Merge branch 'dev' into dev-api-ada to resolve conflicts
This commit is contained in:
@@ -2,7 +2,7 @@ import asyncio
|
||||
import time
|
||||
import traceback
|
||||
import random
|
||||
from typing import List, Optional, Dict, Any
|
||||
from typing import List, Optional, Dict, Any, Tuple
|
||||
from rich.traceback import install
|
||||
|
||||
from src.config.config import global_config
|
||||
@@ -18,11 +18,12 @@ from src.chat.chat_loop.hfc_utils import CycleDetail
|
||||
from src.person_info.relationship_builder_manager import relationship_builder_manager
|
||||
from src.person_info.person_info import get_person_info_manager
|
||||
from src.plugin_system.base.component_types import ActionInfo, ChatMode
|
||||
from src.plugin_system.apis import generator_api, send_api, message_api
|
||||
from src.plugin_system.apis import generator_api, send_api, message_api, database_api
|
||||
from src.chat.willing.willing_manager import get_willing_manager
|
||||
from src.mais4u.mai_think import mai_thinking_manager
|
||||
from maim_message.message_base import GroupInfo
|
||||
from src.mais4u.constant_s4u import ENABLE_S4U
|
||||
from src.plugins.built_in.core_actions.no_reply import NoReplyAction
|
||||
from src.chat.chat_loop.hfc_utils import send_typing, stop_typing
|
||||
|
||||
ERROR_LOOP_INFO = {
|
||||
"loop_plan_info": {
|
||||
@@ -88,11 +89,6 @@ class HeartFChatting:
|
||||
|
||||
self.loop_mode = ChatMode.NORMAL # 初始循环模式为普通模式
|
||||
|
||||
# 新增:消息计数器和疲惫阈值
|
||||
self._message_count = 0 # 发送的消息计数
|
||||
self._message_threshold = max(10, int(30 * global_config.chat.focus_value))
|
||||
self._fatigue_triggered = False # 是否已触发疲惫退出
|
||||
|
||||
self.action_manager = ActionManager()
|
||||
self.action_planner = ActionPlanner(chat_id=self.stream_id, action_manager=self.action_manager)
|
||||
self.action_modifier = ActionModifier(action_manager=self.action_manager, chat_id=self.stream_id)
|
||||
@@ -112,7 +108,6 @@ class HeartFChatting:
|
||||
|
||||
self.last_read_time = time.time() - 1
|
||||
|
||||
self.willing_amplifier = 1
|
||||
self.willing_manager = get_willing_manager()
|
||||
|
||||
logger.info(f"{self.log_prefix} HeartFChatting 初始化完成")
|
||||
@@ -182,6 +177,9 @@ class HeartFChatting:
|
||||
if self.loop_mode == ChatMode.NORMAL:
|
||||
self.energy_value -= 0.3
|
||||
self.energy_value = max(self.energy_value, 0.3)
|
||||
if self.loop_mode == ChatMode.FOCUS:
|
||||
self.energy_value -= 0.6
|
||||
self.energy_value = max(self.energy_value, 0.3)
|
||||
|
||||
def print_cycle_info(self, cycle_timers):
|
||||
# 记录循环信息和计时器结果
|
||||
@@ -200,9 +198,9 @@ class HeartFChatting:
|
||||
async def _loopbody(self):
|
||||
if self.loop_mode == ChatMode.FOCUS:
|
||||
if await self._observe():
|
||||
self.energy_value -= 1 * global_config.chat.focus_value
|
||||
self.energy_value -= 1 / global_config.chat.focus_value
|
||||
else:
|
||||
self.energy_value -= 3 * global_config.chat.focus_value
|
||||
self.energy_value -= 3 / global_config.chat.focus_value
|
||||
if self.energy_value <= 1:
|
||||
self.energy_value = 1
|
||||
self.loop_mode = ChatMode.NORMAL
|
||||
@@ -218,15 +216,17 @@ class HeartFChatting:
|
||||
limit_mode="earliest",
|
||||
filter_bot=True,
|
||||
)
|
||||
if global_config.chat.focus_value != 0:
|
||||
if len(new_messages_data) > 3 / pow(global_config.chat.focus_value, 0.5):
|
||||
self.loop_mode = ChatMode.FOCUS
|
||||
self.energy_value = (
|
||||
10 + (len(new_messages_data) / (3 / pow(global_config.chat.focus_value, 0.5))) * 10
|
||||
)
|
||||
return True
|
||||
|
||||
if len(new_messages_data) > 3 * global_config.chat.focus_value:
|
||||
self.loop_mode = ChatMode.FOCUS
|
||||
self.energy_value = 10 + (len(new_messages_data) / (3 * global_config.chat.focus_value)) * 10
|
||||
return True
|
||||
|
||||
if self.energy_value >= 30 * global_config.chat.focus_value:
|
||||
self.loop_mode = ChatMode.FOCUS
|
||||
return True
|
||||
if self.energy_value >= 30:
|
||||
self.loop_mode = ChatMode.FOCUS
|
||||
return True
|
||||
|
||||
if new_messages_data:
|
||||
earliest_messages_data = new_messages_data[0]
|
||||
@@ -235,10 +235,10 @@ class HeartFChatting:
|
||||
if_think = await self.normal_response(earliest_messages_data)
|
||||
if if_think:
|
||||
factor = max(global_config.chat.focus_value, 0.1)
|
||||
self.energy_value *= 1.1 / factor
|
||||
self.energy_value *= 1.1 * factor
|
||||
logger.info(f"{self.log_prefix} 进行了思考,能量值按倍数增加,当前能量值:{self.energy_value:.1f}")
|
||||
else:
|
||||
self.energy_value += 0.1 / global_config.chat.focus_value
|
||||
self.energy_value += 0.1 * global_config.chat.focus_value
|
||||
logger.debug(f"{self.log_prefix} 没有进行思考,能量值线性增加,当前能量值:{self.energy_value:.1f}")
|
||||
|
||||
logger.debug(f"{self.log_prefix} 当前能量值:{self.energy_value:.1f}")
|
||||
@@ -257,44 +257,69 @@ class HeartFChatting:
|
||||
person_name = await person_info_manager.get_value(person_id, "person_name")
|
||||
return f"{person_name}:{message_data.get('processed_plain_text')}"
|
||||
|
||||
async def send_typing(self):
|
||||
group_info = GroupInfo(platform="amaidesu_default", group_id="114514", group_name="内心")
|
||||
async def _send_and_store_reply(
|
||||
self,
|
||||
response_set,
|
||||
reply_to_str,
|
||||
loop_start_time,
|
||||
action_message,
|
||||
cycle_timers: Dict[str, float],
|
||||
thinking_id,
|
||||
plan_result,
|
||||
) -> Tuple[Dict[str, Any], str, Dict[str, float]]:
|
||||
with Timer("回复发送", cycle_timers):
|
||||
reply_text = await self._send_response(response_set, reply_to_str, loop_start_time, action_message)
|
||||
|
||||
chat = await get_chat_manager().get_or_create_stream(
|
||||
platform="amaidesu_default",
|
||||
user_info=None,
|
||||
group_info=group_info,
|
||||
# 存储reply action信息
|
||||
person_info_manager = get_person_info_manager()
|
||||
person_id = person_info_manager.get_person_id(
|
||||
action_message.get("chat_info_platform", ""),
|
||||
action_message.get("user_id", ""),
|
||||
)
|
||||
person_name = await person_info_manager.get_value(person_id, "person_name")
|
||||
action_prompt_display = f"你对{person_name}进行了回复:{reply_text}"
|
||||
|
||||
await database_api.store_action_info(
|
||||
chat_stream=self.chat_stream,
|
||||
action_build_into_prompt=False,
|
||||
action_prompt_display=action_prompt_display,
|
||||
action_done=True,
|
||||
thinking_id=thinking_id,
|
||||
action_data={"reply_text": reply_text, "reply_to": reply_to_str},
|
||||
action_name="reply",
|
||||
)
|
||||
|
||||
await send_api.custom_to_stream(
|
||||
message_type="state", content="typing", stream_id=chat.stream_id, storage_message=False
|
||||
)
|
||||
# 构建循环信息
|
||||
loop_info: Dict[str, Any] = {
|
||||
"loop_plan_info": {
|
||||
"action_result": plan_result.get("action_result", {}),
|
||||
},
|
||||
"loop_action_info": {
|
||||
"action_taken": True,
|
||||
"reply_text": reply_text,
|
||||
"command": "",
|
||||
"taken_time": time.time(),
|
||||
},
|
||||
}
|
||||
|
||||
async def stop_typing(self):
|
||||
group_info = GroupInfo(platform="amaidesu_default", group_id="114514", group_name="内心")
|
||||
|
||||
chat = await get_chat_manager().get_or_create_stream(
|
||||
platform="amaidesu_default",
|
||||
user_info=None,
|
||||
group_info=group_info,
|
||||
)
|
||||
|
||||
await send_api.custom_to_stream(
|
||||
message_type="state", content="stop_typing", stream_id=chat.stream_id, storage_message=False
|
||||
)
|
||||
return loop_info, reply_text, cycle_timers
|
||||
|
||||
async def _observe(self, message_data: Optional[Dict[str, Any]] = None):
|
||||
# sourcery skip: hoist-statement-from-if, merge-comparisons, reintroduce-else
|
||||
if not message_data:
|
||||
message_data = {}
|
||||
action_type = "no_action"
|
||||
reply_text = "" # 初始化reply_text变量,避免UnboundLocalError
|
||||
gen_task = None # 初始化gen_task变量,避免UnboundLocalError
|
||||
reply_to_str = "" # 初始化reply_to_str变量
|
||||
|
||||
# 创建新的循环信息
|
||||
cycle_timers, thinking_id = self.start_cycle()
|
||||
|
||||
logger.info(f"{self.log_prefix} 开始第{self._cycle_counter}次思考[模式:{self.loop_mode}]")
|
||||
|
||||
|
||||
if ENABLE_S4U:
|
||||
await self.send_typing()
|
||||
await send_typing()
|
||||
|
||||
async with global_prompt_manager.async_message_scope(self.chat_stream.context.get_template_name()):
|
||||
loop_start_time = time.time()
|
||||
@@ -310,95 +335,254 @@ class HeartFChatting:
|
||||
except Exception as e:
|
||||
logger.error(f"{self.log_prefix} 动作修改失败: {e}")
|
||||
|
||||
# 如果normal,开始一个回复生成进程,先准备好回复(其实是和planer同时进行的)
|
||||
# 检查是否在normal模式下没有可用动作(除了reply相关动作)
|
||||
skip_planner = False
|
||||
if self.loop_mode == ChatMode.NORMAL:
|
||||
reply_to_str = await self.build_reply_to_str(message_data)
|
||||
gen_task = asyncio.create_task(self._generate_response(message_data, available_actions, reply_to_str))
|
||||
# 过滤掉reply相关的动作,检查是否还有其他动作
|
||||
non_reply_actions = {
|
||||
k: v for k, v in available_actions.items() if k not in ["reply", "no_reply", "no_action"]
|
||||
}
|
||||
|
||||
with Timer("规划器", cycle_timers):
|
||||
plan_result, target_message = await self.action_planner.plan(mode=self.loop_mode)
|
||||
if not non_reply_actions:
|
||||
skip_planner = True
|
||||
logger.info(f"{self.log_prefix} Normal模式下没有可用动作,直接回复")
|
||||
|
||||
action_result: dict = plan_result.get("action_result", {}) # type: ignore
|
||||
action_type, action_data, reasoning, is_parallel = (
|
||||
action_result.get("action_type", "error"),
|
||||
action_result.get("action_data", {}),
|
||||
action_result.get("reasoning", "未提供理由"),
|
||||
action_result.get("is_parallel", True),
|
||||
)
|
||||
# 直接设置为reply动作
|
||||
action_type = "reply"
|
||||
reasoning = ""
|
||||
action_data = {"loop_start_time": loop_start_time}
|
||||
is_parallel = False
|
||||
|
||||
action_data["loop_start_time"] = loop_start_time
|
||||
# 构建plan_result用于后续处理
|
||||
plan_result = {
|
||||
"action_result": {
|
||||
"action_type": action_type,
|
||||
"action_data": action_data,
|
||||
"reasoning": reasoning,
|
||||
"timestamp": time.time(),
|
||||
"is_parallel": is_parallel,
|
||||
},
|
||||
"action_prompt": "",
|
||||
}
|
||||
target_message = message_data
|
||||
|
||||
if self.loop_mode == ChatMode.NORMAL:
|
||||
if action_type == "no_action":
|
||||
logger.info(f"[{self.log_prefix}] {global_config.bot.nickname} 决定进行回复")
|
||||
elif is_parallel:
|
||||
logger.info(
|
||||
f"[{self.log_prefix}] {global_config.bot.nickname} 决定进行回复, 同时执行{action_type}动作"
|
||||
# 如果normal模式且不跳过规划器,开始一个回复生成进程,先准备好回复(其实是和planer同时进行的)
|
||||
if not skip_planner:
|
||||
reply_to_str = await self.build_reply_to_str(message_data)
|
||||
gen_task = asyncio.create_task(
|
||||
self._generate_response(
|
||||
message_data=message_data,
|
||||
available_actions=available_actions,
|
||||
reply_to=reply_to_str,
|
||||
request_type="chat.replyer.normal",
|
||||
)
|
||||
)
|
||||
else:
|
||||
logger.info(f"[{self.log_prefix}] {global_config.bot.nickname} 决定执行{action_type}动作")
|
||||
|
||||
if action_type == "no_action":
|
||||
if not skip_planner:
|
||||
with Timer("规划器", cycle_timers):
|
||||
plan_result, target_message = await self.action_planner.plan(mode=self.loop_mode)
|
||||
|
||||
action_result: Dict[str, Any] = plan_result.get("action_result", {}) # type: ignore
|
||||
action_type, action_data, reasoning, is_parallel = (
|
||||
action_result.get("action_type", "error"),
|
||||
action_result.get("action_data", {}),
|
||||
action_result.get("reasoning", "未提供理由"),
|
||||
action_result.get("is_parallel", True),
|
||||
)
|
||||
|
||||
action_data["loop_start_time"] = loop_start_time
|
||||
|
||||
if action_type == "reply":
|
||||
logger.info(f"{self.log_prefix}{global_config.bot.nickname} 决定进行回复")
|
||||
elif is_parallel:
|
||||
logger.info(f"{self.log_prefix}{global_config.bot.nickname} 决定进行回复, 同时执行{action_type}动作")
|
||||
else:
|
||||
# 只有在gen_task存在时才进行相关操作
|
||||
if gen_task:
|
||||
if not gen_task.done():
|
||||
gen_task.cancel()
|
||||
logger.debug(f"{self.log_prefix} 已取消预生成的回复任务")
|
||||
logger.info(
|
||||
f"{self.log_prefix}{global_config.bot.nickname} 原本想要回复,但选择执行{action_type},不发表回复"
|
||||
)
|
||||
elif generation_result := gen_task.result():
|
||||
content = " ".join([item[1] for item in generation_result if item[0] == "text"])
|
||||
logger.debug(f"{self.log_prefix} 预生成的回复任务已完成")
|
||||
logger.info(
|
||||
f"{self.log_prefix}{global_config.bot.nickname} 原本想要回复:{content},但选择执行{action_type},不发表回复"
|
||||
)
|
||||
else:
|
||||
logger.warning(f"{self.log_prefix} 预生成的回复任务未生成有效内容")
|
||||
|
||||
action_message: Dict[str, Any] = message_data or target_message # type: ignore
|
||||
if action_type == "reply":
|
||||
# 等待回复生成完毕
|
||||
gather_timeout = global_config.chat.thinking_timeout
|
||||
try:
|
||||
response_set = await asyncio.wait_for(gen_task, timeout=gather_timeout)
|
||||
except asyncio.TimeoutError:
|
||||
response_set = None
|
||||
if self.loop_mode == ChatMode.NORMAL:
|
||||
# 只有在gen_task存在时才等待
|
||||
if not gen_task:
|
||||
reply_to_str = await self.build_reply_to_str(message_data)
|
||||
gen_task = asyncio.create_task(
|
||||
self._generate_response(
|
||||
message_data=message_data,
|
||||
available_actions=available_actions,
|
||||
reply_to=reply_to_str,
|
||||
request_type="chat.replyer.normal",
|
||||
)
|
||||
)
|
||||
|
||||
if response_set:
|
||||
content = " ".join([item[1] for item in response_set if item[0] == "text"])
|
||||
gather_timeout = global_config.chat.thinking_timeout
|
||||
try:
|
||||
response_set = await asyncio.wait_for(gen_task, timeout=gather_timeout)
|
||||
except asyncio.TimeoutError:
|
||||
logger.warning(f"{self.log_prefix} 回复生成超时>{global_config.chat.thinking_timeout}s,已跳过")
|
||||
response_set = None
|
||||
|
||||
# 模型炸了,没有回复内容生成
|
||||
if not response_set:
|
||||
logger.warning(f"[{self.log_prefix}] 模型未生成回复内容")
|
||||
return False
|
||||
elif action_type not in ["no_action"] and not is_parallel:
|
||||
logger.info(
|
||||
f"[{self.log_prefix}] {global_config.bot.nickname} 原本想要回复:{content},但选择执行{action_type},不发表回复"
|
||||
)
|
||||
return False
|
||||
# 模型炸了或超时,没有回复内容生成
|
||||
if not response_set:
|
||||
logger.warning(f"{self.log_prefix}模型未生成回复内容")
|
||||
return False
|
||||
else:
|
||||
logger.info(f"{self.log_prefix}{global_config.bot.nickname} 决定进行回复 (focus模式)")
|
||||
|
||||
logger.info(f"[{self.log_prefix}] {global_config.bot.nickname} 决定的回复内容: {content}")
|
||||
# 构建reply_to字符串
|
||||
reply_to_str = await self.build_reply_to_str(action_message)
|
||||
|
||||
# 发送回复 (不再需要传入 chat)
|
||||
reply_text = await self._send_response(response_set, reply_to_str, loop_start_time,message_data)
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
if ENABLE_S4U:
|
||||
await self.stop_typing()
|
||||
await mai_thinking_manager.get_mai_think(self.stream_id).do_think_after_response(reply_text)
|
||||
# 生成回复
|
||||
with Timer("回复生成", cycle_timers):
|
||||
response_set = await self._generate_response(
|
||||
message_data=action_message,
|
||||
available_actions=available_actions,
|
||||
reply_to=reply_to_str,
|
||||
request_type="chat.replyer.focus",
|
||||
)
|
||||
|
||||
if not response_set:
|
||||
logger.warning(f"{self.log_prefix}模型未生成回复内容")
|
||||
return False
|
||||
|
||||
loop_info, reply_text, cycle_timers = await self._send_and_store_reply(
|
||||
response_set, reply_to_str, loop_start_time, action_message, cycle_timers, thinking_id, plan_result
|
||||
)
|
||||
|
||||
return True
|
||||
|
||||
else:
|
||||
action_message: Dict[str, Any] = message_data or target_message # type: ignore
|
||||
# 并行执行:同时进行回复发送和动作执行
|
||||
# 先置空防止未定义错误
|
||||
background_reply_task = None
|
||||
background_action_task = None
|
||||
# 如果是并行执行且在normal模式下,需要等待预生成的回复任务完成并发送回复
|
||||
if self.loop_mode == ChatMode.NORMAL and is_parallel and gen_task:
|
||||
|
||||
# 动作执行计时
|
||||
with Timer("动作执行", cycle_timers):
|
||||
success, reply_text, command = await self._handle_action(
|
||||
action_type, reasoning, action_data, cycle_timers, thinking_id, action_message
|
||||
async def handle_reply_task() -> Tuple[Optional[Dict[str, Any]], str, Dict[str, float]]:
|
||||
# 等待预生成的回复任务完成
|
||||
gather_timeout = global_config.chat.thinking_timeout
|
||||
try:
|
||||
response_set = await asyncio.wait_for(gen_task, timeout=gather_timeout)
|
||||
|
||||
except asyncio.TimeoutError:
|
||||
logger.warning(
|
||||
f"{self.log_prefix} 并行执行:回复生成超时>{global_config.chat.thinking_timeout}s,已跳过"
|
||||
)
|
||||
return None, "", {}
|
||||
except asyncio.CancelledError:
|
||||
logger.debug(f"{self.log_prefix} 并行执行:回复生成任务已被取消")
|
||||
return None, "", {}
|
||||
|
||||
if not response_set:
|
||||
logger.warning(f"{self.log_prefix} 模型超时或生成回复内容为空")
|
||||
return None, "", {}
|
||||
|
||||
reply_to_str = await self.build_reply_to_str(action_message)
|
||||
loop_info, reply_text, cycle_timers_reply = await self._send_and_store_reply(
|
||||
response_set,
|
||||
reply_to_str,
|
||||
loop_start_time,
|
||||
action_message,
|
||||
cycle_timers,
|
||||
thinking_id,
|
||||
plan_result,
|
||||
)
|
||||
return loop_info, reply_text, cycle_timers_reply
|
||||
|
||||
# 执行回复任务并赋值到变量
|
||||
background_reply_task = asyncio.create_task(handle_reply_task())
|
||||
|
||||
# 动作执行任务
|
||||
async def handle_action_task():
|
||||
with Timer("动作执行", cycle_timers):
|
||||
success, reply_text, command = await self._handle_action(
|
||||
action_type, reasoning, action_data, cycle_timers, thinking_id, action_message
|
||||
)
|
||||
return success, reply_text, command
|
||||
|
||||
# 执行动作任务并赋值到变量
|
||||
background_action_task = asyncio.create_task(handle_action_task())
|
||||
|
||||
reply_loop_info = None
|
||||
reply_text_from_reply = ""
|
||||
action_success = False
|
||||
action_reply_text = ""
|
||||
action_command = ""
|
||||
|
||||
# 并行执行所有任务
|
||||
if background_reply_task:
|
||||
results = await asyncio.gather(
|
||||
background_reply_task, background_action_task, return_exceptions=True
|
||||
)
|
||||
# 处理回复任务结果
|
||||
reply_result = results[0]
|
||||
if isinstance(reply_result, BaseException):
|
||||
logger.error(f"{self.log_prefix} 回复任务执行异常: {reply_result}")
|
||||
elif reply_result and reply_result[0] is not None:
|
||||
reply_loop_info, reply_text_from_reply, _ = reply_result
|
||||
|
||||
loop_info = {
|
||||
"loop_plan_info": {
|
||||
"action_result": plan_result.get("action_result", {}),
|
||||
},
|
||||
"loop_action_info": {
|
||||
"action_taken": success,
|
||||
"reply_text": reply_text,
|
||||
"command": command,
|
||||
"taken_time": time.time(),
|
||||
},
|
||||
}
|
||||
# 处理动作任务结果
|
||||
action_task_result = results[1]
|
||||
if isinstance(action_task_result, BaseException):
|
||||
logger.error(f"{self.log_prefix} 动作任务执行异常: {action_task_result}")
|
||||
else:
|
||||
action_success, action_reply_text, action_command = action_task_result
|
||||
else:
|
||||
results = await asyncio.gather(background_action_task, return_exceptions=True)
|
||||
# 只有动作任务
|
||||
action_task_result = results[0]
|
||||
if isinstance(action_task_result, BaseException):
|
||||
logger.error(f"{self.log_prefix} 动作任务执行异常: {action_task_result}")
|
||||
else:
|
||||
action_success, action_reply_text, action_command = action_task_result
|
||||
|
||||
if loop_info["loop_action_info"]["command"] == "stop_focus_chat":
|
||||
logger.info(f"{self.log_prefix} 麦麦决定停止专注聊天")
|
||||
return False
|
||||
# 停止该聊天模式的循环
|
||||
# 构建最终的循环信息
|
||||
if reply_loop_info:
|
||||
# 如果有回复信息,使用回复的loop_info作为基础
|
||||
loop_info = reply_loop_info
|
||||
# 更新动作执行信息
|
||||
loop_info["loop_action_info"].update(
|
||||
{
|
||||
"action_taken": action_success,
|
||||
"command": action_command,
|
||||
"taken_time": time.time(),
|
||||
}
|
||||
)
|
||||
reply_text = reply_text_from_reply
|
||||
else:
|
||||
# 没有回复信息,构建纯动作的loop_info
|
||||
loop_info = {
|
||||
"loop_plan_info": {
|
||||
"action_result": plan_result.get("action_result", {}),
|
||||
},
|
||||
"loop_action_info": {
|
||||
"action_taken": action_success,
|
||||
"reply_text": action_reply_text,
|
||||
"command": action_command,
|
||||
"taken_time": time.time(),
|
||||
},
|
||||
}
|
||||
reply_text = action_reply_text
|
||||
|
||||
if ENABLE_S4U:
|
||||
await stop_typing()
|
||||
await mai_thinking_manager.get_mai_think(self.stream_id).do_think_after_response(reply_text)
|
||||
|
||||
self.end_cycle(loop_info, cycle_timers)
|
||||
self.print_cycle_info(cycle_timers)
|
||||
@@ -406,8 +590,16 @@ class HeartFChatting:
|
||||
if self.loop_mode == ChatMode.NORMAL:
|
||||
await self.willing_manager.after_generate_reply_handle(message_data.get("message_id", ""))
|
||||
|
||||
# 管理no_reply计数器:当执行了非no_reply动作时,重置计数器
|
||||
if action_type != "no_reply" and action_type != "no_action":
|
||||
# 导入NoReplyAction并重置计数器
|
||||
NoReplyAction.reset_consecutive_count()
|
||||
logger.info(f"{self.log_prefix} 执行了{action_type}动作,重置no_reply计数器")
|
||||
return True
|
||||
elif action_type == "no_action":
|
||||
# 当执行回复动作时,也重置no_reply计数器s
|
||||
NoReplyAction.reset_consecutive_count()
|
||||
logger.info(f"{self.log_prefix} 执行了回复动作,重置no_reply计数器")
|
||||
|
||||
return True
|
||||
|
||||
@@ -435,7 +627,7 @@ class HeartFChatting:
|
||||
action: str,
|
||||
reasoning: str,
|
||||
action_data: dict,
|
||||
cycle_timers: dict,
|
||||
cycle_timers: Dict[str, float],
|
||||
thinking_id: str,
|
||||
action_message: dict,
|
||||
) -> tuple[bool, str, str]:
|
||||
@@ -501,7 +693,7 @@ class HeartFChatting:
|
||||
在"兴趣"模式下,判断是否回复并生成内容。
|
||||
"""
|
||||
|
||||
interested_rate = (message_data.get("interest_value") or 0.0) * self.willing_amplifier
|
||||
interested_rate = (message_data.get("interest_value") or 0.0) * global_config.chat.willing_amplifier
|
||||
|
||||
self.willing_manager.setup(message_data, self.chat_stream)
|
||||
|
||||
@@ -515,8 +707,8 @@ class HeartFChatting:
|
||||
reply_probability += additional_config["maimcore_reply_probability_gain"]
|
||||
reply_probability = min(max(reply_probability, 0), 1) # 确保概率在 0-1 之间
|
||||
|
||||
talk_frequency = global_config.chat.get_current_talk_frequency(self.stream_id)
|
||||
reply_probability = talk_frequency * reply_probability
|
||||
talk_frequency = global_config.chat.get_current_talk_frequency(self.stream_id)
|
||||
reply_probability = talk_frequency * reply_probability
|
||||
|
||||
# 处理表情包
|
||||
if message_data.get("is_emoji") or message_data.get("is_picid"):
|
||||
@@ -544,7 +736,11 @@ class HeartFChatting:
|
||||
return False
|
||||
|
||||
async def _generate_response(
|
||||
self, message_data: dict, available_actions: Optional[Dict[str, ActionInfo]], reply_to: str
|
||||
self,
|
||||
message_data: dict,
|
||||
available_actions: Optional[Dict[str, ActionInfo]],
|
||||
reply_to: str,
|
||||
request_type: str = "chat.replyer.normal",
|
||||
) -> Optional[list]:
|
||||
"""生成普通回复"""
|
||||
try:
|
||||
@@ -552,8 +748,8 @@ class HeartFChatting:
|
||||
chat_stream=self.chat_stream,
|
||||
reply_to=reply_to,
|
||||
available_actions=available_actions,
|
||||
enable_tool=global_config.tool.enable_in_normal_chat,
|
||||
request_type="chat.replyer.normal",
|
||||
enable_tool=global_config.tool.enable_tool,
|
||||
request_type=request_type,
|
||||
)
|
||||
|
||||
if not success or not reply_set:
|
||||
@@ -563,10 +759,10 @@ class HeartFChatting:
|
||||
return reply_set
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"[{self.log_prefix}] 回复生成出现错误:{str(e)} {traceback.format_exc()}")
|
||||
logger.error(f"{self.log_prefix}回复生成出现错误:{str(e)} {traceback.format_exc()}")
|
||||
return None
|
||||
|
||||
async def _send_response(self, reply_set, reply_to, thinking_start_time, message_data):
|
||||
async def _send_response(self, reply_set, reply_to, thinking_start_time, message_data) -> str:
|
||||
current_time = time.time()
|
||||
new_message_count = message_api.count_new_messages(
|
||||
chat_id=self.chat_stream.stream_id, start_time=thinking_start_time, end_time=current_time
|
||||
@@ -578,13 +774,9 @@ class HeartFChatting:
|
||||
need_reply = new_message_count >= random.randint(2, 4)
|
||||
|
||||
if need_reply:
|
||||
logger.info(
|
||||
f"{self.log_prefix} 从思考到回复,共有{new_message_count}条新消息,使用引用回复"
|
||||
)
|
||||
logger.info(f"{self.log_prefix} 从思考到回复,共有{new_message_count}条新消息,使用引用回复")
|
||||
else:
|
||||
logger.debug(
|
||||
f"{self.log_prefix} 从思考到回复,共有{new_message_count}条新消息,不使用引用回复"
|
||||
)
|
||||
logger.info(f"{self.log_prefix} 从思考到回复,共有{new_message_count}条新消息,不使用引用回复")
|
||||
|
||||
reply_text = ""
|
||||
first_replied = False
|
||||
|
||||
@@ -1,10 +1,13 @@
|
||||
import time
|
||||
|
||||
from typing import Optional, Dict, Any
|
||||
|
||||
from src.config.config import global_config
|
||||
from src.common.message_repository import count_messages
|
||||
from src.common.logger import get_logger
|
||||
from src.chat.message_receive.chat_stream import get_chat_manager
|
||||
from src.plugin_system.apis import send_api
|
||||
from maim_message.message_base import GroupInfo
|
||||
|
||||
from src.common.message_repository import count_messages
|
||||
|
||||
logger = get_logger(__name__)
|
||||
|
||||
@@ -106,3 +109,30 @@ def get_recent_message_stats(minutes: float = 30, chat_id: Optional[str] = None)
|
||||
bot_reply_count = count_messages(bot_filter)
|
||||
|
||||
return {"bot_reply_count": bot_reply_count, "total_message_count": total_message_count}
|
||||
|
||||
|
||||
async def send_typing():
|
||||
group_info = GroupInfo(platform="amaidesu_default", group_id="114514", group_name="内心")
|
||||
|
||||
chat = await get_chat_manager().get_or_create_stream(
|
||||
platform="amaidesu_default",
|
||||
user_info=None,
|
||||
group_info=group_info,
|
||||
)
|
||||
|
||||
await send_api.custom_to_stream(
|
||||
message_type="state", content="typing", stream_id=chat.stream_id, storage_message=False
|
||||
)
|
||||
|
||||
async def stop_typing():
|
||||
group_info = GroupInfo(platform="amaidesu_default", group_id="114514", group_name="内心")
|
||||
|
||||
chat = await get_chat_manager().get_or_create_stream(
|
||||
platform="amaidesu_default",
|
||||
user_info=None,
|
||||
group_info=group_info,
|
||||
)
|
||||
|
||||
await send_api.custom_to_stream(
|
||||
message_type="state", content="stop_typing", stream_id=chat.stream_id, storage_message=False
|
||||
)
|
||||
@@ -525,9 +525,9 @@ class EmojiManager:
|
||||
如果文件已被删除,则执行对象的删除方法并从列表中移除
|
||||
"""
|
||||
try:
|
||||
if not self.emoji_objects:
|
||||
logger.warning("[检查] emoji_objects为空,跳过完整性检查")
|
||||
return
|
||||
# if not self.emoji_objects:
|
||||
# logger.warning("[检查] emoji_objects为空,跳过完整性检查")
|
||||
# return
|
||||
|
||||
total_count = len(self.emoji_objects)
|
||||
self.emoji_num = total_count
|
||||
@@ -707,6 +707,38 @@ class EmojiManager:
|
||||
return emoji
|
||||
return None # 如果循环结束还没找到,则返回 None
|
||||
|
||||
async def get_emoji_description_by_hash(self, emoji_hash: str) -> Optional[str]:
|
||||
"""根据哈希值获取已注册表情包的描述
|
||||
|
||||
Args:
|
||||
emoji_hash: 表情包的哈希值
|
||||
|
||||
Returns:
|
||||
Optional[str]: 表情包描述,如果未找到则返回None
|
||||
"""
|
||||
try:
|
||||
# 先从内存中查找
|
||||
emoji = await self.get_emoji_from_manager(emoji_hash)
|
||||
if emoji and emoji.description:
|
||||
logger.info(f"[缓存命中] 从内存获取表情包描述: {emoji.description[:50]}...")
|
||||
return emoji.description
|
||||
|
||||
# 如果内存中没有,从数据库查找
|
||||
self._ensure_db()
|
||||
try:
|
||||
emoji_record = Emoji.get_or_none(Emoji.emoji_hash == emoji_hash)
|
||||
if emoji_record and emoji_record.description:
|
||||
logger.info(f"[缓存命中] 从数据库获取表情包描述: {emoji_record.description[:50]}...")
|
||||
return emoji_record.description
|
||||
except Exception as e:
|
||||
logger.error(f"从数据库查询表情包描述时出错: {e}")
|
||||
|
||||
return None
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"获取表情包描述失败 (Hash: {emoji_hash}): {str(e)}")
|
||||
return None
|
||||
|
||||
async def delete_emoji(self, emoji_hash: str) -> bool:
|
||||
"""根据哈希值删除表情包
|
||||
|
||||
|
||||
@@ -51,7 +51,7 @@ def init_prompt() -> None:
|
||||
当"想说明某个具体的事实观点,但懒得明说,或者不便明说,或表达一种默契",使用"懂的都懂"
|
||||
当"当涉及游戏相关时,表示意外的夸赞,略带戏谑意味"时,使用"这么强!"
|
||||
|
||||
注意不要总结你自己(SELF)的发言
|
||||
请注意:不要总结你自己(SELF)的发言
|
||||
现在请你概括
|
||||
"""
|
||||
Prompt(learn_style_prompt, "learn_style_prompt")
|
||||
@@ -330,48 +330,8 @@ class ExpressionLearner:
|
||||
"""
|
||||
current_time = time.time()
|
||||
|
||||
# 全局衰减所有已存储的表达方式
|
||||
for type in ["style", "grammar"]:
|
||||
base_dir = os.path.join("data", "expression", f"learnt_{type}")
|
||||
if not os.path.exists(base_dir):
|
||||
logger.debug(f"目录不存在,跳过衰减: {base_dir}")
|
||||
continue
|
||||
|
||||
try:
|
||||
chat_ids = os.listdir(base_dir)
|
||||
logger.debug(f"在 {base_dir} 中找到 {len(chat_ids)} 个聊天ID目录进行衰减")
|
||||
except Exception as e:
|
||||
logger.error(f"读取目录失败 {base_dir}: {e}")
|
||||
continue
|
||||
|
||||
for chat_id in chat_ids:
|
||||
file_path = os.path.join(base_dir, chat_id, "expressions.json")
|
||||
if not os.path.exists(file_path):
|
||||
continue
|
||||
|
||||
try:
|
||||
with open(file_path, "r", encoding="utf-8") as f:
|
||||
expressions = json.load(f)
|
||||
|
||||
if not isinstance(expressions, list):
|
||||
logger.warning(f"表达方式文件格式错误,跳过衰减: {file_path}")
|
||||
continue
|
||||
|
||||
# 应用全局衰减
|
||||
decayed_expressions = self.apply_decay_to_expressions(expressions, current_time)
|
||||
|
||||
# 保存衰减后的结果
|
||||
with open(file_path, "w", encoding="utf-8") as f:
|
||||
json.dump(decayed_expressions, f, ensure_ascii=False, indent=2)
|
||||
|
||||
logger.debug(f"已对 {file_path} 应用衰减,剩余 {len(decayed_expressions)} 个表达方式")
|
||||
except json.JSONDecodeError as e:
|
||||
logger.error(f"JSON解析失败,跳过衰减 {file_path}: {e}")
|
||||
except PermissionError as e:
|
||||
logger.error(f"权限不足,无法更新 {file_path}: {e}")
|
||||
except Exception as e:
|
||||
logger.error(f"全局衰减{type}表达方式失败 {file_path}: {e}")
|
||||
continue
|
||||
# 全局衰减所有已存储的表达方式(直接操作数据库)
|
||||
self._apply_global_decay_to_database(current_time)
|
||||
|
||||
learnt_style: Optional[List[Tuple[str, str, str]]] = []
|
||||
learnt_grammar: Optional[List[Tuple[str, str, str]]] = []
|
||||
@@ -388,6 +348,42 @@ class ExpressionLearner:
|
||||
|
||||
return learnt_style, learnt_grammar
|
||||
|
||||
def _apply_global_decay_to_database(self, current_time: float) -> None:
|
||||
"""
|
||||
对数据库中的所有表达方式应用全局衰减
|
||||
"""
|
||||
try:
|
||||
# 获取所有表达方式
|
||||
all_expressions = Expression.select()
|
||||
|
||||
updated_count = 0
|
||||
deleted_count = 0
|
||||
|
||||
for expr in all_expressions:
|
||||
# 计算时间差
|
||||
last_active = expr.last_active_time
|
||||
time_diff_days = (current_time - last_active) / (24 * 3600) # 转换为天
|
||||
|
||||
# 计算衰减值
|
||||
decay_value = self.calculate_decay_factor(time_diff_days)
|
||||
new_count = max(0.01, expr.count - decay_value)
|
||||
|
||||
if new_count <= 0.01:
|
||||
# 如果count太小,删除这个表达方式
|
||||
expr.delete_instance()
|
||||
deleted_count += 1
|
||||
else:
|
||||
# 更新count
|
||||
expr.count = new_count
|
||||
expr.save()
|
||||
updated_count += 1
|
||||
|
||||
if updated_count > 0 or deleted_count > 0:
|
||||
logger.info(f"全局衰减完成:更新了 {updated_count} 个表达方式,删除了 {deleted_count} 个表达方式")
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"数据库全局衰减失败: {e}")
|
||||
|
||||
def calculate_decay_factor(self, time_diff_days: float) -> float:
|
||||
"""
|
||||
计算衰减值
|
||||
@@ -410,30 +406,6 @@ class ExpressionLearner:
|
||||
|
||||
return min(0.01, decay)
|
||||
|
||||
def apply_decay_to_expressions(
|
||||
self, expressions: List[Dict[str, Any]], current_time: float
|
||||
) -> List[Dict[str, Any]]:
|
||||
"""
|
||||
对表达式列表应用衰减
|
||||
返回衰减后的表达式列表,移除count小于0的项
|
||||
"""
|
||||
result = []
|
||||
for expr in expressions:
|
||||
# 确保last_active_time存在,如果不存在则使用current_time
|
||||
if "last_active_time" not in expr:
|
||||
expr["last_active_time"] = current_time
|
||||
|
||||
last_active = expr["last_active_time"]
|
||||
time_diff_days = (current_time - last_active) / (24 * 3600) # 转换为天
|
||||
|
||||
decay_value = self.calculate_decay_factor(time_diff_days)
|
||||
expr["count"] = max(0.01, expr.get("count", 1) - decay_value)
|
||||
|
||||
if expr["count"] > 0:
|
||||
result.append(expr)
|
||||
|
||||
return result
|
||||
|
||||
async def learn_and_store(self, type: str, num: int = 10) -> List[Tuple[str, str, str]]:
|
||||
# sourcery skip: use-join
|
||||
"""
|
||||
|
||||
@@ -2,7 +2,7 @@ import json
|
||||
import time
|
||||
import random
|
||||
|
||||
from typing import List, Dict, Tuple, Optional
|
||||
from typing import List, Dict, Tuple, Optional, Any
|
||||
from json_repair import repair_json
|
||||
|
||||
from src.llm_models.utils_model import LLMRequest
|
||||
@@ -117,36 +117,42 @@ class ExpressionSelector:
|
||||
|
||||
def get_random_expressions(
|
||||
self, chat_id: str, total_num: int, style_percentage: float, grammar_percentage: float
|
||||
) -> Tuple[List[Dict[str, str]], List[Dict[str, str]]]:
|
||||
) -> Tuple[List[Dict[str, Any]], List[Dict[str, Any]]]:
|
||||
# 支持多chat_id合并抽选
|
||||
related_chat_ids = self.get_related_chat_ids(chat_id)
|
||||
style_exprs = []
|
||||
grammar_exprs = []
|
||||
for cid in related_chat_ids:
|
||||
style_query = Expression.select().where((Expression.chat_id == cid) & (Expression.type == "style"))
|
||||
grammar_query = Expression.select().where((Expression.chat_id == cid) & (Expression.type == "grammar"))
|
||||
style_exprs.extend([
|
||||
{
|
||||
"situation": expr.situation,
|
||||
"style": expr.style,
|
||||
"count": expr.count,
|
||||
"last_active_time": expr.last_active_time,
|
||||
"source_id": cid,
|
||||
"type": "style",
|
||||
"create_date": expr.create_date if expr.create_date is not None else expr.last_active_time,
|
||||
} for expr in style_query
|
||||
])
|
||||
grammar_exprs.extend([
|
||||
{
|
||||
"situation": expr.situation,
|
||||
"style": expr.style,
|
||||
"count": expr.count,
|
||||
"last_active_time": expr.last_active_time,
|
||||
"source_id": cid,
|
||||
"type": "grammar",
|
||||
"create_date": expr.create_date if expr.create_date is not None else expr.last_active_time,
|
||||
} for expr in grammar_query
|
||||
])
|
||||
|
||||
# 优化:一次性查询所有相关chat_id的表达方式
|
||||
style_query = Expression.select().where(
|
||||
(Expression.chat_id.in_(related_chat_ids)) & (Expression.type == "style")
|
||||
)
|
||||
grammar_query = Expression.select().where(
|
||||
(Expression.chat_id.in_(related_chat_ids)) & (Expression.type == "grammar")
|
||||
)
|
||||
|
||||
style_exprs = [
|
||||
{
|
||||
"situation": expr.situation,
|
||||
"style": expr.style,
|
||||
"count": expr.count,
|
||||
"last_active_time": expr.last_active_time,
|
||||
"source_id": expr.chat_id,
|
||||
"type": "style",
|
||||
"create_date": expr.create_date if expr.create_date is not None else expr.last_active_time,
|
||||
} for expr in style_query
|
||||
]
|
||||
|
||||
grammar_exprs = [
|
||||
{
|
||||
"situation": expr.situation,
|
||||
"style": expr.style,
|
||||
"count": expr.count,
|
||||
"last_active_time": expr.last_active_time,
|
||||
"source_id": expr.chat_id,
|
||||
"type": "grammar",
|
||||
"create_date": expr.create_date if expr.create_date is not None else expr.last_active_time,
|
||||
} for expr in grammar_query
|
||||
]
|
||||
|
||||
style_num = int(total_num * style_percentage)
|
||||
grammar_num = int(total_num * grammar_percentage)
|
||||
# 按权重抽样(使用count作为权重)
|
||||
@@ -162,7 +168,7 @@ class ExpressionSelector:
|
||||
selected_grammar = []
|
||||
return selected_style, selected_grammar
|
||||
|
||||
def update_expressions_count_batch(self, expressions_to_update: List[Dict[str, str]], increment: float = 0.1):
|
||||
def update_expressions_count_batch(self, expressions_to_update: List[Dict[str, Any]], increment: float = 0.1):
|
||||
"""对一批表达方式更新count值,按chat_id+type分组后一次性写入数据库"""
|
||||
if not expressions_to_update:
|
||||
return
|
||||
@@ -203,7 +209,7 @@ class ExpressionSelector:
|
||||
max_num: int = 10,
|
||||
min_num: int = 5,
|
||||
target_message: Optional[str] = None,
|
||||
) -> List[Dict[str, str]]:
|
||||
) -> List[Dict[str, Any]]:
|
||||
# sourcery skip: inline-variable, list-comprehension
|
||||
"""使用LLM选择适合的表达方式"""
|
||||
|
||||
@@ -273,6 +279,7 @@ class ExpressionSelector:
|
||||
|
||||
if not isinstance(result, dict) or "selected_situations" not in result:
|
||||
logger.error("LLM返回格式错误")
|
||||
logger.info(f"LLM返回结果: \n{content}")
|
||||
return []
|
||||
|
||||
selected_indices = result["selected_situations"]
|
||||
|
||||
@@ -12,6 +12,7 @@ from src.chat.message_receive.storage import MessageStorage
|
||||
from src.chat.heart_flow.heartflow import heartflow
|
||||
from src.chat.utils.utils import is_mentioned_bot_in_message
|
||||
from src.chat.utils.timer_calculator import Timer
|
||||
from src.chat.utils.chat_message_builder import replace_user_references_sync
|
||||
from src.common.logger import get_logger
|
||||
from src.person_info.relationship_manager import get_relationship_manager
|
||||
from src.mood.mood_manager import mood_manager
|
||||
@@ -56,16 +57,41 @@ async def _calculate_interest(message: MessageRecv) -> Tuple[float, bool]:
|
||||
with Timer("记忆激活"):
|
||||
interested_rate = await hippocampus_manager.get_activate_from_text(
|
||||
message.processed_plain_text,
|
||||
max_depth= 5,
|
||||
fast_retrieval=False,
|
||||
)
|
||||
logger.debug(f"记忆激活率: {interested_rate:.2f}")
|
||||
|
||||
text_len = len(message.processed_plain_text)
|
||||
# 根据文本长度调整兴趣度,长度越大兴趣度越高,但增长率递减,最低0.01,最高0.05
|
||||
# 采用对数函数实现递减增长
|
||||
|
||||
base_interest = 0.01 + (0.05 - 0.01) * (math.log10(text_len + 1) / math.log10(1000 + 1))
|
||||
base_interest = min(max(base_interest, 0.01), 0.05)
|
||||
# 根据文本长度分布调整兴趣度,采用分段函数实现更精确的兴趣度计算
|
||||
# 基于实际分布:0-5字符(26.57%), 6-10字符(27.18%), 11-20字符(22.76%), 21-30字符(10.33%), 31+字符(13.86%)
|
||||
|
||||
if text_len == 0:
|
||||
base_interest = 0.01 # 空消息最低兴趣度
|
||||
elif text_len <= 5:
|
||||
# 1-5字符:线性增长 0.01 -> 0.03
|
||||
base_interest = 0.01 + (text_len - 1) * (0.03 - 0.01) / 4
|
||||
elif text_len <= 10:
|
||||
# 6-10字符:线性增长 0.03 -> 0.06
|
||||
base_interest = 0.03 + (text_len - 5) * (0.06 - 0.03) / 5
|
||||
elif text_len <= 20:
|
||||
# 11-20字符:线性增长 0.06 -> 0.12
|
||||
base_interest = 0.06 + (text_len - 10) * (0.12 - 0.06) / 10
|
||||
elif text_len <= 30:
|
||||
# 21-30字符:线性增长 0.12 -> 0.18
|
||||
base_interest = 0.12 + (text_len - 20) * (0.18 - 0.12) / 10
|
||||
elif text_len <= 50:
|
||||
# 31-50字符:线性增长 0.18 -> 0.22
|
||||
base_interest = 0.18 + (text_len - 30) * (0.22 - 0.18) / 20
|
||||
elif text_len <= 100:
|
||||
# 51-100字符:线性增长 0.22 -> 0.26
|
||||
base_interest = 0.22 + (text_len - 50) * (0.26 - 0.22) / 50
|
||||
else:
|
||||
# 100+字符:对数增长 0.26 -> 0.3,增长率递减
|
||||
base_interest = 0.26 + (0.3 - 0.26) * (math.log10(text_len - 99) / math.log10(901)) # 1000-99=901
|
||||
|
||||
# 确保在范围内
|
||||
base_interest = min(max(base_interest, 0.01), 0.3)
|
||||
|
||||
interested_rate += base_interest
|
||||
|
||||
@@ -123,8 +149,15 @@ class HeartFCMessageReceiver:
|
||||
# 如果消息中包含图片标识,则将 [picid:...] 替换为 [图片]
|
||||
picid_pattern = r"\[picid:([^\]]+)\]"
|
||||
processed_plain_text = re.sub(picid_pattern, "[图片]", message.processed_plain_text)
|
||||
|
||||
# 应用用户引用格式替换,将回复<aaa:bbb>和@<aaa:bbb>格式转换为可读格式
|
||||
processed_plain_text = replace_user_references_sync(
|
||||
processed_plain_text,
|
||||
message.message_info.platform, # type: ignore
|
||||
replace_bot_name=True
|
||||
)
|
||||
|
||||
logger.info(f"[{mes_name}]{userinfo.user_nickname}:{processed_plain_text}") # type: ignore
|
||||
logger.info(f"[{mes_name}]{userinfo.user_nickname}:{processed_plain_text}[兴趣度:{interested_rate:.2f}]") # type: ignore
|
||||
|
||||
logger.debug(f"[{mes_name}][当前时段回复频率: {current_talk_frequency}]")
|
||||
|
||||
|
||||
@@ -224,10 +224,16 @@ class Hippocampus:
|
||||
return hash((source, target))
|
||||
|
||||
@staticmethod
|
||||
def find_topic_llm(text, topic_num):
|
||||
def find_topic_llm(text: str, topic_num: int | list[int]):
|
||||
# sourcery skip: inline-immediately-returned-variable
|
||||
topic_num_str = ""
|
||||
if isinstance(topic_num, list):
|
||||
topic_num_str = f"{topic_num[0]}-{topic_num[1]}"
|
||||
else:
|
||||
topic_num_str = topic_num
|
||||
|
||||
prompt = (
|
||||
f"这是一段文字:\n{text}\n\n请你从这段话中总结出最多{topic_num}个关键的概念,可以是名词,动词,或者特定人物,帮我列出来,"
|
||||
f"这是一段文字:\n{text}\n\n请你从这段话中总结出最多{topic_num_str}个关键的概念,可以是名词,动词,或者特定人物,帮我列出来,"
|
||||
f"将主题用逗号隔开,并加上<>,例如<主题1>,<主题2>......尽可能精简。只需要列举最多{topic_num}个话题就好,不要有序号,不要告诉我其他内容。"
|
||||
f"如果确定找不出主题或者没有明显主题,返回<none>。"
|
||||
)
|
||||
@@ -300,6 +306,60 @@ class Hippocampus:
|
||||
memories.sort(key=lambda x: x[2], reverse=True)
|
||||
return memories
|
||||
|
||||
async def get_keywords_from_text(self, text: str) -> list:
|
||||
"""从文本中提取关键词。
|
||||
|
||||
Args:
|
||||
text (str): 输入文本
|
||||
fast_retrieval (bool, optional): 是否使用快速检索。默认为False。
|
||||
如果为True,使用jieba分词提取关键词,速度更快但可能不够准确。
|
||||
如果为False,使用LLM提取关键词,速度较慢但更准确。
|
||||
"""
|
||||
if not text:
|
||||
return []
|
||||
|
||||
# 使用LLM提取关键词 - 根据详细文本长度分布优化topic_num计算
|
||||
text_length = len(text)
|
||||
topic_num: int | list[int] = 0
|
||||
if text_length <= 5:
|
||||
words = jieba.cut(text)
|
||||
keywords = [word for word in words if len(word) > 1]
|
||||
keywords = list(set(keywords))[:3] # 限制最多3个关键词
|
||||
if keywords:
|
||||
logger.info(f"提取关键词: {keywords}")
|
||||
return keywords
|
||||
elif text_length <= 10:
|
||||
topic_num = [1, 3] # 6-10字符: 1个关键词 (27.18%的文本)
|
||||
elif text_length <= 20:
|
||||
topic_num = [2, 4] # 11-20字符: 2个关键词 (22.76%的文本)
|
||||
elif text_length <= 30:
|
||||
topic_num = [3, 5] # 21-30字符: 3个关键词 (10.33%的文本)
|
||||
elif text_length <= 50:
|
||||
topic_num = [4, 5] # 31-50字符: 4个关键词 (9.79%的文本)
|
||||
else:
|
||||
topic_num = 5 # 51+字符: 5个关键词 (其余长文本)
|
||||
|
||||
topics_response, (reasoning_content, model_name) = await self.model_summary.generate_response_async(
|
||||
self.find_topic_llm(text, topic_num)
|
||||
)
|
||||
|
||||
# 提取关键词
|
||||
keywords = re.findall(r"<([^>]+)>", topics_response)
|
||||
if not keywords:
|
||||
keywords = []
|
||||
else:
|
||||
keywords = [
|
||||
keyword.strip()
|
||||
for keyword in ",".join(keywords).replace(",", ",").replace("、", ",").replace(" ", ",").split(",")
|
||||
if keyword.strip()
|
||||
]
|
||||
|
||||
if keywords:
|
||||
logger.info(f"提取关键词: {keywords}")
|
||||
|
||||
return keywords
|
||||
|
||||
|
||||
async def get_memory_from_text(
|
||||
self,
|
||||
text: str,
|
||||
@@ -325,39 +385,7 @@ class Hippocampus:
|
||||
- memory_items: list, 该主题下的记忆项列表
|
||||
- similarity: float, 与文本的相似度
|
||||
"""
|
||||
if not text:
|
||||
return []
|
||||
|
||||
if fast_retrieval:
|
||||
# 使用jieba分词提取关键词
|
||||
words = jieba.cut(text)
|
||||
# 过滤掉停用词和单字词
|
||||
keywords = [word for word in words if len(word) > 1]
|
||||
# 去重
|
||||
keywords = list(set(keywords))
|
||||
# 限制关键词数量
|
||||
logger.debug(f"提取关键词: {keywords}")
|
||||
|
||||
else:
|
||||
# 使用LLM提取关键词
|
||||
topic_num = min(5, max(1, int(len(text) * 0.1))) # 根据文本长度动态调整关键词数量
|
||||
# logger.info(f"提取关键词数量: {topic_num}")
|
||||
topics_response, (reasoning_content, model_name) = await self.model_summary.generate_response_async(
|
||||
self.find_topic_llm(text, topic_num)
|
||||
)
|
||||
|
||||
# 提取关键词
|
||||
keywords = re.findall(r"<([^>]+)>", topics_response)
|
||||
if not keywords:
|
||||
keywords = []
|
||||
else:
|
||||
keywords = [
|
||||
keyword.strip()
|
||||
for keyword in ",".join(keywords).replace(",", ",").replace("、", ",").replace(" ", ",").split(",")
|
||||
if keyword.strip()
|
||||
]
|
||||
|
||||
# logger.info(f"提取的关键词: {', '.join(keywords)}")
|
||||
keywords = await self.get_keywords_from_text(text)
|
||||
|
||||
# 过滤掉不存在于记忆图中的关键词
|
||||
valid_keywords = [keyword for keyword in keywords if keyword in self.memory_graph.G]
|
||||
@@ -679,38 +707,7 @@ class Hippocampus:
|
||||
Returns:
|
||||
float: 激活节点数与总节点数的比值
|
||||
"""
|
||||
if not text:
|
||||
return 0
|
||||
|
||||
if fast_retrieval:
|
||||
# 使用jieba分词提取关键词
|
||||
words = jieba.cut(text)
|
||||
# 过滤掉停用词和单字词
|
||||
keywords = [word for word in words if len(word) > 1]
|
||||
# 去重
|
||||
keywords = list(set(keywords))
|
||||
# 限制关键词数量
|
||||
keywords = keywords[:5]
|
||||
else:
|
||||
# 使用LLM提取关键词
|
||||
topic_num = min(5, max(1, int(len(text) * 0.1))) # 根据文本长度动态调整关键词数量
|
||||
# logger.info(f"提取关键词数量: {topic_num}")
|
||||
topics_response, (reasoning_content, model_name) = await self.model_summary.generate_response_async(
|
||||
self.find_topic_llm(text, topic_num)
|
||||
)
|
||||
|
||||
# 提取关键词
|
||||
keywords = re.findall(r"<([^>]+)>", topics_response)
|
||||
if not keywords:
|
||||
keywords = []
|
||||
else:
|
||||
keywords = [
|
||||
keyword.strip()
|
||||
for keyword in ",".join(keywords).replace(",", ",").replace("、", ",").replace(" ", ",").split(",")
|
||||
if keyword.strip()
|
||||
]
|
||||
|
||||
# logger.info(f"提取的关键词: {', '.join(keywords)}")
|
||||
keywords = await self.get_keywords_from_text(text)
|
||||
|
||||
# 过滤掉不存在于记忆图中的关键词
|
||||
valid_keywords = [keyword for keyword in keywords if keyword in self.memory_graph.G]
|
||||
@@ -727,7 +724,7 @@ class Hippocampus:
|
||||
for keyword in valid_keywords:
|
||||
logger.debug(f"开始以关键词 '{keyword}' 为中心进行扩散检索 (最大深度: {max_depth}):")
|
||||
# 初始化激活值
|
||||
activation_values = {keyword: 1.0}
|
||||
activation_values = {keyword: 1.5}
|
||||
# 记录已访问的节点
|
||||
visited_nodes = {keyword}
|
||||
# 待处理的节点队列,每个元素是(节点, 激活值, 当前深度)
|
||||
@@ -1315,6 +1312,7 @@ class ParahippocampalGyrus:
|
||||
return compressed_memory, similar_topics_dict
|
||||
|
||||
async def operation_build_memory(self):
|
||||
# sourcery skip: merge-list-appends-into-extend
|
||||
logger.info("------------------------------------开始构建记忆--------------------------------------")
|
||||
start_time = time.time()
|
||||
memory_samples = self.hippocampus.entorhinal_cortex.get_memory_sample()
|
||||
|
||||
@@ -444,7 +444,7 @@ class MessageSending(MessageProcessBase):
|
||||
is_emoji: bool = False,
|
||||
thinking_start_time: float = 0,
|
||||
apply_set_reply_logic: bool = False,
|
||||
reply_to: str = None, # type: ignore
|
||||
reply_to: Optional[str] = None,
|
||||
):
|
||||
# 调用父类初始化
|
||||
super().__init__(
|
||||
|
||||
@@ -3,7 +3,7 @@ from src.plugin_system.base.base_action import BaseAction
|
||||
from src.chat.message_receive.chat_stream import ChatStream
|
||||
from src.common.logger import get_logger
|
||||
from src.plugin_system.core.component_registry import component_registry
|
||||
from src.plugin_system.base.component_types import ComponentType, ActionActivationType, ChatMode, ActionInfo
|
||||
from src.plugin_system.base.component_types import ComponentType, ActionInfo
|
||||
|
||||
logger = get_logger("action_manager")
|
||||
|
||||
@@ -15,11 +15,6 @@ class ActionManager:
|
||||
现在统一使用新插件系统,简化了原有的新旧兼容逻辑。
|
||||
"""
|
||||
|
||||
# 类常量
|
||||
DEFAULT_RANDOM_PROBABILITY = 0.3
|
||||
DEFAULT_MODE = ChatMode.ALL
|
||||
DEFAULT_ACTIVATION_TYPE = ActionActivationType.ALWAYS
|
||||
|
||||
def __init__(self):
|
||||
"""初始化动作管理器"""
|
||||
|
||||
|
||||
@@ -174,7 +174,7 @@ class ActionModifier:
|
||||
continue # 总是激活,无需处理
|
||||
|
||||
elif activation_type == ActionActivationType.RANDOM:
|
||||
probability = action_info.random_activation_probability or ActionManager.DEFAULT_RANDOM_PROBABILITY
|
||||
probability = action_info.random_activation_probability
|
||||
if random.random() >= probability:
|
||||
reason = f"RANDOM类型未触发(概率{probability})"
|
||||
deactivated_actions.append((action_name, reason))
|
||||
|
||||
@@ -33,10 +33,11 @@ def init_prompt():
|
||||
{time_block}
|
||||
{identity_block}
|
||||
你现在需要根据聊天内容,选择的合适的action来参与聊天。
|
||||
{chat_context_description},以下是具体的聊天内容:
|
||||
{chat_context_description},以下是具体的聊天内容
|
||||
{chat_content_block}
|
||||
|
||||
|
||||
|
||||
{moderation_prompt}
|
||||
|
||||
现在请你根据{by_what}选择合适的action和触发action的消息:
|
||||
@@ -45,7 +46,7 @@ def init_prompt():
|
||||
{no_action_block}
|
||||
{action_options_text}
|
||||
|
||||
你必须从上面列出的可用action中选择一个,并说明触发action的消息id和原因。
|
||||
你必须从上面列出的可用action中选择一个,并说明触发action的消息id(不是消息原文)和选择该action的原因。
|
||||
|
||||
请根据动作示例,以严格的 JSON 格式输出,且仅包含 JSON 内容:
|
||||
""",
|
||||
@@ -128,20 +129,6 @@ class ActionPlanner:
|
||||
else:
|
||||
logger.warning(f"{self.log_prefix}使用中的动作 {action_name} 未在已注册动作中找到")
|
||||
|
||||
# 如果没有可用动作或只有no_reply动作,直接返回no_reply
|
||||
# 因为现在reply是永远激活,所以不需要空跳判定
|
||||
# if not current_available_actions:
|
||||
# action = "no_reply" if mode == ChatMode.FOCUS else "no_action"
|
||||
# reasoning = "没有可用的动作"
|
||||
# logger.info(f"{self.log_prefix}{reasoning}")
|
||||
# return {
|
||||
# "action_result": {
|
||||
# "action_type": action,
|
||||
# "action_data": action_data,
|
||||
# "reasoning": reasoning,
|
||||
# },
|
||||
# }, None
|
||||
|
||||
# --- 构建提示词 (调用修改后的 PromptBuilder 方法) ---
|
||||
prompt, message_id_list = await self.build_planner_prompt(
|
||||
is_group_chat=is_group_chat, # <-- Pass HFC state
|
||||
@@ -224,7 +211,7 @@ class ActionPlanner:
|
||||
reasoning = f"Planner 内部处理错误: {outer_e}"
|
||||
|
||||
is_parallel = False
|
||||
if action in current_available_actions:
|
||||
if mode == ChatMode.NORMAL and action in current_available_actions:
|
||||
is_parallel = current_available_actions[action].parallel_action
|
||||
|
||||
action_result = {
|
||||
@@ -268,7 +255,7 @@ class ActionPlanner:
|
||||
|
||||
actions_before_now = get_actions_by_timestamp_with_chat(
|
||||
chat_id=self.chat_id,
|
||||
timestamp_start=time.time()-3600,
|
||||
timestamp_start=time.time() - 3600,
|
||||
timestamp_end=time.time(),
|
||||
limit=5,
|
||||
)
|
||||
@@ -276,7 +263,7 @@ class ActionPlanner:
|
||||
actions_before_now_block = build_readable_actions(
|
||||
actions=actions_before_now,
|
||||
)
|
||||
|
||||
|
||||
actions_before_now_block = f"你刚刚选择并执行过的action是:\n{actions_before_now_block}"
|
||||
|
||||
self.last_obs_time_mark = time.time()
|
||||
@@ -288,7 +275,6 @@ class ActionPlanner:
|
||||
if global_config.chat.at_bot_inevitable_reply:
|
||||
mentioned_bonus = "\n- 有人提到你,或者at你"
|
||||
|
||||
|
||||
by_what = "聊天内容"
|
||||
target_prompt = '\n "target_message_id":"触发action的消息id"'
|
||||
no_action_block = f"""重要说明:
|
||||
@@ -311,7 +297,7 @@ class ActionPlanner:
|
||||
by_what = "聊天内容和用户的最新消息"
|
||||
target_prompt = ""
|
||||
no_action_block = """重要说明:
|
||||
- 'no_action' 表示只进行普通聊天回复,不执行任何额外动作
|
||||
- 'reply' 表示只进行普通聊天回复,不执行任何额外动作
|
||||
- 其他action表示在普通回复的基础上,执行相应的额外动作"""
|
||||
|
||||
chat_context_description = "你现在正在一个群聊中"
|
||||
|
||||
@@ -17,7 +17,11 @@ from src.chat.message_receive.uni_message_sender import HeartFCSender
|
||||
from src.chat.utils.timer_calculator import Timer # <--- Import Timer
|
||||
from src.chat.utils.utils import get_chat_type_and_target_info
|
||||
from src.chat.utils.prompt_builder import Prompt, global_prompt_manager
|
||||
from src.chat.utils.chat_message_builder import build_readable_messages, get_raw_msg_before_timestamp_with_chat
|
||||
from src.chat.utils.chat_message_builder import (
|
||||
build_readable_messages,
|
||||
get_raw_msg_before_timestamp_with_chat,
|
||||
replace_user_references_sync,
|
||||
)
|
||||
from src.chat.express.expression_selector import expression_selector
|
||||
from src.chat.knowledge.knowledge_lib import qa_manager
|
||||
from src.chat.memory_system.memory_activator import MemoryActivator
|
||||
@@ -25,42 +29,16 @@ from src.chat.memory_system.instant_memory import InstantMemory
|
||||
from src.mood.mood_manager import mood_manager
|
||||
from src.person_info.relationship_fetcher import relationship_fetcher_manager
|
||||
from src.person_info.person_info import get_person_info_manager
|
||||
from src.tools.tool_executor import ToolExecutor
|
||||
from src.plugin_system.base.component_types import ActionInfo
|
||||
|
||||
logger = get_logger("replyer")
|
||||
|
||||
|
||||
def init_prompt():
|
||||
Prompt("你正在qq群里聊天,下面是群里在聊的内容:", "chat_target_group1")
|
||||
Prompt("你正在和{sender_name}聊天,这是你们之前聊的内容:", "chat_target_private1")
|
||||
Prompt("在群里聊天", "chat_target_group2")
|
||||
Prompt("和{sender_name}聊天", "chat_target_private2")
|
||||
Prompt("\n你有以下这些**知识**:\n{prompt_info}\n请你**记住上面的知识**,之后可能会用到。\n", "knowledge_prompt")
|
||||
|
||||
Prompt(
|
||||
"""
|
||||
{expression_habits_block}
|
||||
{tool_info_block}
|
||||
{knowledge_prompt}
|
||||
{memory_block}
|
||||
{relation_info_block}
|
||||
{extra_info_block}
|
||||
|
||||
{chat_target}
|
||||
{time_block}
|
||||
{chat_info}
|
||||
{reply_target_block}
|
||||
{identity}
|
||||
|
||||
{action_descriptions}
|
||||
你正在{chat_target_2},你现在的心情是:{mood_state}
|
||||
现在请你读读之前的聊天记录,并给出回复
|
||||
{config_expression_style}。注意不要复读你说过的话
|
||||
{keywords_reaction_prompt}
|
||||
{moderation_prompt}
|
||||
不要浮夸,不要夸张修辞,不要输出多余内容(包括前后缀,冒号和引号,括号(),表情包,at或 @等 )。只输出回复内容""",
|
||||
"default_generator_prompt",
|
||||
)
|
||||
|
||||
Prompt(
|
||||
"""
|
||||
@@ -109,7 +87,8 @@ def init_prompt():
|
||||
{core_dialogue_prompt}
|
||||
|
||||
{reply_target_block}
|
||||
对方最新发送的内容:{message_txt}
|
||||
|
||||
|
||||
你现在的心情是:{mood_state}
|
||||
{config_expression_style}
|
||||
注意不要复读你说过的话
|
||||
@@ -159,6 +138,8 @@ class DefaultReplyer:
|
||||
self.heart_fc_sender = HeartFCSender()
|
||||
self.memory_activator = MemoryActivator()
|
||||
self.instant_memory = InstantMemory(chat_id=self.chat_stream.stream_id)
|
||||
|
||||
from src.plugin_system.core.tool_use import ToolExecutor # 延迟导入ToolExecutor,不然会循环依赖
|
||||
self.tool_executor = ToolExecutor(chat_id=self.chat_stream.stream_id, enable_cache=True, cache_ttl=3)
|
||||
|
||||
def _select_weighted_model_config(self) -> Dict[str, Any]:
|
||||
@@ -171,67 +152,49 @@ class DefaultReplyer:
|
||||
|
||||
async def generate_reply_with_context(
|
||||
self,
|
||||
reply_data: Optional[Dict[str, Any]] = None,
|
||||
reply_to: str = "",
|
||||
extra_info: str = "",
|
||||
available_actions: Optional[Dict[str, ActionInfo]] = None,
|
||||
enable_tool: bool = True,
|
||||
enable_timeout: bool = False,
|
||||
) -> Tuple[bool, Optional[str], Optional[str]]:
|
||||
"""
|
||||
回复器 (Replier): 核心逻辑,负责生成回复文本。
|
||||
(已整合原 HeartFCGenerator 的功能)
|
||||
回复器 (Replier): 负责生成回复文本的核心逻辑。
|
||||
|
||||
Args:
|
||||
reply_to: 回复对象,格式为 "发送者:消息内容"
|
||||
extra_info: 额外信息,用于补充上下文
|
||||
available_actions: 可用的动作信息字典
|
||||
enable_tool: 是否启用工具调用
|
||||
|
||||
Returns:
|
||||
Tuple[bool, Optional[str], Optional[str]]: (是否成功, 生成的回复内容, 使用的prompt)
|
||||
"""
|
||||
prompt = None
|
||||
if available_actions is None:
|
||||
available_actions = {}
|
||||
try:
|
||||
if not reply_data:
|
||||
reply_data = {
|
||||
"reply_to": reply_to,
|
||||
"extra_info": extra_info,
|
||||
}
|
||||
for key, value in reply_data.items():
|
||||
if not value:
|
||||
logger.debug(f"回复数据跳过{key},生成回复时将忽略。")
|
||||
|
||||
# 3. 构建 Prompt
|
||||
with Timer("构建Prompt", {}): # 内部计时器,可选保留
|
||||
prompt = await self.build_prompt_reply_context(
|
||||
reply_data=reply_data, # 传递action_data
|
||||
reply_to=reply_to,
|
||||
extra_info=extra_info,
|
||||
available_actions=available_actions,
|
||||
enable_timeout=enable_timeout,
|
||||
enable_tool=enable_tool,
|
||||
)
|
||||
|
||||
if not prompt:
|
||||
logger.warning("构建prompt失败,跳过回复生成")
|
||||
return False, None, None
|
||||
|
||||
# 4. 调用 LLM 生成回复
|
||||
content = None
|
||||
reasoning_content = None
|
||||
model_name = "unknown_model"
|
||||
# TODO: 复活这里
|
||||
# reasoning_content = None
|
||||
# model_name = "unknown_model"
|
||||
|
||||
try:
|
||||
with Timer("LLM生成", {}): # 内部计时器,可选保留
|
||||
# 加权随机选择一个模型配置
|
||||
selected_model_config = self._select_weighted_model_config()
|
||||
# 兼容新旧格式的模型名称获取
|
||||
model_display_name = selected_model_config.get('model_name', selected_model_config.get('name', 'N/A'))
|
||||
logger.info(
|
||||
f"使用模型生成回复: {model_display_name} (选中概率: {selected_model_config.get('weight', 1.0)})"
|
||||
)
|
||||
|
||||
express_model = LLMRequest(
|
||||
model=selected_model_config,
|
||||
request_type=self.request_type,
|
||||
)
|
||||
|
||||
if global_config.debug.show_prompt:
|
||||
logger.info(f"\n{prompt}\n")
|
||||
else:
|
||||
logger.debug(f"\n{prompt}\n")
|
||||
|
||||
content, (reasoning_content, model_name) = await express_model.generate_response_async(prompt)
|
||||
|
||||
logger.debug(f"replyer生成内容: {content}")
|
||||
content = await self.llm_generate_content(prompt)
|
||||
logger.debug(f"replyer生成内容: {content}")
|
||||
|
||||
except Exception as llm_e:
|
||||
# 精简报错信息
|
||||
@@ -247,73 +210,62 @@ class DefaultReplyer:
|
||||
|
||||
async def rewrite_reply_with_context(
|
||||
self,
|
||||
reply_data: Dict[str, Any],
|
||||
raw_reply: str = "",
|
||||
reason: str = "",
|
||||
reply_to: str = "",
|
||||
relation_info: str = "",
|
||||
) -> Tuple[bool, Optional[str]]:
|
||||
return_prompt: bool = False,
|
||||
) -> Tuple[bool, Optional[str], Optional[str]]:
|
||||
"""
|
||||
表达器 (Expressor): 核心逻辑,负责生成回复文本。
|
||||
表达器 (Expressor): 负责重写和优化回复文本。
|
||||
|
||||
Args:
|
||||
raw_reply: 原始回复内容
|
||||
reason: 回复原因
|
||||
reply_to: 回复对象,格式为 "发送者:消息内容"
|
||||
relation_info: 关系信息
|
||||
|
||||
Returns:
|
||||
Tuple[bool, Optional[str]]: (是否成功, 重写后的回复内容)
|
||||
"""
|
||||
try:
|
||||
if not reply_data:
|
||||
reply_data = {
|
||||
"reply_to": reply_to,
|
||||
"relation_info": relation_info,
|
||||
}
|
||||
|
||||
with Timer("构建Prompt", {}): # 内部计时器,可选保留
|
||||
prompt = await self.build_prompt_rewrite_context(
|
||||
reply_data=reply_data,
|
||||
raw_reply=raw_reply,
|
||||
reason=reason,
|
||||
reply_to=reply_to,
|
||||
)
|
||||
|
||||
content = None
|
||||
reasoning_content = None
|
||||
model_name = "unknown_model"
|
||||
# TODO: 复活这里
|
||||
# reasoning_content = None
|
||||
# model_name = "unknown_model"
|
||||
if not prompt:
|
||||
logger.error("Prompt 构建失败,无法生成回复。")
|
||||
return False, None
|
||||
return False, None, None
|
||||
|
||||
try:
|
||||
with Timer("LLM生成", {}): # 内部计时器,可选保留
|
||||
# 加权随机选择一个模型配置
|
||||
selected_model_config = self._select_weighted_model_config()
|
||||
# 兼容新旧格式的模型名称获取
|
||||
model_display_name = selected_model_config.get('model_name', selected_model_config.get('name', 'N/A'))
|
||||
logger.info(
|
||||
f"使用模型重写回复: {model_display_name} (选中概率: {selected_model_config.get('weight', 1.0)})"
|
||||
)
|
||||
|
||||
express_model = LLMRequest(
|
||||
model=selected_model_config,
|
||||
request_type=self.request_type,
|
||||
)
|
||||
|
||||
content, (reasoning_content, model_name) = await express_model.generate_response_async(prompt)
|
||||
|
||||
logger.info(f"想要表达:{raw_reply}||理由:{reason}||生成回复: {content}\n")
|
||||
content = await self.llm_generate_content(prompt)
|
||||
logger.info(f"想要表达:{raw_reply}||理由:{reason}||生成回复: {content}\n")
|
||||
|
||||
except Exception as llm_e:
|
||||
# 精简报错信息
|
||||
logger.error(f"LLM 生成失败: {llm_e}")
|
||||
return False, None # LLM 调用失败则无法生成回复
|
||||
return False, None, prompt if return_prompt else None # LLM 调用失败则无法生成回复
|
||||
|
||||
return True, content
|
||||
return True, content, prompt if return_prompt else None
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"回复生成意外失败: {e}")
|
||||
traceback.print_exc()
|
||||
return False, None
|
||||
return False, None, prompt if return_prompt else None
|
||||
|
||||
async def build_relation_info(self, reply_data=None):
|
||||
async def build_relation_info(self, reply_to: str = ""):
|
||||
if not global_config.relationship.enable_relationship:
|
||||
return ""
|
||||
|
||||
relationship_fetcher = relationship_fetcher_manager.get_fetcher(self.chat_stream.stream_id)
|
||||
if not reply_data:
|
||||
if not reply_to:
|
||||
return ""
|
||||
reply_to = reply_data.get("reply_to", "")
|
||||
sender, text = self._parse_reply_target(reply_to)
|
||||
if not sender or not text:
|
||||
return ""
|
||||
@@ -327,7 +279,16 @@ class DefaultReplyer:
|
||||
|
||||
return await relationship_fetcher.build_relation_info(person_id, points_num=5)
|
||||
|
||||
async def build_expression_habits(self, chat_history, target):
|
||||
async def build_expression_habits(self, chat_history: str, target: str) -> str:
|
||||
"""构建表达习惯块
|
||||
|
||||
Args:
|
||||
chat_history: 聊天历史记录
|
||||
target: 目标消息内容
|
||||
|
||||
Returns:
|
||||
str: 表达习惯信息字符串
|
||||
"""
|
||||
if not global_config.expression.enable_expression:
|
||||
return ""
|
||||
|
||||
@@ -360,54 +321,65 @@ class DefaultReplyer:
|
||||
expression_habits_block = ""
|
||||
expression_habits_title = ""
|
||||
if style_habits_str.strip():
|
||||
expression_habits_title = "你可以参考以下的语言习惯,当情景合适就使用,但不要生硬使用,以合理的方式结合到你的回复中:"
|
||||
expression_habits_title = (
|
||||
"你可以参考以下的语言习惯,当情景合适就使用,但不要生硬使用,以合理的方式结合到你的回复中:"
|
||||
)
|
||||
expression_habits_block += f"{style_habits_str}\n"
|
||||
if grammar_habits_str.strip():
|
||||
expression_habits_title = "你可以选择下面的句法进行回复,如果情景合适就使用,不要盲目使用,不要生硬使用,以合理的方式使用:"
|
||||
expression_habits_title = (
|
||||
"你可以选择下面的句法进行回复,如果情景合适就使用,不要盲目使用,不要生硬使用,以合理的方式使用:"
|
||||
)
|
||||
expression_habits_block += f"{grammar_habits_str}\n"
|
||||
|
||||
|
||||
if style_habits_str.strip() and grammar_habits_str.strip():
|
||||
expression_habits_title = "你可以参考以下的语言习惯和句法,如果情景合适就使用,不要盲目使用,不要生硬使用,以合理的方式结合到你的回复中:"
|
||||
|
||||
expression_habits_block = f"{expression_habits_title}\n{expression_habits_block}"
|
||||
|
||||
|
||||
return expression_habits_block
|
||||
return f"{expression_habits_title}\n{expression_habits_block}"
|
||||
|
||||
async def build_memory_block(self, chat_history, target):
|
||||
async def build_memory_block(self, chat_history: str, target: str) -> str:
|
||||
"""构建记忆块
|
||||
|
||||
Args:
|
||||
chat_history: 聊天历史记录
|
||||
target: 目标消息内容
|
||||
|
||||
Returns:
|
||||
str: 记忆信息字符串
|
||||
"""
|
||||
if not global_config.memory.enable_memory:
|
||||
return ""
|
||||
|
||||
instant_memory = None
|
||||
|
||||
|
||||
running_memories = await self.memory_activator.activate_memory_with_chat_history(
|
||||
target_message=target, chat_history_prompt=chat_history
|
||||
)
|
||||
|
||||
|
||||
if global_config.memory.enable_instant_memory:
|
||||
asyncio.create_task(self.instant_memory.create_and_store_memory(chat_history))
|
||||
|
||||
instant_memory = await self.instant_memory.get_memory(target)
|
||||
logger.info(f"即时记忆:{instant_memory}")
|
||||
|
||||
|
||||
if not running_memories:
|
||||
return ""
|
||||
|
||||
memory_str = "以下是当前在聊天中,你回忆起的记忆:\n"
|
||||
for running_memory in running_memories:
|
||||
memory_str += f"- {running_memory['content']}\n"
|
||||
|
||||
|
||||
if instant_memory:
|
||||
memory_str += f"- {instant_memory}\n"
|
||||
|
||||
|
||||
return memory_str
|
||||
|
||||
async def build_tool_info(self, chat_history, reply_data: Optional[Dict], enable_tool: bool = True):
|
||||
async def build_tool_info(self, chat_history: str, reply_to: str = "", enable_tool: bool = True) -> str:
|
||||
"""构建工具信息块
|
||||
|
||||
Args:
|
||||
reply_data: 回复数据,包含要回复的消息内容
|
||||
chat_history: 聊天历史
|
||||
chat_history: 聊天历史记录
|
||||
reply_to: 回复对象,格式为 "发送者:消息内容"
|
||||
enable_tool: 是否启用工具调用
|
||||
|
||||
Returns:
|
||||
str: 工具信息字符串
|
||||
@@ -416,10 +388,9 @@ class DefaultReplyer:
|
||||
if not enable_tool:
|
||||
return ""
|
||||
|
||||
if not reply_data:
|
||||
if not reply_to:
|
||||
return ""
|
||||
|
||||
reply_to = reply_data.get("reply_to", "")
|
||||
sender, text = self._parse_reply_target(reply_to)
|
||||
|
||||
if not text:
|
||||
@@ -442,7 +413,7 @@ class DefaultReplyer:
|
||||
|
||||
tool_info_str += "以上是你获取到的实时信息,请在回复时参考这些信息。"
|
||||
logger.info(f"获取到 {len(tool_results)} 个工具结果")
|
||||
|
||||
|
||||
return tool_info_str
|
||||
else:
|
||||
logger.debug("未获取到任何工具结果")
|
||||
@@ -452,7 +423,15 @@ class DefaultReplyer:
|
||||
logger.error(f"工具信息获取失败: {e}")
|
||||
return ""
|
||||
|
||||
def _parse_reply_target(self, target_message: str) -> tuple:
|
||||
def _parse_reply_target(self, target_message: str) -> Tuple[str, str]:
|
||||
"""解析回复目标消息
|
||||
|
||||
Args:
|
||||
target_message: 目标消息,格式为 "发送者:消息内容" 或 "发送者:消息内容"
|
||||
|
||||
Returns:
|
||||
Tuple[str, str]: (发送者名称, 消息内容)
|
||||
"""
|
||||
sender = ""
|
||||
target = ""
|
||||
# 添加None检查,防止NoneType错误
|
||||
@@ -466,14 +445,22 @@ class DefaultReplyer:
|
||||
target = parts[1].strip()
|
||||
return sender, target
|
||||
|
||||
async def build_keywords_reaction_prompt(self, target):
|
||||
async def build_keywords_reaction_prompt(self, target: Optional[str]) -> str:
|
||||
"""构建关键词反应提示
|
||||
|
||||
Args:
|
||||
target: 目标消息内容
|
||||
|
||||
Returns:
|
||||
str: 关键词反应提示字符串
|
||||
"""
|
||||
# 关键词检测与反应
|
||||
keywords_reaction_prompt = ""
|
||||
try:
|
||||
# 添加None检查,防止NoneType错误
|
||||
if target is None:
|
||||
return keywords_reaction_prompt
|
||||
|
||||
|
||||
# 处理关键词规则
|
||||
for rule in global_config.keyword_reaction.keyword_rules:
|
||||
if any(keyword in target for keyword in rule.keywords):
|
||||
@@ -500,15 +487,25 @@ class DefaultReplyer:
|
||||
|
||||
return keywords_reaction_prompt
|
||||
|
||||
async def _time_and_run_task(self, coroutine, name: str):
|
||||
"""一个简单的帮助函数,用于计时和运行异步任务,返回任务名、结果和耗时"""
|
||||
async def _time_and_run_task(self, coroutine, name: str) -> Tuple[str, Any, float]:
|
||||
"""计时并运行异步任务的辅助函数
|
||||
|
||||
Args:
|
||||
coroutine: 要执行的协程
|
||||
name: 任务名称
|
||||
|
||||
Returns:
|
||||
Tuple[str, Any, float]: (任务名称, 任务结果, 执行耗时)
|
||||
"""
|
||||
start_time = time.time()
|
||||
result = await coroutine
|
||||
end_time = time.time()
|
||||
duration = end_time - start_time
|
||||
return name, result, duration
|
||||
|
||||
def build_s4u_chat_history_prompts(self, message_list_before_now: list, target_user_id: str) -> tuple[str, str]:
|
||||
def build_s4u_chat_history_prompts(
|
||||
self, message_list_before_now: List[Dict[str, Any]], target_user_id: str
|
||||
) -> Tuple[str, str]:
|
||||
"""
|
||||
构建 s4u 风格的分离对话 prompt
|
||||
|
||||
@@ -517,7 +514,7 @@ class DefaultReplyer:
|
||||
target_user_id: 目标用户ID(当前对话对象)
|
||||
|
||||
Returns:
|
||||
tuple: (核心对话prompt, 背景对话prompt)
|
||||
Tuple[str, str]: (核心对话prompt, 背景对话prompt)
|
||||
"""
|
||||
core_dialogue_list = []
|
||||
background_dialogue_list = []
|
||||
@@ -536,7 +533,7 @@ class DefaultReplyer:
|
||||
# 其他用户的对话
|
||||
background_dialogue_list.append(msg_dict)
|
||||
except Exception as e:
|
||||
logger.error(f"记录: {msg_dict}, 错误: {e}")
|
||||
logger.error(f"处理消息记录时出错: {msg_dict}, 错误: {e}")
|
||||
|
||||
# 构建背景对话 prompt
|
||||
background_dialogue_prompt = ""
|
||||
@@ -581,8 +578,25 @@ class DefaultReplyer:
|
||||
sender: str,
|
||||
target: str,
|
||||
chat_info: str,
|
||||
):
|
||||
"""构建 mai_think 上下文信息"""
|
||||
) -> Any:
|
||||
"""构建 mai_think 上下文信息
|
||||
|
||||
Args:
|
||||
chat_id: 聊天ID
|
||||
memory_block: 记忆块内容
|
||||
relation_info: 关系信息
|
||||
time_block: 时间块内容
|
||||
chat_target_1: 聊天目标1
|
||||
chat_target_2: 聊天目标2
|
||||
mood_prompt: 情绪提示
|
||||
identity_block: 身份块内容
|
||||
sender: 发送者名称
|
||||
target: 目标消息内容
|
||||
chat_info: 聊天信息
|
||||
|
||||
Returns:
|
||||
Any: mai_think 实例
|
||||
"""
|
||||
mai_think = mai_thinking_manager.get_mai_think(chat_id)
|
||||
mai_think.memory_block = memory_block
|
||||
mai_think.relation_info_block = relation_info
|
||||
@@ -598,21 +612,20 @@ class DefaultReplyer:
|
||||
|
||||
async def build_prompt_reply_context(
|
||||
self,
|
||||
reply_data: Dict[str, Any],
|
||||
reply_to: str,
|
||||
extra_info: str = "",
|
||||
available_actions: Optional[Dict[str, ActionInfo]] = None,
|
||||
enable_timeout: bool = False,
|
||||
enable_tool: bool = True,
|
||||
) -> str: # sourcery skip: merge-else-if-into-elif, remove-redundant-if
|
||||
"""
|
||||
构建回复器上下文
|
||||
|
||||
Args:
|
||||
reply_data: 回复数据
|
||||
replay_data 包含以下字段:
|
||||
structured_info: 结构化信息,一般是工具调用获得的信息
|
||||
reply_to: 回复对象
|
||||
extra_info/extra_info_block: 额外信息
|
||||
reply_to: 回复对象,格式为 "发送者:消息内容"
|
||||
extra_info: 额外信息,用于补充上下文
|
||||
available_actions: 可用动作
|
||||
enable_timeout: 是否启用超时处理
|
||||
enable_tool: 是否启用工具调用
|
||||
|
||||
Returns:
|
||||
str: 构建好的上下文
|
||||
@@ -623,9 +636,7 @@ class DefaultReplyer:
|
||||
chat_id = chat_stream.stream_id
|
||||
person_info_manager = get_person_info_manager()
|
||||
is_group_chat = bool(chat_stream.group_info)
|
||||
reply_to = reply_data.get("reply_to", "none")
|
||||
extra_info_block = reply_data.get("extra_info", "") or reply_data.get("extra_info_block", "")
|
||||
|
||||
|
||||
if global_config.mood.enable_mood:
|
||||
chat_mood = mood_manager.get_mood_by_chat_id(chat_id)
|
||||
mood_prompt = chat_mood.mood_state
|
||||
@@ -633,6 +644,15 @@ class DefaultReplyer:
|
||||
mood_prompt = ""
|
||||
|
||||
sender, target = self._parse_reply_target(reply_to)
|
||||
person_info_manager = get_person_info_manager()
|
||||
person_id = person_info_manager.get_person_id_by_person_name(sender)
|
||||
user_id = person_info_manager.get_value_sync(person_id, "user_id")
|
||||
platform = chat_stream.platform
|
||||
if user_id == global_config.bot.qq_account and platform == global_config.bot.platform:
|
||||
logger.warning("选取了自身作为回复对象,跳过构建prompt")
|
||||
return ""
|
||||
|
||||
target = replace_user_references_sync(target, chat_stream.platform, replace_bot_name=True)
|
||||
|
||||
# 构建action描述 (如果启用planner)
|
||||
action_descriptions = ""
|
||||
@@ -649,21 +669,6 @@ class DefaultReplyer:
|
||||
limit=global_config.chat.max_context_size * 2,
|
||||
)
|
||||
|
||||
message_list_before_now = get_raw_msg_before_timestamp_with_chat(
|
||||
chat_id=chat_id,
|
||||
timestamp=time.time(),
|
||||
limit=global_config.chat.max_context_size,
|
||||
)
|
||||
chat_talking_prompt = build_readable_messages(
|
||||
message_list_before_now,
|
||||
replace_bot_name=True,
|
||||
merge_messages=False,
|
||||
timestamp_mode="normal_no_YMD",
|
||||
read_mark=0.0,
|
||||
truncate=True,
|
||||
show_actions=True,
|
||||
)
|
||||
|
||||
message_list_before_short = get_raw_msg_before_timestamp_with_chat(
|
||||
chat_id=chat_id,
|
||||
timestamp=time.time(),
|
||||
@@ -683,25 +688,21 @@ class DefaultReplyer:
|
||||
self._time_and_run_task(
|
||||
self.build_expression_habits(chat_talking_prompt_short, target), "expression_habits"
|
||||
),
|
||||
self._time_and_run_task(
|
||||
self.build_relation_info(reply_data), "relation_info"
|
||||
),
|
||||
self._time_and_run_task(self.build_relation_info(reply_to), "relation_info"),
|
||||
self._time_and_run_task(self.build_memory_block(chat_talking_prompt_short, target), "memory_block"),
|
||||
self._time_and_run_task(
|
||||
self.build_tool_info(chat_talking_prompt_short, reply_data, enable_tool=enable_tool), "tool_info"
|
||||
),
|
||||
self._time_and_run_task(
|
||||
get_prompt_info(target, threshold=0.38), "prompt_info"
|
||||
self.build_tool_info(chat_talking_prompt_short, reply_to, enable_tool=enable_tool), "tool_info"
|
||||
),
|
||||
self._time_and_run_task(get_prompt_info(target, threshold=0.38), "prompt_info"),
|
||||
)
|
||||
|
||||
# 任务名称中英文映射
|
||||
task_name_mapping = {
|
||||
"expression_habits": "选取表达方式",
|
||||
"relation_info": "感受关系",
|
||||
"relation_info": "感受关系",
|
||||
"memory_block": "回忆",
|
||||
"tool_info": "使用工具",
|
||||
"prompt_info": "获取知识"
|
||||
"prompt_info": "获取知识",
|
||||
}
|
||||
|
||||
# 处理结果
|
||||
@@ -723,8 +724,8 @@ class DefaultReplyer:
|
||||
|
||||
keywords_reaction_prompt = await self.build_keywords_reaction_prompt(target)
|
||||
|
||||
if extra_info_block:
|
||||
extra_info_block = f"以下是你在回复时需要参考的信息,现在请你阅读以下内容,进行决策\n{extra_info_block}\n以上是你在回复时需要参考的信息,现在请你阅读以下内容,进行决策"
|
||||
if extra_info:
|
||||
extra_info_block = f"以下是你在回复时需要参考的信息,现在请你阅读以下内容,进行决策\n{extra_info}\n以上是你在回复时需要参考的信息,现在请你阅读以下内容,进行决策"
|
||||
else:
|
||||
extra_info_block = ""
|
||||
|
||||
@@ -779,116 +780,74 @@ class DefaultReplyer:
|
||||
# 根据sender通过person_info_manager反向查找person_id,再获取user_id
|
||||
person_id = person_info_manager.get_person_id_by_person_name(sender)
|
||||
|
||||
# 根据配置选择使用哪种 prompt 构建模式
|
||||
if global_config.chat.use_s4u_prompt_mode and person_id:
|
||||
# 使用 s4u 对话构建模式:分离当前对话对象和其他对话
|
||||
try:
|
||||
user_id_value = await person_info_manager.get_value(person_id, "user_id")
|
||||
if user_id_value:
|
||||
target_user_id = str(user_id_value)
|
||||
except Exception as e:
|
||||
logger.warning(f"无法从person_id {person_id} 获取user_id: {e}")
|
||||
target_user_id = ""
|
||||
# 使用 s4u 对话构建模式:分离当前对话对象和其他对话
|
||||
try:
|
||||
user_id_value = await person_info_manager.get_value(person_id, "user_id")
|
||||
if user_id_value:
|
||||
target_user_id = str(user_id_value)
|
||||
except Exception as e:
|
||||
logger.warning(f"无法从person_id {person_id} 获取user_id: {e}")
|
||||
target_user_id = ""
|
||||
|
||||
# 构建分离的对话 prompt
|
||||
core_dialogue_prompt, background_dialogue_prompt = self.build_s4u_chat_history_prompts(
|
||||
message_list_before_now_long, target_user_id
|
||||
)
|
||||
|
||||
self.build_mai_think_context(
|
||||
chat_id=chat_id,
|
||||
memory_block=memory_block,
|
||||
relation_info=relation_info,
|
||||
time_block=time_block,
|
||||
chat_target_1=chat_target_1,
|
||||
chat_target_2=chat_target_2,
|
||||
mood_prompt=mood_prompt,
|
||||
identity_block=identity_block,
|
||||
sender=sender,
|
||||
target=target,
|
||||
chat_info=f"""
|
||||
# 构建分离的对话 prompt
|
||||
core_dialogue_prompt, background_dialogue_prompt = self.build_s4u_chat_history_prompts(
|
||||
message_list_before_now_long, target_user_id
|
||||
)
|
||||
|
||||
self.build_mai_think_context(
|
||||
chat_id=chat_id,
|
||||
memory_block=memory_block,
|
||||
relation_info=relation_info,
|
||||
time_block=time_block,
|
||||
chat_target_1=chat_target_1,
|
||||
chat_target_2=chat_target_2,
|
||||
mood_prompt=mood_prompt,
|
||||
identity_block=identity_block,
|
||||
sender=sender,
|
||||
target=target,
|
||||
chat_info=f"""
|
||||
{background_dialogue_prompt}
|
||||
--------------------------------
|
||||
{time_block}
|
||||
这是你和{sender}的对话,你们正在交流中:
|
||||
{core_dialogue_prompt}"""
|
||||
)
|
||||
|
||||
{core_dialogue_prompt}""",
|
||||
)
|
||||
|
||||
# 使用 s4u 风格的模板
|
||||
template_name = "s4u_style_prompt"
|
||||
# 使用 s4u 风格的模板
|
||||
template_name = "s4u_style_prompt"
|
||||
|
||||
return await global_prompt_manager.format_prompt(
|
||||
template_name,
|
||||
expression_habits_block=expression_habits_block,
|
||||
tool_info_block=tool_info,
|
||||
knowledge_prompt=prompt_info,
|
||||
memory_block=memory_block,
|
||||
relation_info_block=relation_info,
|
||||
extra_info_block=extra_info_block,
|
||||
identity=identity_block,
|
||||
action_descriptions=action_descriptions,
|
||||
sender_name=sender,
|
||||
mood_state=mood_prompt,
|
||||
background_dialogue_prompt=background_dialogue_prompt,
|
||||
time_block=time_block,
|
||||
core_dialogue_prompt=core_dialogue_prompt,
|
||||
reply_target_block=reply_target_block,
|
||||
message_txt=target,
|
||||
config_expression_style=global_config.expression.expression_style,
|
||||
keywords_reaction_prompt=keywords_reaction_prompt,
|
||||
moderation_prompt=moderation_prompt_block,
|
||||
)
|
||||
else:
|
||||
self.build_mai_think_context(
|
||||
chat_id=chat_id,
|
||||
memory_block=memory_block,
|
||||
relation_info=relation_info,
|
||||
time_block=time_block,
|
||||
chat_target_1=chat_target_1,
|
||||
chat_target_2=chat_target_2,
|
||||
mood_prompt=mood_prompt,
|
||||
identity_block=identity_block,
|
||||
sender=sender,
|
||||
target=target,
|
||||
chat_info=chat_talking_prompt
|
||||
)
|
||||
|
||||
# 使用原有的模式
|
||||
return await global_prompt_manager.format_prompt(
|
||||
template_name,
|
||||
expression_habits_block=expression_habits_block,
|
||||
chat_target=chat_target_1,
|
||||
chat_info=chat_talking_prompt,
|
||||
memory_block=memory_block,
|
||||
tool_info_block=tool_info,
|
||||
knowledge_prompt=prompt_info,
|
||||
extra_info_block=extra_info_block,
|
||||
relation_info_block=relation_info,
|
||||
time_block=time_block,
|
||||
reply_target_block=reply_target_block,
|
||||
moderation_prompt=moderation_prompt_block,
|
||||
keywords_reaction_prompt=keywords_reaction_prompt,
|
||||
identity=identity_block,
|
||||
target_message=target,
|
||||
sender_name=sender,
|
||||
config_expression_style=global_config.expression.expression_style,
|
||||
action_descriptions=action_descriptions,
|
||||
chat_target_2=chat_target_2,
|
||||
mood_state=mood_prompt,
|
||||
)
|
||||
return await global_prompt_manager.format_prompt(
|
||||
template_name,
|
||||
expression_habits_block=expression_habits_block,
|
||||
tool_info_block=tool_info,
|
||||
knowledge_prompt=prompt_info,
|
||||
memory_block=memory_block,
|
||||
relation_info_block=relation_info,
|
||||
extra_info_block=extra_info_block,
|
||||
identity=identity_block,
|
||||
action_descriptions=action_descriptions,
|
||||
sender_name=sender,
|
||||
mood_state=mood_prompt,
|
||||
background_dialogue_prompt=background_dialogue_prompt,
|
||||
time_block=time_block,
|
||||
core_dialogue_prompt=core_dialogue_prompt,
|
||||
reply_target_block=reply_target_block,
|
||||
message_txt=target,
|
||||
config_expression_style=global_config.expression.expression_style,
|
||||
keywords_reaction_prompt=keywords_reaction_prompt,
|
||||
moderation_prompt=moderation_prompt_block,
|
||||
)
|
||||
|
||||
async def build_prompt_rewrite_context(
|
||||
self,
|
||||
reply_data: Dict[str, Any],
|
||||
raw_reply: str,
|
||||
reason: str,
|
||||
reply_to: str,
|
||||
) -> str:
|
||||
chat_stream = self.chat_stream
|
||||
chat_id = chat_stream.stream_id
|
||||
is_group_chat = bool(chat_stream.group_info)
|
||||
|
||||
reply_to = reply_data.get("reply_to", "none")
|
||||
raw_reply = reply_data.get("raw_reply", "")
|
||||
reason = reply_data.get("reason", "")
|
||||
sender, target = self._parse_reply_target(reply_to)
|
||||
|
||||
# 添加情绪状态获取
|
||||
@@ -915,7 +874,7 @@ class DefaultReplyer:
|
||||
# 并行执行2个构建任务
|
||||
expression_habits_block, relation_info = await asyncio.gather(
|
||||
self.build_expression_habits(chat_talking_prompt_half, target),
|
||||
self.build_relation_info(reply_data),
|
||||
self.build_relation_info(reply_to),
|
||||
)
|
||||
|
||||
keywords_reaction_prompt = await self.build_keywords_reaction_prompt(target)
|
||||
@@ -1018,6 +977,31 @@ class DefaultReplyer:
|
||||
display_message=display_message,
|
||||
)
|
||||
|
||||
async def llm_generate_content(self, prompt: str) -> str:
|
||||
with Timer("LLM生成", {}): # 内部计时器,可选保留
|
||||
# 加权随机选择一个模型配置
|
||||
selected_model_config = self._select_weighted_model_config()
|
||||
model_display_name = selected_model_config.get('model_name') or selected_model_config.get('name', 'N/A')
|
||||
logger.info(
|
||||
f"使用模型生成回复: {model_display_name} (选中概率: {selected_model_config.get('weight', 1.0)})"
|
||||
)
|
||||
|
||||
express_model = LLMRequest(
|
||||
model=selected_model_config,
|
||||
request_type=self.request_type,
|
||||
)
|
||||
|
||||
if global_config.debug.show_prompt:
|
||||
logger.info(f"\n{prompt}\n")
|
||||
else:
|
||||
logger.debug(f"\n{prompt}\n")
|
||||
|
||||
# TODO: 这里的_应该做出替换
|
||||
content, _ = await express_model.generate_response_async(prompt)
|
||||
|
||||
logger.debug(f"replyer生成内容: {content}")
|
||||
return content
|
||||
|
||||
|
||||
def weighted_sample_no_replacement(items, weights, k) -> list:
|
||||
"""
|
||||
@@ -1075,10 +1059,8 @@ async def get_prompt_info(message: str, threshold: float):
|
||||
related_info += found_knowledge_from_lpmm
|
||||
logger.debug(f"获取知识库内容耗时: {(end_time - start_time):.3f}秒")
|
||||
logger.debug(f"获取知识库内容,相关信息:{related_info[:100]}...,信息长度: {len(related_info)}")
|
||||
|
||||
# 格式化知识信息
|
||||
formatted_prompt_info = await global_prompt_manager.format_prompt("knowledge_prompt", prompt_info=related_info)
|
||||
return formatted_prompt_info
|
||||
|
||||
return f"你有以下这些**知识**:\n{related_info}\n请你**记住上面的知识**,之后可能会用到。\n"
|
||||
else:
|
||||
logger.debug("从LPMM知识库获取知识失败,可能是从未导入过知识,返回空知识...")
|
||||
return ""
|
||||
|
||||
@@ -2,7 +2,7 @@ import time # 导入 time 模块以获取当前时间
|
||||
import random
|
||||
import re
|
||||
|
||||
from typing import List, Dict, Any, Tuple, Optional
|
||||
from typing import List, Dict, Any, Tuple, Optional, Callable
|
||||
from rich.traceback import install
|
||||
|
||||
from src.config.config import global_config
|
||||
@@ -10,11 +10,161 @@ from src.common.message_repository import find_messages, count_messages
|
||||
from src.common.database.database_model import ActionRecords
|
||||
from src.common.database.database_model import Images
|
||||
from src.person_info.person_info import PersonInfoManager, get_person_info_manager
|
||||
from src.chat.utils.utils import translate_timestamp_to_human_readable,assign_message_ids
|
||||
from src.chat.utils.utils import translate_timestamp_to_human_readable, assign_message_ids
|
||||
|
||||
install(extra_lines=3)
|
||||
|
||||
|
||||
def replace_user_references_sync(
|
||||
content: str,
|
||||
platform: str,
|
||||
name_resolver: Optional[Callable[[str, str], str]] = None,
|
||||
replace_bot_name: bool = True,
|
||||
) -> str:
|
||||
"""
|
||||
替换内容中的用户引用格式,包括回复<aaa:bbb>和@<aaa:bbb>格式
|
||||
|
||||
Args:
|
||||
content: 要处理的内容字符串
|
||||
platform: 平台标识
|
||||
name_resolver: 名称解析函数,接收(platform, user_id)参数,返回用户名称
|
||||
如果为None,则使用默认的person_info_manager
|
||||
replace_bot_name: 是否将机器人的user_id替换为"机器人昵称(你)"
|
||||
|
||||
Returns:
|
||||
str: 处理后的内容字符串
|
||||
"""
|
||||
if name_resolver is None:
|
||||
person_info_manager = get_person_info_manager()
|
||||
|
||||
def default_resolver(platform: str, user_id: str) -> str:
|
||||
# 检查是否是机器人自己
|
||||
if replace_bot_name and user_id == global_config.bot.qq_account:
|
||||
return f"{global_config.bot.nickname}(你)"
|
||||
person_id = PersonInfoManager.get_person_id(platform, user_id)
|
||||
return person_info_manager.get_value_sync(person_id, "person_name") or user_id # type: ignore
|
||||
|
||||
name_resolver = default_resolver
|
||||
|
||||
# 处理回复<aaa:bbb>格式
|
||||
reply_pattern = r"回复<([^:<>]+):([^:<>]+)>"
|
||||
match = re.search(reply_pattern, content)
|
||||
if match:
|
||||
aaa = match[1]
|
||||
bbb = match[2]
|
||||
try:
|
||||
# 检查是否是机器人自己
|
||||
if replace_bot_name and bbb == global_config.bot.qq_account:
|
||||
reply_person_name = f"{global_config.bot.nickname}(你)"
|
||||
else:
|
||||
reply_person_name = name_resolver(platform, bbb) or aaa
|
||||
content = re.sub(reply_pattern, f"回复 {reply_person_name}", content, count=1)
|
||||
except Exception:
|
||||
# 如果解析失败,使用原始昵称
|
||||
content = re.sub(reply_pattern, f"回复 {aaa}", content, count=1)
|
||||
|
||||
# 处理@<aaa:bbb>格式
|
||||
at_pattern = r"@<([^:<>]+):([^:<>]+)>"
|
||||
at_matches = list(re.finditer(at_pattern, content))
|
||||
if at_matches:
|
||||
new_content = ""
|
||||
last_end = 0
|
||||
for m in at_matches:
|
||||
new_content += content[last_end : m.start()]
|
||||
aaa = m.group(1)
|
||||
bbb = m.group(2)
|
||||
try:
|
||||
# 检查是否是机器人自己
|
||||
if replace_bot_name and bbb == global_config.bot.qq_account:
|
||||
at_person_name = f"{global_config.bot.nickname}(你)"
|
||||
else:
|
||||
at_person_name = name_resolver(platform, bbb) or aaa
|
||||
new_content += f"@{at_person_name}"
|
||||
except Exception:
|
||||
# 如果解析失败,使用原始昵称
|
||||
new_content += f"@{aaa}"
|
||||
last_end = m.end()
|
||||
new_content += content[last_end:]
|
||||
content = new_content
|
||||
|
||||
return content
|
||||
|
||||
|
||||
async def replace_user_references_async(
|
||||
content: str,
|
||||
platform: str,
|
||||
name_resolver: Optional[Callable[[str, str], Any]] = None,
|
||||
replace_bot_name: bool = True,
|
||||
) -> str:
|
||||
"""
|
||||
替换内容中的用户引用格式,包括回复<aaa:bbb>和@<aaa:bbb>格式
|
||||
|
||||
Args:
|
||||
content: 要处理的内容字符串
|
||||
platform: 平台标识
|
||||
name_resolver: 名称解析函数,接收(platform, user_id)参数,返回用户名称
|
||||
如果为None,则使用默认的person_info_manager
|
||||
replace_bot_name: 是否将机器人的user_id替换为"机器人昵称(你)"
|
||||
|
||||
Returns:
|
||||
str: 处理后的内容字符串
|
||||
"""
|
||||
if name_resolver is None:
|
||||
person_info_manager = get_person_info_manager()
|
||||
|
||||
async def default_resolver(platform: str, user_id: str) -> str:
|
||||
# 检查是否是机器人自己
|
||||
if replace_bot_name and user_id == global_config.bot.qq_account:
|
||||
return f"{global_config.bot.nickname}(你)"
|
||||
person_id = PersonInfoManager.get_person_id(platform, user_id)
|
||||
return await person_info_manager.get_value(person_id, "person_name") or user_id # type: ignore
|
||||
|
||||
name_resolver = default_resolver
|
||||
|
||||
# 处理回复<aaa:bbb>格式
|
||||
reply_pattern = r"回复<([^:<>]+):([^:<>]+)>"
|
||||
match = re.search(reply_pattern, content)
|
||||
if match:
|
||||
aaa = match.group(1)
|
||||
bbb = match.group(2)
|
||||
try:
|
||||
# 检查是否是机器人自己
|
||||
if replace_bot_name and bbb == global_config.bot.qq_account:
|
||||
reply_person_name = f"{global_config.bot.nickname}(你)"
|
||||
else:
|
||||
reply_person_name = await name_resolver(platform, bbb) or aaa
|
||||
content = re.sub(reply_pattern, f"回复 {reply_person_name}", content, count=1)
|
||||
except Exception:
|
||||
# 如果解析失败,使用原始昵称
|
||||
content = re.sub(reply_pattern, f"回复 {aaa}", content, count=1)
|
||||
|
||||
# 处理@<aaa:bbb>格式
|
||||
at_pattern = r"@<([^:<>]+):([^:<>]+)>"
|
||||
at_matches = list(re.finditer(at_pattern, content))
|
||||
if at_matches:
|
||||
new_content = ""
|
||||
last_end = 0
|
||||
for m in at_matches:
|
||||
new_content += content[last_end : m.start()]
|
||||
aaa = m.group(1)
|
||||
bbb = m.group(2)
|
||||
try:
|
||||
# 检查是否是机器人自己
|
||||
if replace_bot_name and bbb == global_config.bot.qq_account:
|
||||
at_person_name = f"{global_config.bot.nickname}(你)"
|
||||
else:
|
||||
at_person_name = await name_resolver(platform, bbb) or aaa
|
||||
new_content += f"@{at_person_name}"
|
||||
except Exception:
|
||||
# 如果解析失败,使用原始昵称
|
||||
new_content += f"@{aaa}"
|
||||
last_end = m.end()
|
||||
new_content += content[last_end:]
|
||||
content = new_content
|
||||
|
||||
return content
|
||||
|
||||
|
||||
def get_raw_msg_by_timestamp(
|
||||
timestamp_start: float, timestamp_end: float, limit: int = 0, limit_mode: str = "latest"
|
||||
) -> List[Dict[str, Any]]:
|
||||
@@ -374,33 +524,8 @@ def _build_readable_messages_internal(
|
||||
else:
|
||||
person_name = "某人"
|
||||
|
||||
# 检查是否有 回复<aaa:bbb> 字段
|
||||
reply_pattern = r"回复<([^:<>]+):([^:<>]+)>"
|
||||
match = re.search(reply_pattern, content)
|
||||
if match:
|
||||
aaa: str = match[1]
|
||||
bbb: str = match[2]
|
||||
reply_person_id = PersonInfoManager.get_person_id(platform, bbb)
|
||||
reply_person_name = person_info_manager.get_value_sync(reply_person_id, "person_name") or aaa
|
||||
# 在内容前加上回复信息
|
||||
content = re.sub(reply_pattern, lambda m, name=reply_person_name: f"回复 {name}", content, count=1)
|
||||
|
||||
# 检查是否有 @<aaa:bbb> 字段 @<{member_info.get('nickname')}:{member_info.get('user_id')}>
|
||||
at_pattern = r"@<([^:<>]+):([^:<>]+)>"
|
||||
at_matches = list(re.finditer(at_pattern, content))
|
||||
if at_matches:
|
||||
new_content = ""
|
||||
last_end = 0
|
||||
for m in at_matches:
|
||||
new_content += content[last_end : m.start()]
|
||||
aaa = m.group(1)
|
||||
bbb = m.group(2)
|
||||
at_person_id = PersonInfoManager.get_person_id(platform, bbb)
|
||||
at_person_name = person_info_manager.get_value_sync(at_person_id, "person_name") or aaa
|
||||
new_content += f"@{at_person_name}"
|
||||
last_end = m.end()
|
||||
new_content += content[last_end:]
|
||||
content = new_content
|
||||
# 使用独立函数处理用户引用格式
|
||||
content = replace_user_references_sync(content, platform, replace_bot_name=replace_bot_name)
|
||||
|
||||
target_str = "这是QQ的一个功能,用于提及某人,但没那么明显"
|
||||
if target_str in content and random.random() < 0.6:
|
||||
@@ -654,6 +779,7 @@ async def build_readable_messages_with_list(
|
||||
|
||||
return formatted_string, details_list
|
||||
|
||||
|
||||
def build_readable_messages_with_id(
|
||||
messages: List[Dict[str, Any]],
|
||||
replace_bot_name: bool = True,
|
||||
@@ -669,9 +795,9 @@ def build_readable_messages_with_id(
|
||||
允许通过参数控制格式化行为。
|
||||
"""
|
||||
message_id_list = assign_message_ids(messages)
|
||||
|
||||
|
||||
formatted_string = build_readable_messages(
|
||||
messages = messages,
|
||||
messages=messages,
|
||||
replace_bot_name=replace_bot_name,
|
||||
merge_messages=merge_messages,
|
||||
timestamp_mode=timestamp_mode,
|
||||
@@ -682,10 +808,7 @@ def build_readable_messages_with_id(
|
||||
message_id_list=message_id_list,
|
||||
)
|
||||
|
||||
|
||||
|
||||
|
||||
return formatted_string , message_id_list
|
||||
return formatted_string, message_id_list
|
||||
|
||||
|
||||
def build_readable_messages(
|
||||
@@ -770,7 +893,13 @@ def build_readable_messages(
|
||||
if read_mark <= 0:
|
||||
# 没有有效的 read_mark,直接格式化所有消息
|
||||
formatted_string, _, pic_id_mapping, _ = _build_readable_messages_internal(
|
||||
copy_messages, replace_bot_name, merge_messages, timestamp_mode, truncate, show_pic=show_pic, message_id_list=message_id_list
|
||||
copy_messages,
|
||||
replace_bot_name,
|
||||
merge_messages,
|
||||
timestamp_mode,
|
||||
truncate,
|
||||
show_pic=show_pic,
|
||||
message_id_list=message_id_list,
|
||||
)
|
||||
|
||||
# 生成图片映射信息并添加到最前面
|
||||
@@ -893,7 +1022,7 @@ async def build_anonymous_messages(messages: List[Dict[str, Any]]) -> str:
|
||||
|
||||
for msg in messages:
|
||||
try:
|
||||
platform = msg.get("chat_info_platform")
|
||||
platform: str = msg.get("chat_info_platform") # type: ignore
|
||||
user_id = msg.get("user_id")
|
||||
_timestamp = msg.get("time")
|
||||
content: str = ""
|
||||
@@ -916,38 +1045,14 @@ async def build_anonymous_messages(messages: List[Dict[str, Any]]) -> str:
|
||||
anon_name = get_anon_name(platform, user_id)
|
||||
# print(f"anon_name:{anon_name}")
|
||||
|
||||
# 处理 回复<aaa:bbb>
|
||||
reply_pattern = r"回复<([^:<>]+):([^:<>]+)>"
|
||||
match = re.search(reply_pattern, content)
|
||||
if match:
|
||||
# print(f"发现回复match:{match}")
|
||||
bbb = match.group(2)
|
||||
# 使用独立函数处理用户引用格式,传入自定义的匿名名称解析器
|
||||
def anon_name_resolver(platform: str, user_id: str) -> str:
|
||||
try:
|
||||
anon_reply = get_anon_name(platform, bbb)
|
||||
# print(f"anon_reply:{anon_reply}")
|
||||
return get_anon_name(platform, user_id)
|
||||
except Exception:
|
||||
anon_reply = "?"
|
||||
content = re.sub(reply_pattern, f"回复 {anon_reply}", content, count=1)
|
||||
return "?"
|
||||
|
||||
# 处理 @<aaa:bbb>,无嵌套def
|
||||
at_pattern = r"@<([^:<>]+):([^:<>]+)>"
|
||||
at_matches = list(re.finditer(at_pattern, content))
|
||||
if at_matches:
|
||||
# print(f"发现@match:{at_matches}")
|
||||
new_content = ""
|
||||
last_end = 0
|
||||
for m in at_matches:
|
||||
new_content += content[last_end : m.start()]
|
||||
bbb = m.group(2)
|
||||
try:
|
||||
anon_at = get_anon_name(platform, bbb)
|
||||
# print(f"anon_at:{anon_at}")
|
||||
except Exception:
|
||||
anon_at = "?"
|
||||
new_content += f"@{anon_at}"
|
||||
last_end = m.end()
|
||||
new_content += content[last_end:]
|
||||
content = new_content
|
||||
content = replace_user_references_sync(content, platform, anon_name_resolver, replace_bot_name=False)
|
||||
|
||||
header = f"{anon_name}说 "
|
||||
output_lines.append(header)
|
||||
|
||||
@@ -37,7 +37,7 @@ class ImageManager:
|
||||
self._ensure_image_dir()
|
||||
|
||||
self._initialized = True
|
||||
self._llm = LLMRequest(model=global_config.model.vlm, temperature=0.4, max_tokens=300, request_type="image")
|
||||
self.vlm = LLMRequest(model=global_config.model.vlm, temperature=0.4, max_tokens=300, request_type="image")
|
||||
|
||||
try:
|
||||
db.connect(reuse_if_open=True)
|
||||
@@ -94,7 +94,7 @@ class ImageManager:
|
||||
logger.error(f"保存描述到数据库失败 (Peewee): {str(e)}")
|
||||
|
||||
async def get_emoji_description(self, image_base64: str) -> str:
|
||||
"""获取表情包描述,使用二步走识别并带缓存优化"""
|
||||
"""获取表情包描述,优先使用Emoji表中的缓存数据"""
|
||||
try:
|
||||
# 计算图片哈希
|
||||
# 确保base64字符串只包含ASCII字符
|
||||
@@ -104,9 +104,21 @@ class ImageManager:
|
||||
image_hash = hashlib.md5(image_bytes).hexdigest()
|
||||
image_format = Image.open(io.BytesIO(image_bytes)).format.lower() # type: ignore
|
||||
|
||||
# 查询缓存的描述
|
||||
# 优先使用EmojiManager查询已注册表情包的描述
|
||||
try:
|
||||
from src.chat.emoji_system.emoji_manager import get_emoji_manager
|
||||
emoji_manager = get_emoji_manager()
|
||||
cached_emoji_description = await emoji_manager.get_emoji_description_by_hash(image_hash)
|
||||
if cached_emoji_description:
|
||||
logger.info(f"[缓存命中] 使用已注册表情包描述: {cached_emoji_description[:50]}...")
|
||||
return cached_emoji_description
|
||||
except Exception as e:
|
||||
logger.debug(f"查询EmojiManager时出错: {e}")
|
||||
|
||||
# 查询ImageDescriptions表的缓存描述
|
||||
cached_description = self._get_description_from_db(image_hash, "emoji")
|
||||
if cached_description:
|
||||
logger.info(f"[缓存命中] 使用ImageDescriptions表中的描述: {cached_description[:50]}...")
|
||||
return f"[表情包:{cached_description}]"
|
||||
|
||||
# === 二步走识别流程 ===
|
||||
@@ -118,10 +130,10 @@ class ImageManager:
|
||||
logger.warning("GIF转换失败,无法获取描述")
|
||||
return "[表情包(GIF处理失败)]"
|
||||
vlm_prompt = "这是一个动态图表情包,每一张图代表了动态图的某一帧,黑色背景代表透明,描述一下表情包表达的情感和内容,描述细节,从互联网梗,meme的角度去分析"
|
||||
detailed_description, _ = await self._llm.generate_response_for_image(vlm_prompt, image_base64_processed, "jpg")
|
||||
detailed_description, _ = await self.vlm.generate_response_for_image(vlm_prompt, image_base64_processed, "jpg")
|
||||
else:
|
||||
vlm_prompt = "这是一个表情包,请详细描述一下表情包所表达的情感和内容,描述细节,从互联网梗,meme的角度去分析"
|
||||
detailed_description, _ = await self._llm.generate_response_for_image(vlm_prompt, image_base64, image_format)
|
||||
detailed_description, _ = await self.vlm.generate_response_for_image(vlm_prompt, image_base64, image_format)
|
||||
|
||||
if detailed_description is None:
|
||||
logger.warning("VLM未能生成表情包详细描述")
|
||||
@@ -158,7 +170,7 @@ class ImageManager:
|
||||
if len(emotions) > 1 and emotions[1] != emotions[0]:
|
||||
final_emotion = f"{emotions[0]},{emotions[1]}"
|
||||
|
||||
logger.info(f"[二步走识别] 详细描述: {detailed_description[:50]}... -> 情感标签: {final_emotion}")
|
||||
logger.info(f"[emoji识别] 详细描述: {detailed_description[:50]}... -> 情感标签: {final_emotion}")
|
||||
|
||||
# 再次检查缓存,防止并发写入时重复生成
|
||||
cached_description = self._get_description_from_db(image_hash, "emoji")
|
||||
@@ -201,13 +213,13 @@ class ImageManager:
|
||||
self._save_description_to_db(image_hash, final_emotion, "emoji")
|
||||
|
||||
return f"[表情包:{final_emotion}]"
|
||||
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"获取表情包描述失败: {str(e)}")
|
||||
return "[表情包]"
|
||||
return "[表情包(处理失败)]"
|
||||
|
||||
async def get_image_description(self, image_base64: str) -> str:
|
||||
"""获取普通图片描述,带查重和保存功能"""
|
||||
"""获取普通图片描述,优先使用Images表中的缓存数据"""
|
||||
try:
|
||||
# 计算图片哈希
|
||||
if isinstance(image_base64, str):
|
||||
@@ -215,7 +227,7 @@ class ImageManager:
|
||||
image_bytes = base64.b64decode(image_base64)
|
||||
image_hash = hashlib.md5(image_bytes).hexdigest()
|
||||
|
||||
# 检查图片是否已存在
|
||||
# 优先检查Images表中是否已有完整的描述
|
||||
existing_image = Images.get_or_none(Images.emoji_hash == image_hash)
|
||||
if existing_image:
|
||||
# 更新计数
|
||||
@@ -227,18 +239,20 @@ class ImageManager:
|
||||
|
||||
# 如果已有描述,直接返回
|
||||
if existing_image.description:
|
||||
logger.debug(f"[缓存命中] 使用Images表中的图片描述: {existing_image.description[:50]}...")
|
||||
return f"[图片:{existing_image.description}]"
|
||||
|
||||
# 查询缓存的描述
|
||||
# 查询ImageDescriptions表的缓存描述
|
||||
cached_description = self._get_description_from_db(image_hash, "image")
|
||||
if cached_description:
|
||||
logger.debug(f"图片描述缓存中 {cached_description}")
|
||||
logger.debug(f"[缓存命中] 使用ImageDescriptions表中的描述: {cached_description[:50]}...")
|
||||
return f"[图片:{cached_description}]"
|
||||
|
||||
# 调用AI获取描述
|
||||
image_format = Image.open(io.BytesIO(image_bytes)).format.lower() # type: ignore
|
||||
prompt = global_config.custom_prompt.image_prompt
|
||||
description, _ = await self._llm.generate_response_for_image(prompt, image_base64, image_format)
|
||||
logger.info(f"[VLM调用] 为图片生成新描述 (Hash: {image_hash[:8]}...)")
|
||||
description, _ = await self.vlm.generate_response_for_image(prompt, image_base64, image_format)
|
||||
|
||||
if description is None:
|
||||
logger.warning("AI未能生成图片描述")
|
||||
@@ -266,6 +280,7 @@ class ImageManager:
|
||||
if not hasattr(existing_image, "vlm_processed") or existing_image.vlm_processed is None:
|
||||
existing_image.vlm_processed = True
|
||||
existing_image.save()
|
||||
logger.debug(f"[数据库] 更新已有图片记录: {image_hash[:8]}...")
|
||||
else:
|
||||
Images.create(
|
||||
image_id=str(uuid.uuid4()),
|
||||
@@ -277,16 +292,18 @@ class ImageManager:
|
||||
vlm_processed=True,
|
||||
count=1,
|
||||
)
|
||||
logger.debug(f"[数据库] 创建新图片记录: {image_hash[:8]}...")
|
||||
except Exception as e:
|
||||
logger.error(f"保存图片文件或元数据失败: {str(e)}")
|
||||
|
||||
# 保存描述到ImageDescriptions表
|
||||
# 保存描述到ImageDescriptions表作为备用缓存
|
||||
self._save_description_to_db(image_hash, description, "image")
|
||||
|
||||
logger.info(f"[VLM完成] 图片描述生成: {description[:50]}...")
|
||||
return f"[图片:{description}]"
|
||||
except Exception as e:
|
||||
logger.error(f"获取图片描述失败: {str(e)}")
|
||||
return "[图片]"
|
||||
return "[图片(处理失败)]"
|
||||
|
||||
@staticmethod
|
||||
def transform_gif(gif_base64: str, similarity_threshold: float = 1000.0, max_frames: int = 15) -> Optional[str]:
|
||||
@@ -502,12 +519,28 @@ class ImageManager:
|
||||
image_bytes = base64.b64decode(image_base64)
|
||||
image_hash = hashlib.md5(image_bytes).hexdigest()
|
||||
|
||||
# 先检查缓存的描述
|
||||
# 获取当前图片记录
|
||||
image = Images.get(Images.image_id == image_id)
|
||||
|
||||
# 优先检查是否已有其他相同哈希的图片记录包含描述
|
||||
existing_with_description = Images.get_or_none(
|
||||
(Images.emoji_hash == image_hash) &
|
||||
(Images.description.is_null(False)) &
|
||||
(Images.description != "")
|
||||
)
|
||||
if existing_with_description and existing_with_description.id != image.id:
|
||||
logger.debug(f"[缓存复用] 从其他相同图片记录复用描述: {existing_with_description.description[:50]}...")
|
||||
image.description = existing_with_description.description
|
||||
image.vlm_processed = True
|
||||
image.save()
|
||||
# 同时保存到ImageDescriptions表作为备用缓存
|
||||
self._save_description_to_db(image_hash, existing_with_description.description, "image")
|
||||
return
|
||||
|
||||
# 检查ImageDescriptions表的缓存描述
|
||||
cached_description = self._get_description_from_db(image_hash, "image")
|
||||
if cached_description:
|
||||
logger.debug(f"VLM处理时发现缓存描述: {cached_description}")
|
||||
# 更新数据库
|
||||
image = Images.get(Images.image_id == image_id)
|
||||
logger.debug(f"[缓存复用] 从ImageDescriptions表复用描述: {cached_description[:50]}...")
|
||||
image.description = cached_description
|
||||
image.vlm_processed = True
|
||||
image.save()
|
||||
@@ -520,7 +553,8 @@ class ImageManager:
|
||||
prompt = global_config.custom_prompt.image_prompt
|
||||
|
||||
# 获取VLM描述
|
||||
description, _ = await self._llm.generate_response_for_image(prompt, image_base64, image_format)
|
||||
logger.info(f"[VLM异步调用] 为图片生成描述 (ID: {image_id}, Hash: {image_hash[:8]}...)")
|
||||
description, _ = await self.vlm.generate_response_for_image(prompt, image_base64, image_format)
|
||||
|
||||
if description is None:
|
||||
logger.warning("VLM未能生成图片描述")
|
||||
@@ -533,14 +567,15 @@ class ImageManager:
|
||||
description = cached_description
|
||||
|
||||
# 更新数据库
|
||||
image = Images.get(Images.image_id == image_id)
|
||||
image.description = description
|
||||
image.vlm_processed = True
|
||||
image.save()
|
||||
|
||||
# 保存描述到ImageDescriptions表
|
||||
# 保存描述到ImageDescriptions表作为备用缓存
|
||||
self._save_description_to_db(image_hash, description, "image")
|
||||
|
||||
logger.info(f"[VLM异步完成] 图片描述生成: {description[:50]}...")
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"VLM处理图片失败: {str(e)}")
|
||||
|
||||
|
||||
@@ -28,7 +28,7 @@ class ClassicalWillingManager(BaseWillingManager):
|
||||
|
||||
# print(f"[{chat_id}] 回复意愿: {current_willing}")
|
||||
|
||||
interested_rate = willing_info.interested_rate * global_config.normal_chat.response_interested_rate_amplifier
|
||||
interested_rate = willing_info.interested_rate
|
||||
|
||||
# print(f"[{chat_id}] 兴趣值: {interested_rate}")
|
||||
|
||||
@@ -36,20 +36,18 @@ class ClassicalWillingManager(BaseWillingManager):
|
||||
current_willing += interested_rate - 0.2
|
||||
|
||||
if willing_info.is_mentioned_bot and global_config.chat.mentioned_bot_inevitable_reply and current_willing < 2:
|
||||
current_willing += 1 if current_willing < 1.0 else 0.05
|
||||
current_willing += 1 if current_willing < 1.0 else 0.2
|
||||
|
||||
self.chat_reply_willing[chat_id] = min(current_willing, 1.0)
|
||||
|
||||
reply_probability = min(max((current_willing - 0.5), 0.01) * 2, 1)
|
||||
reply_probability = min(max((current_willing - 0.5), 0.01) * 2, 1.5)
|
||||
|
||||
# print(f"[{chat_id}] 回复概率: {reply_probability}")
|
||||
|
||||
return reply_probability
|
||||
|
||||
async def before_generate_reply_handle(self, message_id):
|
||||
chat_id = self.ongoing_messages[message_id].chat_id
|
||||
current_willing = self.chat_reply_willing.get(chat_id, 0)
|
||||
self.chat_reply_willing[chat_id] = max(0.0, current_willing - 1.8)
|
||||
pass
|
||||
|
||||
async def after_generate_reply_handle(self, message_id):
|
||||
if message_id not in self.ongoing_messages:
|
||||
@@ -58,7 +56,7 @@ class ClassicalWillingManager(BaseWillingManager):
|
||||
chat_id = self.ongoing_messages[message_id].chat_id
|
||||
current_willing = self.chat_reply_willing.get(chat_id, 0)
|
||||
if current_willing < 1:
|
||||
self.chat_reply_willing[chat_id] = min(1.0, current_willing + 0.4)
|
||||
self.chat_reply_willing[chat_id] = min(1.0, current_willing + 0.3)
|
||||
|
||||
async def not_reply_handle(self, message_id):
|
||||
return await super().not_reply_handle(message_id)
|
||||
|
||||
Reference in New Issue
Block a user