feat: 完全分离回复 兴趣和 消息阅读;添加概率回复机制,优化兴趣监控逻辑,重构相关功能以支持更灵活的回复触发条件

This commit is contained in:
SengokuCola
2025-04-17 16:51:35 +08:00
parent cfdaf00559
commit a2333f9f82
7 changed files with 730 additions and 376 deletions

View File

@@ -4,6 +4,9 @@ from src.plugins.moods.moods import MoodManager
from src.plugins.models.utils_model import LLMRequest
from src.config.config import global_config
import time
from typing import Optional
from datetime import datetime
import traceback
from src.plugins.chat.message import UserInfo
from src.plugins.chat.utils import parse_text_timestamps
@@ -113,6 +116,8 @@ class SubHeartflow:
self.running_knowledges = []
self._thinking_lock = asyncio.Lock() # 添加思考锁,防止并发思考
self.bot_name = global_config.BOT_NICKNAME
def add_observation(self, observation: Observation):
@@ -138,144 +143,172 @@ class SubHeartflow:
"""清空所有observation对象"""
self.observations.clear()
def _get_primary_observation(self) -> Optional[ChattingObservation]:
"""获取主要的通常是第一个ChattingObservation实例"""
if self.observations and isinstance(self.observations[0], ChattingObservation):
return self.observations[0]
logger.warning(f"SubHeartflow {self.subheartflow_id} 没有找到有效的 ChattingObservation")
return None
async def subheartflow_start_working(self):
while True:
current_time = time.time()
if (
current_time - self.last_reply_time > global_config.sub_heart_flow_freeze_time
): # 120秒无回复/不在场,冻结
self.is_active = False
await asyncio.sleep(global_config.sub_heart_flow_update_interval) # 每60秒检查一次
else:
self.is_active = True
self.last_active_time = current_time # 更新最后激活时间
# --- 调整后台任务逻辑 --- #
# 这个后台循环现在主要负责检查是否需要自我销毁
# 不再主动进行思考或状态更新,这些由 HeartFC_Chat 驱动
self.current_state.update_current_state_info()
# 检查是否需要冻结(这个逻辑可能需要重新审视,因为激活状态现在由外部驱动)
# if current_time - self.last_reply_time > global_config.sub_heart_flow_freeze_time:
# self.is_active = False
# else:
# self.is_active = True
# self.last_active_time = current_time # 由外部调用(如 thinking更新
# await self.do_a_thinking()
# await self.judge_willing()
await asyncio.sleep(global_config.sub_heart_flow_update_interval)
# 检查是否超过指定时间没有激活 (例如,没有被调用进行思考)
if current_time - self.last_active_time > global_config.sub_heart_flow_stop_time: # 例如 5 分钟
logger.info(f"子心流 {self.subheartflow_id} 超过 {global_config.sub_heart_flow_stop_time} 秒没有激活,正在销毁..."
f" (Last active: {datetime.fromtimestamp(self.last_active_time).strftime('%Y-%m-%d %H:%M:%S')})")
# 在这里添加实际的销毁逻辑,例如从主 Heartflow 管理器中移除自身
# heartflow.remove_subheartflow(self.subheartflow_id) # 假设有这样的方法
break # 退出循环以停止任务
# 检查是否超过10分钟没有激活
if (
current_time - self.last_active_time > global_config.sub_heart_flow_stop_time
): # 5分钟无回复/不在场,销毁
logger.info(f"子心流 {self.subheartflow_id} 已经5分钟没有激活正在销毁...")
break # 退出循环,销毁自己
# 不再需要内部驱动的状态更新和思考
# self.current_state.update_current_state_info()
# await self.do_a_thinking()
# await self.judge_willing()
await asyncio.sleep(global_config.sub_heart_flow_update_interval) # 定期检查销毁条件
async def ensure_observed(self):
"""确保在思考前执行了观察"""
observation = self._get_primary_observation()
if observation:
try:
await observation.observe()
logger.trace(f"[{self.subheartflow_id}] Observation updated before thinking.")
except Exception as e:
logger.error(f"[{self.subheartflow_id}] Error during pre-thinking observation: {e}")
logger.error(traceback.format_exc())
async def do_observe(self):
observation = self.observations[0]
await observation.observe()
# 现在推荐使用 ensure_observed(),但保留此方法以兼容旧用法(或特定场景)
observation = self._get_primary_observation()
if observation:
await observation.observe()
else:
logger.error(f"[{self.subheartflow_id}] do_observe called but no valid observation found.")
async def do_thinking_before_reply(
self, message_txt: str, sender_info: UserInfo, chat_stream: ChatStream, extra_info: str, obs_id: int = None
self, message_txt: str, sender_info: UserInfo, chat_stream: ChatStream, extra_info: str, obs_id: list[str] = None # 修改 obs_id 类型为 list[str]
):
current_thinking_info = self.current_mind
mood_info = self.current_state.mood
# mood_info = "你很生气,很愤怒"
observation = self.observations[0]
if obs_id:
print(f"11111111111有id,开始获取观察信息{obs_id}")
chat_observe_info = observation.get_observe_info(obs_id)
else:
chat_observe_info = observation.get_observe_info()
async with self._thinking_lock: # 获取思考锁
# --- 在思考前确保观察已执行 --- #
await self.ensure_observed()
extra_info_prompt = ""
for tool_name, tool_data in extra_info.items():
extra_info_prompt += f"{tool_name} 相关信息:\n"
for item in tool_data:
extra_info_prompt += f"- {item['name']}: {item['content']}\n"
self.last_active_time = time.time() # 更新最后激活时间戳
# 开始构建prompt
prompt_personality = f"你的名字是{self.bot_name},你"
# person
individuality = Individuality.get_instance()
current_thinking_info = self.current_mind
mood_info = self.current_state.mood
observation = self._get_primary_observation()
if not observation:
logger.error(f"[{self.subheartflow_id}] Cannot perform thinking without observation.")
return "", [] # 返回空结果
personality_core = individuality.personality.personality_core
prompt_personality += personality_core
# --- 获取观察信息 --- #
chat_observe_info = ""
if obs_id:
try:
chat_observe_info = observation.get_observe_info(obs_id)
logger.debug(f"[{self.subheartflow_id}] Using specific observation IDs: {obs_id}")
except Exception as e:
logger.error(f"[{self.subheartflow_id}] Error getting observe info with IDs {obs_id}: {e}. Falling back.")
chat_observe_info = observation.get_observe_info() # 出错时回退到默认观察
else:
chat_observe_info = observation.get_observe_info()
logger.debug(f"[{self.subheartflow_id}] Using default observation info.")
personality_sides = individuality.personality.personality_sides
random.shuffle(personality_sides)
prompt_personality += f",{personality_sides[0]}"
identity_detail = individuality.identity.identity_detail
random.shuffle(identity_detail)
prompt_personality += f",{identity_detail[0]}"
# --- 构建 Prompt (基本逻辑不变) --- #
extra_info_prompt = ""
if extra_info:
for tool_name, tool_data in extra_info.items():
extra_info_prompt += f"{tool_name} 相关信息:\n"
for item in tool_data:
extra_info_prompt += f"- {item['name']}: {item['content']}\n"
else:
extra_info_prompt = "无工具信息。\n" # 提供默认值
# 关系
who_chat_in_group = [
(chat_stream.user_info.platform, chat_stream.user_info.user_id, chat_stream.user_info.user_nickname)
]
who_chat_in_group += get_recent_group_speaker(
chat_stream.stream_id,
(chat_stream.user_info.platform, chat_stream.user_info.user_id),
limit=global_config.MAX_CONTEXT_SIZE,
)
individuality = Individuality.get_instance()
prompt_personality = f"你的名字是{self.bot_name},你"
prompt_personality += individuality.personality.personality_core
personality_sides = individuality.personality.personality_sides
if personality_sides: random.shuffle(personality_sides); prompt_personality += f",{personality_sides[0]}"
identity_detail = individuality.identity.identity_detail
if identity_detail: random.shuffle(identity_detail); prompt_personality += f",{identity_detail[0]}"
relation_prompt = ""
for person in who_chat_in_group:
relation_prompt += await relationship_manager.build_relationship_info(person)
who_chat_in_group = [
(chat_stream.platform, sender_info.user_id, sender_info.user_nickname) # 先添加当前发送者
]
# 获取最近发言者,排除当前发送者,避免重复
recent_speakers = get_recent_group_speaker(
chat_stream.stream_id,
(chat_stream.platform, sender_info.user_id),
limit=global_config.MAX_CONTEXT_SIZE -1 # 减去当前发送者
)
who_chat_in_group.extend(recent_speakers)
# relation_prompt_all = (
# f"{relation_prompt}关系等级越大,关系越好,请分析聊天记录,"
# f"根据你和说话者{sender_name}的关系和态度进行回复,明确你的立场和情感。"
# )
relation_prompt_all = (await global_prompt_manager.get_prompt_async("relationship_prompt")).format(
relation_prompt, sender_info.user_nickname
)
relation_prompt = ""
unique_speakers = set() # 确保人物信息不重复
for person_tuple in who_chat_in_group:
person_key = (person_tuple[0], person_tuple[1]) # 使用 platform+id 作为唯一标识
if person_key not in unique_speakers:
relation_prompt += await relationship_manager.build_relationship_info(person_tuple)
unique_speakers.add(person_key)
sender_name_sign = (
f"<{chat_stream.platform}:{sender_info.user_id}:{sender_info.user_nickname}:{sender_info.user_cardname}>"
)
relation_prompt_all = (await global_prompt_manager.get_prompt_async("relationship_prompt")).format(
relation_prompt, sender_info.user_nickname
)
# prompt = ""
# # prompt += f"麦麦的总体想法是:{self.main_heartflow_info}\n\n"
# if tool_result.get("used_tools", False):
# prompt += f"{collected_info}\n"
# prompt += f"{relation_prompt_all}\n"
# prompt += f"{prompt_personality}\n"
# prompt += f"刚刚你的想法是{current_thinking_info}。如果有新的内容,记得转换话题\n"
# prompt += "-----------------------------------\n"
# prompt += f"现在你正在上网和qq群里的网友们聊天群里正在聊的话题是{chat_observe_info}\n"
# prompt += f"你现在{mood_info}\n"
# prompt += f"你注意到{sender_name}刚刚说:{message_txt}\n"
# prompt += "现在你接下去继续思考,产生新的想法,不要分点输出,输出连贯的内心独白"
# prompt += "思考时可以想想如何对群聊内容进行回复。回复的要求是:平淡一些,简短一些,说中文,尽量不要说你说过的话\n"
# prompt += "请注意不要输出多余内容(包括前后缀,冒号和引号,括号, 表情,等),不要带有括号和动作描写"
# prompt += f"记得结合上述的消息,生成内心想法,文字不要浮夸,注意你就是{self.bot_name}{self.bot_name}指的就是你。"
sender_name_sign = (
f"<{chat_stream.platform}:{sender_info.user_id}:{sender_info.user_nickname}:{sender_info.user_cardname or 'NoCard'}>"
)
time_now = time.strftime("%Y-%m-%d %H:%M:%S", time.localtime())
time_now = time.strftime("%Y-%m-%d %H:%M:%S", time.localtime())
prompt = (await global_prompt_manager.get_prompt_async("sub_heartflow_prompt_before")).format(
extra_info_prompt,
# prompt_schedule,
relation_prompt_all,
prompt_personality,
current_thinking_info,
time_now,
chat_observe_info,
mood_info,
sender_name_sign,
message_txt,
self.bot_name,
)
prompt = (await global_prompt_manager.get_prompt_async("sub_heartflow_prompt_before")).format(
extra_info=extra_info_prompt,
relation_prompt_all=relation_prompt_all,
prompt_personality=prompt_personality,
current_thinking_info=current_thinking_info,
time_now=time_now,
chat_observe_info=chat_observe_info,
mood_info=mood_info,
sender_name=sender_name_sign,
message_txt=message_txt,
bot_name=self.bot_name,
)
prompt = await relationship_manager.convert_all_person_sign_to_person_name(prompt)
prompt = parse_text_timestamps(prompt, mode="lite")
prompt = await relationship_manager.convert_all_person_sign_to_person_name(prompt)
prompt = parse_text_timestamps(prompt, mode="lite")
try:
response, reasoning_content = await self.llm_model.generate_response_async(prompt)
except Exception as e:
logger.error(f"回复前内心独白获取失败: {e}")
response = ""
self.update_current_mind(response)
logger.debug(f"[{self.subheartflow_id}] Thinking Prompt:\n{prompt}")
self.current_mind = response
try:
response, reasoning_content = await self.llm_model.generate_response_async(prompt)
if not response: # 如果 LLM 返回空,给一个默认想法
response = "(不知道该想些什么...)"
logger.warning(f"[{self.subheartflow_id}] LLM returned empty response for thinking.")
except Exception as e:
logger.error(f"[{self.subheartflow_id}] 内心独白获取失败: {e}")
response = "(思考时发生错误...)" # 错误时的默认想法
self.update_current_mind(response)
# self.current_mind 已经在 update_current_mind 中更新
logger.info(f"[{self.subheartflow_id}] 思考前脑内状态:{self.current_mind}")
return self.current_mind, self.past_mind
logger.info(f"prompt:\n{prompt}\n")
logger.info(f"麦麦的思考前脑内状态:{self.current_mind}")
return self.current_mind, self.past_mind
async def do_thinking_after_observe(
self, message_txt: str, sender_info: UserInfo, chat_stream: ChatStream, extra_info: str, obs_id: int = None
):
@@ -337,7 +370,6 @@ class SubHeartflow:
f"<{chat_stream.platform}:{sender_info.user_id}:{sender_info.user_nickname}:{sender_info.user_cardname}>"
)
time_now = time.strftime("%Y-%m-%d %H:%M:%S", time.localtime())
prompt = (await global_prompt_manager.get_prompt_async("sub_heartflow_prompt_after_observe")).format(
@@ -436,6 +468,24 @@ class SubHeartflow:
self.past_mind.append(self.current_mind)
self.current_mind = response
async def check_reply_trigger(self) -> bool:
"""根据观察到的信息和内部状态,判断是否应该触发一次回复。
TODO: 实现具体的判断逻辑。
例如:检查 self.observations[0].now_message_info 是否包含提及、问题,
或者 self.current_mind 中是否包含强烈的回复意图等。
"""
# Placeholder: 目前始终返回 False需要后续实现
logger.trace(f"[{self.subheartflow_id}] check_reply_trigger called. (Logic Pending)")
# --- 实现触发逻辑 --- #
# 示例:如果观察到的最新消息包含自己的名字,则有一定概率触发
# observation = self._get_primary_observation()
# if observation and self.bot_name in observation.now_message_info[-100:]: # 检查最后100个字符
# if random.random() < 0.3: # 30% 概率触发
# logger.info(f"[{self.subheartflow_id}] Triggering reply based on mention.")
# return True
# ------------------ #
return False # 默认不触发
init_prompt()
# subheartflow = SubHeartflow()