Merge remote-tracking branch 'upstream/debug' into feat_regix
This commit is contained in:
@@ -121,9 +121,9 @@ async def build_memory_task():
|
||||
@scheduler.scheduled_job("interval", seconds=global_config.forget_memory_interval, id="forget_memory")
|
||||
async def forget_memory_task():
|
||||
"""每30秒执行一次记忆构建"""
|
||||
# print("\033[1;32m[记忆遗忘]\033[0m 开始遗忘记忆...")
|
||||
# await hippocampus.operation_forget_topic(percentage=0.1)
|
||||
# print("\033[1;32m[记忆遗忘]\033[0m 记忆遗忘完成")
|
||||
print("\033[1;32m[记忆遗忘]\033[0m 开始遗忘记忆...")
|
||||
await hippocampus.operation_forget_topic(percentage=0.1)
|
||||
print("\033[1;32m[记忆遗忘]\033[0m 记忆遗忘完成")
|
||||
|
||||
|
||||
@scheduler.scheduled_job("interval", seconds=global_config.build_memory_interval + 10, id="merge_memory")
|
||||
|
||||
@@ -138,7 +138,7 @@ class ChatBot:
|
||||
|
||||
# 如果找不到思考消息,直接返回
|
||||
if not thinking_message:
|
||||
logger.warning(f"未找到对应的思考消息,可能已超时被移除")
|
||||
logger.warning("未找到对应的思考消息,可能已超时被移除")
|
||||
return
|
||||
|
||||
# 记录开始思考的时间,避免从思考到回复的时间太久
|
||||
@@ -187,7 +187,7 @@ class ChatBot:
|
||||
|
||||
# 检查是否 <没有找到> emoji
|
||||
if emoji_raw != None:
|
||||
emoji_path, discription = emoji_raw
|
||||
emoji_path, description = emoji_raw
|
||||
|
||||
emoji_cq = CQCode.create_emoji_cq(emoji_path)
|
||||
|
||||
@@ -203,7 +203,7 @@ class ChatBot:
|
||||
raw_message=emoji_cq,
|
||||
plain_text=emoji_cq,
|
||||
processed_plain_text=emoji_cq,
|
||||
detailed_plain_text=discription,
|
||||
detailed_plain_text=description,
|
||||
user_nickname=global_config.BOT_NICKNAME,
|
||||
group_name=message.group_name,
|
||||
time=bot_response_time,
|
||||
|
||||
@@ -1,6 +1,6 @@
|
||||
import os
|
||||
from dataclasses import dataclass, field
|
||||
from typing import Dict, Optional
|
||||
from typing import Dict, List, Optional
|
||||
|
||||
import tomli
|
||||
from loguru import logger
|
||||
@@ -12,10 +12,12 @@ from packaging.specifiers import SpecifierSet, InvalidSpecifier
|
||||
@dataclass
|
||||
class BotConfig:
|
||||
"""机器人配置类"""
|
||||
|
||||
INNER_VERSION: Version = None
|
||||
|
||||
BOT_QQ: Optional[int] = 1
|
||||
BOT_NICKNAME: Optional[str] = None
|
||||
BOT_ALIAS_NAMES: List[str] = field(default_factory=list) # 别名,可以通过这个叫它
|
||||
|
||||
# 消息处理相关配置
|
||||
MIN_TEXT_LENGTH: int = 2 # 最小处理文本长度
|
||||
@@ -82,23 +84,25 @@ class BotConfig:
|
||||
PROMPT_PERSONALITY = [
|
||||
"曾经是一个学习地质的女大学生,现在学习心理学和脑科学,你会刷贴吧",
|
||||
"是一个女大学生,你有黑色头发,你会刷小红书",
|
||||
"是一个女大学生,你会刷b站,对ACG文化感兴趣"
|
||||
"是一个女大学生,你会刷b站,对ACG文化感兴趣",
|
||||
]
|
||||
|
||||
PROMPT_SCHEDULE_GEN="一个曾经学习地质,现在学习心理学和脑科学的女大学生,喜欢刷qq,贴吧,知乎和小红书"
|
||||
|
||||
PERSONALITY_1: float = 0.6 # 第一种人格概率
|
||||
PERSONALITY_2: float = 0.3 # 第二种人格概率
|
||||
PERSONALITY_3: float = 0.1 # 第三种人格概率
|
||||
|
||||
memory_ban_words: list = field(default_factory=lambda: ['表情包', '图片', '回复', '聊天记录']) # 添加新的配置项默认值
|
||||
|
||||
PROMPT_SCHEDULE_GEN = "一个曾经学习地质,现在学习心理学和脑科学的女大学生,喜欢刷qq,贴吧,知乎和小红书"
|
||||
|
||||
PERSONALITY_1: float = 0.6 # 第一种人格概率
|
||||
PERSONALITY_2: float = 0.3 # 第二种人格概率
|
||||
PERSONALITY_3: float = 0.1 # 第三种人格概率
|
||||
|
||||
memory_ban_words: list = field(
|
||||
default_factory=lambda: ["表情包", "图片", "回复", "聊天记录"]
|
||||
) # 添加新的配置项默认值
|
||||
|
||||
@staticmethod
|
||||
def get_config_dir() -> str:
|
||||
"""获取配置文件目录"""
|
||||
current_dir = os.path.dirname(os.path.abspath(__file__))
|
||||
root_dir = os.path.abspath(os.path.join(current_dir, '..', '..', '..'))
|
||||
config_dir = os.path.join(root_dir, 'config')
|
||||
root_dir = os.path.abspath(os.path.join(current_dir, "..", "..", ".."))
|
||||
config_dir = os.path.join(root_dir, "config")
|
||||
if not os.path.exists(config_dir):
|
||||
os.makedirs(config_dir)
|
||||
return config_dir
|
||||
@@ -109,35 +113,32 @@ class BotConfig:
|
||||
Args:
|
||||
value[str]: 版本表达式(字符串)
|
||||
Returns:
|
||||
SpecifierSet
|
||||
SpecifierSet
|
||||
"""
|
||||
|
||||
try:
|
||||
converted = SpecifierSet(value)
|
||||
except InvalidSpecifier as e:
|
||||
logger.error(
|
||||
f"{value} 分类使用了错误的版本约束表达式\n",
|
||||
"请阅读 https://semver.org/lang/zh-CN/ 修改代码"
|
||||
)
|
||||
except InvalidSpecifier:
|
||||
logger.error(f"{value} 分类使用了错误的版本约束表达式\n", "请阅读 https://semver.org/lang/zh-CN/ 修改代码")
|
||||
exit(1)
|
||||
|
||||
return converted
|
||||
|
||||
@classmethod
|
||||
def get_config_version(cls, toml: dict) -> Version:
|
||||
"""提取配置文件的 SpecifierSet 版本数据
|
||||
"""提取配置文件的 SpecifierSet 版本数据
|
||||
Args:
|
||||
toml[dict]: 输入的配置文件字典
|
||||
Returns:
|
||||
Version
|
||||
Version
|
||||
"""
|
||||
|
||||
if 'inner' in toml:
|
||||
if "inner" in toml:
|
||||
try:
|
||||
config_version: str = toml["inner"]["version"]
|
||||
except KeyError as e:
|
||||
logger.error(f"配置文件中 inner 段 不存在, 这是错误的配置文件")
|
||||
raise KeyError(f"配置文件中 inner 段 不存在 {e}, 这是错误的配置文件")
|
||||
logger.error("配置文件中 inner 段 不存在, 这是错误的配置文件")
|
||||
raise KeyError(f"配置文件中 inner 段 不存在 {e}, 这是错误的配置文件") from e
|
||||
else:
|
||||
toml["inner"] = {"version": "0.0.0"}
|
||||
config_version = toml["inner"]["version"]
|
||||
@@ -150,7 +151,7 @@ class BotConfig:
|
||||
"请阅读 https://semver.org/lang/zh-CN/ 修改配置,并参考本项目指定的模板进行修改\n"
|
||||
"本项目在不同的版本下有不同的模板,请注意识别"
|
||||
)
|
||||
raise InvalidVersion("配置文件中 inner段 的 version 键是错误的版本描述\n")
|
||||
raise InvalidVersion("配置文件中 inner段 的 version 键是错误的版本描述\n") from e
|
||||
|
||||
return ver
|
||||
|
||||
@@ -160,26 +161,26 @@ class BotConfig:
|
||||
config = cls()
|
||||
|
||||
def personality(parent: dict):
|
||||
personality_config = parent['personality']
|
||||
personality = personality_config.get('prompt_personality')
|
||||
personality_config = parent["personality"]
|
||||
personality = personality_config.get("prompt_personality")
|
||||
if len(personality) >= 2:
|
||||
logger.debug(f"载入自定义人格:{personality}")
|
||||
config.PROMPT_PERSONALITY = personality_config.get('prompt_personality', config.PROMPT_PERSONALITY)
|
||||
config.PROMPT_PERSONALITY = personality_config.get("prompt_personality", config.PROMPT_PERSONALITY)
|
||||
logger.info(f"载入自定义日程prompt:{personality_config.get('prompt_schedule', config.PROMPT_SCHEDULE_GEN)}")
|
||||
config.PROMPT_SCHEDULE_GEN = personality_config.get('prompt_schedule', config.PROMPT_SCHEDULE_GEN)
|
||||
config.PROMPT_SCHEDULE_GEN = personality_config.get("prompt_schedule", config.PROMPT_SCHEDULE_GEN)
|
||||
|
||||
if config.INNER_VERSION in SpecifierSet(">=0.0.2"):
|
||||
config.PERSONALITY_1 = personality_config.get('personality_1_probability', config.PERSONALITY_1)
|
||||
config.PERSONALITY_2 = personality_config.get('personality_2_probability', config.PERSONALITY_2)
|
||||
config.PERSONALITY_3 = personality_config.get('personality_3_probability', config.PERSONALITY_3)
|
||||
config.PERSONALITY_1 = personality_config.get("personality_1_probability", config.PERSONALITY_1)
|
||||
config.PERSONALITY_2 = personality_config.get("personality_2_probability", config.PERSONALITY_2)
|
||||
config.PERSONALITY_3 = personality_config.get("personality_3_probability", config.PERSONALITY_3)
|
||||
|
||||
def emoji(parent: dict):
|
||||
emoji_config = parent["emoji"]
|
||||
config.EMOJI_CHECK_INTERVAL = emoji_config.get("check_interval", config.EMOJI_CHECK_INTERVAL)
|
||||
config.EMOJI_REGISTER_INTERVAL = emoji_config.get("register_interval", config.EMOJI_REGISTER_INTERVAL)
|
||||
config.EMOJI_CHECK_PROMPT = emoji_config.get('check_prompt', config.EMOJI_CHECK_PROMPT)
|
||||
config.EMOJI_SAVE = emoji_config.get('auto_save', config.EMOJI_SAVE)
|
||||
config.EMOJI_CHECK = emoji_config.get('enable_check', config.EMOJI_CHECK)
|
||||
config.EMOJI_CHECK_PROMPT = emoji_config.get("check_prompt", config.EMOJI_CHECK_PROMPT)
|
||||
config.EMOJI_SAVE = emoji_config.get("auto_save", config.EMOJI_SAVE)
|
||||
config.EMOJI_CHECK = emoji_config.get("enable_check", config.EMOJI_CHECK)
|
||||
|
||||
def cq_code(parent: dict):
|
||||
cq_code_config = parent["cq_code"]
|
||||
@@ -192,12 +193,16 @@ class BotConfig:
|
||||
config.BOT_QQ = int(bot_qq)
|
||||
config.BOT_NICKNAME = bot_config.get("nickname", config.BOT_NICKNAME)
|
||||
|
||||
if config.INNER_VERSION in SpecifierSet(">=0.0.5"):
|
||||
config.BOT_ALIAS_NAMES = bot_config.get("alias_names", config.BOT_ALIAS_NAMES)
|
||||
|
||||
def response(parent: dict):
|
||||
response_config = parent["response"]
|
||||
config.MODEL_R1_PROBABILITY = response_config.get("model_r1_probability", config.MODEL_R1_PROBABILITY)
|
||||
config.MODEL_V3_PROBABILITY = response_config.get("model_v3_probability", config.MODEL_V3_PROBABILITY)
|
||||
config.MODEL_R1_DISTILL_PROBABILITY = response_config.get("model_r1_distill_probability",
|
||||
config.MODEL_R1_DISTILL_PROBABILITY)
|
||||
config.MODEL_R1_DISTILL_PROBABILITY = response_config.get(
|
||||
"model_r1_distill_probability", config.MODEL_R1_DISTILL_PROBABILITY
|
||||
)
|
||||
config.max_response_length = response_config.get("max_response_length", config.max_response_length)
|
||||
|
||||
def model(parent: dict):
|
||||
@@ -214,7 +219,7 @@ class BotConfig:
|
||||
"llm_emotion_judge",
|
||||
"vlm",
|
||||
"embedding",
|
||||
"moderation"
|
||||
"moderation",
|
||||
]
|
||||
|
||||
for item in config_list:
|
||||
@@ -223,13 +228,7 @@ class BotConfig:
|
||||
|
||||
# base_url 的例子: SILICONFLOW_BASE_URL
|
||||
# key 的例子: SILICONFLOW_KEY
|
||||
cfg_target = {
|
||||
"name": "",
|
||||
"base_url": "",
|
||||
"key": "",
|
||||
"pri_in": 0,
|
||||
"pri_out": 0
|
||||
}
|
||||
cfg_target = {"name": "", "base_url": "", "key": "", "pri_in": 0, "pri_out": 0}
|
||||
|
||||
if config.INNER_VERSION in SpecifierSet("<=0.0.0"):
|
||||
cfg_target = cfg_item
|
||||
@@ -248,7 +247,7 @@ class BotConfig:
|
||||
cfg_target[i] = cfg_item[i]
|
||||
except KeyError as e:
|
||||
logger.error(f"{item} 中的必要字段不存在,请检查")
|
||||
raise KeyError(f"{item} 中的必要字段 {e} 不存在,请检查")
|
||||
raise KeyError(f"{item} 中的必要字段 {e} 不存在,请检查") from e
|
||||
|
||||
provider = cfg_item.get("provider")
|
||||
if provider is None:
|
||||
@@ -273,10 +272,12 @@ class BotConfig:
|
||||
|
||||
if config.INNER_VERSION in SpecifierSet(">=0.0.2"):
|
||||
config.thinking_timeout = msg_config.get("thinking_timeout", config.thinking_timeout)
|
||||
config.response_willing_amplifier = msg_config.get("response_willing_amplifier",
|
||||
config.response_willing_amplifier)
|
||||
config.response_interested_rate_amplifier = msg_config.get("response_interested_rate_amplifier",
|
||||
config.response_interested_rate_amplifier)
|
||||
config.response_willing_amplifier = msg_config.get(
|
||||
"response_willing_amplifier", config.response_willing_amplifier
|
||||
)
|
||||
config.response_interested_rate_amplifier = msg_config.get(
|
||||
"response_interested_rate_amplifier", config.response_interested_rate_amplifier
|
||||
)
|
||||
config.down_frequency_rate = msg_config.get("down_frequency_rate", config.down_frequency_rate)
|
||||
|
||||
if config.INNER_VERSION in SpecifierSet(">=0.0.5"):
|
||||
@@ -286,7 +287,7 @@ class BotConfig:
|
||||
memory_config = parent["memory"]
|
||||
config.build_memory_interval = memory_config.get("build_memory_interval", config.build_memory_interval)
|
||||
config.forget_memory_interval = memory_config.get("forget_memory_interval", config.forget_memory_interval)
|
||||
|
||||
|
||||
# 在版本 >= 0.0.4 时才处理新增的配置项
|
||||
if config.INNER_VERSION in SpecifierSet(">=0.0.4"):
|
||||
config.memory_ban_words = set(memory_config.get("memory_ban_words", []))
|
||||
@@ -307,10 +308,12 @@ class BotConfig:
|
||||
config.chinese_typo_enable = chinese_typo_config.get("enable", config.chinese_typo_enable)
|
||||
config.chinese_typo_error_rate = chinese_typo_config.get("error_rate", config.chinese_typo_error_rate)
|
||||
config.chinese_typo_min_freq = chinese_typo_config.get("min_freq", config.chinese_typo_min_freq)
|
||||
config.chinese_typo_tone_error_rate = chinese_typo_config.get("tone_error_rate",
|
||||
config.chinese_typo_tone_error_rate)
|
||||
config.chinese_typo_word_replace_rate = chinese_typo_config.get("word_replace_rate",
|
||||
config.chinese_typo_word_replace_rate)
|
||||
config.chinese_typo_tone_error_rate = chinese_typo_config.get(
|
||||
"tone_error_rate", config.chinese_typo_tone_error_rate
|
||||
)
|
||||
config.chinese_typo_word_replace_rate = chinese_typo_config.get(
|
||||
"word_replace_rate", config.chinese_typo_word_replace_rate
|
||||
)
|
||||
|
||||
def groups(parent: dict):
|
||||
groups_config = parent["groups"]
|
||||
@@ -329,61 +332,19 @@ class BotConfig:
|
||||
# 例如:"notice": "personality 将在 1.3.2 后被移除",那么在有效版本中的用户就会虽然可以
|
||||
# 正常执行程序,但是会看到这条自定义提示
|
||||
include_configs = {
|
||||
"personality": {
|
||||
"func": personality,
|
||||
"support": ">=0.0.0"
|
||||
},
|
||||
"emoji": {
|
||||
"func": emoji,
|
||||
"support": ">=0.0.0"
|
||||
},
|
||||
"cq_code": {
|
||||
"func": cq_code,
|
||||
"support": ">=0.0.0"
|
||||
},
|
||||
"bot": {
|
||||
"func": bot,
|
||||
"support": ">=0.0.0"
|
||||
},
|
||||
"response": {
|
||||
"func": response,
|
||||
"support": ">=0.0.0"
|
||||
},
|
||||
"model": {
|
||||
"func": model,
|
||||
"support": ">=0.0.0"
|
||||
},
|
||||
"message": {
|
||||
"func": message,
|
||||
"support": ">=0.0.0"
|
||||
},
|
||||
"memory": {
|
||||
"func": memory,
|
||||
"support": ">=0.0.0",
|
||||
"necessary": False
|
||||
},
|
||||
"mood": {
|
||||
"func": mood,
|
||||
"support": ">=0.0.0"
|
||||
},
|
||||
"keywords_reaction": {
|
||||
"func": keywords_reaction,
|
||||
"support": ">=0.0.2",
|
||||
"necessary": False
|
||||
},
|
||||
"chinese_typo": {
|
||||
"func": chinese_typo,
|
||||
"support": ">=0.0.3",
|
||||
"necessary": False
|
||||
},
|
||||
"groups": {
|
||||
"func": groups,
|
||||
"support": ">=0.0.0"
|
||||
},
|
||||
"others": {
|
||||
"func": others,
|
||||
"support": ">=0.0.0"
|
||||
}
|
||||
"personality": {"func": personality, "support": ">=0.0.0"},
|
||||
"emoji": {"func": emoji, "support": ">=0.0.0"},
|
||||
"cq_code": {"func": cq_code, "support": ">=0.0.0"},
|
||||
"bot": {"func": bot, "support": ">=0.0.0"},
|
||||
"response": {"func": response, "support": ">=0.0.0"},
|
||||
"model": {"func": model, "support": ">=0.0.0"},
|
||||
"message": {"func": message, "support": ">=0.0.0"},
|
||||
"memory": {"func": memory, "support": ">=0.0.0", "necessary": False},
|
||||
"mood": {"func": mood, "support": ">=0.0.0"},
|
||||
"keywords_reaction": {"func": keywords_reaction, "support": ">=0.0.2", "necessary": False},
|
||||
"chinese_typo": {"func": chinese_typo, "support": ">=0.0.3", "necessary": False},
|
||||
"groups": {"func": groups, "support": ">=0.0.0"},
|
||||
"others": {"func": others, "support": ">=0.0.0"},
|
||||
}
|
||||
|
||||
# 原地修改,将 字符串版本表达式 转换成 版本对象
|
||||
@@ -395,7 +356,7 @@ class BotConfig:
|
||||
with open(config_path, "rb") as f:
|
||||
try:
|
||||
toml_dict = tomli.load(f)
|
||||
except(tomli.TOMLDecodeError) as e:
|
||||
except tomli.TOMLDecodeError as e:
|
||||
logger.critical(f"配置文件bot_config.toml填写有误,请检查第{e.lineno}行第{e.colno}处:{e.msg}")
|
||||
exit(1)
|
||||
|
||||
@@ -410,7 +371,7 @@ class BotConfig:
|
||||
# 检查配置文件版本是否在支持范围内
|
||||
if config.INNER_VERSION in group_specifierset:
|
||||
# 如果版本在支持范围内,检查是否存在通知
|
||||
if 'notice' in include_configs[key]:
|
||||
if "notice" in include_configs[key]:
|
||||
logger.warning(include_configs[key]["notice"])
|
||||
|
||||
include_configs[key]["func"](toml_dict)
|
||||
@@ -424,7 +385,7 @@ class BotConfig:
|
||||
raise InvalidVersion(f"当前程序仅支持以下版本范围: {group_specifierset}")
|
||||
|
||||
# 如果 necessary 项目存在,而且显式声明是 False,进入特殊处理
|
||||
elif "necessary" in include_configs[key] and include_configs[key].get("necessary") == False:
|
||||
elif "necessary" in include_configs[key] and include_configs[key].get("necessary") is False:
|
||||
# 通过 pass 处理的项虽然直接忽略也是可以的,但是为了不增加理解困难,依然需要在这里显式处理
|
||||
if key == "keywords_reaction":
|
||||
pass
|
||||
|
||||
@@ -155,8 +155,8 @@ class CQCode:
|
||||
logger.error(f"最终请求失败: {str(e)}")
|
||||
time.sleep(1.5 ** retry) # 指数退避
|
||||
|
||||
except Exception as e:
|
||||
logger.exception(f"[未知错误]")
|
||||
except Exception:
|
||||
logger.exception("[未知错误]")
|
||||
return None
|
||||
|
||||
return None
|
||||
@@ -281,7 +281,7 @@ class CQCode:
|
||||
logger.debug(f"合并后的转发消息: {combined_messages}")
|
||||
return f"[转发消息:\n{combined_messages}]"
|
||||
|
||||
except Exception as e:
|
||||
except Exception:
|
||||
logger.exception("处理转发消息失败")
|
||||
return '[转发消息]'
|
||||
|
||||
|
||||
@@ -51,8 +51,8 @@ class EmojiManager:
|
||||
self._initialized = True
|
||||
# 启动时执行一次完整性检查
|
||||
self.check_emoji_file_integrity()
|
||||
except Exception as e:
|
||||
logger.exception(f"初始化表情管理器失败")
|
||||
except Exception:
|
||||
logger.exception("初始化表情管理器失败")
|
||||
|
||||
def _ensure_db(self):
|
||||
"""确保数据库已初始化"""
|
||||
@@ -87,8 +87,8 @@ class EmojiManager:
|
||||
{'_id': emoji_id},
|
||||
{'$inc': {'usage_count': 1}}
|
||||
)
|
||||
except Exception as e:
|
||||
logger.exception(f"记录表情使用失败")
|
||||
except Exception:
|
||||
logger.exception("记录表情使用失败")
|
||||
|
||||
async def get_emoji_for_text(self, text: str) -> Optional[str]:
|
||||
"""根据文本内容获取相关表情包
|
||||
@@ -117,7 +117,7 @@ class EmojiManager:
|
||||
|
||||
try:
|
||||
# 获取所有表情包
|
||||
all_emojis = list(self.db.db.emoji.find({}, {'_id': 1, 'path': 1, 'embedding': 1, 'discription': 1}))
|
||||
all_emojis = list(self.db.db.emoji.find({}, {'_id': 1, 'path': 1, 'embedding': 1, 'description': 1}))
|
||||
|
||||
if not all_emojis:
|
||||
logger.warning("数据库中没有任何表情包")
|
||||
@@ -160,9 +160,9 @@ class EmojiManager:
|
||||
{'$inc': {'usage_count': 1}}
|
||||
)
|
||||
logger.success(
|
||||
f"找到匹配的表情包: {selected_emoji.get('discription', '无描述')} (相似度: {similarity:.4f})")
|
||||
f"找到匹配的表情包: {selected_emoji.get('description', '无描述')} (相似度: {similarity:.4f})")
|
||||
# 稍微改一下文本描述,不然容易产生幻觉,描述已经包含 表情包 了
|
||||
return selected_emoji['path'], "[ %s ]" % selected_emoji.get('discription', '无描述')
|
||||
return selected_emoji['path'], "[ %s ]" % selected_emoji.get('description', '无描述')
|
||||
|
||||
except Exception as search_error:
|
||||
logger.error(f"搜索表情包失败: {str(search_error)}")
|
||||
@@ -174,7 +174,7 @@ class EmojiManager:
|
||||
logger.error(f"获取表情包失败: {str(e)}")
|
||||
return None
|
||||
|
||||
async def _get_emoji_discription(self, image_base64: str) -> str:
|
||||
async def _get_emoji_description(self, image_base64: str) -> str:
|
||||
"""获取表情包的标签"""
|
||||
try:
|
||||
prompt = '这是一个表情包,使用中文简洁的描述一下表情包的内容和表情包所表达的情感'
|
||||
@@ -203,7 +203,7 @@ class EmojiManager:
|
||||
try:
|
||||
prompt = f'这是{global_config.BOT_NICKNAME}将要发送的消息内容:\n{text}\n若要为其配上表情包,请你输出这个表情包应该表达怎样的情感,应该给人什么样的感觉,不要太简洁也不要太长,注意不要输出任何对消息内容的分析内容,只输出\"一种什么样的感觉\"中间的形容词部分。'
|
||||
|
||||
content, _ = await self.llm_emotion_judge.generate_response_async(prompt)
|
||||
content, _ = await self.llm_emotion_judge.generate_response_async(prompt,temperature=1.5)
|
||||
logger.info(f"输出描述: {content}")
|
||||
return content
|
||||
|
||||
@@ -236,36 +236,36 @@ class EmojiManager:
|
||||
continue
|
||||
|
||||
# 获取表情包的描述
|
||||
discription = await self._get_emoji_discription(image_base64)
|
||||
description = await self._get_emoji_description(image_base64)
|
||||
if global_config.EMOJI_CHECK:
|
||||
check = await self._check_emoji(image_base64)
|
||||
if '是' not in check:
|
||||
os.remove(image_path)
|
||||
logger.info(f"描述: {discription}")
|
||||
logger.info(f"描述: {description}")
|
||||
logger.info(f"其不满足过滤规则,被剔除 {check}")
|
||||
continue
|
||||
logger.info(f"check通过 {check}")
|
||||
|
||||
if discription is not None:
|
||||
embedding = await get_embedding(discription)
|
||||
if description is not None:
|
||||
embedding = await get_embedding(description)
|
||||
# 准备数据库记录
|
||||
emoji_record = {
|
||||
'filename': filename,
|
||||
'path': image_path,
|
||||
'embedding': embedding,
|
||||
'discription': discription,
|
||||
'description': description,
|
||||
'timestamp': int(time.time())
|
||||
}
|
||||
|
||||
# 保存到数据库
|
||||
self.db.db['emoji'].insert_one(emoji_record)
|
||||
logger.success(f"注册新表情包: {filename}")
|
||||
logger.info(f"描述: {discription}")
|
||||
logger.info(f"描述: {description}")
|
||||
else:
|
||||
logger.warning(f"跳过表情包: {filename}")
|
||||
|
||||
except Exception as e:
|
||||
logger.exception(f"扫描表情包失败")
|
||||
except Exception:
|
||||
logger.exception("扫描表情包失败")
|
||||
|
||||
async def _periodic_scan(self, interval_MINS: int = 10):
|
||||
"""定期扫描新表情包"""
|
||||
|
||||
@@ -94,7 +94,7 @@ class ResponseGenerator:
|
||||
try:
|
||||
content, reasoning_content = await model.generate_response(prompt)
|
||||
except Exception:
|
||||
logger.exception(f"生成回复时出错")
|
||||
logger.exception("生成回复时出错")
|
||||
return None
|
||||
|
||||
# 保存到数据库
|
||||
@@ -146,7 +146,7 @@ class ResponseGenerator:
|
||||
return ["neutral"]
|
||||
|
||||
except Exception:
|
||||
logger.exception(f"获取情感标签时出错")
|
||||
logger.exception("获取情感标签时出错")
|
||||
return ["neutral"]
|
||||
|
||||
async def _process_response(self, content: str) -> Tuple[List[str], List[str]]:
|
||||
|
||||
@@ -61,7 +61,7 @@ class Message_Sender:
|
||||
auto_escape=auto_escape
|
||||
)
|
||||
logger.debug(f"发送消息{message}成功")
|
||||
except Exception as e:
|
||||
except Exception:
|
||||
logger.exception(f"发送消息{message}失败")
|
||||
|
||||
|
||||
@@ -120,7 +120,7 @@ class MessageContainer:
|
||||
return True
|
||||
return False
|
||||
except Exception:
|
||||
logger.exception(f"移除消息时发生错误")
|
||||
logger.exception("移除消息时发生错误")
|
||||
return False
|
||||
|
||||
def has_messages(self) -> bool:
|
||||
@@ -214,7 +214,7 @@ class MessageManager:
|
||||
if not container.remove_message(msg):
|
||||
logger.warning("尝试删除不存在的消息")
|
||||
except Exception:
|
||||
logger.exception(f"处理超时消息时发生错误")
|
||||
logger.exception("处理超时消息时发生错误")
|
||||
continue
|
||||
|
||||
async def start_processor(self):
|
||||
|
||||
@@ -131,18 +131,19 @@ class PromptBuilder:
|
||||
probability_1 = global_config.PERSONALITY_1
|
||||
probability_2 = global_config.PERSONALITY_2
|
||||
probability_3 = global_config.PERSONALITY_3
|
||||
prompt_personality = ''
|
||||
|
||||
prompt_personality = f'{activate_prompt}你的网名叫{global_config.BOT_NICKNAME},你还有很多别名:{"/".join(global_config.BOT_ALIAS_NAMES)},'
|
||||
personality_choice = random.random()
|
||||
if personality_choice < probability_1: # 第一种人格
|
||||
prompt_personality = f'''{activate_prompt}你的网名叫{global_config.BOT_NICKNAME},{personality[0]}, 你正在浏览qq群,{promt_info_prompt},
|
||||
prompt_personality += f'''{personality[0]}, 你正在浏览qq群,{promt_info_prompt},
|
||||
现在请你给出日常且口语化的回复,平淡一些,尽量简短一些。{keywords_reaction_prompt}
|
||||
请注意把握群里的聊天内容,不要刻意突出自身学科背景,不要回复的太有条理,可以有个性。'''
|
||||
elif personality_choice < probability_1 + probability_2: # 第二种人格
|
||||
prompt_personality = f'''{activate_prompt}你的网名叫{global_config.BOT_NICKNAME},{personality[1]}, 你正在浏览qq群,{promt_info_prompt},
|
||||
prompt_personality += f'''{personality[1]}, 你正在浏览qq群,{promt_info_prompt},
|
||||
现在请你给出日常且口语化的回复,请表现你自己的见解,不要一昧迎合,尽量简短一些。{keywords_reaction_prompt}
|
||||
请你表达自己的见解和观点。可以有个性。'''
|
||||
else: # 第三种人格
|
||||
prompt_personality = f'''{activate_prompt}你的网名叫{global_config.BOT_NICKNAME},{personality[2]}, 你正在浏览qq群,{promt_info_prompt},
|
||||
prompt_personality += f'''{personality[2]}, 你正在浏览qq群,{promt_info_prompt},
|
||||
现在请你给出日常且口语化的回复,请表现你自己的见解,不要一昧迎合,尽量简短一些。{keywords_reaction_prompt}
|
||||
请你表达自己的见解和观点。可以有个性。'''
|
||||
|
||||
|
||||
@@ -45,6 +45,6 @@ class MessageStorage:
|
||||
|
||||
self.db.db.messages.insert_one(message_data)
|
||||
except Exception:
|
||||
logger.exception(f"存储消息失败")
|
||||
logger.exception("存储消息失败")
|
||||
|
||||
# 如果需要其他存储相关的函数,可以在这里添加
|
||||
|
||||
@@ -53,19 +53,13 @@ def db_message_to_str(message_dict: Dict) -> str:
|
||||
return result
|
||||
|
||||
|
||||
def is_mentioned_bot_in_message(message: Message) -> bool:
|
||||
"""检查消息是否提到了机器人"""
|
||||
keywords = [global_config.BOT_NICKNAME]
|
||||
for keyword in keywords:
|
||||
if keyword in message.processed_plain_text:
|
||||
return True
|
||||
return False
|
||||
|
||||
|
||||
def is_mentioned_bot_in_txt(message: str) -> bool:
|
||||
"""检查消息是否提到了机器人"""
|
||||
keywords = [global_config.BOT_NICKNAME]
|
||||
for keyword in keywords:
|
||||
if global_config.BOT_NICKNAME is None:
|
||||
return True
|
||||
if global_config.BOT_NICKNAME in message:
|
||||
return True
|
||||
for keyword in global_config.BOT_ALIAS_NAMES:
|
||||
if keyword in message:
|
||||
return True
|
||||
return False
|
||||
|
||||
@@ -79,7 +79,7 @@ class KnowledgeLibrary:
|
||||
content = f.read()
|
||||
|
||||
# 按1024字符分段
|
||||
segments = [content[i:i+600] for i in range(0, len(content), 600)]
|
||||
segments = [content[i:i+600] for i in range(0, len(content), 300)]
|
||||
|
||||
# 处理每个分段
|
||||
for segment in segments:
|
||||
|
||||
@@ -25,26 +25,46 @@ class Memory_graph:
|
||||
self.db = Database.get_instance()
|
||||
|
||||
def connect_dot(self, concept1, concept2):
|
||||
# 如果边已存在,增加 strength
|
||||
# 避免自连接
|
||||
if concept1 == concept2:
|
||||
return
|
||||
|
||||
current_time = datetime.datetime.now().timestamp()
|
||||
|
||||
# 如果边已存在,增加 strength
|
||||
if self.G.has_edge(concept1, concept2):
|
||||
self.G[concept1][concept2]['strength'] = self.G[concept1][concept2].get('strength', 1) + 1
|
||||
# 更新最后修改时间
|
||||
self.G[concept1][concept2]['last_modified'] = current_time
|
||||
else:
|
||||
# 如果是新边,初始化 strength 为 1
|
||||
self.G.add_edge(concept1, concept2, strength=1)
|
||||
# 如果是新边,初始化 strength 为 1
|
||||
self.G.add_edge(concept1, concept2,
|
||||
strength=1,
|
||||
created_time=current_time, # 添加创建时间
|
||||
last_modified=current_time) # 添加最后修改时间
|
||||
|
||||
def add_dot(self, concept, memory):
|
||||
current_time = datetime.datetime.now().timestamp()
|
||||
|
||||
if concept in self.G:
|
||||
# 如果节点已存在,将新记忆添加到现有列表中
|
||||
if 'memory_items' in self.G.nodes[concept]:
|
||||
if not isinstance(self.G.nodes[concept]['memory_items'], list):
|
||||
# 如果当前不是列表,将其转换为列表
|
||||
self.G.nodes[concept]['memory_items'] = [self.G.nodes[concept]['memory_items']]
|
||||
self.G.nodes[concept]['memory_items'].append(memory)
|
||||
# 更新最后修改时间
|
||||
self.G.nodes[concept]['last_modified'] = current_time
|
||||
else:
|
||||
self.G.nodes[concept]['memory_items'] = [memory]
|
||||
# 如果节点存在但没有memory_items,说明是第一次添加memory,设置created_time
|
||||
if 'created_time' not in self.G.nodes[concept]:
|
||||
self.G.nodes[concept]['created_time'] = current_time
|
||||
self.G.nodes[concept]['last_modified'] = current_time
|
||||
else:
|
||||
# 如果是新节点,创建新的记忆列表
|
||||
self.G.add_node(concept, memory_items=[memory])
|
||||
# 如果是新节点,创建新的记忆列表
|
||||
self.G.add_node(concept,
|
||||
memory_items=[memory],
|
||||
created_time=current_time, # 添加创建时间
|
||||
last_modified=current_time) # 添加最后修改时间
|
||||
|
||||
def get_dot(self, concept):
|
||||
# 检查节点是否存在于图中
|
||||
@@ -191,15 +211,11 @@ class Hippocampus:
|
||||
async def memory_compress(self, messages: list, compress_rate=0.1):
|
||||
"""压缩消息记录为记忆
|
||||
|
||||
Args:
|
||||
messages: 消息记录字典列表,每个字典包含text和time字段
|
||||
compress_rate: 压缩率
|
||||
|
||||
Returns:
|
||||
set: (话题, 记忆) 元组集合
|
||||
tuple: (压缩记忆集合, 相似主题字典)
|
||||
"""
|
||||
if not messages:
|
||||
return set()
|
||||
return set(), {}
|
||||
|
||||
# 合并消息文本,同时保留时间信息
|
||||
input_text = ""
|
||||
@@ -246,12 +262,33 @@ class Hippocampus:
|
||||
|
||||
# 等待所有任务完成
|
||||
compressed_memory = set()
|
||||
similar_topics_dict = {} # 存储每个话题的相似主题列表
|
||||
for topic, task in tasks:
|
||||
response = await task
|
||||
if response:
|
||||
compressed_memory.add((topic, response[0]))
|
||||
# 为每个话题查找相似的已存在主题
|
||||
existing_topics = list(self.memory_graph.G.nodes())
|
||||
similar_topics = []
|
||||
|
||||
for existing_topic in existing_topics:
|
||||
topic_words = set(jieba.cut(topic))
|
||||
existing_words = set(jieba.cut(existing_topic))
|
||||
|
||||
all_words = topic_words | existing_words
|
||||
v1 = [1 if word in topic_words else 0 for word in all_words]
|
||||
v2 = [1 if word in existing_words else 0 for word in all_words]
|
||||
|
||||
similarity = cosine_similarity(v1, v2)
|
||||
|
||||
if similarity >= 0.6:
|
||||
similar_topics.append((existing_topic, similarity))
|
||||
|
||||
similar_topics.sort(key=lambda x: x[1], reverse=True)
|
||||
similar_topics = similar_topics[:5]
|
||||
similar_topics_dict[topic] = similar_topics
|
||||
|
||||
return compressed_memory
|
||||
return compressed_memory, similar_topics_dict
|
||||
|
||||
def calculate_topic_num(self, text, compress_rate):
|
||||
"""计算文本的话题数量"""
|
||||
@@ -265,33 +302,40 @@ class Hippocampus:
|
||||
return topic_num
|
||||
|
||||
async def operation_build_memory(self, chat_size=20):
|
||||
# 最近消息获取频率
|
||||
time_frequency = {'near': 2, 'mid': 4, 'far': 2}
|
||||
memory_sample = self.get_memory_sample(chat_size, time_frequency)
|
||||
|
||||
for i, input_text in enumerate(memory_sample, 1):
|
||||
# 加载进度可视化
|
||||
time_frequency = {'near': 3, 'mid': 8, 'far': 5}
|
||||
memory_samples = self.get_memory_sample(chat_size, time_frequency)
|
||||
|
||||
for i, messages in enumerate(memory_samples, 1):
|
||||
all_topics = []
|
||||
progress = (i / len(memory_sample)) * 100
|
||||
# 加载进度可视化
|
||||
progress = (i / len(memory_samples)) * 100
|
||||
bar_length = 30
|
||||
filled_length = int(bar_length * i // len(memory_sample))
|
||||
filled_length = int(bar_length * i // len(memory_samples))
|
||||
bar = '█' * filled_length + '-' * (bar_length - filled_length)
|
||||
logger.debug(f"进度: [{bar}] {progress:.1f}% ({i}/{len(memory_sample)})")
|
||||
logger.debug(f"进度: [{bar}] {progress:.1f}% ({i}/{len(memory_samples)})")
|
||||
|
||||
# 生成压缩后记忆 ,表现为 (话题,记忆) 的元组
|
||||
compressed_memory = set()
|
||||
compress_rate = 0.1
|
||||
compressed_memory = await self.memory_compress(input_text, compress_rate)
|
||||
logger.info(f"压缩后记忆数量: {len(compressed_memory)}")
|
||||
|
||||
# 将记忆加入到图谱中
|
||||
compressed_memory, similar_topics_dict = await self.memory_compress(messages, compress_rate)
|
||||
logger.info(f"压缩后记忆数量: {len(compressed_memory)},似曾相识的话题: {len(similar_topics_dict)}")
|
||||
|
||||
for topic, memory in compressed_memory:
|
||||
logger.info(f"添加节点: {topic}")
|
||||
self.memory_graph.add_dot(topic, memory)
|
||||
all_topics.append(topic) # 收集所有话题
|
||||
all_topics.append(topic)
|
||||
|
||||
# 连接相似的已存在主题
|
||||
if topic in similar_topics_dict:
|
||||
similar_topics = similar_topics_dict[topic]
|
||||
for similar_topic, similarity in similar_topics:
|
||||
if topic != similar_topic:
|
||||
strength = int(similarity * 10)
|
||||
logger.info(f"连接相似节点: {topic} 和 {similar_topic} (强度: {strength})")
|
||||
self.memory_graph.G.add_edge(topic, similar_topic, strength=strength)
|
||||
|
||||
# 连接同批次的相关话题
|
||||
for i in range(len(all_topics)):
|
||||
for j in range(i + 1, len(all_topics)):
|
||||
logger.info(f"连接节点: {all_topics[i]} 和 {all_topics[j]}")
|
||||
logger.info(f"连接同批次节点: {all_topics[i]} 和 {all_topics[j]}")
|
||||
self.memory_graph.connect_dot(all_topics[i], all_topics[j])
|
||||
|
||||
self.sync_memory_to_db()
|
||||
@@ -302,7 +346,7 @@ class Hippocampus:
|
||||
db_nodes = list(self.memory_graph.db.db.graph_data.nodes.find())
|
||||
memory_nodes = list(self.memory_graph.G.nodes(data=True))
|
||||
|
||||
# 转换数据库节点为字典格式,方便查找
|
||||
# 转换数据库节点为字典格式,方便查找
|
||||
db_nodes_dict = {node['concept']: node for node in db_nodes}
|
||||
|
||||
# 检查并更新节点
|
||||
@@ -313,13 +357,19 @@ class Hippocampus:
|
||||
|
||||
# 计算内存中节点的特征值
|
||||
memory_hash = self.calculate_node_hash(concept, memory_items)
|
||||
|
||||
# 获取时间信息
|
||||
created_time = data.get('created_time', datetime.datetime.now().timestamp())
|
||||
last_modified = data.get('last_modified', datetime.datetime.now().timestamp())
|
||||
|
||||
if concept not in db_nodes_dict:
|
||||
# 数据库中缺少的节点,添加
|
||||
# 数据库中缺少的节点,添加
|
||||
node_data = {
|
||||
'concept': concept,
|
||||
'memory_items': memory_items,
|
||||
'hash': memory_hash
|
||||
'hash': memory_hash,
|
||||
'created_time': created_time,
|
||||
'last_modified': last_modified
|
||||
}
|
||||
self.memory_graph.db.db.graph_data.nodes.insert_one(node_data)
|
||||
else:
|
||||
@@ -327,25 +377,21 @@ class Hippocampus:
|
||||
db_node = db_nodes_dict[concept]
|
||||
db_hash = db_node.get('hash', None)
|
||||
|
||||
# 如果特征值不同,则更新节点
|
||||
# 如果特征值不同,则更新节点
|
||||
if db_hash != memory_hash:
|
||||
self.memory_graph.db.db.graph_data.nodes.update_one(
|
||||
{'concept': concept},
|
||||
{'$set': {
|
||||
'memory_items': memory_items,
|
||||
'hash': memory_hash
|
||||
'hash': memory_hash,
|
||||
'created_time': created_time,
|
||||
'last_modified': last_modified
|
||||
}}
|
||||
)
|
||||
|
||||
# 检查并删除数据库中多余的节点
|
||||
memory_concepts = set(node[0] for node in memory_nodes)
|
||||
for db_node in db_nodes:
|
||||
if db_node['concept'] not in memory_concepts:
|
||||
self.memory_graph.db.db.graph_data.nodes.delete_one({'concept': db_node['concept']})
|
||||
|
||||
# 处理边的信息
|
||||
db_edges = list(self.memory_graph.db.db.graph_data.edges.find())
|
||||
memory_edges = list(self.memory_graph.G.edges())
|
||||
memory_edges = list(self.memory_graph.G.edges(data=True))
|
||||
|
||||
# 创建边的哈希值字典
|
||||
db_edge_dict = {}
|
||||
@@ -357,10 +403,14 @@ class Hippocampus:
|
||||
}
|
||||
|
||||
# 检查并更新边
|
||||
for source, target in memory_edges:
|
||||
for source, target, data in memory_edges:
|
||||
edge_hash = self.calculate_edge_hash(source, target)
|
||||
edge_key = (source, target)
|
||||
strength = self.memory_graph.G[source][target].get('strength', 1)
|
||||
strength = data.get('strength', 1)
|
||||
|
||||
# 获取边的时间信息
|
||||
created_time = data.get('created_time', datetime.datetime.now().timestamp())
|
||||
last_modified = data.get('last_modified', datetime.datetime.now().timestamp())
|
||||
|
||||
if edge_key not in db_edge_dict:
|
||||
# 添加新边
|
||||
@@ -368,7 +418,9 @@ class Hippocampus:
|
||||
'source': source,
|
||||
'target': target,
|
||||
'strength': strength,
|
||||
'hash': edge_hash
|
||||
'hash': edge_hash,
|
||||
'created_time': created_time,
|
||||
'last_modified': last_modified
|
||||
}
|
||||
self.memory_graph.db.db.graph_data.edges.insert_one(edge_data)
|
||||
else:
|
||||
@@ -378,20 +430,12 @@ class Hippocampus:
|
||||
{'source': source, 'target': target},
|
||||
{'$set': {
|
||||
'hash': edge_hash,
|
||||
'strength': strength
|
||||
'strength': strength,
|
||||
'created_time': created_time,
|
||||
'last_modified': last_modified
|
||||
}}
|
||||
)
|
||||
|
||||
# 删除多余的边
|
||||
memory_edge_set = set(memory_edges)
|
||||
for edge_key in db_edge_dict:
|
||||
if edge_key not in memory_edge_set:
|
||||
source, target = edge_key
|
||||
self.memory_graph.db.db.graph_data.edges.delete_one({
|
||||
'source': source,
|
||||
'target': target
|
||||
})
|
||||
|
||||
def sync_memory_from_db(self):
|
||||
"""从数据库同步数据到内存中的图结构"""
|
||||
# 清空当前图
|
||||
@@ -405,61 +449,107 @@ class Hippocampus:
|
||||
# 确保memory_items是列表
|
||||
if not isinstance(memory_items, list):
|
||||
memory_items = [memory_items] if memory_items else []
|
||||
|
||||
# 获取时间信息
|
||||
created_time = node.get('created_time', datetime.datetime.now().timestamp())
|
||||
last_modified = node.get('last_modified', datetime.datetime.now().timestamp())
|
||||
|
||||
# 添加节点到图中
|
||||
self.memory_graph.G.add_node(concept, memory_items=memory_items)
|
||||
self.memory_graph.G.add_node(concept,
|
||||
memory_items=memory_items,
|
||||
created_time=created_time,
|
||||
last_modified=last_modified)
|
||||
|
||||
# 从数据库加载所有边
|
||||
edges = self.memory_graph.db.db.graph_data.edges.find()
|
||||
for edge in edges:
|
||||
source = edge['source']
|
||||
target = edge['target']
|
||||
strength = edge.get('strength', 1) # 获取 strength,默认为 1
|
||||
strength = edge.get('strength', 1) # 获取 strength,默认为 1
|
||||
|
||||
# 获取时间信息
|
||||
created_time = edge.get('created_time', datetime.datetime.now().timestamp())
|
||||
last_modified = edge.get('last_modified', datetime.datetime.now().timestamp())
|
||||
|
||||
# 只有当源节点和目标节点都存在时才添加边
|
||||
if source in self.memory_graph.G and target in self.memory_graph.G:
|
||||
self.memory_graph.G.add_edge(source, target, strength=strength)
|
||||
self.memory_graph.G.add_edge(source, target,
|
||||
strength=strength,
|
||||
created_time=created_time,
|
||||
last_modified=last_modified)
|
||||
|
||||
async def operation_forget_topic(self, percentage=0.1):
|
||||
"""随机选择图中一定比例的节点进行检查,根据条件决定是否遗忘"""
|
||||
# 获取所有节点
|
||||
"""随机选择图中一定比例的节点和边进行检查,根据时间条件决定是否遗忘"""
|
||||
all_nodes = list(self.memory_graph.G.nodes())
|
||||
# 计算要检查的节点数量
|
||||
check_count = max(1, int(len(all_nodes) * percentage))
|
||||
# 随机选择节点
|
||||
nodes_to_check = random.sample(all_nodes, check_count)
|
||||
|
||||
forgotten_nodes = []
|
||||
all_edges = list(self.memory_graph.G.edges())
|
||||
|
||||
check_nodes_count = max(1, int(len(all_nodes) * percentage))
|
||||
check_edges_count = max(1, int(len(all_edges) * percentage))
|
||||
|
||||
nodes_to_check = random.sample(all_nodes, check_nodes_count)
|
||||
edges_to_check = random.sample(all_edges, check_edges_count)
|
||||
|
||||
edge_changes = {'weakened': 0, 'removed': 0}
|
||||
node_changes = {'reduced': 0, 'removed': 0}
|
||||
|
||||
current_time = datetime.datetime.now().timestamp()
|
||||
|
||||
# 检查并遗忘连接
|
||||
logger.info("开始检查连接...")
|
||||
for source, target in edges_to_check:
|
||||
edge_data = self.memory_graph.G[source][target]
|
||||
last_modified = edge_data.get('last_modified')
|
||||
# print(source,target)
|
||||
# print(f"float(last_modified):{float(last_modified)}" )
|
||||
# print(f"current_time:{current_time}")
|
||||
# print(f"current_time - last_modified:{current_time - last_modified}")
|
||||
if current_time - last_modified > 3600*24: # test
|
||||
current_strength = edge_data.get('strength', 1)
|
||||
new_strength = current_strength - 1
|
||||
|
||||
if new_strength <= 0:
|
||||
self.memory_graph.G.remove_edge(source, target)
|
||||
edge_changes['removed'] += 1
|
||||
logger.info(f"\033[1;31m[连接移除]\033[0m {source} - {target}")
|
||||
else:
|
||||
edge_data['strength'] = new_strength
|
||||
edge_data['last_modified'] = current_time
|
||||
edge_changes['weakened'] += 1
|
||||
logger.info(f"\033[1;34m[连接减弱]\033[0m {source} - {target} (强度: {current_strength} -> {new_strength})")
|
||||
|
||||
# 检查并遗忘话题
|
||||
logger.info("开始检查节点...")
|
||||
for node in nodes_to_check:
|
||||
# 获取节点的连接数
|
||||
connections = self.memory_graph.G.degree(node)
|
||||
|
||||
# 获取节点的内容条数
|
||||
memory_items = self.memory_graph.G.nodes[node].get('memory_items', [])
|
||||
if not isinstance(memory_items, list):
|
||||
memory_items = [memory_items] if memory_items else []
|
||||
content_count = len(memory_items)
|
||||
|
||||
# 检查连接强度
|
||||
weak_connections = True
|
||||
if connections > 1: # 只有当连接数大于1时才检查强度
|
||||
for neighbor in self.memory_graph.G.neighbors(node):
|
||||
strength = self.memory_graph.G[node][neighbor].get('strength', 1)
|
||||
if strength > 2:
|
||||
weak_connections = False
|
||||
break
|
||||
|
||||
# 如果满足遗忘条件
|
||||
if (connections <= 1 and weak_connections) or content_count <= 2:
|
||||
removed_item = self.memory_graph.forget_topic(node)
|
||||
if removed_item:
|
||||
forgotten_nodes.append((node, removed_item))
|
||||
logger.debug(f"遗忘节点 {node} 的记忆: {removed_item}")
|
||||
|
||||
# 同步到数据库
|
||||
if forgotten_nodes:
|
||||
node_data = self.memory_graph.G.nodes[node]
|
||||
last_modified = node_data.get('last_modified', current_time)
|
||||
|
||||
if current_time - last_modified > 3600*24: # test
|
||||
memory_items = node_data.get('memory_items', [])
|
||||
if not isinstance(memory_items, list):
|
||||
memory_items = [memory_items] if memory_items else []
|
||||
|
||||
if memory_items:
|
||||
current_count = len(memory_items)
|
||||
removed_item = random.choice(memory_items)
|
||||
memory_items.remove(removed_item)
|
||||
|
||||
if memory_items:
|
||||
self.memory_graph.G.nodes[node]['memory_items'] = memory_items
|
||||
self.memory_graph.G.nodes[node]['last_modified'] = current_time
|
||||
node_changes['reduced'] += 1
|
||||
logger.info(f"\033[1;33m[记忆减少]\033[0m {node} (记忆数量: {current_count} -> {len(memory_items)})")
|
||||
else:
|
||||
self.memory_graph.G.remove_node(node)
|
||||
node_changes['removed'] += 1
|
||||
logger.info(f"\033[1;31m[节点移除]\033[0m {node}")
|
||||
|
||||
if any(count > 0 for count in edge_changes.values()) or any(count > 0 for count in node_changes.values()):
|
||||
self.sync_memory_to_db()
|
||||
logger.debug(f"完成遗忘操作,共遗忘 {len(forgotten_nodes)} 个节点的记忆")
|
||||
logger.info("\n遗忘操作统计:")
|
||||
logger.info(f"连接变化: {edge_changes['weakened']} 个减弱, {edge_changes['removed']} 个移除")
|
||||
logger.info(f"节点变化: {node_changes['reduced']} 个减少记忆, {node_changes['removed']} 个移除")
|
||||
else:
|
||||
logger.debug("本次检查没有节点满足遗忘条件")
|
||||
logger.info("\n本次检查没有节点或连接满足遗忘条件")
|
||||
|
||||
async def merge_memory(self, topic):
|
||||
"""
|
||||
@@ -486,7 +576,7 @@ class Hippocampus:
|
||||
logger.debug(f"选择的记忆:\n{merged_text}")
|
||||
|
||||
# 使用memory_compress生成新的压缩记忆
|
||||
compressed_memories = await self.memory_compress(selected_memories, 0.1)
|
||||
compressed_memories, _ = await self.memory_compress(selected_memories, 0.1)
|
||||
|
||||
# 从原记忆列表中移除被选中的记忆
|
||||
for memory in selected_memories:
|
||||
|
||||
1208
src/plugins/memory_system/memory_test1.py
Normal file
1208
src/plugins/memory_system/memory_test1.py
Normal file
File diff suppressed because it is too large
Load Diff
@@ -44,8 +44,8 @@ class LLM_request:
|
||||
self.db.db.llm_usage.create_index([("model_name", 1)])
|
||||
self.db.db.llm_usage.create_index([("user_id", 1)])
|
||||
self.db.db.llm_usage.create_index([("request_type", 1)])
|
||||
except Exception as e:
|
||||
logger.error(f"创建数据库索引失败")
|
||||
except Exception:
|
||||
logger.error("创建数据库索引失败")
|
||||
|
||||
def _record_usage(self, prompt_tokens: int, completion_tokens: int, total_tokens: int,
|
||||
user_id: str = "system", request_type: str = "chat",
|
||||
@@ -80,7 +80,7 @@ class LLM_request:
|
||||
f"总计: {total_tokens}"
|
||||
)
|
||||
except Exception:
|
||||
logger.error(f"记录token使用情况失败")
|
||||
logger.error("记录token使用情况失败")
|
||||
|
||||
def _calculate_cost(self, prompt_tokens: int, completion_tokens: int) -> float:
|
||||
"""计算API调用成本
|
||||
@@ -194,7 +194,7 @@ class LLM_request:
|
||||
if hasattr(global_config, 'llm_normal') and global_config.llm_normal.get(
|
||||
'name') == old_model_name:
|
||||
global_config.llm_normal['name'] = self.model_name
|
||||
logger.warning(f"已将全局配置中的 llm_normal 模型降级")
|
||||
logger.warning("已将全局配置中的 llm_normal 模型降级")
|
||||
|
||||
# 更新payload中的模型名
|
||||
if payload and 'model' in payload:
|
||||
@@ -227,7 +227,7 @@ class LLM_request:
|
||||
delta_content = ""
|
||||
accumulated_content += delta_content
|
||||
except Exception:
|
||||
logger.exception(f"解析流式输出错")
|
||||
logger.exception("解析流式输出错")
|
||||
content = accumulated_content
|
||||
reasoning_content = ""
|
||||
think_match = re.search(r'<think>(.*?)</think>', content, re.DOTALL)
|
||||
@@ -355,7 +355,7 @@ class LLM_request:
|
||||
"""构建请求头"""
|
||||
if no_key:
|
||||
return {
|
||||
"Authorization": f"Bearer **********",
|
||||
"Authorization": "Bearer **********",
|
||||
"Content-Type": "application/json"
|
||||
}
|
||||
else:
|
||||
|
||||
@@ -68,7 +68,7 @@ class ScheduleGenerator:
|
||||
1. 早上的学习和工作安排
|
||||
2. 下午的活动和任务
|
||||
3. 晚上的计划和休息时间
|
||||
请按照时间顺序列出具体时间点和对应的活动,用一个时间点而不是时间段来表示时间,用JSON格式返回日程表,仅返回内容,不要返回注释,时间采用24小时制,格式为{"时间": "活动","时间": "活动",...}。"""
|
||||
请按照时间顺序列出具体时间点和对应的活动,用一个时间点而不是时间段来表示时间,用JSON格式返回日程表,仅返回内容,不要返回注释,不要添加任何markdown或代码块样式,时间采用24小时制,格式为{"时间": "活动","时间": "活动",...}。"""
|
||||
|
||||
try:
|
||||
schedule_text, _ = await self.llm_scheduler.generate_response(prompt)
|
||||
@@ -91,7 +91,7 @@ class ScheduleGenerator:
|
||||
try:
|
||||
schedule_dict = json.loads(schedule_text)
|
||||
return schedule_dict
|
||||
except json.JSONDecodeError as e:
|
||||
except json.JSONDecodeError:
|
||||
logger.exception("解析日程失败: {}".format(schedule_text))
|
||||
return False
|
||||
|
||||
|
||||
@@ -155,7 +155,7 @@ class LLMStatistics:
|
||||
all_stats = self._collect_all_statistics()
|
||||
self._save_statistics(all_stats)
|
||||
except Exception:
|
||||
logger.exception(f"统计数据处理失败")
|
||||
logger.exception("统计数据处理失败")
|
||||
|
||||
# 等待1分钟
|
||||
for _ in range(60):
|
||||
|
||||
Reference in New Issue
Block a user