refactor(cache): 重构工具缓存机制并优化LLM请求重试逻辑

将工具缓存的实现从`ToolExecutor`的装饰器模式重构为直接集成。缓存逻辑被移出`cache_manager.py`并整合进`ToolExecutor.execute_tool_call`方法中,简化了代码结构并使其更易于维护。

主要变更:
- 从`cache_manager.py`中移除了`wrap_tool_executor`函数。
- 在`tool_use.py`中,`execute_tool_call`现在包含完整的缓存检查和设置逻辑。
- 调整了`llm_models/utils_model.py`中的LLM请求逻辑,为模型生成的空回复或截断响应增加了内部重试机制,增强了稳定性。
- 清理了项目中未使用的导入和过时的文档文件,以保持代码库的整洁。
This commit is contained in:
minecraft1024a
2025-08-28 20:10:32 +08:00
committed by Windpicker-owo
parent 9e720ea80e
commit a645e766ca
15 changed files with 199 additions and 413 deletions

View File

@@ -1,4 +1,4 @@
from typing import Any, Dict, List, Optional, Type
from typing import Optional, Type
from src.plugin_system.base.base_tool import BaseTool
from src.plugin_system.base.component_types import ComponentType

View File

@@ -1,5 +1,5 @@
from abc import abstractmethod
from typing import List, Type, Tuple, Union, TYPE_CHECKING
from typing import List, Type, Tuple, Union
from .plugin_base import PluginBase
from src.common.logger import get_logger

View File

@@ -4,7 +4,7 @@
"""
from abc import ABC, abstractmethod
from typing import Dict, Tuple, Optional, List
from typing import Tuple, Optional, List
import re
from src.common.logger import get_logger

View File

@@ -7,8 +7,10 @@ from src.llm_models.utils_model import LLMRequest
from src.llm_models.payload_content import ToolCall
from src.config.config import global_config, model_config
from src.chat.utils.prompt_builder import Prompt, global_prompt_manager
import inspect
from src.chat.message_receive.chat_stream import get_chat_manager
from src.common.logger import get_logger
from src.common.cache_manager import tool_cache
logger = get_logger("tool_use")
@@ -184,28 +186,71 @@ class ToolExecutor:
return tool_results, used_tools
async def execute_tool_call(self, tool_call: ToolCall, tool_instance: Optional[BaseTool] = None) -> Optional[Dict[str, Any]]:
# sourcery skip: use-assigned-variable
"""执行单个工具调用
"""执行单个工具调用,并处理缓存"""
function_args = tool_call.args or {}
tool_instance = tool_instance or get_tool_instance(tool_call.func_name)
Args:
tool_call: 工具调用对象
# 如果工具不存在或未启用缓存,则直接执行
if not tool_instance or not tool_instance.enable_cache:
return await self._original_execute_tool_call(tool_call, tool_instance)
Returns:
Optional[Dict]: 工具调用结果如果失败则返回None
"""
# --- 缓存逻辑开始 ---
try:
tool_file_path = inspect.getfile(tool_instance.__class__)
semantic_query = None
if tool_instance.semantic_cache_query_key:
semantic_query = function_args.get(tool_instance.semantic_cache_query_key)
cached_result = await tool_cache.get(
tool_name=tool_call.func_name,
function_args=function_args,
tool_file_path=tool_file_path,
semantic_query=semantic_query
)
if cached_result:
logger.info(f"{self.log_prefix}使用缓存结果,跳过工具 {tool_call.func_name} 执行")
return cached_result
except Exception as e:
logger.error(f"{self.log_prefix}检查工具缓存时出错: {e}")
# 缓存未命中,执行原始工具调用
result = await self._original_execute_tool_call(tool_call, tool_instance)
# 将结果存入缓存
try:
tool_file_path = inspect.getfile(tool_instance.__class__)
semantic_query = None
if tool_instance.semantic_cache_query_key:
semantic_query = function_args.get(tool_instance.semantic_cache_query_key)
await tool_cache.set(
tool_name=tool_call.func_name,
function_args=function_args,
tool_file_path=tool_file_path,
data=result,
ttl=tool_instance.cache_ttl,
semantic_query=semantic_query
)
except Exception as e:
logger.error(f"{self.log_prefix}设置工具缓存时出错: {e}")
# --- 缓存逻辑结束 ---
return result
async def _original_execute_tool_call(self, tool_call: ToolCall, tool_instance: Optional[BaseTool] = None) -> Optional[Dict[str, Any]]:
"""执行单个工具调用的原始逻辑"""
try:
function_name = tool_call.func_name
function_args = tool_call.args or {}
logger.info(f"🤖 {self.log_prefix} 正在执行工具: [bold green]{function_name}[/bold green] | 参数: {function_args}")
function_args["llm_called"] = True # 标记为LLM调用
logger.info(f"{self.log_prefix} 正在执行工具: [bold green]{function_name}[/bold green] | 参数: {function_args}")
function_args["llm_called"] = True
# 获取对应工具实例
tool_instance = tool_instance or get_tool_instance(function_name)
if not tool_instance:
logger.warning(f"未知工具名称: {function_name}")
return None
# 执行工具并记录日志
logger.debug(f"{self.log_prefix}执行工具 {function_name},参数: {function_args}")
result = await tool_instance.execute(function_args)
if result: