Merge pull request #706 from UnCLAS-Prommer/dev
彻底大修_execute_request炸程序的问题,同时修了一些typo
This commit is contained in:
@@ -18,7 +18,7 @@ heartflow_config = LogConfig(
|
||||
logger = get_module_logger("heartflow", config=heartflow_config)
|
||||
|
||||
|
||||
class CuttentState:
|
||||
class CurrentState:
|
||||
def __init__(self):
|
||||
self.willing = 0
|
||||
self.current_state_info = ""
|
||||
@@ -34,7 +34,7 @@ class Heartflow:
|
||||
def __init__(self):
|
||||
self.current_mind = "你什么也没想"
|
||||
self.past_mind = []
|
||||
self.current_state: CuttentState = CuttentState()
|
||||
self.current_state: CurrentState = CurrentState()
|
||||
self.llm_model = LLM_request(
|
||||
model=global_config.llm_heartflow, temperature=0.6, max_tokens=1000, request_type="heart_flow"
|
||||
)
|
||||
@@ -102,7 +102,11 @@ class Heartflow:
|
||||
current_thinking_info = self.current_mind
|
||||
mood_info = self.current_state.mood
|
||||
related_memory_info = "memory"
|
||||
sub_flows_info = await self.get_all_subheartflows_minds()
|
||||
try:
|
||||
sub_flows_info = await self.get_all_subheartflows_minds()
|
||||
except Exception as e:
|
||||
logger.error(f"获取子心流的想法失败: {e}")
|
||||
return
|
||||
|
||||
schedule_info = bot_schedule.get_current_num_task(num=4, time_info=True)
|
||||
|
||||
@@ -111,26 +115,29 @@ class Heartflow:
|
||||
prompt += f"{personality_info}\n"
|
||||
prompt += f"你想起来{related_memory_info}。"
|
||||
prompt += f"刚刚你的主要想法是{current_thinking_info}。"
|
||||
prompt += f"你还有一些小想法,因为你在参加不同的群聊天,是你正在做的事情:{sub_flows_info}\n"
|
||||
prompt += f"你还有一些小想法,因为你在参加不同的群聊天,这是你正在做的事情:{sub_flows_info}\n"
|
||||
prompt += f"你现在{mood_info}。"
|
||||
prompt += "现在你接下去继续思考,产生新的想法,但是要基于原有的主要想法,不要分点输出,"
|
||||
prompt += "输出连贯的内心独白,不要太长,但是记得结合上述的消息,关注新内容:"
|
||||
|
||||
reponse, reasoning_content = await self.llm_model.generate_response_async(prompt)
|
||||
try:
|
||||
response, reasoning_content = await self.llm_model.generate_response_async(prompt)
|
||||
except Exception as e:
|
||||
logger.error(f"内心独白获取失败: {e}")
|
||||
return
|
||||
self.update_current_mind(response)
|
||||
|
||||
self.update_current_mind(reponse)
|
||||
|
||||
self.current_mind = reponse
|
||||
self.current_mind = response
|
||||
logger.info(f"麦麦的总体脑内状态:{self.current_mind}")
|
||||
# logger.info("麦麦想了想,当前活动:")
|
||||
# await bot_schedule.move_doing(self.current_mind)
|
||||
|
||||
for _, subheartflow in self._subheartflows.items():
|
||||
subheartflow.main_heartflow_info = reponse
|
||||
subheartflow.main_heartflow_info = response
|
||||
|
||||
def update_current_mind(self, reponse):
|
||||
def update_current_mind(self, response):
|
||||
self.past_mind.append(self.current_mind)
|
||||
self.current_mind = reponse
|
||||
self.current_mind = response
|
||||
|
||||
async def get_all_subheartflows_minds(self):
|
||||
sub_minds = ""
|
||||
@@ -167,9 +174,9 @@ class Heartflow:
|
||||
prompt += """现在请你总结这些聊天内容,注意关注聊天内容对原有的想法的影响,输出连贯的内心独白
|
||||
不要太长,但是记得结合上述的消息,要记得你的人设,关注新内容:"""
|
||||
|
||||
reponse, reasoning_content = await self.llm_model.generate_response_async(prompt)
|
||||
response, reasoning_content = await self.llm_model.generate_response_async(prompt)
|
||||
|
||||
return reponse
|
||||
return response
|
||||
|
||||
def create_subheartflow(self, subheartflow_id):
|
||||
"""
|
||||
|
||||
@@ -142,7 +142,11 @@ class ChattingObservation(Observation):
|
||||
prompt += """以上是群里在进行的聊天,请你对这个聊天内容进行总结,总结内容要包含聊天的大致内容,
|
||||
以及聊天中的一些重要信息,注意识别你自己的发言,记得不要分点,不要太长,精简的概括成一段文本\n"""
|
||||
prompt += "总结概括:"
|
||||
self.observe_info, reasoning_content = await self.llm_summary.generate_response_async(prompt)
|
||||
try:
|
||||
self.observe_info, reasoning_content = await self.llm_summary.generate_response_async(prompt)
|
||||
except Exception as e:
|
||||
print(f"获取总结失败: {e}")
|
||||
self.observe_info = ""
|
||||
print(f"prompt:{prompt}")
|
||||
print(f"self.observe_info:{self.observe_info}")
|
||||
|
||||
|
||||
@@ -22,7 +22,7 @@ subheartflow_config = LogConfig(
|
||||
logger = get_module_logger("subheartflow", config=subheartflow_config)
|
||||
|
||||
|
||||
class CuttentState:
|
||||
class CurrentState:
|
||||
def __init__(self):
|
||||
self.willing = 0
|
||||
self.current_state_info = ""
|
||||
@@ -40,7 +40,7 @@ class SubHeartflow:
|
||||
|
||||
self.current_mind = ""
|
||||
self.past_mind = []
|
||||
self.current_state: CuttentState = CuttentState()
|
||||
self.current_state: CurrentState = CurrentState()
|
||||
self.llm_model = LLM_request(
|
||||
model=global_config.llm_sub_heartflow, temperature=0.5, max_tokens=600, request_type="sub_heart_flow"
|
||||
)
|
||||
@@ -143,11 +143,11 @@ class SubHeartflow:
|
||||
# prompt += f"你现在{mood_info}\n"
|
||||
# prompt += "现在你接下去继续思考,产生新的想法,不要分点输出,输出连贯的内心独白,不要太长,"
|
||||
# prompt += "但是记得结合上述的消息,要记得维持住你的人设,关注聊天和新内容,不要思考太多:"
|
||||
# reponse, reasoning_content = await self.llm_model.generate_response_async(prompt)
|
||||
# response, reasoning_content = await self.llm_model.generate_response_async(prompt)
|
||||
|
||||
# self.update_current_mind(reponse)
|
||||
# self.update_current_mind(response)
|
||||
|
||||
# self.current_mind = reponse
|
||||
# self.current_mind = response
|
||||
# logger.debug(f"prompt:\n{prompt}\n")
|
||||
# logger.info(f"麦麦的脑内状态:{self.current_mind}")
|
||||
|
||||
@@ -217,9 +217,15 @@ class SubHeartflow:
|
||||
prompt += f"你注意到有人刚刚说:{message_txt}\n"
|
||||
prompt += "现在你接下去继续思考,产生新的想法,不要分点输出,输出连贯的内心独白,不要太长,"
|
||||
prompt += "记得结合上述的消息,要记得维持住你的人设,注意自己的名字,关注有人刚刚说的内容,不要思考太多:"
|
||||
reponse, reasoning_content = await self.llm_model.generate_response_async(prompt)
|
||||
|
||||
self.update_current_mind(reponse)
|
||||
try:
|
||||
response, reasoning_content = await self.llm_model.generate_response_async(prompt)
|
||||
except Exception as e:
|
||||
logger.error(f"回复前内心独白获取失败: {e}")
|
||||
response = ""
|
||||
self.update_current_mind(response)
|
||||
|
||||
self.current_mind = response
|
||||
|
||||
logger.debug(f"prompt:\n{prompt}\n")
|
||||
logger.info(f"麦麦的思考前脑内状态:{self.current_mind}")
|
||||
@@ -264,12 +270,14 @@ class SubHeartflow:
|
||||
prompt += f"你现在{mood_info}"
|
||||
prompt += "现在你接下去继续思考,产生新的想法,记得保留你刚刚的想法,不要分点输出,输出连贯的内心独白"
|
||||
prompt += "不要太长,但是记得结合上述的消息,要记得你的人设,关注聊天和新内容,关注你回复的内容,不要思考太多:"
|
||||
try:
|
||||
response, reasoning_content = await self.llm_model.generate_response_async(prompt)
|
||||
except Exception as e:
|
||||
logger.error(f"回复后内心独白获取失败: {e}")
|
||||
response = ""
|
||||
self.update_current_mind(response)
|
||||
|
||||
reponse, reasoning_content = await self.llm_model.generate_response_async(prompt)
|
||||
|
||||
self.update_current_mind(reponse)
|
||||
|
||||
self.current_mind = reponse
|
||||
self.current_mind = response
|
||||
logger.info(f"麦麦回复后的脑内状态:{self.current_mind}")
|
||||
|
||||
self.last_reply_time = time.time()
|
||||
@@ -302,10 +310,13 @@ class SubHeartflow:
|
||||
prompt += f"你现在{mood_info}。"
|
||||
prompt += "现在请你思考,你想不想发言或者回复,请你输出一个数字,1-10,1表示非常不想,10表示非常想。"
|
||||
prompt += "请你用<>包裹你的回复意愿,输出<1>表示不想回复,输出<10>表示非常想回复。请你考虑,你完全可以不回复"
|
||||
|
||||
response, reasoning_content = await self.llm_model.generate_response_async(prompt)
|
||||
# 解析willing值
|
||||
willing_match = re.search(r"<(\d+)>", response)
|
||||
try:
|
||||
response, reasoning_content = await self.llm_model.generate_response_async(prompt)
|
||||
# 解析willing值
|
||||
willing_match = re.search(r"<(\d+)>", response)
|
||||
except Exception as e:
|
||||
logger.error(f"意愿判断获取失败: {e}")
|
||||
willing_match = None
|
||||
if willing_match:
|
||||
self.current_state.willing = int(willing_match.group(1))
|
||||
else:
|
||||
@@ -313,9 +324,9 @@ class SubHeartflow:
|
||||
|
||||
return self.current_state.willing
|
||||
|
||||
def update_current_mind(self, reponse):
|
||||
def update_current_mind(self, response):
|
||||
self.past_mind.append(self.current_mind)
|
||||
self.current_mind = reponse
|
||||
self.current_mind = response
|
||||
|
||||
async def get_prompt_info(self, message: str, threshold: float):
|
||||
start_time = time.time()
|
||||
|
||||
@@ -114,9 +114,12 @@ class GoalAnalyzer:
|
||||
}}"""
|
||||
|
||||
logger.debug(f"发送到LLM的提示词: {prompt}")
|
||||
content, _ = await self.llm.generate_response_async(prompt)
|
||||
logger.debug(f"LLM原始返回内容: {content}")
|
||||
|
||||
try:
|
||||
content, _ = await self.llm.generate_response_async(prompt)
|
||||
logger.debug(f"LLM原始返回内容: {content}")
|
||||
except Exception as e:
|
||||
logger.error(f"分析对话目标时出错: {str(e)}")
|
||||
content = ""
|
||||
# 使用简化函数提取JSON内容
|
||||
success, result = get_items_from_json(
|
||||
content, "goal", "reasoning", required_types={"goal": str, "reasoning": str}
|
||||
|
||||
@@ -340,6 +340,9 @@ class EmojiManager:
|
||||
|
||||
if description is not None:
|
||||
embedding = await get_embedding(description, request_type="emoji")
|
||||
if not embedding:
|
||||
logger.error("获取消息嵌入向量失败")
|
||||
raise ValueError("获取消息嵌入向量失败")
|
||||
# 准备数据库记录
|
||||
emoji_record = {
|
||||
"filename": filename,
|
||||
|
||||
@@ -79,7 +79,13 @@ async def get_embedding(text, request_type="embedding"):
|
||||
"""获取文本的embedding向量"""
|
||||
llm = LLM_request(model=global_config.embedding, request_type=request_type)
|
||||
# return llm.get_embedding_sync(text)
|
||||
return await llm.get_embedding(text)
|
||||
try:
|
||||
embedding = await llm.get_embedding(text)
|
||||
except Exception as e:
|
||||
logger.error(f"获取embedding失败: {str(e)}")
|
||||
embedding = None
|
||||
return embedding
|
||||
|
||||
|
||||
|
||||
async def get_recent_group_messages(chat_id: str, limit: int = 12) -> list:
|
||||
|
||||
@@ -1316,15 +1316,24 @@ class HippocampusManager:
|
||||
"""从文本中获取相关记忆的公共接口"""
|
||||
if not self._initialized:
|
||||
raise RuntimeError("HippocampusManager 尚未初始化,请先调用 initialize 方法")
|
||||
return await self._hippocampus.get_memory_from_text(
|
||||
text, max_memory_num, max_memory_length, max_depth, fast_retrieval
|
||||
)
|
||||
try:
|
||||
response = await self._hippocampus.get_memory_from_text(text, max_memory_num, max_memory_length, max_depth, fast_retrieval)
|
||||
except Exception as e:
|
||||
logger.error(f"文本激活记忆失败: {e}")
|
||||
response = []
|
||||
return response
|
||||
|
||||
|
||||
async def get_activate_from_text(self, text: str, max_depth: int = 3, fast_retrieval: bool = False) -> float:
|
||||
"""从文本中获取激活值的公共接口"""
|
||||
if not self._initialized:
|
||||
raise RuntimeError("HippocampusManager 尚未初始化,请先调用 initialize 方法")
|
||||
return await self._hippocampus.get_activate_from_text(text, max_depth, fast_retrieval)
|
||||
try:
|
||||
response = await self._hippocampus.get_activate_from_text(text, max_depth, fast_retrieval)
|
||||
except Exception as e:
|
||||
logger.error(f"文本产生激活值失败: {e}")
|
||||
response = 0.0
|
||||
return response
|
||||
|
||||
def get_memory_from_keyword(self, keyword: str, max_depth: int = 2) -> list:
|
||||
"""从关键词获取相关记忆的公共接口"""
|
||||
|
||||
@@ -121,7 +121,11 @@ class ScheduleGenerator:
|
||||
self.today_done_list = []
|
||||
if not self.today_schedule_text:
|
||||
logger.info(f"{today.strftime('%Y-%m-%d')}的日程不存在,准备生成新的日程")
|
||||
self.today_schedule_text = await self.generate_daily_schedule(target_date=today)
|
||||
try:
|
||||
self.today_schedule_text = await self.generate_daily_schedule(target_date=today)
|
||||
except Exception as e:
|
||||
logger.error(f"生成日程时发生错误: {str(e)}")
|
||||
self.today_schedule_text = ""
|
||||
|
||||
self.save_today_schedule_to_db()
|
||||
|
||||
|
||||
@@ -29,10 +29,13 @@ class TopicIdentifier:
|
||||
消息内容:{text}"""
|
||||
|
||||
# 使用 LLM_request 类进行请求
|
||||
topic, _, _ = await self.llm_topic_judge.generate_response(prompt)
|
||||
|
||||
try:
|
||||
topic, _, _ = await self.llm_topic_judge.generate_response(prompt)
|
||||
except Exception as e:
|
||||
logger.error(f"LLM 请求topic失败: {e}")
|
||||
return None
|
||||
if not topic:
|
||||
logger.error("LLM API 返回为空")
|
||||
logger.error("LLM 得到的topic为空")
|
||||
return None
|
||||
|
||||
# 直接在这里处理主题解析
|
||||
|
||||
Reference in New Issue
Block a user