Merge branch 'dev' into dev-api-ada to resolve conflicts

This commit is contained in:
UnCLAS-Prommer
2025-07-29 10:22:43 +08:00
92 changed files with 3980 additions and 6492 deletions

View File

@@ -17,7 +17,11 @@ from src.chat.message_receive.uni_message_sender import HeartFCSender
from src.chat.utils.timer_calculator import Timer # <--- Import Timer
from src.chat.utils.utils import get_chat_type_and_target_info
from src.chat.utils.prompt_builder import Prompt, global_prompt_manager
from src.chat.utils.chat_message_builder import build_readable_messages, get_raw_msg_before_timestamp_with_chat
from src.chat.utils.chat_message_builder import (
build_readable_messages,
get_raw_msg_before_timestamp_with_chat,
replace_user_references_sync,
)
from src.chat.express.expression_selector import expression_selector
from src.chat.knowledge.knowledge_lib import qa_manager
from src.chat.memory_system.memory_activator import MemoryActivator
@@ -25,42 +29,16 @@ from src.chat.memory_system.instant_memory import InstantMemory
from src.mood.mood_manager import mood_manager
from src.person_info.relationship_fetcher import relationship_fetcher_manager
from src.person_info.person_info import get_person_info_manager
from src.tools.tool_executor import ToolExecutor
from src.plugin_system.base.component_types import ActionInfo
logger = get_logger("replyer")
def init_prompt():
Prompt("你正在qq群里聊天下面是群里在聊的内容", "chat_target_group1")
Prompt("你正在和{sender_name}聊天,这是你们之前聊的内容:", "chat_target_private1")
Prompt("在群里聊天", "chat_target_group2")
Prompt("{sender_name}聊天", "chat_target_private2")
Prompt("\n你有以下这些**知识**\n{prompt_info}\n请你**记住上面的知识**,之后可能会用到。\n", "knowledge_prompt")
Prompt(
"""
{expression_habits_block}
{tool_info_block}
{knowledge_prompt}
{memory_block}
{relation_info_block}
{extra_info_block}
{chat_target}
{time_block}
{chat_info}
{reply_target_block}
{identity}
{action_descriptions}
你正在{chat_target_2},你现在的心情是:{mood_state}
现在请你读读之前的聊天记录,并给出回复
{config_expression_style}。注意不要复读你说过的话
{keywords_reaction_prompt}
{moderation_prompt}
不要浮夸,不要夸张修辞,不要输出多余内容(包括前后缀,冒号和引号,括号()表情包at或 @等 )。只输出回复内容""",
"default_generator_prompt",
)
Prompt(
"""
@@ -109,7 +87,8 @@ def init_prompt():
{core_dialogue_prompt}
{reply_target_block}
对方最新发送的内容:{message_txt}
你现在的心情是:{mood_state}
{config_expression_style}
注意不要复读你说过的话
@@ -159,6 +138,8 @@ class DefaultReplyer:
self.heart_fc_sender = HeartFCSender()
self.memory_activator = MemoryActivator()
self.instant_memory = InstantMemory(chat_id=self.chat_stream.stream_id)
from src.plugin_system.core.tool_use import ToolExecutor # 延迟导入ToolExecutor不然会循环依赖
self.tool_executor = ToolExecutor(chat_id=self.chat_stream.stream_id, enable_cache=True, cache_ttl=3)
def _select_weighted_model_config(self) -> Dict[str, Any]:
@@ -171,67 +152,49 @@ class DefaultReplyer:
async def generate_reply_with_context(
self,
reply_data: Optional[Dict[str, Any]] = None,
reply_to: str = "",
extra_info: str = "",
available_actions: Optional[Dict[str, ActionInfo]] = None,
enable_tool: bool = True,
enable_timeout: bool = False,
) -> Tuple[bool, Optional[str], Optional[str]]:
"""
回复器 (Replier): 核心逻辑,负责生成回复文本。
(已整合原 HeartFCGenerator 的功能)
回复器 (Replier): 负责生成回复文本的核心逻辑
Args:
reply_to: 回复对象,格式为 "发送者:消息内容"
extra_info: 额外信息,用于补充上下文
available_actions: 可用的动作信息字典
enable_tool: 是否启用工具调用
Returns:
Tuple[bool, Optional[str], Optional[str]]: (是否成功, 生成的回复内容, 使用的prompt)
"""
prompt = None
if available_actions is None:
available_actions = {}
try:
if not reply_data:
reply_data = {
"reply_to": reply_to,
"extra_info": extra_info,
}
for key, value in reply_data.items():
if not value:
logger.debug(f"回复数据跳过{key},生成回复时将忽略。")
# 3. 构建 Prompt
with Timer("构建Prompt", {}): # 内部计时器,可选保留
prompt = await self.build_prompt_reply_context(
reply_data=reply_data, # 传递action_data
reply_to=reply_to,
extra_info=extra_info,
available_actions=available_actions,
enable_timeout=enable_timeout,
enable_tool=enable_tool,
)
if not prompt:
logger.warning("构建prompt失败跳过回复生成")
return False, None, None
# 4. 调用 LLM 生成回复
content = None
reasoning_content = None
model_name = "unknown_model"
# TODO: 复活这里
# reasoning_content = None
# model_name = "unknown_model"
try:
with Timer("LLM生成", {}): # 内部计时器,可选保留
# 加权随机选择一个模型配置
selected_model_config = self._select_weighted_model_config()
# 兼容新旧格式的模型名称获取
model_display_name = selected_model_config.get('model_name', selected_model_config.get('name', 'N/A'))
logger.info(
f"使用模型生成回复: {model_display_name} (选中概率: {selected_model_config.get('weight', 1.0)})"
)
express_model = LLMRequest(
model=selected_model_config,
request_type=self.request_type,
)
if global_config.debug.show_prompt:
logger.info(f"\n{prompt}\n")
else:
logger.debug(f"\n{prompt}\n")
content, (reasoning_content, model_name) = await express_model.generate_response_async(prompt)
logger.debug(f"replyer生成内容: {content}")
content = await self.llm_generate_content(prompt)
logger.debug(f"replyer生成内容: {content}")
except Exception as llm_e:
# 精简报错信息
@@ -247,73 +210,62 @@ class DefaultReplyer:
async def rewrite_reply_with_context(
self,
reply_data: Dict[str, Any],
raw_reply: str = "",
reason: str = "",
reply_to: str = "",
relation_info: str = "",
) -> Tuple[bool, Optional[str]]:
return_prompt: bool = False,
) -> Tuple[bool, Optional[str], Optional[str]]:
"""
表达器 (Expressor): 核心逻辑,负责生成回复文本。
表达器 (Expressor): 负责重写和优化回复文本。
Args:
raw_reply: 原始回复内容
reason: 回复原因
reply_to: 回复对象,格式为 "发送者:消息内容"
relation_info: 关系信息
Returns:
Tuple[bool, Optional[str]]: (是否成功, 重写后的回复内容)
"""
try:
if not reply_data:
reply_data = {
"reply_to": reply_to,
"relation_info": relation_info,
}
with Timer("构建Prompt", {}): # 内部计时器,可选保留
prompt = await self.build_prompt_rewrite_context(
reply_data=reply_data,
raw_reply=raw_reply,
reason=reason,
reply_to=reply_to,
)
content = None
reasoning_content = None
model_name = "unknown_model"
# TODO: 复活这里
# reasoning_content = None
# model_name = "unknown_model"
if not prompt:
logger.error("Prompt 构建失败,无法生成回复。")
return False, None
return False, None, None
try:
with Timer("LLM生成", {}): # 内部计时器,可选保留
# 加权随机选择一个模型配置
selected_model_config = self._select_weighted_model_config()
# 兼容新旧格式的模型名称获取
model_display_name = selected_model_config.get('model_name', selected_model_config.get('name', 'N/A'))
logger.info(
f"使用模型重写回复: {model_display_name} (选中概率: {selected_model_config.get('weight', 1.0)})"
)
express_model = LLMRequest(
model=selected_model_config,
request_type=self.request_type,
)
content, (reasoning_content, model_name) = await express_model.generate_response_async(prompt)
logger.info(f"想要表达:{raw_reply}||理由:{reason}||生成回复: {content}\n")
content = await self.llm_generate_content(prompt)
logger.info(f"想要表达:{raw_reply}||理由:{reason}||生成回复: {content}\n")
except Exception as llm_e:
# 精简报错信息
logger.error(f"LLM 生成失败: {llm_e}")
return False, None # LLM 调用失败则无法生成回复
return False, None, prompt if return_prompt else None # LLM 调用失败则无法生成回复
return True, content
return True, content, prompt if return_prompt else None
except Exception as e:
logger.error(f"回复生成意外失败: {e}")
traceback.print_exc()
return False, None
return False, None, prompt if return_prompt else None
async def build_relation_info(self, reply_data=None):
async def build_relation_info(self, reply_to: str = ""):
if not global_config.relationship.enable_relationship:
return ""
relationship_fetcher = relationship_fetcher_manager.get_fetcher(self.chat_stream.stream_id)
if not reply_data:
if not reply_to:
return ""
reply_to = reply_data.get("reply_to", "")
sender, text = self._parse_reply_target(reply_to)
if not sender or not text:
return ""
@@ -327,7 +279,16 @@ class DefaultReplyer:
return await relationship_fetcher.build_relation_info(person_id, points_num=5)
async def build_expression_habits(self, chat_history, target):
async def build_expression_habits(self, chat_history: str, target: str) -> str:
"""构建表达习惯块
Args:
chat_history: 聊天历史记录
target: 目标消息内容
Returns:
str: 表达习惯信息字符串
"""
if not global_config.expression.enable_expression:
return ""
@@ -360,54 +321,65 @@ class DefaultReplyer:
expression_habits_block = ""
expression_habits_title = ""
if style_habits_str.strip():
expression_habits_title = "你可以参考以下的语言习惯,当情景合适就使用,但不要生硬使用,以合理的方式结合到你的回复中:"
expression_habits_title = (
"你可以参考以下的语言习惯,当情景合适就使用,但不要生硬使用,以合理的方式结合到你的回复中:"
)
expression_habits_block += f"{style_habits_str}\n"
if grammar_habits_str.strip():
expression_habits_title = "你可以选择下面的句法进行回复,如果情景合适就使用,不要盲目使用,不要生硬使用,以合理的方式使用:"
expression_habits_title = (
"你可以选择下面的句法进行回复,如果情景合适就使用,不要盲目使用,不要生硬使用,以合理的方式使用:"
)
expression_habits_block += f"{grammar_habits_str}\n"
if style_habits_str.strip() and grammar_habits_str.strip():
expression_habits_title = "你可以参考以下的语言习惯和句法,如果情景合适就使用,不要盲目使用,不要生硬使用,以合理的方式结合到你的回复中:"
expression_habits_block = f"{expression_habits_title}\n{expression_habits_block}"
return expression_habits_block
return f"{expression_habits_title}\n{expression_habits_block}"
async def build_memory_block(self, chat_history, target):
async def build_memory_block(self, chat_history: str, target: str) -> str:
"""构建记忆块
Args:
chat_history: 聊天历史记录
target: 目标消息内容
Returns:
str: 记忆信息字符串
"""
if not global_config.memory.enable_memory:
return ""
instant_memory = None
running_memories = await self.memory_activator.activate_memory_with_chat_history(
target_message=target, chat_history_prompt=chat_history
)
if global_config.memory.enable_instant_memory:
asyncio.create_task(self.instant_memory.create_and_store_memory(chat_history))
instant_memory = await self.instant_memory.get_memory(target)
logger.info(f"即时记忆:{instant_memory}")
if not running_memories:
return ""
memory_str = "以下是当前在聊天中,你回忆起的记忆:\n"
for running_memory in running_memories:
memory_str += f"- {running_memory['content']}\n"
if instant_memory:
memory_str += f"- {instant_memory}\n"
return memory_str
async def build_tool_info(self, chat_history, reply_data: Optional[Dict], enable_tool: bool = True):
async def build_tool_info(self, chat_history: str, reply_to: str = "", enable_tool: bool = True) -> str:
"""构建工具信息块
Args:
reply_data: 回复数据,包含要回复的消息内容
chat_history: 聊天历史
chat_history: 聊天历史记录
reply_to: 回复对象,格式为 "发送者:消息内容"
enable_tool: 是否启用工具调用
Returns:
str: 工具信息字符串
@@ -416,10 +388,9 @@ class DefaultReplyer:
if not enable_tool:
return ""
if not reply_data:
if not reply_to:
return ""
reply_to = reply_data.get("reply_to", "")
sender, text = self._parse_reply_target(reply_to)
if not text:
@@ -442,7 +413,7 @@ class DefaultReplyer:
tool_info_str += "以上是你获取到的实时信息,请在回复时参考这些信息。"
logger.info(f"获取到 {len(tool_results)} 个工具结果")
return tool_info_str
else:
logger.debug("未获取到任何工具结果")
@@ -452,7 +423,15 @@ class DefaultReplyer:
logger.error(f"工具信息获取失败: {e}")
return ""
def _parse_reply_target(self, target_message: str) -> tuple:
def _parse_reply_target(self, target_message: str) -> Tuple[str, str]:
"""解析回复目标消息
Args:
target_message: 目标消息,格式为 "发送者:消息内容""发送者:消息内容"
Returns:
Tuple[str, str]: (发送者名称, 消息内容)
"""
sender = ""
target = ""
# 添加None检查防止NoneType错误
@@ -466,14 +445,22 @@ class DefaultReplyer:
target = parts[1].strip()
return sender, target
async def build_keywords_reaction_prompt(self, target):
async def build_keywords_reaction_prompt(self, target: Optional[str]) -> str:
"""构建关键词反应提示
Args:
target: 目标消息内容
Returns:
str: 关键词反应提示字符串
"""
# 关键词检测与反应
keywords_reaction_prompt = ""
try:
# 添加None检查防止NoneType错误
if target is None:
return keywords_reaction_prompt
# 处理关键词规则
for rule in global_config.keyword_reaction.keyword_rules:
if any(keyword in target for keyword in rule.keywords):
@@ -500,15 +487,25 @@ class DefaultReplyer:
return keywords_reaction_prompt
async def _time_and_run_task(self, coroutine, name: str):
"""一个简单的帮助函数,用于计时运行异步任务,返回任务名、结果和耗时"""
async def _time_and_run_task(self, coroutine, name: str) -> Tuple[str, Any, float]:
"""计时运行异步任务的辅助函数
Args:
coroutine: 要执行的协程
name: 任务名称
Returns:
Tuple[str, Any, float]: (任务名称, 任务结果, 执行耗时)
"""
start_time = time.time()
result = await coroutine
end_time = time.time()
duration = end_time - start_time
return name, result, duration
def build_s4u_chat_history_prompts(self, message_list_before_now: list, target_user_id: str) -> tuple[str, str]:
def build_s4u_chat_history_prompts(
self, message_list_before_now: List[Dict[str, Any]], target_user_id: str
) -> Tuple[str, str]:
"""
构建 s4u 风格的分离对话 prompt
@@ -517,7 +514,7 @@ class DefaultReplyer:
target_user_id: 目标用户ID当前对话对象
Returns:
tuple: (核心对话prompt, 背景对话prompt)
Tuple[str, str]: (核心对话prompt, 背景对话prompt)
"""
core_dialogue_list = []
background_dialogue_list = []
@@ -536,7 +533,7 @@ class DefaultReplyer:
# 其他用户的对话
background_dialogue_list.append(msg_dict)
except Exception as e:
logger.error(f"![1753364551656](image/default_generator/1753364551656.png)记录: {msg_dict}, 错误: {e}")
logger.error(f"处理消息记录时出错: {msg_dict}, 错误: {e}")
# 构建背景对话 prompt
background_dialogue_prompt = ""
@@ -581,8 +578,25 @@ class DefaultReplyer:
sender: str,
target: str,
chat_info: str,
):
"""构建 mai_think 上下文信息"""
) -> Any:
"""构建 mai_think 上下文信息
Args:
chat_id: 聊天ID
memory_block: 记忆块内容
relation_info: 关系信息
time_block: 时间块内容
chat_target_1: 聊天目标1
chat_target_2: 聊天目标2
mood_prompt: 情绪提示
identity_block: 身份块内容
sender: 发送者名称
target: 目标消息内容
chat_info: 聊天信息
Returns:
Any: mai_think 实例
"""
mai_think = mai_thinking_manager.get_mai_think(chat_id)
mai_think.memory_block = memory_block
mai_think.relation_info_block = relation_info
@@ -598,21 +612,20 @@ class DefaultReplyer:
async def build_prompt_reply_context(
self,
reply_data: Dict[str, Any],
reply_to: str,
extra_info: str = "",
available_actions: Optional[Dict[str, ActionInfo]] = None,
enable_timeout: bool = False,
enable_tool: bool = True,
) -> str: # sourcery skip: merge-else-if-into-elif, remove-redundant-if
"""
构建回复器上下文
Args:
reply_data: 回复数据
replay_data 包含以下字段:
structured_info: 结构化信息,一般是工具调用获得的信息
reply_to: 回复对象
extra_info/extra_info_block: 额外信息
reply_to: 回复对象,格式为 "发送者:消息内容"
extra_info: 额外信息,用于补充上下文
available_actions: 可用动作
enable_timeout: 是否启用超时处理
enable_tool: 是否启用工具调用
Returns:
str: 构建好的上下文
@@ -623,9 +636,7 @@ class DefaultReplyer:
chat_id = chat_stream.stream_id
person_info_manager = get_person_info_manager()
is_group_chat = bool(chat_stream.group_info)
reply_to = reply_data.get("reply_to", "none")
extra_info_block = reply_data.get("extra_info", "") or reply_data.get("extra_info_block", "")
if global_config.mood.enable_mood:
chat_mood = mood_manager.get_mood_by_chat_id(chat_id)
mood_prompt = chat_mood.mood_state
@@ -633,6 +644,15 @@ class DefaultReplyer:
mood_prompt = ""
sender, target = self._parse_reply_target(reply_to)
person_info_manager = get_person_info_manager()
person_id = person_info_manager.get_person_id_by_person_name(sender)
user_id = person_info_manager.get_value_sync(person_id, "user_id")
platform = chat_stream.platform
if user_id == global_config.bot.qq_account and platform == global_config.bot.platform:
logger.warning("选取了自身作为回复对象跳过构建prompt")
return ""
target = replace_user_references_sync(target, chat_stream.platform, replace_bot_name=True)
# 构建action描述 (如果启用planner)
action_descriptions = ""
@@ -649,21 +669,6 @@ class DefaultReplyer:
limit=global_config.chat.max_context_size * 2,
)
message_list_before_now = get_raw_msg_before_timestamp_with_chat(
chat_id=chat_id,
timestamp=time.time(),
limit=global_config.chat.max_context_size,
)
chat_talking_prompt = build_readable_messages(
message_list_before_now,
replace_bot_name=True,
merge_messages=False,
timestamp_mode="normal_no_YMD",
read_mark=0.0,
truncate=True,
show_actions=True,
)
message_list_before_short = get_raw_msg_before_timestamp_with_chat(
chat_id=chat_id,
timestamp=time.time(),
@@ -683,25 +688,21 @@ class DefaultReplyer:
self._time_and_run_task(
self.build_expression_habits(chat_talking_prompt_short, target), "expression_habits"
),
self._time_and_run_task(
self.build_relation_info(reply_data), "relation_info"
),
self._time_and_run_task(self.build_relation_info(reply_to), "relation_info"),
self._time_and_run_task(self.build_memory_block(chat_talking_prompt_short, target), "memory_block"),
self._time_and_run_task(
self.build_tool_info(chat_talking_prompt_short, reply_data, enable_tool=enable_tool), "tool_info"
),
self._time_and_run_task(
get_prompt_info(target, threshold=0.38), "prompt_info"
self.build_tool_info(chat_talking_prompt_short, reply_to, enable_tool=enable_tool), "tool_info"
),
self._time_and_run_task(get_prompt_info(target, threshold=0.38), "prompt_info"),
)
# 任务名称中英文映射
task_name_mapping = {
"expression_habits": "选取表达方式",
"relation_info": "感受关系",
"relation_info": "感受关系",
"memory_block": "回忆",
"tool_info": "使用工具",
"prompt_info": "获取知识"
"prompt_info": "获取知识",
}
# 处理结果
@@ -723,8 +724,8 @@ class DefaultReplyer:
keywords_reaction_prompt = await self.build_keywords_reaction_prompt(target)
if extra_info_block:
extra_info_block = f"以下是你在回复时需要参考的信息,现在请你阅读以下内容,进行决策\n{extra_info_block}\n以上是你在回复时需要参考的信息,现在请你阅读以下内容,进行决策"
if extra_info:
extra_info_block = f"以下是你在回复时需要参考的信息,现在请你阅读以下内容,进行决策\n{extra_info}\n以上是你在回复时需要参考的信息,现在请你阅读以下内容,进行决策"
else:
extra_info_block = ""
@@ -779,116 +780,74 @@ class DefaultReplyer:
# 根据sender通过person_info_manager反向查找person_id再获取user_id
person_id = person_info_manager.get_person_id_by_person_name(sender)
# 根据配置选择使用哪种 prompt 构建模式
if global_config.chat.use_s4u_prompt_mode and person_id:
# 使用 s4u 对话构建模式:分离当前对话对象和其他对话
try:
user_id_value = await person_info_manager.get_value(person_id, "user_id")
if user_id_value:
target_user_id = str(user_id_value)
except Exception as e:
logger.warning(f"无法从person_id {person_id} 获取user_id: {e}")
target_user_id = ""
# 使用 s4u 对话构建模式:分离当前对话对象和其他对话
try:
user_id_value = await person_info_manager.get_value(person_id, "user_id")
if user_id_value:
target_user_id = str(user_id_value)
except Exception as e:
logger.warning(f"无法从person_id {person_id} 获取user_id: {e}")
target_user_id = ""
# 构建分离的对话 prompt
core_dialogue_prompt, background_dialogue_prompt = self.build_s4u_chat_history_prompts(
message_list_before_now_long, target_user_id
)
self.build_mai_think_context(
chat_id=chat_id,
memory_block=memory_block,
relation_info=relation_info,
time_block=time_block,
chat_target_1=chat_target_1,
chat_target_2=chat_target_2,
mood_prompt=mood_prompt,
identity_block=identity_block,
sender=sender,
target=target,
chat_info=f"""
# 构建分离的对话 prompt
core_dialogue_prompt, background_dialogue_prompt = self.build_s4u_chat_history_prompts(
message_list_before_now_long, target_user_id
)
self.build_mai_think_context(
chat_id=chat_id,
memory_block=memory_block,
relation_info=relation_info,
time_block=time_block,
chat_target_1=chat_target_1,
chat_target_2=chat_target_2,
mood_prompt=mood_prompt,
identity_block=identity_block,
sender=sender,
target=target,
chat_info=f"""
{background_dialogue_prompt}
--------------------------------
{time_block}
这是你和{sender}的对话,你们正在交流中:
{core_dialogue_prompt}"""
)
{core_dialogue_prompt}""",
)
# 使用 s4u 风格的模板
template_name = "s4u_style_prompt"
# 使用 s4u 风格的模板
template_name = "s4u_style_prompt"
return await global_prompt_manager.format_prompt(
template_name,
expression_habits_block=expression_habits_block,
tool_info_block=tool_info,
knowledge_prompt=prompt_info,
memory_block=memory_block,
relation_info_block=relation_info,
extra_info_block=extra_info_block,
identity=identity_block,
action_descriptions=action_descriptions,
sender_name=sender,
mood_state=mood_prompt,
background_dialogue_prompt=background_dialogue_prompt,
time_block=time_block,
core_dialogue_prompt=core_dialogue_prompt,
reply_target_block=reply_target_block,
message_txt=target,
config_expression_style=global_config.expression.expression_style,
keywords_reaction_prompt=keywords_reaction_prompt,
moderation_prompt=moderation_prompt_block,
)
else:
self.build_mai_think_context(
chat_id=chat_id,
memory_block=memory_block,
relation_info=relation_info,
time_block=time_block,
chat_target_1=chat_target_1,
chat_target_2=chat_target_2,
mood_prompt=mood_prompt,
identity_block=identity_block,
sender=sender,
target=target,
chat_info=chat_talking_prompt
)
# 使用原有的模式
return await global_prompt_manager.format_prompt(
template_name,
expression_habits_block=expression_habits_block,
chat_target=chat_target_1,
chat_info=chat_talking_prompt,
memory_block=memory_block,
tool_info_block=tool_info,
knowledge_prompt=prompt_info,
extra_info_block=extra_info_block,
relation_info_block=relation_info,
time_block=time_block,
reply_target_block=reply_target_block,
moderation_prompt=moderation_prompt_block,
keywords_reaction_prompt=keywords_reaction_prompt,
identity=identity_block,
target_message=target,
sender_name=sender,
config_expression_style=global_config.expression.expression_style,
action_descriptions=action_descriptions,
chat_target_2=chat_target_2,
mood_state=mood_prompt,
)
return await global_prompt_manager.format_prompt(
template_name,
expression_habits_block=expression_habits_block,
tool_info_block=tool_info,
knowledge_prompt=prompt_info,
memory_block=memory_block,
relation_info_block=relation_info,
extra_info_block=extra_info_block,
identity=identity_block,
action_descriptions=action_descriptions,
sender_name=sender,
mood_state=mood_prompt,
background_dialogue_prompt=background_dialogue_prompt,
time_block=time_block,
core_dialogue_prompt=core_dialogue_prompt,
reply_target_block=reply_target_block,
message_txt=target,
config_expression_style=global_config.expression.expression_style,
keywords_reaction_prompt=keywords_reaction_prompt,
moderation_prompt=moderation_prompt_block,
)
async def build_prompt_rewrite_context(
self,
reply_data: Dict[str, Any],
raw_reply: str,
reason: str,
reply_to: str,
) -> str:
chat_stream = self.chat_stream
chat_id = chat_stream.stream_id
is_group_chat = bool(chat_stream.group_info)
reply_to = reply_data.get("reply_to", "none")
raw_reply = reply_data.get("raw_reply", "")
reason = reply_data.get("reason", "")
sender, target = self._parse_reply_target(reply_to)
# 添加情绪状态获取
@@ -915,7 +874,7 @@ class DefaultReplyer:
# 并行执行2个构建任务
expression_habits_block, relation_info = await asyncio.gather(
self.build_expression_habits(chat_talking_prompt_half, target),
self.build_relation_info(reply_data),
self.build_relation_info(reply_to),
)
keywords_reaction_prompt = await self.build_keywords_reaction_prompt(target)
@@ -1018,6 +977,31 @@ class DefaultReplyer:
display_message=display_message,
)
async def llm_generate_content(self, prompt: str) -> str:
with Timer("LLM生成", {}): # 内部计时器,可选保留
# 加权随机选择一个模型配置
selected_model_config = self._select_weighted_model_config()
model_display_name = selected_model_config.get('model_name') or selected_model_config.get('name', 'N/A')
logger.info(
f"使用模型生成回复: {model_display_name} (选中概率: {selected_model_config.get('weight', 1.0)})"
)
express_model = LLMRequest(
model=selected_model_config,
request_type=self.request_type,
)
if global_config.debug.show_prompt:
logger.info(f"\n{prompt}\n")
else:
logger.debug(f"\n{prompt}\n")
# TODO: 这里的_应该做出替换
content, _ = await express_model.generate_response_async(prompt)
logger.debug(f"replyer生成内容: {content}")
return content
def weighted_sample_no_replacement(items, weights, k) -> list:
"""
@@ -1075,10 +1059,8 @@ async def get_prompt_info(message: str, threshold: float):
related_info += found_knowledge_from_lpmm
logger.debug(f"获取知识库内容耗时: {(end_time - start_time):.3f}")
logger.debug(f"获取知识库内容,相关信息:{related_info[:100]}...,信息长度: {len(related_info)}")
# 格式化知识信息
formatted_prompt_info = await global_prompt_manager.format_prompt("knowledge_prompt", prompt_info=related_info)
return formatted_prompt_info
return f"你有以下这些**知识**\n{related_info}\n请你**记住上面的知识**,之后可能会用到。\n"
else:
logger.debug("从LPMM知识库获取知识失败可能是从未导入过知识返回空知识...")
return ""