages, get_raw_msg_by_timestamp_with_chat_inclusive
from src.config.config import global_config
from src.chat.utils.prompt_builder import Prompt, global_prompt_manager
from src.manager.async_task_manager import AsyncTask, async_task_manager
from src.plugin_system.apis import send_api
logger = get_logger("mood")
async def send_joy_action(chat_id: str):
action_content = {"action": "Joy_eye", "data": 1.0}
await send_api.custom_to_stream(message_type="face_emotion", content=action_content, stream_id=chat_id)
logger.info(f"[{chat_id}] 已发送 Joy 动作: {action_content}")
await asyncio.sleep(5.0)
end_action_content = {"action": "Joy_eye", "data": 0.0}
await send_api.custom_to_stream(message_type="face_emotion", content=end_action_content, stream_id=chat_id)
logger.info(f"[{chat_id}] 已发送 Joy 结束动作: {end_action_content}")
def init_prompt():
Prompt(
"""
{chat_talking_prompt}
以上是直播间里正在进行的对话
{indentify_block}
你刚刚的情绪状态是:{mood_state}
现在,发送了消息,引起了你的注意,你对其进行了阅读和思考,请你输出一句话描述你新的情绪状态,不要输出任何其他内容
请只输出情绪状态,不要输出其他内容:
""",
"change_mood_prompt",
)
Prompt(
"""
{chat_talking_prompt}
以上是直播间里最近的对话
{indentify_block}
你之前的情绪状态是:{mood_state}
距离你上次关注直播间消息已经过去了一段时间,你冷静了下来,请你输出一句话描述你现在的情绪状态
请只输出情绪状态,不要输出其他内容:
""",
"regress_mood_prompt",
)
Prompt(
"""
{chat_talking_prompt}
以上是直播间里正在进行的对话
{indentify_block}
你刚刚的情绪状态是:{mood_state}
具体来说从1-10分你的情绪状态是
喜(Joy): {joy}
怒(Anger): {anger}
哀(Sorrow): {sorrow}
乐(Pleasure): {pleasure}
惧(Fear): {fear}
现在,发送了消息,引起了你的注意,你对其进行了阅读和思考。请基于对话内容,评估你新的情绪状态。
请以JSON格式输出你新的情绪状态包含“喜怒哀乐惧”五个维度每个维度的取值范围为1-10。
键值请使用英文: "joy", "anger", "sorrow", "pleasure", "fear".
例如: {{"joy": 5, "anger": 1, "sorrow": 1, "pleasure": 5, "fear": 1}}
不要输出任何其他内容只输出JSON。
""",
"change_mood_numerical_prompt",
)
Prompt(
"""
{chat_talking_prompt}
以上是直播间里最近的对话
{indentify_block}
你之前的情绪状态是:{mood_state}
具体来说从1-10分你的情绪状态是
喜(Joy): {joy}
怒(Anger): {anger}
哀(Sorrow): {sorrow}
乐(Pleasure): {pleasure}
惧(Fear): {fear}
距离你上次关注直播间消息已经过去了一段时间,你冷静了下来。请基于此,评估你现在的情绪状态。
请以JSON格式输出你新的情绪状态包含“喜怒哀乐惧”五个维度每个维度的取值范围为1-10。
键值请使用英文: "joy", "anger", "sorrow", "pleasure", "fear".
例如: {{"joy": 5, "anger": 1, "sorrow": 1, "pleasure": 5, "fear": 1}}
不要输出任何其他内容只输出JSON。
""",
"regress_mood_numerical_prompt",
)
class ChatMood:
def __init__(self, chat_id: str):
self.chat_id: str = chat_id
self.mood_state: str = "感觉很平静"
self.mood_values: dict[str, int] = {"joy": 5, "anger": 1, "sorrow": 1, "pleasure": 5, "fear": 1}
self.regression_count: int = 0
self.mood_model = LLMRequest(
model=global_config.model.emotion,
temperature=0.7,
request_type="mood_text",
)
self.mood_model_numerical = LLMRequest(
model=global_config.model.emotion,
temperature=0.4,
request_type="mood_numerical",
)
self.last_change_time = 0
def _parse_numerical_mood(self, response: str) -> dict[str, int] | None:
try:
# The LLM might output markdown with json inside
if "```json" in response:
response = response.split("```json")[1].split("```")[0]
elif "```" in response:
response = response.split("```")[1].split("```")[0]
data = json.loads(response)
# Validate
required_keys = {"joy", "anger", "sorrow", "pleasure", "fear"}
if not required_keys.issubset(data.keys()):
logger.warning(f"Numerical mood response missing keys: {response}")
return None
for key in required_keys:
value = data[key]
if not isinstance(value, int) or not (1 <= value <= 10):
logger.warning(f"Numerical mood response invalid value for {key}: {value} in {response}")
return None
return {key: data[key] for key in required_keys}
except json.JSONDecodeError:
logger.warning(f"Failed to parse numerical mood JSON: {response}")
return None
except Exception as e:
logger.error(f"Error parsing numerical mood: {e}, response: {response}")
return None
async def update_mood_by_message(self, message: MessageRecv):
self.regression_count = 0
message_time = message.message_info.time
message_list_before_now = get_raw_msg_by_timestamp_with_chat_inclusive(
chat_id=self.chat_id,
timestamp_start=self.last_change_time,
timestamp_end=message_time,
limit=15,
limit_mode="last",
)
chat_talking_prompt = build_readable_messages(
message_list_before_now,
replace_bot_name=True,
merge_messages=False,
timestamp_mode="normal_no_YMD",
read_mark=0.0,
truncate=True,
show_actions=True,
)
bot_name = global_config.bot.nickname
if global_config.bot.alias_names:
bot_nickname = f",也有人叫你{','.join(global_config.bot.alias_names)}"
else:
bot_nickname = ""
prompt_personality = global_config.personality.personality_core
indentify_block = f"你的名字是{bot_name}{bot_nickname},你{prompt_personality}"
async def _update_text_mood():
prompt = await global_prompt_manager.format_prompt(
"change_mood_prompt",
chat_talking_prompt=chat_talking_prompt,
indentify_block=indentify_block,
mood_state=self.mood_state,
)
logger.debug(f"text mood prompt: {prompt}")
response, (reasoning_content, model_name) = await self.mood_model.generate_response_async(prompt=prompt)
logger.info(f"text mood response: {response}")
logger.debug(f"text mood reasoning_content: {reasoning_content}")
return response
async def _update_numerical_mood():
prompt = await global_prompt_manager.format_prompt(
"change_mood_numerical_prompt",
chat_talking_prompt=chat_talking_prompt,
indentify_block=indentify_block,
mood_state=self.mood_state,
joy=self.mood_values["joy"],
anger=self.mood_values["anger"],
sorrow=self.mood_values["sorrow"],
pleasure=self.mood_values["pleasure"],
fear=self.mood_values["fear"],
)
logger.info(f"numerical mood prompt: {prompt}")
response, (reasoning_content, model_name) = await self.mood_model_numerical.generate_response_async(
prompt=prompt
)
logger.info(f"numerical mood response: {response}")
logger.debug(f"numerical mood reasoning_content: {reasoning_content}")
return self._parse_numerical_mood(response)
results = await asyncio.gather(_update_text_mood(), _update_numerical_mood())
text_mood_response, numerical_mood_response = results
if text_mood_response:
self.mood_state = text_mood_response
if numerical_mood_response:
self.mood_values = numerical_mood_response
if self.mood_values.get("joy", 0) > 5:
asyncio.create_task(send_joy_action(self.chat_id))
self.last_change_time = message_time
async def regress_mood(self):
message_time = time.time()
message_list_before_now = get_raw_msg_by_timestamp_with_chat_inclusive(
chat_id=self.chat_id,
timestamp_start=self.last_change_time,
timestamp_end=message_time,
limit=15,
limit_mode="last",
)
chat_talking_prompt = build_readable_messages(
message_list_before_now,
replace_bot_name=True,
merge_messages=False,
timestamp_mode="normal_no_YMD",
read_mark=0.0,
truncate=True,
show_actions=True,
)
bot_name = global_config.bot.nickname
if global_config.bot.alias_names:
bot_nickname = f",也有人叫你{','.join(global_config.bot.alias_names)}"
else:
bot_nickname = ""
prompt_personality = global_config.personality.personality_core
indentify_block = f"你的名字是{bot_name}{bot_nickname},你{prompt_personality}"
async def _regress_text_mood():
prompt = await global_prompt_manager.format_prompt(
"regress_mood_prompt",
chat_talking_prompt=chat_talking_prompt,
indentify_block=indentify_block,
mood_state=self.mood_state,
)
logger.debug(f"text regress prompt: {prompt}")
response, (reasoning_content, model_name) = await self.mood_model.generate_response_async(prompt=prompt)
logger.info(f"text regress response: {response}")
logger.debug(f"text regress reasoning_content: {reasoning_content}")
return response
async def _regress_numerical_mood():
prompt = await global_prompt_manager.format_prompt(
"regress_mood_numerical_prompt",
chat_talking_prompt=chat_talking_prompt,
indentify_block=indentify_block,
mood_state=self.mood_state,
joy=self.mood_values["joy"],
anger=self.mood_values["anger"],
sorrow=self.mood_values["sorrow"],
pleasure=self.mood_values["pleasure"],
fear=self.mood_values["fear"],
)
logger.debug(f"numerical regress prompt: {prompt}")
response, (reasoning_content, model_name) = await self.mood_model_numerical.generate_response_async(
prompt=prompt
)
logger.info(f"numerical regress response: {response}")
logger.debug(f"numerical regress reasoning_content: {reasoning_content}")
return self._parse_numerical_mood(response)
results = await asyncio.gather(_regress_text_mood(), _regress_numerical_mood())
text_mood_response, numerical_mood_response = results
if text_mood_response:
self.mood_state = text_mood_response
if numerical_mood_response:
self.mood_values = numerical_mood_response
if self.mood_values.get("joy", 0) > 5:
asyncio.create_task(send_joy_action(self.chat_id))
self.regression_count += 1
class MoodRegressionTask(AsyncTask):
def __init__(self, mood_manager: "MoodManager"):
super().__init__(task_name="MoodRegressionTask", run_interval=30)
self.mood_manager = mood_manager
async def run(self):
logger.debug("Running mood regression task...")
now = time.time()
for mood in self.mood_manager.mood_list:
if mood.last_change_time == 0:
continue
if now - mood.last_change_time > 180:
if mood.regression_count >= 3:
continue
logger.info(f"chat {mood.chat_id} 开始情绪回归, 这是第 {mood.regression_count + 1}")
await mood.regress_mood()
class MoodManager:
def __init__(self):
self.mood_list: list[ChatMood] = []
"""当前情绪状态"""
self.task_started: bool = False
async def start(self):
"""启动情绪回归后台任务"""
if self.task_started:
return
logger.info("启动情绪回归任务...")
task = MoodRegressionTask(self)
await async_task_manager.add_task(task)
self.task_started = True
logger.info("情绪回归任务已启动")
def get_mood_by_chat_id(self, chat_id: str) -> ChatMood:
for mood in self.mood_list:
if mood.chat_id == chat_id:
return mood
new_mood = ChatMood(chat_id)
self.mood_list.append(new_mood)
return new_mood
def reset_mood_by_chat_id(self, chat_id: str):
for mood in self.mood_list:
if mood.chat_id == chat_id:
mood.mood_state = "感觉很平静"
mood.regression_count = 0
return
self.mood_list.append(ChatMood(chat_id))
init_prompt()
mood_manager = MoodManager()
"""全局情绪管理器"""

View File

@@ -1,7 +1,18 @@
import asyncio
import math
from typing import Tuple
from src.chat.memory_system.Hippocampus import hippocampus_manager
from src.chat.message_receive.message import MessageRecv
from src.chat.message_receive.storage import MessageStorage
from src.chat.message_receive.chat_stream import get_chat_manager
from src.chat.utils.timer_calculator import Timer
from src.chat.utils.utils import is_mentioned_bot_in_message
from src.common.logger import get_logger
from src.config.config import global_config
from src.mais4u.mais4u_chat.body_emotion_action_manager import action_manager
from src.mais4u.mais4u_chat.s4u_mood_manager import mood_manager
from .s4u_chat import get_s4u_chat_manager
@@ -10,6 +21,42 @@ from .s4u_chat import get_s4u_chat_manager
logger = get_logger("chat")
async def _calculate_interest(message: MessageRecv) -> Tuple[float, bool]:
"""计算消息的兴趣度
Args:
message: 待处理的消息对象
Returns:
Tuple[float, bool]: (兴趣度, 是否被提及)
"""
is_mentioned, _ = is_mentioned_bot_in_message(message)
interested_rate = 0.0
if global_config.memory.enable_memory:
with Timer("记忆激活"):
interested_rate = await hippocampus_manager.get_activate_from_text(
message.processed_plain_text,
fast_retrieval=True,
)
logger.debug(f"记忆激活率: {interested_rate:.2f}")
text_len = len(message.processed_plain_text)
# 根据文本长度调整兴趣度长度越大兴趣度越高但增长率递减最低0.01最高0.05
# 采用对数函数实现递减增长
base_interest = 0.01 + (0.05 - 0.01) * (math.log10(text_len + 1) / math.log10(1000 + 1))
base_interest = min(max(base_interest, 0.01), 0.05)
interested_rate += base_interest
if is_mentioned:
interest_increase_on_mention = 1
interested_rate += interest_increase_on_mention
return interested_rate, is_mentioned
class S4UMessageProcessor:
"""心流处理器,负责处理接收到的消息并计算兴趣度"""
@@ -53,5 +100,13 @@ class S4UMessageProcessor:
else:
await s4u_chat.add_message(message)
interested_rate, _ = await _calculate_interest(message)
chat_mood = mood_manager.get_mood_by_chat_id(chat.stream_id)
asyncio.create_task(chat_mood.update_mood_by_message(message))
chat_action = action_manager.get_action_state_by_chat_id(chat.stream_id)
asyncio.create_task(chat_action.update_action_by_message(message))
# asyncio.create_task(chat_action.update_facial_expression_by_message(message, interested_rate))
# 7. 日志记录
logger.info(f"[S4U]{userinfo.user_nickname}:{message.processed_plain_text}")

View File

@@ -17,11 +17,6 @@ logger = get_logger("prompt")
def init_prompt():
Prompt("你正在qq群里聊天下面是群里在聊的内容", "chat_target_group1")
Prompt("你正在和{sender_name}聊天,这是你们之前聊的内容:", "chat_target_private1")
Prompt("在群里聊天", "chat_target_group2")
Prompt("{sender_name}私聊", "chat_target_private2")
Prompt("\n你有以下这些**知识**\n{prompt_info}\n请你**记住上面的知识**,之后可能会用到。\n", "knowledge_prompt")
Prompt("\n关于你们的关系,你需要知道:\n{relation_info}\n", "relation_prompt")
Prompt("你回想起了一些事情:\n{memory_info}\n", "memory_prompt")
@@ -252,7 +247,7 @@ def weighted_sample_no_replacement(items, weights, k) -> list:
2. 不会重复选中同一个元素
"""
selected = []
pool = list(zip(items, weights))
pool = list(zip(items, weights, strict=False))
for _ in range(min(k, len(pool))):
total = sum(w for _, w in pool)
r = random.uniform(0, total)

View File

@@ -1,6 +1,5 @@
import os
from typing import AsyncGenerator
from src.llm_models.utils_model import LLMRequest
from src.mais4u.openai_client import AsyncOpenAIClient
from src.config.config import global_config
from src.chat.message_receive.message import MessageRecv
@@ -36,7 +35,6 @@ class S4UStreamGenerator:
raise ValueError("`replyer_1` 在配置文件中缺少 `model_name` 字段")
self.replyer_1_config = replyer_1_config
self.model_sum = LLMRequest(model=global_config.model.memory_summary, temperature=0.7, request_type="relation")
self.current_model_name = "unknown model"
self.partial_response = ""

View File

@@ -1,296 +0,0 @@
import asyncio
import math
import time
from dataclasses import dataclass
from typing import Dict, Tuple
from ..config.config import global_config
from ..common.logger import get_logger
from ..manager.async_task_manager import AsyncTask
from ..individuality.individuality import get_individuality
logger = get_logger("mood")
@dataclass
class MoodState:
valence: float
"""愉悦度 (-1.0 到 1.0)-1表示极度负面1表示极度正面"""
arousal: float
"""唤醒度 (-1.0 到 1.0)-1表示抑制1表示兴奋"""
text: str
"""心情的文本描述"""
@dataclass
class MoodChangeHistory:
valence_direction_factor: int
"""愉悦度变化的系数(正为增益,负为抑制)"""
arousal_direction_factor: int
"""唤醒度变化的系数(正为增益,负为抑制)"""
class MoodUpdateTask(AsyncTask):
def __init__(self):
super().__init__(
task_name="Mood Update Task",
wait_before_start=global_config.mood.mood_update_interval,
run_interval=global_config.mood.mood_update_interval,
)
# 从配置文件获取衰减率
self.decay_rate_valence: float = 1 - global_config.mood.mood_decay_rate
"""愉悦度衰减率"""
self.decay_rate_arousal: float = 1 - global_config.mood.mood_decay_rate
"""唤醒度衰减率"""
self.last_update = time.time()
"""上次更新时间"""
async def run(self):
current_time = time.time()
time_diff = current_time - self.last_update
agreeableness_factor = 1 # 宜人性系数
agreeableness_bias = 0 # 宜人性偏置
neuroticism_factor = 0.5 # 神经质系数
# 获取人格特质
personality = get_individuality().personality
if personality:
# 神经质:影响情绪变化速度
neuroticism_factor = 1 + (personality.neuroticism - 0.5) * 0.4
agreeableness_factor = 1 + (personality.agreeableness - 0.5) * 0.4
# 宜人性:影响情绪基准线
if personality.agreeableness < 0.2:
agreeableness_bias = (personality.agreeableness - 0.2) * 0.5
elif personality.agreeableness > 0.8:
agreeableness_bias = (personality.agreeableness - 0.8) * 0.5
else:
agreeableness_bias = 0
# 分别计算正向和负向的衰减率
if mood_manager.current_mood.valence >= 0:
# 正向情绪衰减
decay_rate_positive = self.decay_rate_valence * (1 / agreeableness_factor)
valence_target = 0 + agreeableness_bias
new_valence = valence_target + (mood_manager.current_mood.valence - valence_target) * math.exp(
-decay_rate_positive * time_diff * neuroticism_factor
)
else:
# 负向情绪衰减
decay_rate_negative = self.decay_rate_valence * agreeableness_factor
valence_target = 0 + agreeableness_bias
new_valence = valence_target + (mood_manager.current_mood.valence - valence_target) * math.exp(
-decay_rate_negative * time_diff * neuroticism_factor
)
# Arousal 向中性0回归
arousal_target = 0
new_arousal = arousal_target + (mood_manager.current_mood.arousal - arousal_target) * math.exp(
-self.decay_rate_arousal * time_diff * neuroticism_factor
)
mood_manager.set_current_mood(new_valence, new_arousal)
self.last_update = current_time
class MoodPrintTask(AsyncTask):
def __init__(self):
super().__init__(
task_name="Mood Print Task",
wait_before_start=60,
run_interval=60,
)
async def run(self):
# 打印当前心情
logger.info(
f"愉悦度: {mood_manager.current_mood.valence:.2f}, "
f"唤醒度: {mood_manager.current_mood.arousal:.2f}, "
f"心情: {mood_manager.current_mood.text}"
)
class MoodManager:
# TODO: 改进,使用具有实验支持的新情绪模型
EMOTION_FACTOR_MAP: Dict[str, Tuple[float, float]] = {
"开心": (0.21, 0.6),
"害羞": (0.15, 0.2),
"愤怒": (-0.24, 0.8),
"恐惧": (-0.21, 0.7),
"悲伤": (-0.21, 0.3),
"厌恶": (-0.12, 0.4),
"惊讶": (0.06, 0.7),
"困惑": (0.0, 0.6),
"平静": (0.03, 0.5),
}
"""
情绪词映射表 {mood: (valence, arousal)}
将情绪描述词映射到愉悦度和唤醒度的元组
"""
EMOTION_POINT_MAP: Dict[Tuple[float, float], str] = {
# 第一象限:高唤醒,正愉悦
(0.5, 0.4): "兴奋",
(0.3, 0.6): "快乐",
(0.2, 0.3): "满足",
# 第二象限:高唤醒,负愉悦
(-0.5, 0.4): "愤怒",
(-0.3, 0.6): "焦虑",
(-0.2, 0.3): "烦躁",
# 第三象限:低唤醒,负愉悦
(-0.5, -0.4): "悲伤",
(-0.3, -0.3): "疲倦",
(-0.4, -0.7): "疲倦",
# 第四象限:低唤醒,正愉悦
(0.2, -0.1): "平静",
(0.3, -0.2): "安宁",
(0.5, -0.4): "放松",
}
"""
情绪文本映射表 {(valence, arousal): mood}
将量化的情绪状态元组映射到文本描述
"""
def __init__(self):
self.current_mood = MoodState(
valence=0.0,
arousal=0.0,
text="平静",
)
"""当前情绪状态"""
self.mood_change_history: MoodChangeHistory = MoodChangeHistory(
valence_direction_factor=0,
arousal_direction_factor=0,
)
"""情绪变化历史"""
self._lock = asyncio.Lock()
"""异步锁,用于保护线程安全"""
def set_current_mood(self, new_valence: float, new_arousal: float):
"""
设置当前情绪状态
:param new_valence: 新的愉悦度
:param new_arousal: 新的唤醒度
"""
# 限制范围
self.current_mood.valence = max(-1.0, min(new_valence, 1.0))
self.current_mood.arousal = max(-1.0, min(new_arousal, 1.0))
closest_mood = None
min_distance = float("inf")
for (v, a), text in self.EMOTION_POINT_MAP.items():
# 计算当前情绪状态与每个情绪文本的欧氏距离
distance = math.sqrt((self.current_mood.valence - v) ** 2 + (self.current_mood.arousal - a) ** 2)
if distance < min_distance:
min_distance = distance
closest_mood = text
if closest_mood:
self.current_mood.text = closest_mood
def update_current_mood(self, valence_delta: float, arousal_delta: float):
"""
根据愉悦度和唤醒度变化量更新当前情绪状态
:param valence_delta: 愉悦度变化量
:param arousal_delta: 唤醒度变化量
"""
# 计算连续增益/抑制
# 规则:多次相同方向的变化会有更大的影响系数,反方向的变化会清零影响系数(系数的正负号由变化方向决定)
if valence_delta * self.mood_change_history.valence_direction_factor > 0:
# 如果方向相同,则根据变化方向改变系数
if valence_delta > 0:
self.mood_change_history.valence_direction_factor += 1 # 若为正向,则增加
else:
self.mood_change_history.valence_direction_factor -= 1 # 若为负向,则减少
else:
# 如果方向不同,则重置计数
self.mood_change_history.valence_direction_factor = 0
if arousal_delta * self.mood_change_history.arousal_direction_factor > 0:
# 如果方向相同,则根据变化方向改变系数
if arousal_delta > 0:
self.mood_change_history.arousal_direction_factor += 1 # 若为正向,则增加计数
else:
self.mood_change_history.arousal_direction_factor -= 1 # 若为负向,则减少计数
else:
# 如果方向不同,则重置计数
self.mood_change_history.arousal_direction_factor = 0
# 计算增益/抑制的结果
# 规则:如果当前情绪状态与变化方向相同,则增益;否则抑制
if self.current_mood.valence * self.mood_change_history.valence_direction_factor > 0:
valence_delta = valence_delta * (1.01 ** abs(self.mood_change_history.valence_direction_factor))
else:
valence_delta = valence_delta * (0.99 ** abs(self.mood_change_history.valence_direction_factor))
if self.current_mood.arousal * self.mood_change_history.arousal_direction_factor > 0:
arousal_delta = arousal_delta * (1.01 ** abs(self.mood_change_history.arousal_direction_factor))
else:
arousal_delta = arousal_delta * (0.99 ** abs(self.mood_change_history.arousal_direction_factor))
self.set_current_mood(
new_valence=self.current_mood.valence + valence_delta,
new_arousal=self.current_mood.arousal + arousal_delta,
)
def get_mood_prompt(self) -> str:
"""
根据当前情绪状态生成提示词
"""
base_prompt = f"当前心情:{self.current_mood.text}"
# 根据情绪状态添加额外的提示信息
if self.current_mood.valence > 0.5:
base_prompt += "你现在心情很好,"
elif self.current_mood.valence < -0.5:
base_prompt += "你现在心情不太好,"
if self.current_mood.arousal > 0.4:
base_prompt += "情绪比较激动。"
elif self.current_mood.arousal < -0.4:
base_prompt += "情绪比较平静。"
return base_prompt
def get_arousal_multiplier(self) -> float:
"""
根据当前情绪状态返回唤醒度乘数
"""
if self.current_mood.arousal > 0.4:
multiplier = 1 + min(0.15, (self.current_mood.arousal - 0.4) / 3)
return multiplier
elif self.current_mood.arousal < -0.4:
multiplier = 1 - min(0.15, ((0 - self.current_mood.arousal) - 0.4) / 3)
return multiplier
return 1.0
def update_mood_from_emotion(self, emotion: str, intensity: float = 1.0) -> None:
"""
根据情绪词更新心情状态
:param emotion: 情绪词(如'开心', '悲伤'等位于self.EMOTION_FACTOR_MAP中的键
:param intensity: 情绪强度0.0-1.0
"""
if emotion not in self.EMOTION_FACTOR_MAP:
logger.error(f"[情绪更新] 未知情绪词: {emotion}")
return
valence_change, arousal_change = self.EMOTION_FACTOR_MAP[emotion]
old_valence = self.current_mood.valence
old_arousal = self.current_mood.arousal
old_mood = self.current_mood.text
self.update_current_mood(valence_change, arousal_change) # 更新当前情绪状态
logger.info(
f"[情绪变化] {emotion}(强度:{intensity:.2f}) | 愉悦度:{old_valence:.2f}->{self.current_mood.valence:.2f}, 唤醒度:{old_arousal:.2f}->{self.current_mood.arousal:.2f} | 心情:{old_mood}->{self.current_mood.text}"
)
mood_manager = MoodManager()
"""全局情绪管理器"""

227
src/mood/mood_manager.py Normal file
View File

@@ -0,0 +1,227 @@
import math
import random
import time
from src.chat.message_receive.message import MessageRecv
from src.llm_models.utils_model import LLMRequest
from ..common.logger import get_logger
from src.chat.utils.chat_message_builder import build_readable_messages, get_raw_msg_by_timestamp_with_chat_inclusive
from src.config.config import global_config
from src.chat.utils.prompt_builder import Prompt, global_prompt_manager
from src.manager.async_task_manager import AsyncTask, async_task_manager
logger = get_logger("mood")
def init_prompt():
Prompt(
"""
{chat_talking_prompt}
以上是群里正在进行的聊天记录
{indentify_block}
你刚刚的情绪状态是:{mood_state}
现在,发送了消息,引起了你的注意,你对其进行了阅读和思考,请你输出一句话描述你新的情绪状态
请只输出情绪状态,不要输出其他内容:
""",
"change_mood_prompt",
)
Prompt(
"""
{chat_talking_prompt}
以上是群里最近的聊天记录
{indentify_block}
你之前的情绪状态是:{mood_state}
距离你上次关注群里消息已经过去了一段时间,你冷静了下来,请你输出一句话描述你现在的情绪状态
请只输出情绪状态,不要输出其他内容:
""",
"regress_mood_prompt",
)
class ChatMood:
def __init__(self, chat_id: str):
self.chat_id: str = chat_id
self.mood_state: str = "感觉很平静"
self.regression_count: int = 0
self.mood_model = LLMRequest(
model=global_config.model.emotion,
temperature=0.7,
request_type="mood",
)
self.last_change_time = 0
async def update_mood_by_message(self, message: MessageRecv, interested_rate: float):
self.regression_count = 0
during_last_time = message.message_info.time - self.last_change_time
base_probability = 0.05
time_multiplier = 4 * (1 - math.exp(-0.01 * during_last_time))
if interested_rate <= 0:
interest_multiplier = 0
else:
interest_multiplier = 3 * math.pow(interested_rate, 0.25)
logger.info(
f"base_probability: {base_probability}, time_multiplier: {time_multiplier}, interest_multiplier: {interest_multiplier}"
)
update_probability = min(1.0, base_probability * time_multiplier * interest_multiplier)
if random.random() > update_probability:
return
message_time = message.message_info.time
message_list_before_now = get_raw_msg_by_timestamp_with_chat_inclusive(
chat_id=self.chat_id,
timestamp_start=self.last_change_time,
timestamp_end=message_time,
limit=15,
limit_mode="last",
)
chat_talking_prompt = build_readable_messages(
message_list_before_now,
replace_bot_name=True,
merge_messages=False,
timestamp_mode="normal_no_YMD",
read_mark=0.0,
truncate=True,
show_actions=True,
)
bot_name = global_config.bot.nickname
if global_config.bot.alias_names:
bot_nickname = f",也有人叫你{','.join(global_config.bot.alias_names)}"
else:
bot_nickname = ""
prompt_personality = global_config.personality.personality_core
indentify_block = f"你的名字是{bot_name}{bot_nickname},你{prompt_personality}"
prompt = await global_prompt_manager.format_prompt(
"change_mood_prompt",
chat_talking_prompt=chat_talking_prompt,
indentify_block=indentify_block,
mood_state=self.mood_state,
)
logger.info(f"prompt: {prompt}")
response, (reasoning_content, model_name) = await self.mood_model.generate_response_async(prompt=prompt)
logger.info(f"response: {response}")
logger.info(f"reasoning_content: {reasoning_content}")
self.mood_state = response
self.last_change_time = message_time
async def regress_mood(self):
message_time = time.time()
message_list_before_now = get_raw_msg_by_timestamp_with_chat_inclusive(
chat_id=self.chat_id,
timestamp_start=self.last_change_time,
timestamp_end=message_time,
limit=15,
limit_mode="last",
)
chat_talking_prompt = build_readable_messages(
message_list_before_now,
replace_bot_name=True,
merge_messages=False,
timestamp_mode="normal_no_YMD",
read_mark=0.0,
truncate=True,
show_actions=True,
)
bot_name = global_config.bot.nickname
if global_config.bot.alias_names:
bot_nickname = f",也有人叫你{','.join(global_config.bot.alias_names)}"
else:
bot_nickname = ""
prompt_personality = global_config.personality.personality_core
indentify_block = f"你的名字是{bot_name}{bot_nickname},你{prompt_personality}"
prompt = await global_prompt_manager.format_prompt(
"regress_mood_prompt",
chat_talking_prompt=chat_talking_prompt,
indentify_block=indentify_block,
mood_state=self.mood_state,
)
logger.info(f"prompt: {prompt}")
response, (reasoning_content, model_name) = await self.mood_model.generate_response_async(prompt=prompt)
logger.info(f"response: {response}")
logger.info(f"reasoning_content: {reasoning_content}")
self.mood_state = response
self.regression_count += 1
class MoodRegressionTask(AsyncTask):
def __init__(self, mood_manager: "MoodManager"):
super().__init__(task_name="MoodRegressionTask", run_interval=30)
self.mood_manager = mood_manager
async def run(self):
logger.debug("Running mood regression task...")
now = time.time()
for mood in self.mood_manager.mood_list:
if mood.last_change_time == 0:
continue
if now - mood.last_change_time > 180:
if mood.regression_count >= 3:
continue
logger.info(f"chat {mood.chat_id} 开始情绪回归, 这是第 {mood.regression_count + 1}")
await mood.regress_mood()
class MoodManager:
def __init__(self):
self.mood_list: list[ChatMood] = []
"""当前情绪状态"""
self.task_started: bool = False
async def start(self):
"""启动情绪回归后台任务"""
if self.task_started:
return
logger.info("启动情绪回归任务...")
task = MoodRegressionTask(self)
await async_task_manager.add_task(task)
self.task_started = True
logger.info("情绪回归任务已启动")
def get_mood_by_chat_id(self, chat_id: str) -> ChatMood:
for mood in self.mood_list:
if mood.chat_id == chat_id:
return mood
new_mood = ChatMood(chat_id)
self.mood_list.append(new_mood)
return new_mood
def reset_mood_by_chat_id(self, chat_id: str):
for mood in self.mood_list:
if mood.chat_id == chat_id:
mood.mood_state = "感觉很平静"
mood.regression_count = 0
return
self.mood_list.append(ChatMood(chat_id))
init_prompt()
mood_manager = MoodManager()
"""全局情绪管理器"""

View File

@@ -2,6 +2,7 @@ import time
import traceback
import os
import pickle
import random
from typing import List, Dict
from src.config.config import global_config
from src.common.logger import get_logger
@@ -20,11 +21,13 @@ logger = get_logger("relationship_builder")
# 消息段清理配置
SEGMENT_CLEANUP_CONFIG = {
"enable_cleanup": True, # 是否启用清理
"max_segment_age_days": 7, # 消息段最大保存天数
"max_segment_age_days": 3, # 消息段最大保存天数
"max_segments_per_user": 10, # 每用户最大消息段数
"cleanup_interval_hours": 1, # 清理间隔(小时)
"cleanup_interval_hours": 0.5, # 清理间隔(小时)
}
MAX_MESSAGE_COUNT = 80 / global_config.relationship.relation_frequency
class RelationshipBuilder:
"""关系构建器
@@ -330,7 +333,7 @@ class RelationshipBuilder:
for person_id, segments in self.person_engaged_cache.items():
total_count = self._get_total_message_count(person_id)
status_lines.append(f"用户 {person_id}:")
status_lines.append(f" 总消息数:{total_count} ({total_count}/45)")
status_lines.append(f" 总消息数:{total_count} ({total_count}/60)")
status_lines.append(f" 消息段数:{len(segments)}")
for i, segment in enumerate(segments):
@@ -384,7 +387,7 @@ class RelationshipBuilder:
users_to_build_relationship = []
for person_id, segments in self.person_engaged_cache.items():
total_message_count = self._get_total_message_count(person_id)
if total_message_count >= 45:
if total_message_count >= MAX_MESSAGE_COUNT:
users_to_build_relationship.append(person_id)
logger.debug(
f"{self.log_prefix} 用户 {person_id} 满足关系构建条件,总消息数:{total_message_count},消息段数:{len(segments)}"
@@ -392,7 +395,7 @@ class RelationshipBuilder:
elif total_message_count > 0:
# 记录进度信息
logger.debug(
f"{self.log_prefix} 用户 {person_id} 进度:{total_message_count}/45 条消息,{len(segments)} 个消息段"
f"{self.log_prefix} 用户 {person_id} 进度:{total_message_count}60 条消息,{len(segments)} 个消息段"
)
# 2. 为满足条件的用户构建关系
@@ -413,11 +416,28 @@ class RelationshipBuilder:
async def update_impression_on_segments(self, person_id: str, chat_id: str, segments: List[Dict[str, any]]):
"""基于消息段更新用户印象"""
logger.debug(f"开始为 {person_id} 基于 {len(segments)} 个消息段更新印象")
original_segment_count = len(segments)
logger.debug(f"开始为 {person_id} 基于 {original_segment_count} 个消息段更新印象")
try:
# 筛选要处理的消息段每个消息段有10%的概率被丢弃
segments_to_process = [s for s in segments if random.random() >= 0.1]
# 如果所有消息段都被丢弃,但原来有消息段,则至少保留一个(最新的)
if not segments_to_process and segments:
segments.sort(key=lambda x: x["end_time"], reverse=True)
segments_to_process.append(segments[0])
logger.debug("随机丢弃了所有消息段,强制保留最新的一个以进行处理。")
dropped_count = original_segment_count - len(segments_to_process)
if dropped_count > 0:
logger.info(f"{person_id} 随机丢弃了 {dropped_count} / {original_segment_count} 个消息段")
processed_messages = []
for i, segment in enumerate(segments):
# 对筛选后的消息段进行排序,确保时间顺序
segments_to_process.sort(key=lambda x: x["start_time"])
for segment in segments_to_process:
start_time = segment["start_time"]
end_time = segment["end_time"]
start_date = time.strftime("%Y-%m-%d %H:%M", time.localtime(start_time))
@@ -425,12 +445,12 @@ class RelationshipBuilder:
# 获取该段的消息(包含边界)
segment_messages = get_raw_msg_by_timestamp_with_chat_inclusive(self.chat_id, start_time, end_time)
logger.debug(
f"消息段 {i + 1}: {start_date} - {time.strftime('%Y-%m-%d %H:%M', time.localtime(end_time))}, 消息数: {len(segment_messages)}"
f"消息段: {start_date} - {time.strftime('%Y-%m-%d %H:%M', time.localtime(end_time))}, 消息数: {len(segment_messages)}"
)
if segment_messages:
# 如果不是第一个消息段,在消息列表前添加间隔标识
if i > 0:
# 如果 processed_messages 不为空,说明这不是第一个被处理的消息段,在消息列表前添加间隔标识
if processed_messages:
# 创建一个特殊的间隔消息
gap_message = {
"time": start_time - 0.1, # 稍微早于段开始时间

View File

@@ -120,27 +120,38 @@ class RelationshipFetcher:
# 按时间排序forgotten_points
current_points.sort(key=lambda x: x[2])
# 按权重加权随机抽取3个pointspoint[1]的值在1-10之间权重越高被抽到概率越大
# 按权重加权随机抽取最多3个不重复的pointspoint[1]的值在1-10之间权重越高被抽到概率越大
if len(current_points) > 3:
# point[1] 取值范围1-10直接作为权重
weights = [max(1, min(10, int(point[1]))) for point in current_points]
points = random.choices(current_points, weights=weights, k=3)
# 使用加权采样不放回,保证不重复
indices = list(range(len(current_points)))
points = []
for _ in range(3):
if not indices:
break
sub_weights = [weights[i] for i in indices]
chosen_idx = random.choices(indices, weights=sub_weights, k=1)[0]
points.append(current_points[chosen_idx])
indices.remove(chosen_idx)
else:
points = current_points
# 构建points文本
points_text = "\n".join([f"{point[2]}{point[0]}" for point in points])
info_type = await self._build_fetch_query(person_id, target_message, chat_history)
if info_type:
await self._extract_single_info(person_id, info_type, person_name)
# info_type = await self._build_fetch_query(person_id, target_message, chat_history)
# if info_type:
# await self._extract_single_info(person_id, info_type, person_name)
relation_info = self._organize_known_info()
# relation_info = self._organize_known_info()
nickname_str = ""
if person_name != nickname_str:
nickname_str = f"(ta在{platform}上的昵称是{nickname_str})"
relation_info = ""
if short_impression and relation_info:
if points_text:
relation_info = f"你对{person_name}的印象是{nickname_str}{short_impression}。具体来说:{relation_info}。你还记得ta最近做的事{points_text}"

View File

@@ -20,7 +20,7 @@ logger = get_logger("relation")
class RelationshipManager:
def __init__(self):
self.relationship_llm = LLMRequest(
model=global_config.model.relation,
model=global_config.model.utils,
request_type="relationship", # 用于动作规划
)
@@ -68,7 +68,7 @@ class RelationshipManager:
short_impression = await person_info_manager.get_value(person_id, "short_impression")
current_points = await person_info_manager.get_value(person_id, "points") or []
print(f"current_points: {current_points}")
# print(f"current_points: {current_points}")
if isinstance(current_points, str):
try:
current_points = json.loads(current_points)
@@ -89,7 +89,7 @@ class RelationshipManager:
points = current_points
# 构建points文本
points_text = "\n".join([f"{point[2]}{point[0]}\n" for point in points])
points_text = "\n".join([f"{point[2]}{point[0]}" for point in points])
nickname_str = await person_info_manager.get_value(person_id, "nickname")
platform = await person_info_manager.get_value(person_id, "platform")
@@ -250,10 +250,26 @@ class RelationshipManager:
# 添加可读时间到每个point
points_list = [(item["point"], float(item["weight"]), current_time) for item in points_data]
logger_str = f"了解了有关{person_name}的新印象:\n"
for point in points_list:
logger_str += f"{point[0]},重要性:{point[1]}\n"
logger.info(logger_str)
original_points_list = list(points_list)
points_list.clear()
discarded_count = 0
for point in original_points_list:
weight = point[1]
if weight < 3 and random.random() < 0.8: # 80% 概率丢弃
discarded_count += 1
elif weight < 5 and random.random() < 0.5: # 50% 概率丢弃
discarded_count += 1
else:
points_list.append(point)
if points_list or discarded_count > 0:
logger_str = f"了解了有关{person_name}的新印象:\n"
for point in points_list:
logger_str += f"{point[0]},重要性:{point[1]}\n"
if discarded_count > 0:
logger_str += f"({discarded_count} 条因重要性低被丢弃)\n"
logger.info(logger_str)
except json.JSONDecodeError:
logger.error(f"解析points JSON失败: {points}")
@@ -344,19 +360,19 @@ class RelationshipManager:
# 根据熟悉度,调整印象和简短印象的最大长度
if know_times > 300:
max_impression_length = 2000
max_short_impression_length = 800
max_short_impression_length = 400
elif know_times > 100:
max_impression_length = 1000
max_short_impression_length = 500
max_short_impression_length = 250
elif know_times > 50:
max_impression_length = 500
max_short_impression_length = 300
max_short_impression_length = 150
elif know_times > 10:
max_impression_length = 200
max_short_impression_length = 100
max_short_impression_length = 60
else:
max_impression_length = 100
max_short_impression_length = 50
max_short_impression_length = 30
# 根据好感度,调整印象和简短印象的最大长度
attitude_multiplier = (abs(100 - attitude) / 100) + 1

View File

@@ -8,7 +8,7 @@
count = emoji_api.get_count()
"""
from typing import Optional, Tuple
from typing import Optional, Tuple, List
from src.common.logger import get_logger
from src.chat.emoji_system.emoji_manager import get_emoji_manager
from src.chat.utils.utils_image import image_path_to_base64
@@ -55,14 +55,20 @@ async def get_by_description(description: str) -> Optional[Tuple[str, str, str]]
return None
async def get_random() -> Optional[Tuple[str, str, str]]:
"""随机获取表情包
async def get_random(count: int = 1) -> Optional[List[Tuple[str, str, str]]]:
"""随机获取指定数量的表情包
Args:
count: 要获取的表情包数量默认为1
Returns:
Optional[Tuple[str, str, str]]: (base64编码, 表情包描述, 随机情感标签)None
Optional[List[Tuple[str, str, str]]]: 包含(base64编码, 表情包描述, 随机情感标签)的元组列表,如果失败则为None
"""
if count <= 0:
return []
try:
logger.info("[EmojiAPI] 随机获取表情包")
logger.info(f"[EmojiAPI] 随机获取 {count}表情包")
emoji_manager = get_emoji_manager()
all_emojis = emoji_manager.emoji_objects
@@ -77,23 +83,37 @@ async def get_random() -> Optional[Tuple[str, str, str]]:
logger.warning("[EmojiAPI] 没有有效的表情包")
return None
if len(valid_emojis) < count:
logger.warning(
f"[EmojiAPI] 有效表情包数量 ({len(valid_emojis)}) 少于请求的数量 ({count}),将返回所有有效表情包"
)
count = len(valid_emojis)
# 随机选择
import random
selected_emoji = random.choice(valid_emojis)
emoji_base64 = image_path_to_base64(selected_emoji.full_path)
selected_emojis = random.sample(valid_emojis, count)
if not emoji_base64:
logger.error(f"[EmojiAPI] 无法转换表情包为base64: {selected_emoji.full_path}")
results = []
for selected_emoji in selected_emojis:
emoji_base64 = image_path_to_base64(selected_emoji.full_path)
if not emoji_base64:
logger.error(f"[EmojiAPI] 无法转换表情包为base64: {selected_emoji.full_path}")
continue
matched_emotion = random.choice(selected_emoji.emotion) if selected_emoji.emotion else "随机表情"
# 记录使用次数
emoji_manager.record_usage(selected_emoji.hash)
results.append((emoji_base64, selected_emoji.description, matched_emotion))
if not results and count > 0:
logger.warning("[EmojiAPI] 随机获取表情包失败,没有一个可以成功处理")
return None
matched_emotion = random.choice(selected_emoji.emotion) if selected_emoji.emotion else "随机表情"
# 记录使用次数
emoji_manager.record_usage(selected_emoji.hash)
logger.info(f"[EmojiAPI] 成功获取随机表情包: {selected_emoji.description}")
return emoji_base64, selected_emoji.description, matched_emotion
logger.info(f"[EmojiAPI] 成功获取 {len(results)}随机表情")
return results
except Exception as e:
logger.error(f"[EmojiAPI] 获取随机表情包失败: {e}")

View File

@@ -9,6 +9,7 @@
"""
from typing import List, Dict, Any, Tuple, Optional
from src.config.config import global_config
import time
from src.chat.utils.chat_message_builder import (
get_raw_msg_by_timestamp,
@@ -34,7 +35,7 @@ from src.chat.utils.chat_message_builder import (
def get_messages_by_time(
start_time: float, end_time: float, limit: int = 0, limit_mode: str = "latest"
start_time: float, end_time: float, limit: int = 0, limit_mode: str = "latest", filter_mai: bool = False
) -> List[Dict[str, Any]]:
"""
获取指定时间范围内的消息
@@ -44,15 +45,18 @@ def get_messages_by_time(
end_time: 结束时间戳
limit: 限制返回的消息数量0为不限制
limit_mode: 当limit>0时生效'earliest'表示获取最早的记录,'latest'表示获取最新的记录
filter_mai: 是否过滤麦麦自身的消息默认为False
Returns:
消息列表
"""
if filter_mai:
return filter_mai_messages(get_raw_msg_by_timestamp(start_time, end_time, limit, limit_mode))
return get_raw_msg_by_timestamp(start_time, end_time, limit, limit_mode)
def get_messages_by_time_in_chat(
chat_id: str, start_time: float, end_time: float, limit: int = 0, limit_mode: str = "latest"
chat_id: str, start_time: float, end_time: float, limit: int = 0, limit_mode: str = "latest", filter_mai: bool = False
) -> List[Dict[str, Any]]:
"""
获取指定聊天中指定时间范围内的消息
@@ -63,15 +67,18 @@ def get_messages_by_time_in_chat(
end_time: 结束时间戳
limit: 限制返回的消息数量0为不限制
limit_mode: 当limit>0时生效'earliest'表示获取最早的记录,'latest'表示获取最新的记录
filter_mai: 是否过滤麦麦自身的消息默认为False
Returns:
消息列表
"""
if filter_mai:
return filter_mai_messages(get_raw_msg_by_timestamp_with_chat(chat_id, start_time, end_time, limit, limit_mode))
return get_raw_msg_by_timestamp_with_chat(chat_id, start_time, end_time, limit, limit_mode)
def get_messages_by_time_in_chat_inclusive(
chat_id: str, start_time: float, end_time: float, limit: int = 0, limit_mode: str = "latest"
chat_id: str, start_time: float, end_time: float, limit: int = 0, limit_mode: str = "latest", filter_mai: bool = False
) -> List[Dict[str, Any]]:
"""
获取指定聊天中指定时间范围内的消息(包含边界)
@@ -82,10 +89,13 @@ def get_messages_by_time_in_chat_inclusive(
end_time: 结束时间戳(包含)
limit: 限制返回的消息数量0为不限制
limit_mode: 当limit>0时生效'earliest'表示获取最早的记录,'latest'表示获取最新的记录
filter_mai: 是否过滤麦麦自身的消息默认为False
Returns:
消息列表
"""
if filter_mai:
return filter_mai_messages(get_raw_msg_by_timestamp_with_chat_inclusive(chat_id, start_time, end_time, limit, limit_mode))
return get_raw_msg_by_timestamp_with_chat_inclusive(chat_id, start_time, end_time, limit, limit_mode)
@@ -115,7 +125,7 @@ def get_messages_by_time_in_chat_for_users(
def get_random_chat_messages(
start_time: float, end_time: float, limit: int = 0, limit_mode: str = "latest"
start_time: float, end_time: float, limit: int = 0, limit_mode: str = "latest", filter_mai: bool = False
) -> List[Dict[str, Any]]:
"""
随机选择一个聊天,返回该聊天在指定时间范围内的消息
@@ -125,10 +135,13 @@ def get_random_chat_messages(
end_time: 结束时间戳
limit: 限制返回的消息数量0为不限制
limit_mode: 当limit>0时生效'earliest'表示获取最早的记录,'latest'表示获取最新的记录
filter_mai: 是否过滤麦麦自身的消息默认为False
Returns:
消息列表
"""
if filter_mai:
return filter_mai_messages(get_raw_msg_by_timestamp_random(start_time, end_time, limit, limit_mode))
return get_raw_msg_by_timestamp_random(start_time, end_time, limit, limit_mode)
@@ -151,21 +164,24 @@ def get_messages_by_time_for_users(
return get_raw_msg_by_timestamp_with_users(start_time, end_time, person_ids, limit, limit_mode)
def get_messages_before_time(timestamp: float, limit: int = 0) -> List[Dict[str, Any]]:
def get_messages_before_time(timestamp: float, limit: int = 0, filter_mai: bool = False) -> List[Dict[str, Any]]:
"""
获取指定时间戳之前的消息
Args:
timestamp: 时间戳
limit: 限制返回的消息数量0为不限制
filter_mai: 是否过滤麦麦自身的消息默认为False
Returns:
消息列表
"""
if filter_mai:
return filter_mai_messages(get_raw_msg_before_timestamp(timestamp, limit))
return get_raw_msg_before_timestamp(timestamp, limit)
def get_messages_before_time_in_chat(chat_id: str, timestamp: float, limit: int = 0) -> List[Dict[str, Any]]:
def get_messages_before_time_in_chat(chat_id: str, timestamp: float, limit: int = 0, filter_mai: bool = False) -> List[Dict[str, Any]]:
"""
获取指定聊天中指定时间戳之前的消息
@@ -173,10 +189,13 @@ def get_messages_before_time_in_chat(chat_id: str, timestamp: float, limit: int
chat_id: 聊天ID
timestamp: 时间戳
limit: 限制返回的消息数量0为不限制
filter_mai: 是否过滤麦麦自身的消息默认为False
Returns:
消息列表
"""
if filter_mai:
return filter_mai_messages(get_raw_msg_before_timestamp_with_chat(chat_id, timestamp, limit))
return get_raw_msg_before_timestamp_with_chat(chat_id, timestamp, limit)
@@ -196,7 +215,7 @@ def get_messages_before_time_for_users(timestamp: float, person_ids: list, limit
def get_recent_messages(
chat_id: str, hours: float = 24.0, limit: int = 100, limit_mode: str = "latest"
chat_id: str, hours: float = 24.0, limit: int = 100, limit_mode: str = "latest", filter_mai: bool = False
) -> List[Dict[str, Any]]:
"""
获取指定聊天中最近一段时间的消息
@@ -206,12 +225,15 @@ def get_recent_messages(
hours: 最近多少小时默认24小时
limit: 限制返回的消息数量默认100条
limit_mode: 当limit>0时生效'earliest'表示获取最早的记录,'latest'表示获取最新的记录
filter_mai: 是否过滤麦麦自身的消息默认为False
Returns:
消息列表
"""
now = time.time()
start_time = now - hours * 3600
if filter_mai:
return filter_mai_messages(get_raw_msg_by_timestamp_with_chat(chat_id, start_time, now, limit, limit_mode))
return get_raw_msg_by_timestamp_with_chat(chat_id, start_time, now, limit, limit_mode)
@@ -319,3 +341,17 @@ async def get_person_ids_from_messages(messages: List[Dict[str, Any]]) -> List[s
用户ID列表
"""
return await get_person_id_list(messages)
# =============================================================================
# 消息过滤函数
# =============================================================================
def filter_mai_messages(messages: List[Dict[str, Any]]) -> List[Dict[str, Any]]:
"""
从消息列表中移除麦麦的消息
Args:
messages: 消息列表,每个元素是消息字典
Returns:
过滤后的消息列表
"""
return [msg for msg in messages if msg.get("user_id") != str(global_config.bot.qq_account)]

View File

@@ -1,3 +1,4 @@
import random
from typing import Tuple
# 导入新插件系统
@@ -7,7 +8,7 @@ from src.plugin_system import BaseAction, ActionActivationType, ChatMode
from src.common.logger import get_logger
# 导入API模块 - 标准Python包方式
from src.plugin_system.apis import emoji_api
from src.plugin_system.apis import emoji_api, llm_api, message_api
from src.plugins.built_in.core_actions.no_reply import NoReplyAction
@@ -39,7 +40,7 @@ class EmojiAction(BaseAction):
"""
# 动作参数定义
action_parameters = {"description": "文字描述你想要发送的表情包内容"}
action_parameters = {"reason": "文字描述你想要发送的表情包原因"}
# 动作使用场景
action_require = [
@@ -56,18 +57,82 @@ class EmojiAction(BaseAction):
logger.info(f"{self.log_prefix} 决定发送表情")
try:
# 1. 根据描述选择表情包
description = self.action_data.get("description", "")
emoji_result = await emoji_api.get_by_description(description)
# 1. 获取发送表情的原因
reason = self.action_data.get("reason", "表达当前情绪")
logger.info(f"{self.log_prefix} 发送表情原因: {reason}")
if not emoji_result:
logger.warning(f"{self.log_prefix} 未找到匹配描述 '{description}' 的表情包")
return False, f"未找到匹配 '{description}' 的表情包"
# 2. 随机获取20个表情包
sampled_emojis = await emoji_api.get_random(30)
if not sampled_emojis:
logger.warning(f"{self.log_prefix} 无法获取随机表情包")
return False, "无法获取随机表情包"
emoji_base64, emoji_description, matched_emotion = emoji_result
logger.info(f"{self.log_prefix} 找到表达{matched_emotion}的表情包")
# 3. 准备情感数据
emotion_map = {}
for b64, desc, emo in sampled_emojis:
if emo not in emotion_map:
emotion_map[emo] = []
emotion_map[emo].append((b64, desc))
# 使用BaseAction的便捷方法发送表情包
available_emotions = list(emotion_map.keys())
if not available_emotions:
logger.warning(f"{self.log_prefix} 获取到的表情包均无情感标签, 将随机发送")
emoji_base64, emoji_description, _ = random.choice(sampled_emojis)
else:
# 获取最近的5条消息内容用于判断
recent_messages = message_api.get_recent_messages(chat_id=self.chat_id, limit=5)
messages_text = ""
if recent_messages:
# 使用message_api构建可读的消息字符串
messages_text = message_api.build_readable_messages(
messages=recent_messages,
timestamp_mode="normal_no_YMD",
truncate=False,
show_actions=False,
)
# 4. 构建prompt让LLM选择情感
prompt = f"""
你是一个正在进行聊天的网友,你需要根据一个理由和最近的聊天记录,从一个情感标签列表中选择最匹配的一个。
这是最近的聊天记录:
{messages_text}
这是理由:“{reason}
这里是可用的情感标签:{available_emotions}
请直接返回最匹配的那个情感标签,不要进行任何解释或添加其他多余的文字。
"""
logger.info(f"{self.log_prefix} 生成的LLM Prompt: {prompt}")
# 5. 调用LLM
models = llm_api.get_available_models()
chat_model_config = getattr(models, "utils_small", None) # 默认使用chat模型
if not chat_model_config:
logger.error(f"{self.log_prefix} 未找到'chat'模型配置无法调用LLM")
return False, "未找到'chat'模型配置"
success, chosen_emotion, _, _ = await llm_api.generate_with_model(
prompt, model_config=chat_model_config, request_type="emoji"
)
if not success:
logger.error(f"{self.log_prefix} LLM调用失败: {chosen_emotion}")
return False, f"LLM调用失败: {chosen_emotion}"
chosen_emotion = chosen_emotion.strip().replace('"', "").replace("'", "")
logger.info(f"{self.log_prefix} LLM选择的情感: {chosen_emotion}")
# 6. 根据选择的情感匹配表情包
if chosen_emotion in emotion_map:
emoji_base64, emoji_description = random.choice(emotion_map[chosen_emotion])
logger.info(f"{self.log_prefix} 找到匹配情感 '{chosen_emotion}' 的表情包: {emoji_description}")
else:
logger.warning(
f"{self.log_prefix} LLM选择的情感 '{chosen_emotion}' 不在可用列表中, 将随机选择一个表情包"
)
emoji_base64, emoji_description, _ = random.choice(sampled_emojis)
# 7. 发送表情包
success = await self.send_emoji(emoji_base64)
if not success:
@@ -80,5 +145,5 @@ class EmojiAction(BaseAction):
return True, f"发送表情包: {emoji_description}"
except Exception as e:
logger.error(f"{self.log_prefix} 表情动作执行失败: {e}")
logger.error(f"{self.log_prefix} 表情动作执行失败: {e}", exc_info=True)
return False, f"表情发送失败: {str(e)}"

View File

@@ -1,6 +1,6 @@
import random
import time
import json
import asyncio
from typing import Tuple
# 导入新插件系统
@@ -10,26 +10,24 @@ from src.plugin_system import BaseAction, ActionActivationType, ChatMode
from src.common.logger import get_logger
# 导入API模块 - 标准Python包方式
from src.plugin_system.apis import message_api, llm_api
from src.plugin_system.apis import message_api
from src.config.config import global_config
from json_repair import repair_json
logger = get_logger("core_actions")
#设置一个全局字典确保同一个消息流的下一个NoReplyAction实例能够获取到上一次消息的时间戳
_CHAT_START_TIMES = {}
class NoReplyAction(BaseAction):
"""不回复动作,使用智能判断机制决定何时结束等待
"""不回复动作,根据新消息的兴趣值或数量决定何时结束等待.
新的等待逻辑
- 每0.2秒检查是否有新消息(提高响应性)
- 如果累计消息数量达到阈值默认20条直接结束等待
- 有新消息时进行LLM判断但最快1秒一次防止过于频繁
- 如果判断需要回复,则结束等待;否则继续等待
- 达到最大超时时间后强制结束
新的等待逻辑:
1. 新消息累计兴趣值超过阈值 (默认10) 则结束等待
2. 累计消息数量达到随机阈值 (默认5-10条) 则结束等待
"""
focus_activation_type = ActionActivationType.ALWAYS
# focus_activation_type = ActionActivationType.RANDOM
normal_activation_type = ActionActivationType.NEVER
mode_enable = ChatMode.FOCUS
parallel_action = False
@@ -41,65 +39,60 @@ class NoReplyAction(BaseAction):
# 连续no_reply计数器
_consecutive_count = 0
# LLM判断的最小间隔时间
_min_judge_interval = 1.0 # 最快1秒一次LLM判断
# 自动结束的消息数量阈值
_auto_exit_message_count = 20 # 累计20条消息自动结束
# 最大等待超时时间
_max_timeout = 600 # 1200秒
# 跳过LLM判断的配置
_skip_judge_when_tired = True
_skip_probability = 0.5
# 新增:回复频率退出专注模式的配置
_frequency_check_window = 600 # 频率检查窗口时间(秒)
# 新增:兴趣值退出阈值
_interest_exit_threshold = 3.0
# 新增:消息数量退出阈值
_min_exit_message_count = 4
_max_exit_message_count = 8
# 动作参数定义
action_parameters = {"reason": "不回复的原因"}
# 动作使用场景
action_require = ["你发送了消息,目前无人回复"]
action_require = [
"你发送了消息,目前无人回复",
"你觉得对方还没把话说完",
"你觉得当前话题不适合插嘴",
"你觉得自己说话太多了"
]
# 关联类型
associated_types = []
async def execute(self) -> Tuple[bool, str]:
"""执行不回复动作有新消息时进行判断但最快1秒一次"""
import asyncio
"""执行不回复动作"""
try:
# 获取或初始化当前消息的起始时间因为用户消息是可能在刚决定好可用动作但还没选择动作的时候发送的。原先的start_time设计会导致这种消息被漏掉现在采用全局字典存储
if self.chat_id not in _CHAT_START_TIMES:
# 如果对应消息流没有存储时间,就设置为当前时间
_CHAT_START_TIMES[self.chat_id] = time.time()
start_time = _CHAT_START_TIMES[self.chat_id]
else:
message_current_time = time.time()
if message_current_time - _CHAT_START_TIMES[self.chat_id] > 600:
# 如果上一次NoReplyAction实例记录的最后消息时间戳距离现在时间戳超过了十分钟将会把start_time设置为当前时间戳避免在数据库内过度搜索
start_time = message_current_time
logger.debug("距离上一次消息时间过长,已重置等待开始时间为当前时间")
else:
# 如果距离上一次noreply没有十分钟就沿用上一次noreply退出时记录的最新消息时间戳
start_time = _CHAT_START_TIMES[self.chat_id]
# 增加连续计数
NoReplyAction._consecutive_count += 1
count = NoReplyAction._consecutive_count
reason = self.action_data.get("reason", "")
start_time = time.time()
last_judge_time = start_time # 上次进行LLM判断的时间
min_judge_interval = self._min_judge_interval # 最小判断间隔,从配置获取
check_interval = 0.2 # 检查新消息的间隔设为0.2秒提高响应性
check_interval = 1.0 # 每秒检查一次
# 累积判断历史
judge_history = [] # 存储每次判断的结果和理由
# 获取no_reply开始时的上下文消息10条用于后续记录
context_messages = message_api.get_messages_by_time_in_chat(
chat_id=self.chat_id,
start_time=start_time - 600, # 获取开始前10分钟内的消息
end_time=start_time,
limit=10,
limit_mode="latest",
# 随机生成本次等待需要的新消息数量阈值
exit_message_count_threshold = random.randint(self._min_exit_message_count, self._max_exit_message_count)
logger.info(
f"{self.log_prefix} 本次no_reply需要 {exit_message_count_threshold} 条新消息或累计兴趣值超过 {self._interest_exit_threshold} 才能打断"
)
# 构建上下文字符串
context_str = ""
if context_messages:
context_str = message_api.build_readable_messages(
messages=context_messages, timestamp_mode="normal_no_YMD", truncate=False, show_actions=True
)
context_str = f"当时选择no_reply前的聊天上下文\n{context_str}\n"
if not self.is_group:
exit_message_count_threshold = 1
logger.info(f"检测到当前环境为私聊本次no_reply已更正为需要{exit_message_count_threshold}条新消息就能打断")
logger.info(f"{self.log_prefix} 选择不回复(第{count}次),开始摸鱼,原因: {reason}")
@@ -108,196 +101,79 @@ class NoReplyAction(BaseAction):
current_time = time.time()
elapsed_time = current_time - start_time
if global_config.chat.chat_mode == "auto" and self.is_group:
# 检查是否超时
if elapsed_time >= self._max_timeout or self._check_no_activity_and_exit_focus(current_time):
logger.info(
f"{self.log_prefix} 等待时间过久({self._max_timeout}或过去10分钟完全没有发言退出专注模式"
)
# 标记退出专注模式
self.action_data["_system_command"] = "stop_focus_chat"
exit_reason = f"{global_config.bot.nickname}(你)等待了{self._max_timeout}秒,或完全没有说话,感觉群里没有新内容,决定退出专注模式,稍作休息"
await self.store_action_info(
action_build_into_prompt=True,
action_prompt_display=exit_reason,
action_done=True,
)
return True, exit_reason
# 检查是否有新消息
new_message_count = message_api.count_new_messages(
chat_id=self.chat_id, start_time=start_time, end_time=current_time
# 1. 检查新消息,默认过滤麦麦自己的消息
recent_messages_dict = message_api.get_messages_by_time_in_chat(
chat_id=self.chat_id, start_time=start_time, end_time=current_time, filter_mai=True
)
new_message_count = len(recent_messages_dict)
# 如果累计消息数量达到阈值,直接结束等待
if new_message_count >= self._auto_exit_message_count:
logger.info(f"{self.log_prefix} 累计消息数量达到{new_message_count}条,直接结束等待")
# 2. 检查消息数量是否达到阈值
if new_message_count >= exit_message_count_threshold:
logger.info(
f"{self.log_prefix} 累计消息数量达到{new_message_count}条(>{exit_message_count_threshold}),结束等待"
)
exit_reason = f"{global_config.bot.nickname}(你)看到了{new_message_count}条新消息,可以考虑一下是否要进行回复"
# 如果是私聊,就稍微改一下退出理由
if not self.is_group:
exit_reason = f"{global_config.bot.nickname}(你)看到了私聊的{new_message_count}条新消息,可以考虑一下是否要进行回复"
await self.store_action_info(
action_build_into_prompt=True,
action_build_into_prompt=False,
action_prompt_display=exit_reason,
action_done=True,
)
return True, f"累计消息数量达到{new_message_count}条,直接结束等待 (等待时间: {elapsed_time:.1f}秒)"
# 获取最后一条消息
latest_message = recent_messages_dict[-1]
# 在退出时更新全局字典时间戳加1微秒防止重复
_CHAT_START_TIMES[self.chat_id] = latest_message['time'] + 0.000001 # 0.000001秒 = 1微秒
# 判定条件累计3条消息或等待超过5秒且有新消息
time_since_last_judge = current_time - last_judge_time
should_judge, trigger_reason = self._should_trigger_judge(new_message_count, time_since_last_judge)
return True, f"累计消息数量达到{new_message_count}条,结束等待 (等待时间: {elapsed_time:.1f}秒)"
if should_judge and time_since_last_judge >= min_judge_interval:
logger.info(f"{self.log_prefix} 触发判定({trigger_reason}),进行智能判断...")
# 获取最近的消息内容用于判断
recent_messages = message_api.get_messages_by_time_in_chat(
chat_id=self.chat_id,
start_time=start_time,
end_time=current_time,
)
if recent_messages:
# 使用message_api构建可读的消息字符串
messages_text = message_api.build_readable_messages(
messages=recent_messages,
timestamp_mode="normal_no_YMD",
truncate=False,
show_actions=False,
# 3. 检查累计兴趣值
if new_message_count > 0:
accumulated_interest = 0.0
for msg_dict in recent_messages_dict:
text = msg_dict.get("processed_plain_text", "")
interest_value = msg_dict.get("interest_value", 0.0)
if text:
accumulated_interest += interest_value
logger.info(f"{self.log_prefix} 当前累计兴趣值: {accumulated_interest:.2f}")
if accumulated_interest >= self._interest_exit_threshold:
logger.info(
f"{self.log_prefix} 累计兴趣值达到{accumulated_interest:.2f}(>{self._interest_exit_threshold}),结束等待"
)
exit_reason = f"{global_config.bot.nickname}(你)感觉到了大家浓厚的兴趣(兴趣值{accumulated_interest:.1f}),决定重新加入讨论"
await self.store_action_info(
action_build_into_prompt=False,
action_prompt_display=exit_reason,
action_done=True,
)
# 获取身份信
bot_name = global_config.bot.nickname
bot_nickname = ""
if global_config.bot.alias_names:
bot_nickname = f",也有人叫你{','.join(global_config.bot.alias_names)}"
bot_core_personality = global_config.personality.personality_core
identity_block = f"你的名字是{bot_name}{bot_nickname},你{bot_core_personality}"
# 获取最后一条消
latest_message = recent_messages_dict[-1]
# 在退出时更新全局字典时间戳加1微秒防止重复
_CHAT_START_TIMES[self.chat_id] = latest_message['time'] + 0.000001 # 0.000001秒 = 1微秒
# 构建判断历史字符串最多显示3条
history_block = ""
if judge_history:
history_block = "之前的判断历史:\n"
# 只取最近的3条历史记录
recent_history = judge_history[-3:] if len(judge_history) > 3 else judge_history
for i, (timestamp, judge_result, reason) in enumerate(recent_history, 1):
elapsed_seconds = int(timestamp - start_time)
history_block += f"{i}. 等待{elapsed_seconds}秒时判断:{judge_result},理由:{reason}\n"
history_block += "\n"
# 检查过去10分钟的发言频率
frequency_block, should_skip_llm_judge = self._get_fatigue_status(current_time)
# 如果决定跳过LLM判断直接更新时间并继续等待
if should_skip_llm_judge:
logger.info(f"{self.log_prefix} 疲劳,继续等待。")
last_judge_time = time.time() # 更新判断时间,避免立即重新判断
start_time = current_time # 更新消息检查的起始时间,以避免重复判断
continue # 跳过本次LLM判断继续循环等待
# 构建判断上下文
chat_context = "QQ群" if self.is_group else "私聊"
judge_prompt = f"""
{identity_block}
你现在正在{chat_context}参与聊天,以下是聊天内容:
{context_str}
在以上的聊天中,你选择了暂时不回复,现在,你看到了新的聊天消息如下:
{messages_text}
{history_block}
请注意:{frequency_block}
请你判断,是否要结束不回复的状态,重新加入聊天讨论。
判断标准:
1. 如果有人直接@你、提到你的名字或明确向你询问,应该回复
2. 如果话题发生重要变化,需要你参与讨论,应该回复
3. 如果只是普通闲聊、重复内容或与你无关的讨论,不需要回复
4. 如果消息内容过于简单(如单纯的表情、"哈哈"等),不需要回复
5. 参考之前的判断历史,如果情况有明显变化或持续等待时间过长,考虑调整判断
请用JSON格式回复你的判断严格按照以下格式
{{
"should_reply": true/false,
"reason": "详细说明你的判断理由"
}}
"""
try:
# 获取可用的模型配置
available_models = llm_api.get_available_models()
# 使用 utils_small 模型
small_model = getattr(available_models, "utils_small", None)
logger.debug(judge_prompt)
if small_model:
# 使用小模型进行判断
success, response, reasoning, model_name = await llm_api.generate_with_model(
prompt=judge_prompt,
model_config=small_model,
request_type="plugin.no_reply_judge",
temperature=0.7, # 进一步降低温度提高JSON输出的一致性和准确性
)
# 更新上次判断时间
last_judge_time = time.time()
if success and response:
response = response.strip()
logger.debug(f"{self.log_prefix} 模型({model_name})原始JSON响应: {response}")
# 解析LLM的JSON响应提取判断结果和理由
judge_result, reason = self._parse_llm_judge_response(response)
if judge_result:
logger.info(f"{self.log_prefix} 决定继续参与讨论,结束等待,原因: {reason}")
else:
logger.info(f"{self.log_prefix} 决定不参与讨论,继续等待,原因: {reason}")
# 将判断结果保存到历史中
judge_history.append((current_time, judge_result, reason))
if judge_result == "需要回复":
# logger.info(f"{self.log_prefix} 模型判断需要回复,结束等待")
full_prompt = f"{global_config.bot.nickname}(你)的想法是:{reason}"
await self.store_action_info(
action_build_into_prompt=True,
action_prompt_display=full_prompt,
action_done=True,
)
return True, f"检测到需要回复的消息,结束等待 (等待时间: {elapsed_time:.1f}秒)"
else:
logger.info(f"{self.log_prefix} 模型判断不需要回复,理由: {reason},继续等待")
# 更新开始时间,避免重复判断同样的消息
start_time = current_time
else:
logger.warning(f"{self.log_prefix} 模型判断失败,继续等待")
else:
logger.warning(f"{self.log_prefix} 未找到可用的模型配置,继续等待")
last_judge_time = time.time() # 即使失败也更新时间,避免频繁重试
except Exception as e:
logger.error(f"{self.log_prefix} 模型判断异常: {e},继续等待")
last_judge_time = time.time() # 异常时也更新时间,避免频繁重试
return (
True,
f"累计兴趣值达到{accumulated_interest:.2f},结束等待 (等待时间: {elapsed_time:.1f}秒)",
)
# 每10秒输出一次等待状态
if elapsed_time < 60:
if int(elapsed_time) % 10 == 0 and int(elapsed_time) > 0:
logger.debug(f"{self.log_prefix} 已等待{elapsed_time:.0f}秒,等待新消息...")
await asyncio.sleep(1)
else:
if int(elapsed_time) % 180 == 0 and int(elapsed_time) > 0:
logger.info(f"{self.log_prefix} 已等待{elapsed_time / 60:.0f}分钟,等待新消息...")
await asyncio.sleep(1)
if int(elapsed_time) > 0 and int(elapsed_time) % 10 == 0:
logger.debug(
f"{self.log_prefix} 已等待{elapsed_time:.0f}秒,累计{new_message_count}条消息,继续等待..."
)
# 使用 asyncio.sleep(1) 来避免在同一秒内重复打印日志
await asyncio.sleep(1)
# 短暂等待后继续检查
await asyncio.sleep(check_interval)
except Exception as e:
logger.error(f"{self.log_prefix} 不回复动作执行失败: {e}")
# 即使执行失败也要记录
exit_reason = f"执行异常: {str(e)}"
full_prompt = f"{context_str}{exit_reason},你思考是否要进行回复"
full_prompt = f"no_reply执行异常: {exit_reason},你思考是否要进行回复"
await self.store_action_info(
action_build_into_prompt=True,
action_prompt_display=full_prompt,
@@ -305,215 +181,6 @@ class NoReplyAction(BaseAction):
)
return False, f"不回复动作执行失败: {e}"
def _should_trigger_judge(self, new_message_count: int, time_since_last_judge: float) -> Tuple[bool, str]:
"""判断是否应该触发智能判断,并返回触发原因。
Args:
new_message_count: 新消息的数量。
time_since_last_judge: 距离上次判断的时间。
Returns:
一个元组 (should_judge, reason)。
- should_judge: 一个布尔值,指示是否应该触发判断。
- reason: 触发判断的原因字符串。
"""
# 判定条件累计3条消息或等待超过15秒且有新消息
should_judge_flag = new_message_count >= 3 or (new_message_count > 0 and time_since_last_judge >= 15.0)
if not should_judge_flag:
return False, ""
# 判断触发原因
if new_message_count >= 3:
return True, f"累计{new_message_count}条消息"
elif new_message_count > 0 and time_since_last_judge >= 15.0:
return True, f"等待{time_since_last_judge:.1f}秒且有新消息"
return False, ""
def _get_fatigue_status(self, current_time: float) -> Tuple[str, bool]:
"""
根据最近的发言频率生成疲劳提示,并决定是否跳过判断。
Args:
current_time: 当前时间戳。
Returns:
一个元组 (frequency_block, should_skip_judge)。
- frequency_block: 疲劳度相关的提示字符串。
- should_skip_judge: 是否应该跳过LLM判断的布尔值。
"""
try:
# 获取过去10分钟的所有消息
past_10min_time = current_time - 600 # 10分钟前
all_messages_10min = message_api.get_messages_by_time_in_chat(
chat_id=self.chat_id,
start_time=past_10min_time,
end_time=current_time,
)
# 手动过滤bot自己的消息
bot_message_count = 0
if all_messages_10min:
user_id = global_config.bot.qq_account
for message in all_messages_10min:
sender_id = message.get("user_id", "")
if sender_id == user_id:
bot_message_count += 1
talk_frequency_threshold = global_config.chat.get_current_talk_frequency(self.chat_id) * 10
if bot_message_count > talk_frequency_threshold:
over_count = bot_message_count - talk_frequency_threshold
skip_probability = 0
frequency_block = ""
if over_count <= 3:
frequency_block = "你感觉稍微有些累,回复的有点多了。\n"
elif over_count <= 5:
frequency_block = "你今天说话比较多,感觉有点疲惫,想要稍微休息一下。\n"
elif over_count <= 8:
frequency_block = "你发现自己说话太多了,感觉很累,想要安静一会儿,除非有重要的事情否则不想回复。\n"
skip_probability = self._skip_probability
else:
frequency_block = "你感觉非常累,想要安静一会儿。\n"
skip_probability = 1
should_skip_judge = self._skip_judge_when_tired and random.random() < skip_probability
if should_skip_judge:
logger.info(
f"{self.log_prefix} 发言过多(超过{over_count}条)随机决定跳过此次LLM判断(概率{skip_probability * 100:.0f}%)"
)
logger.info(
f"{self.log_prefix} 过去10分钟发言{bot_message_count}条,超过阈值{talk_frequency_threshold},添加疲惫提示"
)
return frequency_block, should_skip_judge
else:
# 回复次数少时的正向提示
under_count = talk_frequency_threshold - bot_message_count
frequency_block = ""
if under_count >= talk_frequency_threshold * 0.8:
frequency_block = "你感觉精力充沛,状态很好,积极参与聊天。\n"
elif under_count >= talk_frequency_threshold * 0.5:
frequency_block = "你感觉状态不错。\n"
logger.info(
f"{self.log_prefix} 过去10分钟发言{bot_message_count}条,未超过阈值{talk_frequency_threshold},添加正向提示"
)
return frequency_block, False
except Exception as e:
logger.warning(f"{self.log_prefix} 检查发言频率时出错: {e}")
return "", False
def _check_no_activity_and_exit_focus(self, current_time: float) -> bool:
"""检查过去10分钟是否完全没有发言决定是否退出专注模式
Args:
current_time: 当前时间戳
Returns:
bool: 是否应该退出专注模式
"""
try:
# 只在auto模式下进行检查
if global_config.chat.chat_mode != "auto":
return False
# 获取过去10分钟的所有消息
past_10min_time = current_time - 600 # 10分钟前
all_messages = message_api.get_messages_by_time_in_chat(
chat_id=self.chat_id,
start_time=past_10min_time,
end_time=current_time,
)
if not all_messages:
# 如果完全没有消息,也不需要退出专注模式
return False
# 统计bot自己的回复数量
bot_message_count = 0
user_id = global_config.bot.qq_account
for message in all_messages:
sender_id = message.get("user_id", "")
if sender_id == user_id:
bot_message_count += 1
# 如果过去10分钟bot一条消息也没有发送退出专注模式
if bot_message_count == 0:
logger.info(f"{self.log_prefix} 过去10分钟bot完全没有发言准备退出专注模式")
return True
else:
logger.debug(f"{self.log_prefix} 过去10分钟bot发言{bot_message_count}条,继续保持专注模式")
return False
except Exception as e:
logger.error(f"{self.log_prefix} 检查无活动状态时出错: {e}")
return False
def _parse_llm_judge_response(self, response: str) -> tuple[str, str]:
"""解析LLM判断响应使用JSON格式提取判断结果和理由
Args:
response: LLM的原始JSON响应
Returns:
tuple: (判断结果, 理由)
"""
try:
# 使用repair_json修复可能有问题的JSON格式
fixed_json_string = repair_json(response)
logger.debug(f"{self.log_prefix} repair_json修复后的响应: {fixed_json_string}")
# 如果repair_json返回的是字符串需要解析为Python对象
if isinstance(fixed_json_string, str):
result_json = json.loads(fixed_json_string)
else:
# 如果repair_json直接返回了字典对象直接使用
result_json = fixed_json_string
# 从JSON中提取判断结果和理由
should_reply = result_json.get("should_reply", False)
reason = result_json.get("reason", "无法获取判断理由")
# 转换布尔值为中文字符串
judge_result = "需要回复" if should_reply else "不需要回复"
logger.debug(f"{self.log_prefix} JSON解析成功 - 判断: {judge_result}, 理由: {reason}")
return judge_result, reason
except (json.JSONDecodeError, KeyError, TypeError) as e:
logger.warning(f"{self.log_prefix} JSON解析失败尝试文本解析: {e}")
# 如果JSON解析失败回退到简单的关键词匹配
try:
response_lower = response.lower()
if "true" in response_lower or "需要回复" in response:
judge_result = "需要回复"
reason = "从响应文本中检测到需要回复的指示"
elif "false" in response_lower or "不需要回复" in response:
judge_result = "不需要回复"
reason = "从响应文本中检测到不需要回复的指示"
else:
judge_result = "不需要回复" # 默认值
reason = f"无法解析响应格式,使用默认判断。原始响应: {response[:100]}..."
logger.debug(f"{self.log_prefix} 文本解析结果 - 判断: {judge_result}, 理由: {reason}")
return judge_result, reason
except Exception as fallback_e:
logger.error(f"{self.log_prefix} 文本解析也失败: {fallback_e}")
return "不需要回复", f"解析异常: {str(e)}, 回退解析也失败: {str(fallback_e)}"
except Exception as e:
logger.error(f"{self.log_prefix} 解析LLM响应时出错: {e}")
return "不需要回复", f"解析异常: {str(e)}"
@classmethod
def reset_consecutive_count(cls):
"""重置连续计数器"""

View File

@@ -9,6 +9,7 @@ import random
import time
from typing import List, Tuple, Type
import asyncio
import re
# 导入新插件系统
from src.plugin_system import BasePlugin, register_plugin, BaseAction, ComponentInfo, ActionActivationType, ChatMode
@@ -54,12 +55,26 @@ class ReplyAction(BaseAction):
# 关联类型
associated_types = ["text"]
def _parse_reply_target(self, target_message: str) -> tuple:
sender = ""
target = ""
if ":" in target_message or "" in target_message:
# 使用正则表达式匹配中文或英文冒号
parts = re.split(pattern=r"[:]", string=target_message, maxsplit=1)
if len(parts) == 2:
sender = parts[0].strip()
target = parts[1].strip()
return sender, target
async def execute(self) -> Tuple[bool, str]:
"""执行回复动作"""
logger.info(f"{self.log_prefix} 决定进行回复")
start_time = self.action_data.get("loop_start_time", time.time())
reply_to = self.action_data.get("reply_to", "")
sender, target = self._parse_reply_target(reply_to)
try:
try:
success, reply_set = await asyncio.wait_for(
@@ -105,6 +120,11 @@ class ReplyAction(BaseAction):
reply_text += data
# 存储动作记录
if sender and target:
reply_text = f"你对{sender}说的{target},进行了回复:{reply_text}"
else:
reply_text = f"你进行发言:{reply_text}"
await self.store_action_info(
action_build_into_prompt=False,
action_prompt_display=reply_text,
@@ -142,37 +162,18 @@ class CoreActionsPlugin(BasePlugin):
config_section_descriptions = {
"plugin": "插件启用配置",
"components": "核心组件启用配置",
"no_reply": "不回复动作配置(智能等待机制)",
}
# 配置Schema定义
config_schema = {
"plugin": {
"enabled": ConfigField(type=bool, default=True, description="是否启用插件"),
"config_version": ConfigField(type=str, default="0.3.1", description="配置文件版本"),
"enabled": ConfigField(type=bool, default=False, description="是否启用插件"),
"config_version": ConfigField(type=str, default="0.4.0", description="配置文件版本"),
},
"components": {
"enable_reply": ConfigField(type=bool, default=True, description="是否启用'回复'动作"),
"enable_no_reply": ConfigField(type=bool, default=True, description="是否启用'不回复'动作"),
"enable_emoji": ConfigField(type=bool, default=True, description="是否启用'表情'动作"),
},
"no_reply": {
"max_timeout": ConfigField(type=int, default=1200, description="最大等待超时时间(秒)"),
"min_judge_interval": ConfigField(
type=float, default=1.0, description="LLM判断的最小间隔时间防止过于频繁"
),
"auto_exit_message_count": ConfigField(
type=int, default=20, description="累计消息数量达到此阈值时自动结束等待"
),
"random_probability": ConfigField(
type=float, default=0.8, description="Focus模式下随机选择不回复的概率0.0到1.0", example=0.8
),
"skip_judge_when_tired": ConfigField(
type=bool, default=True, description="当发言过多时是否启用跳过LLM判断机制"
),
"frequency_check_window": ConfigField(
type=int, default=600, description="回复频率检查窗口时间(秒)", example=600
),
"enable_reply": ConfigField(type=bool, default=True, description="是否启用回复动作"),
"enable_no_reply": ConfigField(type=bool, default=True, description="是否启用不回复动作"),
"enable_emoji": ConfigField(type=bool, default=True, description="是否启用发送表情/图片动作"),
},
}
@@ -190,25 +191,6 @@ class CoreActionsPlugin(BasePlugin):
EmojiAction.focus_activation_type = ActionActivationType.LLM_JUDGE
EmojiAction.normal_activation_type = ActionActivationType.LLM_JUDGE
no_reply_probability = self.get_config("no_reply.random_probability", 0.8)
NoReplyAction.random_activation_probability = no_reply_probability
min_judge_interval = self.get_config("no_reply.min_judge_interval", 1.0)
NoReplyAction._min_judge_interval = min_judge_interval
auto_exit_message_count = self.get_config("no_reply.auto_exit_message_count", 20)
NoReplyAction._auto_exit_message_count = auto_exit_message_count
max_timeout = self.get_config("no_reply.max_timeout", 600)
NoReplyAction._max_timeout = max_timeout
skip_judge_when_tired = self.get_config("no_reply.skip_judge_when_tired", True)
NoReplyAction._skip_judge_when_tired = skip_judge_when_tired
# 新增:频率检测相关配置
frequency_check_window = self.get_config("no_reply.frequency_check_window", 600)
NoReplyAction._frequency_check_window = frequency_check_window
# --- 根据配置注册组件 ---
components = []
if self.get_config("components.enable_reply", True):

View File

@@ -59,6 +59,11 @@ class TTSAction(BaseAction):
# 发送TTS消息
await self.send_custom(message_type="tts_text", content=processed_text)
# 记录动作信息
await self.store_action_info(
action_build_into_prompt=True, action_prompt_display="已经发送了语音消息。", action_done=True
)
logger.info(f"{self.log_prefix} TTS动作执行成功文本长度: {len(processed_text)}")
return True, "TTS动作执行成功"

View File

@@ -54,7 +54,7 @@ class SearchKnowledgeTool(BaseTool):
@staticmethod
def _cosine_similarity(vec1: List[float], vec2: List[float]) -> float:
"""计算两个向量之间的余弦相似度"""
dot_product = sum(p * q for p, q in zip(vec1, vec2))
dot_product = sum(p * q for p, q in zip(vec1, vec2, strict=False))
magnitude1 = math.sqrt(sum(p * p for p in vec1))
magnitude2 = math.sqrt(sum(q * q for q in vec2))
if magnitude1 == 0 or magnitude2 == 0:

View File

@@ -187,7 +187,11 @@ class ToolExecutor:
tool_results.append(tool_info)
logger.info(f"{self.log_prefix}工具{tool_name}执行成功,类型: {tool_info['type']}")
logger.debug(f"{self.log_prefix}工具{tool_name}结果内容: {tool_info['content'][:200]}...")
content = tool_info["content"]
if not isinstance(content, (str, list, tuple)):
content = str(content)
preview = content[:200]
logger.debug(f"{self.log_prefix}工具{tool_name}结果内容: {preview}...")
except Exception as e:
logger.error(f"{self.log_prefix}工具{tool_name}执行失败: {e}")