v0.5.4.0 记忆系统更新
移除jieba
This commit is contained in:
@@ -15,16 +15,6 @@ class TopicIdentifier:
|
||||
self.llm_client = LLM_request(model=global_config.llm_topic_extract)
|
||||
self.select=global_config.topic_extract
|
||||
|
||||
def identify_topic(self):
|
||||
if self.select=='jieba':
|
||||
return self.identify_topic_jieba
|
||||
elif self.select=='snownlp':
|
||||
return self.identify_topic_snownlp
|
||||
elif self.select=='llm':
|
||||
return self.identify_topic_llm
|
||||
else:
|
||||
return self.identify_topic_snownlp
|
||||
|
||||
|
||||
async def identify_topic_llm(self, text: str) -> Optional[List[str]]:
|
||||
"""识别消息主题,返回主题列表"""
|
||||
@@ -48,56 +38,10 @@ class TopicIdentifier:
|
||||
|
||||
# 解析主题字符串为列表
|
||||
topic_list = [t.strip() for t in topic.split(",") if t.strip()]
|
||||
|
||||
print(f"\033[1;32m[主题识别]\033[0m 主题: {topic_list}")
|
||||
return topic_list if topic_list else None
|
||||
|
||||
def identify_topic_jieba(self, text: str) -> Optional[str]:
|
||||
"""使用jieba识别主题"""
|
||||
words = jieba.lcut(text)
|
||||
# 去除停用词和标点符号
|
||||
stop_words = {
|
||||
'的', '了', '和', '是', '就', '都', '而', '及', '与', '这', '那', '但', '然', '却',
|
||||
'因为', '所以', '如果', '虽然', '一个', '我', '你', '他', '她', '它', '我们', '你们',
|
||||
'他们', '在', '有', '个', '把', '被', '让', '给', '从', '向', '到', '又', '也', '很',
|
||||
'啊', '吧', '呢', '吗', '呀', '哦', '哈', '么', '嘛', '啦', '哎', '唉', '哇', '嗯',
|
||||
'哼', '哪', '什么', '怎么', '为什么', '怎样', '如何', '什么样', '这样', '那样', '这么',
|
||||
'那么', '多少', '几', '谁', '哪里', '哪儿', '什么时候', '何时', '为何', '怎么办',
|
||||
'怎么样', '这些', '那些', '一些', '一点', '一下', '一直', '一定', '一般', '一样',
|
||||
'一会儿', '一边', '一起',
|
||||
# 添加更多量词
|
||||
'个', '只', '条', '张', '片', '块', '本', '册', '页', '幅', '面', '篇', '份',
|
||||
'朵', '颗', '粒', '座', '幢', '栋', '间', '层', '家', '户', '位', '名', '群',
|
||||
'双', '对', '打', '副', '套', '批', '组', '串', '包', '箱', '袋', '瓶', '罐',
|
||||
# 添加更多介词
|
||||
'按', '按照', '把', '被', '比', '比如', '除', '除了', '当', '对', '对于',
|
||||
'根据', '关于', '跟', '和', '将', '经', '经过', '靠', '连', '论', '通过',
|
||||
'同', '往', '为', '为了', '围绕', '于', '由', '由于', '与', '在', '沿', '沿着',
|
||||
'依', '依照', '以', '因', '因为', '用', '由', '与', '自', '自从'
|
||||
}
|
||||
|
||||
# 过滤掉停用词和标点符号,只保留名词和动词
|
||||
filtered_words = []
|
||||
for word in words:
|
||||
if word not in stop_words and not word.strip() in {
|
||||
'。', ',', '、', ':', ';', '!', '?', '"', '"', ''', ''',
|
||||
'(', ')', '【', '】', '《', '》', '…', '—', '·', '、', '~',
|
||||
'~', '+', '=', '-', '/', '\\', '|', '*', '#', '@', '$', '%',
|
||||
'^', '&', '[', ']', '{', '}', '<', '>', '`', '_', '.', ',',
|
||||
';', ':', '\'', '"', '(', ')', '?', '!', '±', '×', '÷', '≠',
|
||||
'≈', '∈', '∉', '⊆', '⊇', '⊂', '⊃', '∪', '∩', '∧', '∨'
|
||||
}:
|
||||
filtered_words.append(word)
|
||||
|
||||
# 统计词频
|
||||
word_freq = {}
|
||||
for word in filtered_words:
|
||||
word_freq[word] = word_freq.get(word, 0) + 1
|
||||
|
||||
# 按词频排序,取前3个
|
||||
sorted_words = sorted(word_freq.items(), key=lambda x: x[1], reverse=True)
|
||||
top_words = [word for word, freq in sorted_words[:3]]
|
||||
|
||||
return top_words if top_words else None
|
||||
|
||||
def identify_topic_snownlp(self, text: str) -> Optional[List[str]]:
|
||||
"""使用 SnowNLP 进行主题识别
|
||||
|
||||
@@ -113,7 +57,7 @@ class TopicIdentifier:
|
||||
try:
|
||||
s = SnowNLP(text)
|
||||
# 提取前3个关键词作为主题
|
||||
keywords = s.keywords(3)
|
||||
keywords = s.keywords(5)
|
||||
return keywords if keywords else None
|
||||
except Exception as e:
|
||||
print(f"\033[1;31m[错误]\033[0m SnowNLP 处理失败: {str(e)}")
|
||||
|
||||
Reference in New Issue
Block a user