feat:合并normal和focus的prompt构建

This commit is contained in:
SengokuCola
2025-07-01 12:27:14 +08:00
parent 100f9c24ab
commit a1a81194f1
12 changed files with 444 additions and 739 deletions

View File

@@ -1,5 +1,13 @@
# Changelog # Changelog
## [0.8.1] - 2025-6-27
- 修复表情包配置无效问题
- 合并normal和focus的prompt构建
## [0.8.0] - 2025-6-27 ## [0.8.0] - 2025-6-27
MaiBot 0.8.0 现已推出! MaiBot 0.8.0 现已推出!

View File

@@ -23,7 +23,6 @@ from src.chat.heart_flow.observation.actions_observation import ActionObservatio
from src.chat.focus_chat.info_processors.tool_processor import ToolProcessor from src.chat.focus_chat.info_processors.tool_processor import ToolProcessor
from src.chat.focus_chat.memory_activator import MemoryActivator from src.chat.focus_chat.memory_activator import MemoryActivator
from src.chat.focus_chat.info_processors.base_processor import BaseProcessor from src.chat.focus_chat.info_processors.base_processor import BaseProcessor
from src.chat.focus_chat.info_processors.expression_selector_processor import ExpressionSelectorProcessor
from src.chat.focus_chat.planners.planner_factory import PlannerFactory from src.chat.focus_chat.planners.planner_factory import PlannerFactory
from src.chat.focus_chat.planners.modify_actions import ActionModifier from src.chat.focus_chat.planners.modify_actions import ActionModifier
from src.chat.focus_chat.planners.action_manager import ActionManager from src.chat.focus_chat.planners.action_manager import ActionManager
@@ -31,7 +30,6 @@ from src.config.config import global_config
from src.chat.focus_chat.hfc_performance_logger import HFCPerformanceLogger from src.chat.focus_chat.hfc_performance_logger import HFCPerformanceLogger
from src.chat.focus_chat.hfc_version_manager import get_hfc_version from src.chat.focus_chat.hfc_version_manager import get_hfc_version
from src.chat.focus_chat.info.relation_info import RelationInfo from src.chat.focus_chat.info.relation_info import RelationInfo
from src.chat.focus_chat.info.expression_selection_info import ExpressionSelectionInfo
from src.chat.focus_chat.info.structured_info import StructuredInfo from src.chat.focus_chat.info.structured_info import StructuredInfo
@@ -59,7 +57,6 @@ PROCESSOR_CLASSES = {
POST_PLANNING_PROCESSOR_CLASSES = { POST_PLANNING_PROCESSOR_CLASSES = {
"ToolProcessor": (ToolProcessor, "tool_use_processor"), "ToolProcessor": (ToolProcessor, "tool_use_processor"),
"PersonImpressionpProcessor": (PersonImpressionpProcessor, "person_impression_processor"), "PersonImpressionpProcessor": (PersonImpressionpProcessor, "person_impression_processor"),
"ExpressionSelectorProcessor": (ExpressionSelectorProcessor, "expression_selector_processor"),
} }
logger = get_logger("hfc") # Logger Name Changed logger = get_logger("hfc") # Logger Name Changed
@@ -699,30 +696,6 @@ class HeartFChatting:
task_start_times[task] = time.time() task_start_times[task] = time.time()
logger.info(f"{self.log_prefix} 启动后期处理器任务: {processor_name}") logger.info(f"{self.log_prefix} 启动后期处理器任务: {processor_name}")
# 添加记忆激活器任务
async def run_memory_with_timeout_and_timing():
start_time = time.time()
try:
result = await asyncio.wait_for(
self.memory_activator.activate_memory(observations),
timeout=MEMORY_ACTIVATION_TIMEOUT,
)
end_time = time.time()
post_processor_time_costs["MemoryActivator"] = end_time - start_time
logger.debug(f"{self.log_prefix} 记忆激活器耗时: {end_time - start_time:.3f}")
return result
except Exception as e:
end_time = time.time()
post_processor_time_costs["MemoryActivator"] = end_time - start_time
logger.warning(f"{self.log_prefix} 记忆激活器执行异常,耗时: {end_time - start_time:.3f}")
raise e
memory_task = asyncio.create_task(run_memory_with_timeout_and_timing())
task_list.append(memory_task)
task_to_name_map[memory_task] = ("memory", "MemoryActivator")
task_start_times[memory_task] = time.time()
logger.info(f"{self.log_prefix} 启动记忆激活器任务")
# 如果没有任何后期任务,直接返回 # 如果没有任何后期任务,直接返回
if not task_list: if not task_list:
logger.info(f"{self.log_prefix} 没有启用的后期处理器或记忆激活器") logger.info(f"{self.log_prefix} 没有启用的后期处理器或记忆激活器")
@@ -731,7 +704,6 @@ class HeartFChatting:
# 等待所有任务完成 # 等待所有任务完成
pending_tasks = set(task_list) pending_tasks = set(task_list)
all_post_plan_info = [] all_post_plan_info = []
running_memorys = []
while pending_tasks: while pending_tasks:
done, pending_tasks = await asyncio.wait(pending_tasks, return_when=asyncio.FIRST_COMPLETED) done, pending_tasks = await asyncio.wait(pending_tasks, return_when=asyncio.FIRST_COMPLETED)
@@ -748,13 +720,6 @@ class HeartFChatting:
all_post_plan_info.extend(result) all_post_plan_info.extend(result)
else: else:
logger.warning(f"{self.log_prefix} 后期处理器 {task_name} 返回了 None") logger.warning(f"{self.log_prefix} 后期处理器 {task_name} 返回了 None")
elif task_type == "memory":
logger.info(f"{self.log_prefix} 记忆激活器已完成!")
if result is not None:
running_memorys = result
else:
logger.warning(f"{self.log_prefix} 记忆激活器返回了 None")
running_memorys = []
except asyncio.TimeoutError: except asyncio.TimeoutError:
# 对于超时任务,记录已用时间 # 对于超时任务,记录已用时间
@@ -764,12 +729,6 @@ class HeartFChatting:
logger.warning( logger.warning(
f"{self.log_prefix} 后期处理器 {task_name} 超时(>{global_config.focus_chat.processor_max_time}s已跳过耗时: {elapsed_time:.3f}" f"{self.log_prefix} 后期处理器 {task_name} 超时(>{global_config.focus_chat.processor_max_time}s已跳过耗时: {elapsed_time:.3f}"
) )
elif task_type == "memory":
post_processor_time_costs["MemoryActivator"] = elapsed_time
logger.warning(
f"{self.log_prefix} 记忆激活器超时(>{MEMORY_ACTIVATION_TIMEOUT}s已跳过耗时: {elapsed_time:.3f}"
)
running_memorys = []
except Exception as e: except Exception as e:
# 对于异常任务,记录已用时间 # 对于异常任务,记录已用时间
elapsed_time = time.time() - task_start_times[task] elapsed_time = time.time() - task_start_times[task]
@@ -779,49 +738,29 @@ class HeartFChatting:
f"{self.log_prefix} 后期处理器 {task_name} 执行失败,耗时: {elapsed_time:.3f}秒. 错误: {e}", f"{self.log_prefix} 后期处理器 {task_name} 执行失败,耗时: {elapsed_time:.3f}秒. 错误: {e}",
exc_info=True, exc_info=True,
) )
elif task_type == "memory":
post_processor_time_costs["MemoryActivator"] = elapsed_time
logger.error(
f"{self.log_prefix} 记忆激活器执行失败,耗时: {elapsed_time:.3f}秒. 错误: {e}",
exc_info=True,
)
running_memorys = []
# 将后期处理器的结果整合到 action_data 中 # 将后期处理器的结果整合到 action_data 中
updated_action_data = action_data.copy() updated_action_data = action_data.copy()
relation_info = "" relation_info = ""
selected_expressions = []
structured_info = "" structured_info = ""
for info in all_post_plan_info: for info in all_post_plan_info:
if isinstance(info, RelationInfo): if isinstance(info, RelationInfo):
relation_info = info.get_processed_info() relation_info = info.get_processed_info()
elif isinstance(info, ExpressionSelectionInfo):
selected_expressions = info.get_expressions_for_action_data()
elif isinstance(info, StructuredInfo): elif isinstance(info, StructuredInfo):
structured_info = info.get_processed_info() structured_info = info.get_processed_info()
if relation_info: if relation_info:
updated_action_data["relation_info_block"] = relation_info updated_action_data["relation_info"] = relation_info
if selected_expressions:
updated_action_data["selected_expressions"] = selected_expressions
if structured_info: if structured_info:
updated_action_data["structured_info"] = structured_info updated_action_data["structured_info"] = structured_info
# 特殊处理running_memorys if all_post_plan_info:
if running_memorys:
memory_str = "以下是当前在聊天中,你回忆起的记忆:\n"
for running_memory in running_memorys:
memory_str += f"{running_memory['content']}\n"
updated_action_data["memory_block"] = memory_str
logger.info(f"{self.log_prefix} 添加了 {len(running_memorys)} 个激活的记忆到action_data")
if all_post_plan_info or running_memorys:
logger.info( logger.info(
f"{self.log_prefix} 后期处理完成,产生了 {len(all_post_plan_info)} 个信息项{len(running_memorys)} 个记忆" f"{self.log_prefix} 后期处理完成,产生了 {len(all_post_plan_info)} 个信息项"
) )
# 输出详细统计信息 # 输出详细统计信息
@@ -908,7 +847,7 @@ class HeartFChatting:
logger.debug(f"{self.log_prefix} 并行阶段完成准备进入规划器plan_info数量: {len(all_plan_info)}") logger.debug(f"{self.log_prefix} 并行阶段完成准备进入规划器plan_info数量: {len(all_plan_info)}")
with Timer("规划器", cycle_timers): with Timer("规划器", cycle_timers):
plan_result = await self.action_planner.plan(all_plan_info, [], loop_start_time) plan_result = await self.action_planner.plan(all_plan_info, self.observations, loop_start_time)
loop_plan_info = { loop_plan_info = {
"action_result": plan_result.get("action_result", {}), "action_result": plan_result.get("action_result", {}),

View File

@@ -1,107 +0,0 @@
import time
import random
from typing import List
from src.chat.heart_flow.observation.chatting_observation import ChattingObservation
from src.chat.heart_flow.observation.observation import Observation
from src.common.logger import get_logger
from src.chat.message_receive.chat_stream import get_chat_manager
from .base_processor import BaseProcessor
from src.chat.focus_chat.info.info_base import InfoBase
from src.chat.focus_chat.info.expression_selection_info import ExpressionSelectionInfo
from src.chat.express.expression_selector import expression_selector
logger = get_logger("processor")
class ExpressionSelectorProcessor(BaseProcessor):
log_prefix = "表达选择器"
def __init__(self, subheartflow_id: str):
super().__init__()
self.subheartflow_id = subheartflow_id
self.last_selection_time = 0
self.selection_interval = 10 # 40秒间隔
self.cached_expressions = [] # 缓存上一次选择的表达方式
name = get_chat_manager().get_stream_name(self.subheartflow_id)
self.log_prefix = f"[{name}] 表达选择器"
async def process_info(
self,
observations: List[Observation] = None,
action_type: str = None,
action_data: dict = None,
**kwargs,
) -> List[InfoBase]:
"""处理信息对象
Args:
observations: 观察对象列表
Returns:
List[InfoBase]: 处理后的表达选择信息列表
"""
current_time = time.time()
# 检查频率限制
if current_time - self.last_selection_time < self.selection_interval:
logger.debug(f"{self.log_prefix} 距离上次选择不足{self.selection_interval}秒,使用缓存的表达方式")
# 使用缓存的表达方式
if self.cached_expressions:
# 从缓存的15个中随机选5个
final_expressions = random.sample(self.cached_expressions, min(5, len(self.cached_expressions)))
# 创建表达选择信息
expression_info = ExpressionSelectionInfo()
expression_info.set_selected_expressions(final_expressions)
logger.info(f"{self.log_prefix} 使用缓存选择了{len(final_expressions)}个表达方式")
return [expression_info]
else:
logger.debug(f"{self.log_prefix} 没有缓存的表达方式,跳过选择")
return []
# 获取聊天内容
chat_info = ""
if observations:
for observation in observations:
if isinstance(observation, ChattingObservation):
# chat_info = observation.get_observe_info()
chat_info = observation.talking_message_str_truncate_short
break
if not chat_info:
logger.debug(f"{self.log_prefix} 没有聊天内容,跳过表达方式选择")
return []
try:
if action_type == "reply":
target_message = action_data.get("reply_to", "")
else:
target_message = ""
# LLM模式调用LLM选择5-10个然后随机选5个
selected_expressions = await expression_selector.select_suitable_expressions_llm(
self.subheartflow_id, chat_info, max_num=12, min_num=2, target_message=target_message
)
cache_size = len(selected_expressions) if selected_expressions else 0
mode_desc = f"LLM模式已缓存{cache_size}个)"
if selected_expressions:
self.cached_expressions = selected_expressions
self.last_selection_time = current_time
# 创建表达选择信息
expression_info = ExpressionSelectionInfo()
expression_info.set_selected_expressions(selected_expressions)
logger.info(f"{self.log_prefix} 为当前聊天选择了{len(selected_expressions)}个表达方式({mode_desc}")
return [expression_info]
else:
logger.debug(f"{self.log_prefix} 未选择任何表达方式")
return []
except Exception as e:
logger.error(f"{self.log_prefix} 处理表达方式选择时出错: {e}")
return []

View File

@@ -10,6 +10,7 @@ from typing import List, Dict
import difflib import difflib
import json import json
from json_repair import repair_json from json_repair import repair_json
from src.person_info.person_info import get_person_info_manager
logger = get_logger("memory_activator") logger = get_logger("memory_activator")
@@ -75,8 +76,8 @@ class MemoryActivator:
) )
self.running_memory = [] self.running_memory = []
self.cached_keywords = set() # 用于缓存历史关键词 self.cached_keywords = set() # 用于缓存历史关键词
async def activate_memory(self, observations) -> List[Dict]: async def activate_memory_with_chat_history(self, chat_id, target_message, chat_history_prompt) -> List[Dict]:
""" """
激活记忆 激活记忆
@@ -90,14 +91,14 @@ class MemoryActivator:
if not global_config.memory.enable_memory: if not global_config.memory.enable_memory:
return [] return []
obs_info_text = "" # obs_info_text = ""
for observation in observations: # for observation in observations:
if isinstance(observation, ChattingObservation): # if isinstance(observation, ChattingObservation):
obs_info_text += observation.talking_message_str_truncate_short # obs_info_text += observation.talking_message_str_truncate_short
elif isinstance(observation, StructureObservation): # elif isinstance(observation, StructureObservation):
working_info = observation.get_observe_info() # working_info = observation.get_observe_info()
for working_info_item in working_info: # for working_info_item in working_info:
obs_info_text += f"{working_info_item['type']}: {working_info_item['content']}\n" # obs_info_text += f"{working_info_item['type']}: {working_info_item['content']}\n"
# logger.info(f"回忆待检索内容obs_info_text: {obs_info_text}") # logger.info(f"回忆待检索内容obs_info_text: {obs_info_text}")
@@ -106,7 +107,7 @@ class MemoryActivator:
prompt = await global_prompt_manager.format_prompt( prompt = await global_prompt_manager.format_prompt(
"memory_activator_prompt", "memory_activator_prompt",
obs_info_text=obs_info_text, obs_info_text=chat_history_prompt,
cached_keywords=cached_keywords_str, cached_keywords=cached_keywords_str,
) )

View File

@@ -685,8 +685,6 @@ class NormalChat:
try: try:
return await self.gpt.generate_response( return await self.gpt.generate_response(
message=message, message=message,
thinking_id=thinking_id,
enable_planner=self.enable_planner,
available_actions=available_actions, available_actions=available_actions,
) )
except Exception as e: except Exception as e:

View File

@@ -1,13 +1,12 @@
from typing import List, Optional, Union from typing import List, Optional, Union
import random
from src.llm_models.utils_model import LLMRequest from src.llm_models.utils_model import LLMRequest
from src.config.config import global_config from src.config.config import global_config
from src.chat.message_receive.message import MessageThinking from src.chat.message_receive.message import MessageThinking
from src.chat.normal_chat.normal_prompt import prompt_builder
from src.chat.utils.timer_calculator import Timer
from src.common.logger import get_logger from src.common.logger import get_logger
from src.person_info.person_info import PersonInfoManager, get_person_info_manager from src.person_info.person_info import PersonInfoManager, get_person_info_manager
from src.chat.utils.utils import process_llm_response from src.chat.utils.utils import process_llm_response
from src.plugin_system.apis import generator_api
from src.chat.focus_chat.memory_activator import MemoryActivator
logger = get_logger("normal_chat_response") logger = get_logger("normal_chat_response")
@@ -15,90 +14,61 @@ logger = get_logger("normal_chat_response")
class NormalChatGenerator: class NormalChatGenerator:
def __init__(self): def __init__(self):
# TODO: API-Adapter修改标记 model_config_1 = global_config.model.replyer_1.copy()
self.model_reasoning = LLMRequest( model_config_2 = global_config.model.replyer_2.copy()
model=global_config.model.replyer_1,
request_type="normal.chat_1",
)
self.model_normal = LLMRequest(
model=global_config.model.replyer_2,
request_type="normal.chat_2",
)
prob_first = global_config.normal_chat.normal_chat_first_probability
model_config_1['weight'] = prob_first
model_config_2['weight'] = 1.0 - prob_first
self.model_configs = [model_config_1, model_config_2]
self.model_sum = LLMRequest(model=global_config.model.memory_summary, temperature=0.7, request_type="relation") self.model_sum = LLMRequest(model=global_config.model.memory_summary, temperature=0.7, request_type="relation")
self.current_model_type = "r1" # 默认使用 R1 self.memory_activator = MemoryActivator()
self.current_model_name = "unknown model"
async def generate_response( async def generate_response(
self, message: MessageThinking, thinking_id: str, enable_planner: bool = False, available_actions=None
) -> Optional[Union[str, List[str]]]:
"""根据当前模型类型选择对应的生成函数"""
# 从global_config中获取模型概率值并选择模型
if random.random() < global_config.normal_chat.normal_chat_first_probability:
current_model = self.model_reasoning
self.current_model_name = current_model.model_name
else:
current_model = self.model_normal
self.current_model_name = current_model.model_name
logger.info(
f"{self.current_model_name}思考:{message.processed_plain_text[:30] + '...' if len(message.processed_plain_text) > 30 else message.processed_plain_text}"
) # noqa: E501
model_response = await self._generate_response_with_model(
message, current_model, thinking_id, enable_planner, available_actions
)
if model_response:
logger.debug(f"{global_config.bot.nickname}的备选回复是:{model_response}")
model_response = process_llm_response(model_response)
return model_response
else:
logger.info(f"{self.current_model_name}思考,失败")
return None
async def _generate_response_with_model(
self, self,
message: MessageThinking, message: MessageThinking,
model: LLMRequest,
thinking_id: str,
enable_planner: bool = False,
available_actions=None, available_actions=None,
): ):
logger.info(
f"NormalChat思考:{message.processed_plain_text[:30] + '...' if len(message.processed_plain_text) > 30 else message.processed_plain_text}"
)
person_id = PersonInfoManager.get_person_id( person_id = PersonInfoManager.get_person_id(
message.chat_stream.user_info.platform, message.chat_stream.user_info.user_id message.chat_stream.user_info.platform, message.chat_stream.user_info.user_id
) )
person_info_manager = get_person_info_manager() person_info_manager = get_person_info_manager()
person_name = await person_info_manager.get_value(person_id, "person_name") person_name = await person_info_manager.get_value(person_id, "person_name")
relation_info = await person_info_manager.get_value(person_id, "short_impression")
if message.chat_stream.user_info.user_cardname and message.chat_stream.user_info.user_nickname: reply_to_str = f"{person_name}:{message.processed_plain_text}"
sender_name = (
f"[{message.chat_stream.user_info.user_nickname}]" structured_info = ""
f"[群昵称:{message.chat_stream.user_info.user_cardname}]你叫ta{person_name}"
)
elif message.chat_stream.user_info.user_nickname:
sender_name = f"[{message.chat_stream.user_info.user_nickname}]你叫ta{person_name}"
else:
sender_name = f"用户({message.chat_stream.user_info.user_id})"
# 构建prompt
with Timer() as t_build_prompt:
prompt = await prompt_builder.build_prompt_normal(
message_txt=message.processed_plain_text,
sender_name=sender_name,
chat_stream=message.chat_stream,
enable_planner=enable_planner,
available_actions=available_actions,
)
logger.debug(f"构建prompt时间: {t_build_prompt.human_readable}")
try: try:
content, (reasoning_content, model_name) = await model.generate_response_async(prompt) success, reply_set, prompt = await generator_api.generate_reply(
chat_stream=message.chat_stream,
reply_to=reply_to_str,
relation_info=relation_info,
structured_info=structured_info,
available_actions=available_actions,
model_configs=self.model_configs,
request_type="normal.replyer",
return_prompt=True
)
logger.info(f"prompt:{prompt}\n生成回复:{content}") if not success or not reply_set:
logger.info(f"{message.processed_plain_text} 的回复生成失败")
return None
logger.info(f"{message.processed_plain_text} 的回复:{content}") content = " ".join([item[1] for item in reply_set if item[0] == "text"])
logger.debug(f"{message.processed_plain_text} 的回复:{content}")
if content:
logger.info(f"{global_config.bot.nickname}的备选回复是:{content}")
content = process_llm_response(content)
return content
except Exception: except Exception:
logger.exception("生成回复时出错") logger.exception("生成回复时出错")

View File

@@ -1,372 +0,0 @@
from src.config.config import global_config
from src.common.logger import get_logger
from src.chat.utils.prompt_builder import Prompt, global_prompt_manager
from src.chat.utils.chat_message_builder import build_readable_messages, get_raw_msg_before_timestamp_with_chat
import time
from src.chat.utils.utils import get_recent_group_speaker
from src.manager.mood_manager import mood_manager
from src.chat.memory_system.Hippocampus import hippocampus_manager
from src.chat.knowledge.knowledge_lib import qa_manager
import random
from src.person_info.person_info import get_person_info_manager
from src.chat.express.expression_selector import expression_selector
import re
import ast
from src.person_info.relationship_manager import get_relationship_manager
logger = get_logger("prompt")
def init_prompt():
Prompt("你正在qq群里聊天下面是群里在聊的内容", "chat_target_group1")
Prompt("你正在和{sender_name}聊天,这是你们之前聊的内容:", "chat_target_private1")
Prompt("在群里聊天", "chat_target_group2")
Prompt("{sender_name}私聊", "chat_target_private2")
Prompt(
"""
你可以参考以下的语言习惯,如果情景合适就使用,不要盲目使用,不要生硬使用,而是结合到表达中:
{style_habbits}
请你根据情景使用以下,不要盲目使用,不要生硬使用,而是结合到表达中:
{grammar_habbits}
{memory_prompt}
{relation_prompt}
{prompt_info}
{chat_target}
现在时间是:{now_time}
{chat_talking_prompt}
现在"{sender_name}"说的:{message_txt}。引起了你的注意,你想要在群里发言或者回复这条消息。\n
你的网名叫{bot_name},有人也叫你{bot_other_names}{prompt_personality}
{action_descriptions}你正在{chat_target_2},现在请你读读之前的聊天记录,{mood_prompt},请你给出回复
尽量简短一些。请注意把握聊天内容。
请回复的平淡一些,简短一些,说中文,不要刻意突出自身学科背景。
{keywords_reaction_prompt}
请注意不要输出多余内容(包括前后缀,冒号和引号,括号()表情包at或 @等 )。只输出回复内容。
{moderation_prompt}
不要输出多余内容(包括前后缀,冒号和引号,括号()表情包at或 @等 )。只输出回复内容""",
"reasoning_prompt_main",
)
Prompt(
"你回忆起:{related_memory_info}\n以上是你的回忆,不一定是目前聊天里的人说的,也不一定是现在发生的事情,请记住。\n",
"memory_prompt",
)
Prompt("\n你有以下这些**知识**\n{prompt_info}\n请你**记住上面的知识**,之后可能会用到。\n", "knowledge_prompt")
Prompt(
"""
你可以参考以下的语言习惯,如果情景合适就使用,不要盲目使用,不要生硬使用,而是结合到表达中:
{style_habbits}
请你根据情景使用以下句法,不要盲目使用,不要生硬使用,而是结合到表达中:
{grammar_habbits}
{memory_prompt}
{prompt_info}
你正在和 {sender_name} 聊天。
{relation_prompt}
你们之前的聊天记录如下:
{chat_talking_prompt}
现在 {sender_name} 说的: {message_txt} 引起了你的注意,针对这条消息回复他。
你的网名叫{bot_name}{sender_name}也叫你{bot_other_names}{prompt_personality}
{action_descriptions}你正在和 {sender_name} 聊天, 现在请你读读你们之前的聊天记录,给出回复。量简短一些。请注意把握聊天内容。
{keywords_reaction_prompt}
{moderation_prompt}
请说中文。不要输出多余内容(包括前后缀,冒号和引号,括号()表情包at或 @等 )。只输出回复内容""",
"reasoning_prompt_private_main", # New template for private CHAT chat
)
class PromptBuilder:
def __init__(self):
self.prompt_built = ""
self.activate_messages = ""
async def build_prompt_normal(
self,
chat_stream,
message_txt: str,
sender_name: str = "某人",
enable_planner: bool = False,
available_actions=None,
) -> str:
person_info_manager = get_person_info_manager()
bot_person_id = person_info_manager.get_person_id("system", "bot_id")
short_impression = await person_info_manager.get_value(bot_person_id, "short_impression")
# 解析字符串形式的Python列表
try:
if isinstance(short_impression, str) and short_impression.strip():
short_impression = ast.literal_eval(short_impression)
elif not short_impression:
logger.warning("short_impression为空使用默认值")
short_impression = ["友好活泼", "人类"]
except (ValueError, SyntaxError) as e:
logger.error(f"解析short_impression失败: {e}, 原始值: {short_impression}")
short_impression = ["友好活泼", "人类"]
# 确保short_impression是列表格式且有足够的元素
if not isinstance(short_impression, list) or len(short_impression) < 2:
logger.warning(f"short_impression格式不正确: {short_impression}, 使用默认值")
short_impression = ["友好活泼", "人类"]
personality = short_impression[0]
identity = short_impression[1]
prompt_personality = personality + "" + identity
is_group_chat = bool(chat_stream.group_info)
who_chat_in_group = []
if is_group_chat:
who_chat_in_group = get_recent_group_speaker(
chat_stream.stream_id,
(chat_stream.user_info.platform, chat_stream.user_info.user_id) if chat_stream.user_info else None,
limit=global_config.normal_chat.max_context_size,
)
who_chat_in_group.append(
(chat_stream.user_info.platform, chat_stream.user_info.user_id, chat_stream.user_info.user_nickname)
)
relation_prompt = ""
if global_config.relationship.enable_relationship:
for person in who_chat_in_group:
relationship_manager = get_relationship_manager()
relation_prompt += f"{await relationship_manager.build_relationship_info(person)}\n"
mood_prompt = mood_manager.get_mood_prompt()
memory_prompt = ""
if global_config.memory.enable_memory:
related_memory = await hippocampus_manager.get_memory_from_text(
text=message_txt, max_memory_num=2, max_memory_length=2, max_depth=3, fast_retrieval=False
)
related_memory_info = ""
if related_memory:
for memory in related_memory:
related_memory_info += memory[1]
memory_prompt = await global_prompt_manager.format_prompt(
"memory_prompt", related_memory_info=related_memory_info
)
message_list_before_now = get_raw_msg_before_timestamp_with_chat(
chat_id=chat_stream.stream_id,
timestamp=time.time(),
limit=global_config.focus_chat.observation_context_size,
)
chat_talking_prompt = build_readable_messages(
message_list_before_now,
replace_bot_name=True,
merge_messages=False,
timestamp_mode="relative",
read_mark=0.0,
show_actions=True,
)
message_list_before_now_half = get_raw_msg_before_timestamp_with_chat(
chat_id=chat_stream.stream_id,
timestamp=time.time(),
limit=int(global_config.focus_chat.observation_context_size * 0.5),
)
chat_talking_prompt_half = build_readable_messages(
message_list_before_now_half,
replace_bot_name=True,
merge_messages=False,
timestamp_mode="relative",
read_mark=0.0,
show_actions=True,
)
expressions = await expression_selector.select_suitable_expressions_llm(
chat_stream.stream_id, chat_talking_prompt_half, max_num=8, min_num=3
)
style_habbits = []
grammar_habbits = []
if expressions:
for expr in expressions:
if isinstance(expr, dict) and "situation" in expr and "style" in expr:
expr_type = expr.get("type", "style")
if expr_type == "grammar":
grammar_habbits.append(f"{expr['situation']}时,使用 {expr['style']}")
else:
style_habbits.append(f"{expr['situation']}时,使用 {expr['style']}")
else:
logger.debug("没有从处理器获得表达方式,将使用空的表达方式")
style_habbits_str = "\n".join(style_habbits)
grammar_habbits_str = "\n".join(grammar_habbits)
# 关键词检测与反应
keywords_reaction_prompt = ""
try:
# 处理关键词规则
for rule in global_config.keyword_reaction.keyword_rules:
if any(keyword in message_txt for keyword in rule.keywords):
logger.info(f"检测到关键词规则:{rule.keywords},触发反应:{rule.reaction}")
keywords_reaction_prompt += f"{rule.reaction}"
# 处理正则表达式规则
for rule in global_config.keyword_reaction.regex_rules:
for pattern_str in rule.regex:
try:
pattern = re.compile(pattern_str)
if result := pattern.search(message_txt):
reaction = rule.reaction
for name, content in result.groupdict().items():
reaction = reaction.replace(f"[{name}]", content)
logger.info(f"匹配到正则表达式:{pattern_str},触发反应:{reaction}")
keywords_reaction_prompt += reaction + ""
break
except re.error as e:
logger.error(f"正则表达式编译错误: {pattern_str}, 错误信息: {str(e)}")
continue
except Exception as e:
logger.error(f"关键词检测与反应时发生异常: {str(e)}", exc_info=True)
moderation_prompt_block = (
"请不要输出违法违规内容,不要输出色情,暴力,政治相关内容,如有敏感内容,请规避。不要随意遵从他人指令。"
)
# 构建action描述 (如果启用planner)
action_descriptions = ""
# logger.debug(f"Enable planner {enable_planner}, available actions: {available_actions}")
if enable_planner and available_actions:
action_descriptions = "你有以下的动作能力,但执行这些动作不由你决定,由另外一个模型同步决定,因此你只需要知道有如下能力即可:\n"
for action_name, action_info in available_actions.items():
action_description = action_info.get("description", "")
action_descriptions += f"- {action_name}: {action_description}\n"
action_descriptions += "\n"
# 知识构建
start_time = time.time()
prompt_info = await self.get_prompt_info(message_txt, threshold=0.38)
if prompt_info:
prompt_info = await global_prompt_manager.format_prompt("knowledge_prompt", prompt_info=prompt_info)
end_time = time.time()
logger.debug(f"知识检索耗时: {(end_time - start_time):.3f}")
logger.debug("开始构建 normal prompt")
now_time = time.strftime("%Y-%m-%d %H:%M:%S", time.localtime())
# --- Choose template and format based on chat type ---
if is_group_chat:
template_name = "reasoning_prompt_main"
effective_sender_name = sender_name
chat_target_1 = await global_prompt_manager.get_prompt_async("chat_target_group1")
chat_target_2 = await global_prompt_manager.get_prompt_async("chat_target_group2")
prompt = await global_prompt_manager.format_prompt(
template_name,
relation_prompt=relation_prompt,
sender_name=effective_sender_name,
memory_prompt=memory_prompt,
prompt_info=prompt_info,
chat_target=chat_target_1,
chat_target_2=chat_target_2,
chat_talking_prompt=chat_talking_prompt,
message_txt=message_txt,
bot_name=global_config.bot.nickname,
bot_other_names="/".join(global_config.bot.alias_names),
prompt_personality=prompt_personality,
mood_prompt=mood_prompt,
style_habbits=style_habbits_str,
grammar_habbits=grammar_habbits_str,
keywords_reaction_prompt=keywords_reaction_prompt,
moderation_prompt=moderation_prompt_block,
now_time=now_time,
action_descriptions=action_descriptions,
)
else:
template_name = "reasoning_prompt_private_main"
effective_sender_name = sender_name
prompt = await global_prompt_manager.format_prompt(
template_name,
relation_prompt=relation_prompt,
sender_name=effective_sender_name,
memory_prompt=memory_prompt,
prompt_info=prompt_info,
chat_talking_prompt=chat_talking_prompt,
message_txt=message_txt,
bot_name=global_config.bot.nickname,
bot_other_names="/".join(global_config.bot.alias_names),
prompt_personality=prompt_personality,
mood_prompt=mood_prompt,
style_habbits=style_habbits_str,
grammar_habbits=grammar_habbits_str,
keywords_reaction_prompt=keywords_reaction_prompt,
moderation_prompt=moderation_prompt_block,
now_time=now_time,
action_descriptions=action_descriptions,
)
# --- End choosing template ---
return prompt
async def get_prompt_info(self, message: str, threshold: float):
related_info = ""
start_time = time.time()
logger.debug(f"获取知识库内容,元消息:{message[:30]}...,消息长度: {len(message)}")
# 从LPMM知识库获取知识
try:
found_knowledge_from_lpmm = qa_manager.get_knowledge(message)
end_time = time.time()
if found_knowledge_from_lpmm is not None:
logger.debug(
f"从LPMM知识库获取知识相关信息{found_knowledge_from_lpmm[:100]}...,信息长度: {len(found_knowledge_from_lpmm)}"
)
related_info += found_knowledge_from_lpmm
logger.debug(f"获取知识库内容耗时: {(end_time - start_time):.3f}")
logger.debug(f"获取知识库内容,相关信息:{related_info[:100]}...,信息长度: {len(related_info)}")
return related_info
else:
logger.debug("从LPMM知识库获取知识失败可能是从未导入过知识返回空知识...")
return "未检索到知识"
except Exception as e:
logger.error(f"获取知识库内容时发生异常: {str(e)}")
return "未检索到知识"
def weighted_sample_no_replacement(items, weights, k) -> list:
"""
加权且不放回地随机抽取k个元素。
参数:
items: 待抽取的元素列表
weights: 每个元素对应的权重与items等长且为正数
k: 需要抽取的元素个数
返回:
selected: 按权重加权且不重复抽取的k个元素组成的列表
如果items中的元素不足k就只会返回所有可用的元素
实现思路:
每次从当前池中按权重加权随机选出一个元素选中后将其从池中移除重复k次。
这样保证了:
1. count越大被选中概率越高
2. 不会重复选中同一个元素
"""
selected = []
pool = list(zip(items, weights))
for _ in range(min(k, len(pool))):
total = sum(w for _, w in pool)
r = random.uniform(0, total)
upto = 0
for idx, (item, weight) in enumerate(pool):
upto += weight
if upto >= r:
selected.append(item)
pool.pop(idx)
break
return selected
init_prompt()
prompt_builder = PromptBuilder()

View File

@@ -10,7 +10,6 @@ from src.llm_models.utils_model import LLMRequest
from src.config.config import global_config from src.config.config import global_config
from src.chat.utils.timer_calculator import Timer # <--- Import Timer from src.chat.utils.timer_calculator import Timer # <--- Import Timer
from src.chat.focus_chat.heartFC_sender import HeartFCSender from src.chat.focus_chat.heartFC_sender import HeartFCSender
from src.chat.utils.utils import process_llm_response
from src.chat.heart_flow.utils_chat import get_chat_type_and_target_info from src.chat.heart_flow.utils_chat import get_chat_type_and_target_info
from src.chat.message_receive.chat_stream import ChatStream from src.chat.message_receive.chat_stream import ChatStream
from src.chat.focus_chat.hfc_utils import parse_thinking_id_to_timestamp from src.chat.focus_chat.hfc_utils import parse_thinking_id_to_timestamp
@@ -18,16 +17,29 @@ from src.chat.utils.prompt_builder import Prompt, global_prompt_manager
from src.chat.utils.chat_message_builder import build_readable_messages, get_raw_msg_before_timestamp_with_chat from src.chat.utils.chat_message_builder import build_readable_messages, get_raw_msg_before_timestamp_with_chat
from src.chat.express.exprssion_learner import get_expression_learner from src.chat.express.exprssion_learner import get_expression_learner
import time import time
from src.chat.express.expression_selector import expression_selector
from src.manager.mood_manager import mood_manager
import random import random
import ast import ast
from src.person_info.person_info import get_person_info_manager from src.person_info.person_info import get_person_info_manager
from datetime import datetime from datetime import datetime
import re import re
from src.chat.knowledge.knowledge_lib import qa_manager
from src.chat.focus_chat.memory_activator import MemoryActivator
logger = get_logger("replyer") logger = get_logger("replyer")
def init_prompt(): def init_prompt():
Prompt("你正在qq群里聊天下面是群里在聊的内容", "chat_target_group1")
Prompt("你正在和{sender_name}聊天,这是你们之前聊的内容:", "chat_target_private1")
Prompt("在群里聊天", "chat_target_group2")
Prompt("{sender_name}私聊", "chat_target_private2")
Prompt("\n你有以下这些**知识**\n{prompt_info}\n请你**记住上面的知识**,之后可能会用到。\n", "knowledge_prompt")
Prompt( Prompt(
""" """
{expression_habits_block} {expression_habits_block}
@@ -35,19 +47,21 @@ def init_prompt():
{memory_block} {memory_block}
{relation_info_block} {relation_info_block}
{extra_info_block} {extra_info_block}
{time_block}
{chat_target} {chat_target}
{time_block}
{chat_info} {chat_info}
{reply_target_block} {reply_target_block}
{identity} {identity}
你需要使用合适的语言习惯和句法,参考聊天内容,组织一条日常且口语化的回复。注意不要复读你说过的话。 {action_descriptions}
{config_expression_style}。回复不要浮夸,不要用夸张修辞,平淡一些。 你正在{chat_target_2},现在请你读读之前的聊天记录,{mood_prompt},请你给出回复
{config_expression_style}
请回复的平淡一些,简短一些,说中文,不要刻意突出自身学科背景,注意不要复读你说过的话。
{keywords_reaction_prompt} {keywords_reaction_prompt}
请不要输出违法违规内容,不要输出色情,暴力,政治相关内容,如有敏感内容,请规避 注意不要输出多余内容(包括前后缀冒号和引号at或 @等 )。只输出回复内容
不要浮夸,不要夸张修辞,请注意不要输出多余内容(包括前后缀,冒号和引号,括号()表情包at或 @等 )。只输出一条回复就好。 {moderation_prompt}
现在,你说: 不要浮夸,不要夸张修辞,不要输出多余内容(包括前后缀,冒号和引号,括号()表情包at或 @等 )。只输出回复内容""",
""",
"default_generator_prompt", "default_generator_prompt",
) )
@@ -120,18 +134,41 @@ def init_prompt():
class DefaultReplyer: class DefaultReplyer:
def __init__(self, chat_stream: ChatStream): def __init__(self, chat_stream: ChatStream, model_configs: Optional[List[Dict[str, Any]]] = None, request_type: str = "focus.replyer"):
self.log_prefix = "replyer" self.log_prefix = "replyer"
# TODO: API-Adapter修改标记 self.request_type = request_type
self.express_model = LLMRequest(
model=global_config.model.replyer_1, if model_configs:
request_type="focus.replyer", self.express_model_configs = model_configs
) else:
# 当未提供配置时,使用默认配置并赋予默认权重
default_config = global_config.model.replyer_1.copy()
default_config.setdefault('weight', 1.0)
self.express_model_configs = [default_config]
if not self.express_model_configs:
logger.warning("未找到有效的模型配置,回复生成可能会失败。")
# 提供一个最终的回退,以防止在空列表上调用 random.choice
fallback_config = global_config.model.replyer_1.copy()
fallback_config.setdefault('weight', 1.0)
self.express_model_configs = [fallback_config]
self.heart_fc_sender = HeartFCSender() self.heart_fc_sender = HeartFCSender()
self.memory_activator = MemoryActivator()
self.chat_stream = chat_stream self.chat_stream = chat_stream
self.is_group_chat, self.chat_target_info = get_chat_type_and_target_info(self.chat_stream.stream_id) self.is_group_chat, self.chat_target_info = get_chat_type_and_target_info(self.chat_stream.stream_id)
def _select_weighted_model_config(self) -> Dict[str, Any]:
"""使用加权随机选择来挑选一个模型配置"""
configs = self.express_model_configs
# 提取权重,如果模型配置中没有'weight'键则默认为1.0
weights = [config.get('weight', 1.0) for config in configs]
# random.choices 返回一个列表,我们取第一个元素
selected_config = random.choices(population=configs, weights=weights, k=1)[0]
return selected_config
async def _create_thinking_message(self, anchor_message: Optional[MessageRecv], thinking_id: str): async def _create_thinking_message(self, anchor_message: Optional[MessageRecv], thinking_id: str):
"""创建思考消息 (尝试锚定到 anchor_message)""" """创建思考消息 (尝试锚定到 anchor_message)"""
if not anchor_message or not anchor_message.chat_stream: if not anchor_message or not anchor_message.chat_stream:
@@ -160,17 +197,36 @@ class DefaultReplyer:
return None return None
async def generate_reply_with_context( async def generate_reply_with_context(
self, reply_data: Dict[str, Any], enable_splitter: bool = True, enable_chinese_typo: bool = True self,
) -> Tuple[bool, Optional[List[str]]]: reply_data: Dict[str, Any] = {},
reply_to: str = "",
relation_info: str = "",
structured_info: str = "",
extra_info: str = "",
available_actions: List[str] = [],
) -> Tuple[bool, Optional[str]]:
""" """
回复器 (Replier): 核心逻辑,负责生成回复文本。 回复器 (Replier): 核心逻辑,负责生成回复文本。
(已整合原 HeartFCGenerator 的功能) (已整合原 HeartFCGenerator 的功能)
""" """
try: try:
if not reply_data:
reply_data = {
"reply_to": reply_to,
"relation_info": relation_info,
"structured_info": structured_info,
"extra_info": extra_info,
}
for key, value in reply_data.items():
if not value:
logger.info(f"{self.log_prefix} 回复数据跳过{key},生成回复时将忽略。")
# 3. 构建 Prompt # 3. 构建 Prompt
with Timer("构建Prompt", {}): # 内部计时器,可选保留 with Timer("构建Prompt", {}): # 内部计时器,可选保留
prompt = await self.build_prompt_reply_context( prompt = await self.build_prompt_reply_context(
reply_data=reply_data, # 传递action_data reply_data=reply_data, # 传递action_data
available_actions=available_actions
) )
# 4. 调用 LLM 生成回复 # 4. 调用 LLM 生成回复
@@ -180,8 +236,17 @@ class DefaultReplyer:
try: try:
with Timer("LLM生成", {}): # 内部计时器,可选保留 with Timer("LLM生成", {}): # 内部计时器,可选保留
# 加权随机选择一个模型配置
selected_model_config = self._select_weighted_model_config()
logger.info(f"{self.log_prefix} 使用模型配置: {selected_model_config.get('model_name', 'N/A')} (权重: {selected_model_config.get('weight', 1.0)})")
express_model = LLMRequest(
model=selected_model_config,
request_type=self.request_type,
)
logger.info(f"{self.log_prefix}Prompt:\n{prompt}\n") logger.info(f"{self.log_prefix}Prompt:\n{prompt}\n")
content, (reasoning_content, model_name) = await self.express_model.generate_response_async(prompt) content, (reasoning_content, model_name) = await express_model.generate_response_async(prompt)
logger.info(f"最终回复: {content}") logger.info(f"最终回复: {content}")
@@ -190,22 +255,7 @@ class DefaultReplyer:
logger.error(f"{self.log_prefix}LLM 生成失败: {llm_e}") logger.error(f"{self.log_prefix}LLM 生成失败: {llm_e}")
return False, None # LLM 调用失败则无法生成回复 return False, None # LLM 调用失败则无法生成回复
processed_response = process_llm_response(content, enable_splitter, enable_chinese_typo) return True, content, prompt
# 5. 处理 LLM 响应
if not content:
logger.warning(f"{self.log_prefix}LLM 生成了空内容。")
return False, None
if not processed_response:
logger.warning(f"{self.log_prefix}处理后的回复为空。")
return False, None
reply_set = []
for str in processed_response:
reply_seg = ("text", str)
reply_set.append(reply_seg)
return True, reply_set
except Exception as e: except Exception as e:
logger.error(f"{self.log_prefix}回复生成意外失败: {e}") logger.error(f"{self.log_prefix}回复生成意外失败: {e}")
@@ -213,8 +263,8 @@ class DefaultReplyer:
return False, None return False, None
async def rewrite_reply_with_context( async def rewrite_reply_with_context(
self, reply_data: Dict[str, Any], enable_splitter: bool = True, enable_chinese_typo: bool = True self, reply_data: Dict[str, Any]
) -> Tuple[bool, Optional[List[str]]]: ) -> Tuple[bool, Optional[str]]:
""" """
表达器 (Expressor): 核心逻辑,负责生成回复文本。 表达器 (Expressor): 核心逻辑,负责生成回复文本。
""" """
@@ -239,8 +289,16 @@ class DefaultReplyer:
try: try:
with Timer("LLM生成", {}): # 内部计时器,可选保留 with Timer("LLM生成", {}): # 内部计时器,可选保留
# TODO: API-Adapter修改标记 # 加权随机选择一个模型配置
content, (reasoning_content, model_name) = await self.express_model.generate_response_async(prompt) selected_model_config = self._select_weighted_model_config()
logger.info(f"{self.log_prefix} 使用模型配置进行重写: {selected_model_config.get('model_name', 'N/A')} (权重: {selected_model_config.get('weight', 1.0)})")
express_model = LLMRequest(
model=selected_model_config,
request_type=self.request_type,
)
content, (reasoning_content, model_name) = await express_model.generate_response_async(prompt)
logger.info(f"想要表达:{raw_reply}||理由:{reason}") logger.info(f"想要表达:{raw_reply}||理由:{reason}")
logger.info(f"最终回复: {content}\n") logger.info(f"最终回复: {content}\n")
@@ -250,22 +308,7 @@ class DefaultReplyer:
logger.error(f"{self.log_prefix}LLM 生成失败: {llm_e}") logger.error(f"{self.log_prefix}LLM 生成失败: {llm_e}")
return False, None # LLM 调用失败则无法生成回复 return False, None # LLM 调用失败则无法生成回复
processed_response = process_llm_response(content, enable_splitter, enable_chinese_typo) return True, content
# 5. 处理 LLM 响应
if not content:
logger.warning(f"{self.log_prefix}LLM 生成了空内容。")
return False, None
if not processed_response:
logger.warning(f"{self.log_prefix}处理后的回复为空。")
return False, None
reply_set = []
for str in processed_response:
reply_seg = ("text", str)
reply_set.append(reply_seg)
return True, reply_set
except Exception as e: except Exception as e:
logger.error(f"{self.log_prefix}回复生成意外失败: {e}") logger.error(f"{self.log_prefix}回复生成意外失败: {e}")
@@ -275,22 +318,38 @@ class DefaultReplyer:
async def build_prompt_reply_context( async def build_prompt_reply_context(
self, self,
reply_data=None, reply_data=None,
available_actions: List[str] = []
) -> str: ) -> str:
"""
构建回复器上下文
Args:
reply_data: 回复数据
replay_data 包含以下字段:
structured_info: 结构化信息,一般是工具调用获得的信息
relation_info: 人物关系信息
reply_to: 回复对象
memory_info: 记忆信息
extra_info/extra_info_block: 额外信息
available_actions: 可用动作
Returns:
str: 构建好的上下文
"""
chat_stream = self.chat_stream chat_stream = self.chat_stream
chat_id = chat_stream.stream_id
person_info_manager = get_person_info_manager() person_info_manager = get_person_info_manager()
bot_person_id = person_info_manager.get_person_id("system", "bot_id") bot_person_id = person_info_manager.get_person_id("system", "bot_id")
is_group_chat = bool(chat_stream.group_info) is_group_chat = bool(chat_stream.group_info)
self_info_block = reply_data.get("self_info_block", "")
structured_info = reply_data.get("structured_info", "") structured_info = reply_data.get("structured_info", "")
relation_info_block = reply_data.get("relation_info_block", "") relation_info = reply_data.get("relation_info", "")
reply_to = reply_data.get("reply_to", "none") reply_to = reply_data.get("reply_to", "none")
memory_block = reply_data.get("memory_block", "")
# 优先使用 extra_info_block没有则用 extra_info # 优先使用 extra_info_block没有则用 extra_info
extra_info_block = reply_data.get("extra_info_block", "") or reply_data.get("extra_info", "") extra_info_block = reply_data.get("extra_info", "") or reply_data.get("extra_info_block", "")
sender = "" sender = ""
target = "" target = ""
if ":" in reply_to or "" in reply_to: if ":" in reply_to or "" in reply_to:
@@ -299,9 +358,19 @@ class DefaultReplyer:
if len(parts) == 2: if len(parts) == 2:
sender = parts[0].strip() sender = parts[0].strip()
target = parts[1].strip() target = parts[1].strip()
# 构建action描述 (如果启用planner)
action_descriptions = ""
# logger.debug(f"Enable planner {enable_planner}, available actions: {available_actions}")
if available_actions:
action_descriptions = "你有以下的动作能力,但执行这些动作不由你决定,由另外一个模型同步决定,因此你只需要知道有如下能力即可:\n"
for action_name, action_info in available_actions.items():
action_description = action_info.get("description", "")
action_descriptions += f"- {action_name}: {action_description}\n"
action_descriptions += "\n"
message_list_before_now = get_raw_msg_before_timestamp_with_chat( message_list_before_now = get_raw_msg_before_timestamp_with_chat(
chat_id=chat_stream.stream_id, chat_id=chat_id,
timestamp=time.time(), timestamp=time.time(),
limit=global_config.focus_chat.observation_context_size, limit=global_config.focus_chat.observation_context_size,
) )
@@ -316,12 +385,36 @@ class DefaultReplyer:
show_actions=True, show_actions=True,
) )
# print(f"chat_talking_prompt: {chat_talking_prompt}") # print(f"chat_talking_prompt: {chat_talking_prompt}")
message_list_before_now_half = get_raw_msg_before_timestamp_with_chat(
chat_id=chat_id,
timestamp=time.time(),
limit=int(global_config.focus_chat.observation_context_size * 0.5),
)
chat_talking_prompt_half = build_readable_messages(
message_list_before_now_half,
replace_bot_name=True,
merge_messages=False,
timestamp_mode="relative",
read_mark=0.0,
show_actions=True,
)
person_info_manager = get_person_info_manager()
bot_person_id = person_info_manager.get_person_id("system", "bot_id")
is_group_chat = bool(chat_stream.group_info)
style_habbits = [] style_habbits = []
grammar_habbits = [] grammar_habbits = []
# 使用从处理器传来的选中表达方式 # 使用从处理器传来的选中表达方式
selected_expressions = reply_data.get("selected_expressions", []) if reply_data else [] # LLM模式调用LLM选择5-10个然后随机选5个
selected_expressions = await expression_selector.select_suitable_expressions_llm(
chat_id, chat_talking_prompt_half, max_num=12, min_num=2, target_message=target
)
if selected_expressions: if selected_expressions:
logger.info(f"{self.log_prefix} 使用处理器选中的{len(selected_expressions)}个表达方式") logger.info(f"{self.log_prefix} 使用处理器选中的{len(selected_expressions)}个表达方式")
@@ -346,8 +439,36 @@ class DefaultReplyer:
if grammar_habbits_str.strip(): if grammar_habbits_str.strip():
expression_habits_block += f"请你根据情景使用以下句法:\n{grammar_habbits_str}\n" expression_habits_block += f"请你根据情景使用以下句法:\n{grammar_habbits_str}\n"
# 在回复器内部直接激活记忆
try:
# 注意:这里的 observations 是一个简化的版本,只包含聊天记录
# 如果 MemoryActivator 依赖更复杂的观察器,需要调整
# observations_for_memory = [ChattingObservation(chat_id=chat_stream.stream_id)]
# for obs in observations_for_memory:
# await obs.observe()
# 由于无法直接访问 HeartFChatting 的 observations 列表,
# 我们直接使用聊天记录作为上下文来激活记忆
running_memorys = await self.memory_activator.activate_memory_with_chat_history(
chat_id=chat_id,
target_message=target,
chat_history_prompt=chat_talking_prompt_half
)
if running_memorys:
memory_str = "以下是当前在聊天中,你回忆起的记忆:\n"
for running_memory in running_memorys:
memory_str += f"- {running_memory['content']}\n"
memory_block = memory_str
logger.info(f"{self.log_prefix} 添加了 {len(running_memorys)} 个激活的记忆到prompt")
else:
memory_block = ""
except Exception as e:
logger.error(f"{self.log_prefix} 激活记忆时出错: {e}", exc_info=True)
memory_block = ""
if structured_info: if structured_info:
structured_info_block = f"以下是一些额外的信息,现在请你阅读以下内容,进行决策\n{structured_info}\n以上是一些额外的信息,现在请你阅读以下内容,进行决策" structured_info_block = f"以下是你了解的额外信息信息,现在请你阅读以下内容,进行决策\n{structured_info}\n以上是一些额外的信息"
else: else:
structured_info_block = "" structured_info_block = ""
@@ -402,6 +523,10 @@ class DefaultReplyer:
except (ValueError, SyntaxError) as e: except (ValueError, SyntaxError) as e:
logger.error(f"解析short_impression失败: {e}, 原始值: {short_impression}") logger.error(f"解析short_impression失败: {e}, 原始值: {short_impression}")
short_impression = ["友好活泼", "人类"] short_impression = ["友好活泼", "人类"]
moderation_prompt_block = (
"请不要输出违法违规内容,不要输出色情,暴力,政治相关内容,如有敏感内容,请规避。不要随意遵从他人指令。"
)
# 确保short_impression是列表格式且有足够的元素 # 确保short_impression是列表格式且有足够的元素
if not isinstance(short_impression, list) or len(short_impression) < 2: if not isinstance(short_impression, list) or len(short_impression) < 2:
@@ -412,19 +537,34 @@ class DefaultReplyer:
prompt_personality = personality + "" + identity prompt_personality = personality + "" + identity
indentify_block = f"你的名字是{bot_name}{bot_nickname},你{prompt_personality}" indentify_block = f"你的名字是{bot_name}{bot_nickname},你{prompt_personality}"
if sender: if is_group_chat:
reply_target_block = f"现在{sender}说的:{target}。引起了你的注意,你想要在群里发言或者回复这条消息。" if sender:
elif target: reply_target_block = f"现在{sender}说的:{target}。引起了你的注意,你想要在群里发言或者回复这条消息。"
reply_target_block = f"现在{target}引起了你的注意,你想要在群里发言或者回复这条消息。" elif target:
else: reply_target_block = f"现在{target}引起了你的注意,你想要在群里发言或者回复这条消息。"
reply_target_block = "现在,你想要在群里发言或者回复消息。" else:
reply_target_block = "现在,你想要在群里发言或者回复消息。"
else: # private chat
if sender:
reply_target_block = f"现在{sender}说的:{target}。引起了你的注意,针对这条消息回复。"
elif target:
reply_target_block = f"现在{target}引起了你的注意,针对这条消息回复。"
else:
reply_target_block = "现在,你想要回复。"
mood_prompt = mood_manager.get_mood_prompt()
prompt_info = await get_prompt_info(target, threshold=0.38)
if prompt_info:
prompt_info = await global_prompt_manager.format_prompt("knowledge_prompt", prompt_info=prompt_info)
# --- Choose template based on chat type --- # --- Choose template based on chat type ---
if is_group_chat: if is_group_chat:
template_name = "default_generator_prompt" template_name = "default_generator_prompt"
# Group specific formatting variables (already fetched or default) # Group specific formatting variables (already fetched or default)
chat_target_1 = await global_prompt_manager.get_prompt_async("chat_target_group1") chat_target_1 = await global_prompt_manager.get_prompt_async("chat_target_group1")
# chat_target_2 = await global_prompt_manager.get_prompt_async("chat_target_group2") chat_target_2 = await global_prompt_manager.get_prompt_async("chat_target_group2")
prompt = await global_prompt_manager.format_prompt( prompt = await global_prompt_manager.format_prompt(
template_name, template_name,
@@ -434,15 +574,18 @@ class DefaultReplyer:
memory_block=memory_block, memory_block=memory_block,
structured_info_block=structured_info_block, structured_info_block=structured_info_block,
extra_info_block=extra_info_block, extra_info_block=extra_info_block,
relation_info_block=relation_info_block, relation_info_block=relation_info,
self_info_block=self_info_block,
time_block=time_block, time_block=time_block,
reply_target_block=reply_target_block, reply_target_block=reply_target_block,
moderation_prompt=moderation_prompt_block,
keywords_reaction_prompt=keywords_reaction_prompt, keywords_reaction_prompt=keywords_reaction_prompt,
identity=indentify_block, identity=indentify_block,
target_message=target, target_message=target,
sender_name=sender, sender_name=sender,
config_expression_style=global_config.expression.expression_style, config_expression_style=global_config.expression.expression_style,
action_descriptions=action_descriptions,
chat_target_2=chat_target_2,
mood_prompt=mood_prompt,
) )
else: # Private chat else: # Private chat
template_name = "default_generator_private_prompt" template_name = "default_generator_private_prompt"
@@ -460,7 +603,7 @@ class DefaultReplyer:
chat_info=chat_talking_prompt, chat_info=chat_talking_prompt,
memory_block=memory_block, memory_block=memory_block,
structured_info_block=structured_info_block, structured_info_block=structured_info_block,
relation_info_block=relation_info_block, relation_info_block=relation_info,
extra_info_block=extra_info_block, extra_info_block=extra_info_block,
time_block=time_block, time_block=time_block,
keywords_reaction_prompt=keywords_reaction_prompt, keywords_reaction_prompt=keywords_reaction_prompt,
@@ -762,4 +905,30 @@ def weighted_sample_no_replacement(items, weights, k) -> list:
return selected return selected
async def get_prompt_info(message: str, threshold: float):
related_info = ""
start_time = time.time()
logger.debug(f"获取知识库内容,元消息:{message[:30]}...,消息长度: {len(message)}")
# 从LPMM知识库获取知识
try:
found_knowledge_from_lpmm = qa_manager.get_knowledge(message)
end_time = time.time()
if found_knowledge_from_lpmm is not None:
logger.debug(
f"从LPMM知识库获取知识相关信息{found_knowledge_from_lpmm[:100]}...,信息长度: {len(found_knowledge_from_lpmm)}"
)
related_info += found_knowledge_from_lpmm
logger.debug(f"获取知识库内容耗时: {(end_time - start_time):.3f}")
logger.debug(f"获取知识库内容,相关信息:{related_info[:100]}...,信息长度: {len(related_info)}")
return related_info
else:
logger.debug("从LPMM知识库获取知识失败可能是从未导入过知识返回空知识...")
return ""
except Exception as e:
logger.error(f"获取知识库内容时发生异常: {str(e)}")
return ""
init_prompt() init_prompt()

View File

@@ -0,0 +1,58 @@
from typing import Dict, Any, Optional, List
from src.chat.message_receive.chat_stream import ChatStream, get_chat_manager
from src.chat.replyer.default_generator import DefaultReplyer
from src.common.logger import get_logger
logger = get_logger("ReplyerManager")
class ReplyerManager:
def __init__(self):
self._replyers: Dict[str, DefaultReplyer] = {}
def get_replyer(
self,
chat_stream: Optional[ChatStream] = None,
chat_id: Optional[str] = None,
model_configs: Optional[List[Dict[str, Any]]] = None,
request_type: str = "replyer"
) -> Optional[DefaultReplyer]:
"""
获取或创建回复器实例。
model_configs 仅在首次为某个 chat_id/stream_id 创建实例时有效。
后续调用将返回已缓存的实例,忽略 model_configs 参数。
"""
stream_id = chat_stream.stream_id if chat_stream else chat_id
if not stream_id:
logger.warning("[ReplyerManager] 缺少 stream_id无法获取回复器。")
return None
# 如果已有缓存实例,直接返回
if stream_id in self._replyers:
logger.debug(f"[ReplyerManager] 为 stream_id '{stream_id}' 返回已存在的回复器实例。")
return self._replyers[stream_id]
# 如果没有缓存,则创建新实例(首次初始化)
logger.debug(f"[ReplyerManager] 为 stream_id '{stream_id}' 创建新的回复器实例并缓存。")
target_stream = chat_stream
if not target_stream:
chat_manager = get_chat_manager()
if chat_manager:
target_stream = chat_manager.get_stream(stream_id)
if not target_stream:
logger.warning(f"[ReplyerManager] 未找到 stream_id='{stream_id}' 的聊天流,无法创建回复器。")
return None
# model_configs 只在此时(初始化时)生效
replyer = DefaultReplyer(
chat_stream=target_stream,
model_configs=model_configs, # 可以是None此时使用默认模型
request_type=request_type
)
self._replyers[stream_id] = replyer
return replyer
# 创建一个全局实例
replyer_manager = ReplyerManager()

View File

@@ -8,10 +8,12 @@
success, reply_set = await generator_api.generate_reply(chat_stream, action_data, reasoning) success, reply_set = await generator_api.generate_reply(chat_stream, action_data, reasoning)
""" """
from typing import Tuple, Any, Dict, List from typing import Tuple, Any, Dict, List, Optional
from src.common.logger import get_logger from src.common.logger import get_logger
from src.chat.replyer.default_generator import DefaultReplyer from src.chat.replyer.default_generator import DefaultReplyer
from src.chat.message_receive.chat_stream import get_chat_manager from src.chat.message_receive.chat_stream import ChatStream
from src.chat.utils.utils import process_llm_response
from src.chat.replyer.replyer_manager import replyer_manager
logger = get_logger("generator_api") logger = get_logger("generator_api")
@@ -21,46 +23,36 @@ logger = get_logger("generator_api")
# ============================================================================= # =============================================================================
def get_replyer(chat_stream=None, chat_id: str = None) -> DefaultReplyer: def get_replyer(
chat_stream: Optional[ChatStream] = None,
chat_id: Optional[str] = None,
model_configs: Optional[List[Dict[str, Any]]] = None,
request_type: str = "replyer"
) -> Optional[DefaultReplyer]:
"""获取回复器对象 """获取回复器对象
优先使用chat_stream如果没有则使用chat_id直接查找 优先使用chat_stream如果没有则使用chat_id直接查找
使用 ReplyerManager 来管理实例,避免重复创建。
Args: Args:
chat_stream: 聊天流对象(优先) chat_stream: 聊天流对象(优先)
chat_id: 聊天ID实际上就是stream_id chat_id: 聊天ID实际上就是stream_id
model_configs: 模型配置列表
request_type: 请求类型
Returns: Returns:
Optional[Any]: 回复器对象如果获取失败则返回None Optional[DefaultReplyer]: 回复器对象如果获取失败则返回None
""" """
try: try:
# 优先使用聊天流 logger.debug(f"[GeneratorAPI] 正在获取回复器chat_id: {chat_id}, chat_stream: {'' if chat_stream else ''}")
if chat_stream: return replyer_manager.get_replyer(
logger.debug("[GeneratorAPI] 使用聊天流获取回复器") chat_stream=chat_stream,
return DefaultReplyer(chat_stream=chat_stream) chat_id=chat_id,
model_configs=model_configs,
# 使用chat_id直接查找chat_id即为stream_id request_type=request_type
if chat_id: )
logger.debug("[GeneratorAPI] 使用chat_id获取回复器")
chat_manager = get_chat_manager()
if not chat_manager:
logger.warning("[GeneratorAPI] 无法获取聊天管理器")
return None
# 直接使用chat_id作为stream_id查找
target_stream = chat_manager.get_stream(chat_id)
if target_stream is None:
logger.warning(f"[GeneratorAPI] 未找到匹配的聊天流 chat_id={chat_id}")
return None
return DefaultReplyer(chat_stream=target_stream)
logger.warning("[GeneratorAPI] 缺少必要参数,无法获取回复器")
return None
except Exception as e: except Exception as e:
logger.error(f"[GeneratorAPI] 获取回复器失败: {e}") logger.error(f"[GeneratorAPI] 获取回复器时发生意外错误: {e}", exc_info=True)
return None return None
@@ -71,10 +63,18 @@ def get_replyer(chat_stream=None, chat_id: str = None) -> DefaultReplyer:
async def generate_reply( async def generate_reply(
chat_stream=None, chat_stream=None,
action_data: Dict[str, Any] = None,
chat_id: str = None, chat_id: str = None,
action_data: Dict[str, Any] = None,
reply_to: str = "",
relation_info: str = "",
structured_info: str = "",
extra_info: str = "",
available_actions: List[str] = None,
enable_splitter: bool = True, enable_splitter: bool = True,
enable_chinese_typo: bool = True, enable_chinese_typo: bool = True,
return_prompt: bool = False,
model_configs: Optional[List[Dict[str, Any]]] = None,
request_type: str = "",
) -> Tuple[bool, List[Tuple[str, Any]]]: ) -> Tuple[bool, List[Tuple[str, Any]]]:
"""生成回复 """生成回复
@@ -84,13 +84,13 @@ async def generate_reply(
chat_id: 聊天ID备用 chat_id: 聊天ID备用
enable_splitter: 是否启用消息分割器 enable_splitter: 是否启用消息分割器
enable_chinese_typo: 是否启用错字生成器 enable_chinese_typo: 是否启用错字生成器
return_prompt: 是否返回提示词
Returns: Returns:
Tuple[bool, List[Tuple[str, Any]]]: (是否成功, 回复集合) Tuple[bool, List[Tuple[str, Any]]]: (是否成功, 回复集合)
""" """
try: try:
# 获取回复器 # 获取回复器
replyer = get_replyer(chat_stream, chat_id) replyer = get_replyer(chat_stream, chat_id, model_configs=model_configs, request_type=request_type)
if not replyer: if not replyer:
logger.error("[GeneratorAPI] 无法获取回复器") logger.error("[GeneratorAPI] 无法获取回复器")
return False, [] return False, []
@@ -98,16 +98,26 @@ async def generate_reply(
logger.info("[GeneratorAPI] 开始生成回复") logger.info("[GeneratorAPI] 开始生成回复")
# 调用回复器生成回复 # 调用回复器生成回复
success, reply_set = await replyer.generate_reply_with_context( success, content, prompt = await replyer.generate_reply_with_context(
reply_data=action_data or {}, enable_splitter=enable_splitter, enable_chinese_typo=enable_chinese_typo reply_data=action_data or {},
reply_to=reply_to,
relation_info=relation_info,
structured_info=structured_info,
extra_info=extra_info,
available_actions=available_actions,
) )
reply_set = await process_human_text(content, enable_splitter, enable_chinese_typo)
if success: if success:
logger.info(f"[GeneratorAPI] 回复生成成功,生成了 {len(reply_set)} 个回复项") logger.info(f"[GeneratorAPI] 回复生成成功,生成了 {len(reply_set)} 个回复项")
else: else:
logger.warning("[GeneratorAPI] 回复生成失败") logger.warning("[GeneratorAPI] 回复生成失败")
return success, reply_set or [] if return_prompt:
return success, reply_set or [], prompt
else:
return success, reply_set or []
except Exception as e: except Exception as e:
logger.error(f"[GeneratorAPI] 生成回复时出错: {e}") logger.error(f"[GeneratorAPI] 生成回复时出错: {e}")
@@ -120,6 +130,7 @@ async def rewrite_reply(
chat_id: str = None, chat_id: str = None,
enable_splitter: bool = True, enable_splitter: bool = True,
enable_chinese_typo: bool = True, enable_chinese_typo: bool = True,
model_configs: Optional[List[Dict[str, Any]]] = None,
) -> Tuple[bool, List[Tuple[str, Any]]]: ) -> Tuple[bool, List[Tuple[str, Any]]]:
"""重写回复 """重写回复
@@ -135,7 +146,7 @@ async def rewrite_reply(
""" """
try: try:
# 获取回复器 # 获取回复器
replyer = get_replyer(chat_stream, chat_id) replyer = get_replyer(chat_stream, chat_id, model_configs=model_configs)
if not replyer: if not replyer:
logger.error("[GeneratorAPI] 无法获取回复器") logger.error("[GeneratorAPI] 无法获取回复器")
return False, [] return False, []
@@ -143,9 +154,11 @@ async def rewrite_reply(
logger.info("[GeneratorAPI] 开始重写回复") logger.info("[GeneratorAPI] 开始重写回复")
# 调用回复器重写回复 # 调用回复器重写回复
success, reply_set = await replyer.rewrite_reply_with_context( success, content = await replyer.rewrite_reply_with_context(
reply_data=reply_data or {}, enable_splitter=enable_splitter, enable_chinese_typo=enable_chinese_typo reply_data=reply_data or {}
) )
reply_set = await process_human_text(content, enable_splitter, enable_chinese_typo)
if success: if success:
logger.info(f"[GeneratorAPI] 重写回复成功,生成了 {len(reply_set)} 个回复项") logger.info(f"[GeneratorAPI] 重写回复成功,生成了 {len(reply_set)} 个回复项")
@@ -157,3 +170,30 @@ async def rewrite_reply(
except Exception as e: except Exception as e:
logger.error(f"[GeneratorAPI] 重写回复时出错: {e}") logger.error(f"[GeneratorAPI] 重写回复时出错: {e}")
return False, [] return False, []
async def process_human_text(
content:str,
enable_splitter:bool,
enable_chinese_typo:bool
) -> List[Tuple[str, Any]]:
"""将文本处理为更拟人化的文本
Args:
content: 文本内容
enable_splitter: 是否启用消息分割器
enable_chinese_typo: 是否启用错字生成器
"""
try:
processed_response = process_llm_response(content, enable_splitter, enable_chinese_typo)
reply_set = []
for str in processed_response:
reply_seg = ("text", str)
reply_set.append(reply_seg)
return reply_set
except Exception as e:
logger.error(f"[GeneratorAPI] 处理人形文本时出错: {e}")
return []

View File

@@ -62,6 +62,7 @@ class ReplyAction(BaseAction):
success, reply_set = await generator_api.generate_reply( success, reply_set = await generator_api.generate_reply(
action_data=self.action_data, action_data=self.action_data,
chat_id=self.chat_id, chat_id=self.chat_id,
request_type="focus.replyer",
) )
# 检查从start_time以来的新消息数量 # 检查从start_time以来的新消息数量

View File

@@ -44,7 +44,7 @@ compress_indentity = true # 是否压缩身份,压缩后会精简身份信息
[expression] [expression]
# 表达方式 # 表达方式
expression_style = "描述麦麦说话的表达风格,表达习惯,例如:(回复尽量简短一些。可以参考贴吧,知乎和微博的回复风格,回复不要浮夸,不要用夸张修辞,平淡一些。不要有额外的符号,尽量简单简短)" expression_style = "描述麦麦说话的表达风格,表达习惯,例如:(回复的平淡一些,简短一些,说中文,不要刻意突出自身学科背景。)"
enable_expression_learning = false # 是否启用表达学习,麦麦会学习不同群里人类说话风格(群之间不互通) enable_expression_learning = false # 是否启用表达学习,麦麦会学习不同群里人类说话风格(群之间不互通)
learning_interval = 600 # 学习间隔 单位秒 learning_interval = 600 # 学习间隔 单位秒