diff --git a/.github/workflows/docker-image.yml b/.github/workflows/docker-image.yml index 47fdf5b7f..fb5142917 100644 --- a/.github/workflows/docker-image.yml +++ b/.github/workflows/docker-image.yml @@ -11,12 +11,13 @@ on: - "v*" - "*.*.*" - "*.*.*-*" + workflow_dispatch: # 允许手动触发工作流 # Workflow's jobs jobs: build-amd64: name: Build AMD64 Image - runs-on: ubuntu-latest + runs-on: ubuntu-24.04 outputs: digest: ${{ steps.build.outputs.digest }} steps: @@ -69,7 +70,7 @@ jobs: build-arm64: name: Build ARM64 Image - runs-on: ubuntu-latest + runs-on: ubuntu-24.04-arm outputs: digest: ${{ steps.build.outputs.digest }} steps: @@ -85,11 +86,6 @@ jobs: - name: Clone lpmm run: git clone https://github.com/MaiM-with-u/MaiMBot-LPMM.git MaiMBot-LPMM - - name: Set up QEMU - uses: docker/setup-qemu-action@v3 - with: - platforms: arm64 - - name: Set up Docker Buildx uses: docker/setup-buildx-action@v3 with: @@ -127,7 +123,7 @@ jobs: create-manifest: name: Create Multi-Arch Manifest - runs-on: ubuntu-latest + runs-on: ubuntu-24.04 needs: - build-amd64 - build-arm64 diff --git a/.github/workflows/ruff.yml b/.github/workflows/ruff.yml index 66140d742..3d2e7d1f3 100644 --- a/.github/workflows/ruff.yml +++ b/.github/workflows/ruff.yml @@ -1,12 +1,12 @@ name: Ruff on: - push: - branches: - - main - - dev - - dev-refactor # 例如:匹配所有以 feature/ 开头的分支 - # 添加你希望触发此 workflow 的其他分支 + # push: + # branches: + # - main + # - dev + # - dev-refactor # 例如:匹配所有以 feature/ 开头的分支 + # # 添加你希望触发此 workflow 的其他分支 workflow_dispatch: # 允许手动触发工作流 branches: - main diff --git a/changelogs/changelog.md b/changelogs/changelog.md index c56426a72..1aa33a995 100644 --- a/changelogs/changelog.md +++ b/changelogs/changelog.md @@ -2,13 +2,15 @@ ## [0.9.1] - 2025-7-25 +- 修复reply导致的planner异常空跳 - 修复表达方式迁移空目录问题 - 修复reply_to空字段问题 - 将metioned bot 和 at应用到focus prompt中 +- 更好的兴趣度计算 +- 修复部分模型由于enable_thinking导致的400问题 +- 优化关键词提取 - - -## [0.9.0] - 2025-7-25 +## [0.9.0] - 2025-7-24 ### 摘要 MaiBot 0.9.0 重磅升级!本版本带来两大核心突破:**全面重构的插件系统**提供更强大的扩展能力和管理功能;**normal和focus模式统一化处理**大幅简化架构并提升性能。同时新增s4u prompt模式优化、语音消息支持、全新情绪系统和mais4u直播互动功能,为MaiBot带来更自然、更智能的交互体验! diff --git a/docs/plugins/action-components.md b/docs/plugins/action-components.md index 4c844df85..30de468dc 100644 --- a/docs/plugins/action-components.md +++ b/docs/plugins/action-components.md @@ -22,7 +22,7 @@ class ExampleAction(BaseAction): action_name = "example_action" # 动作的唯一标识符 action_description = "这是一个示例动作" # 动作描述 activation_type = ActionActivationType.ALWAYS # 这里以 ALWAYS 为例 - mode_enable = ChatMode.ALL # 这里以 ALL 为例 + mode_enable = ChatMode.ALL # 一般取ALL,表示在所有聊天模式下都可用 associated_types = ["text", "emoji", ...] # 关联类型 parallel_action = False # 是否允许与其他Action并行执行 action_parameters = {"param1": "参数1的说明", "param2": "参数2的说明", ...} @@ -60,7 +60,7 @@ class ExampleAction(BaseAction): **请知悉,对于不同的处理器,其支持的消息类型可能会有所不同。在开发时请注意。** #### action_parameters: 该Action的参数说明。 -这是一个字典,键为参数名,值为参数说明。这个字段可以帮助LLM理解如何使用这个Action,并由LLM返回对应的参数,最后传递到 Action 的 action_data 属性中。其格式与你定义的格式完全相同 **(除非LLM哈气了,返回了错误的内容)**。 +这是一个字典,键为参数名,值为参数说明。这个字段可以帮助LLM理解如何使用这个Action,并由LLM返回对应的参数,最后传递到 Action 的 **`action_data`** 属性中。其格式与你定义的格式完全相同 **(除非LLM哈气了,返回了错误的内容)**。 --- @@ -180,6 +180,8 @@ class GreetingAction(BaseAction): return True, "发送了问候" ``` +一个完整的使用`ActionActivationType.KEYWORD`的例子请参考`plugins/hello_world_plugin`中的`ByeAction`。 + #### 第二层:使用决策 **在Action被激活后,使用条件决定麦麦什么时候会"选择"使用这个Action**。 diff --git a/docs/plugins/configuration-guide.md b/docs/plugins/configuration-guide.md index add7d138d..ef3344723 100644 --- a/docs/plugins/configuration-guide.md +++ b/docs/plugins/configuration-guide.md @@ -6,34 +6,6 @@ > > 系统会根据你在代码中定义的 `config_schema` 自动生成配置文件。手动创建配置文件会破坏自动化流程,导致配置不一致、缺失注释和文档等问题。 -## 📖 目录 - -1. [配置架构变更说明](#配置架构变更说明) -2. [配置版本管理](#配置版本管理) -3. [配置定义:Schema驱动的配置系统](#配置定义schema驱动的配置系统) -4. [配置访问:在Action和Command中使用配置](#配置访问在action和command中使用配置) -5. [完整示例:从定义到使用](#完整示例从定义到使用) -6. [最佳实践与注意事项](#最佳实践与注意事项) - ---- - -## 配置架构变更说明 - -- **`_manifest.json`** - 负责插件的**元数据信息**(静态) - - 插件名称、版本、描述 - - 作者信息、许可证 - - 仓库链接、关键词、分类 - - 组件列表、兼容性信息 - -- **`config.toml`** - 负责插件的**运行时配置**(动态) - - `enabled` - 是否启用插件 - - 功能参数配置 - - 组件启用开关 - - 用户可调整的行为参数 - - ---- - ## 配置版本管理 ### 🎯 版本管理概述 @@ -103,7 +75,7 @@ config_schema = { 2. **迁移配置值** - 将旧配置文件中的值迁移到新结构中 3. **处理新增字段** - 新增的配置项使用默认值 4. **更新版本号** - `config_version` 字段自动更新为最新版本 -5. **保存配置文件** - 迁移后的配置直接覆盖原文件(不保留备份) +5. **保存配置文件** - 迁移后的配置直接覆盖原文件**(不保留备份)** ### 🔧 实际使用示例 @@ -174,28 +146,13 @@ min_duration = 120 - 跳过版本检查和迁移 - 直接加载现有配置 - 新增的配置项在代码中使用默认值访问 - -### 📝 配置迁移日志 - -系统会详细记录配置迁移过程: - -```log -[MutePlugin] 检测到配置版本需要更新: 当前=v1.0.0, 期望=v1.1.0 -[MutePlugin] 生成新配置结构... -[MutePlugin] 迁移配置值: plugin.enabled = true -[MutePlugin] 更新配置版本: plugin.config_version = 1.1.0 (旧值: 1.0.0) -[MutePlugin] 迁移配置值: mute.min_duration = 120 -[MutePlugin] 迁移配置值: mute.max_duration = 3600 -[MutePlugin] 新增节: permissions -[MutePlugin] 配置文件已从 v1.0.0 更新到 v1.1.0 -``` +- 系统会详细记录配置迁移过程。 ### ⚠️ 重要注意事项 #### 1. 版本号管理 - 当你修改 `config_schema` 时,**必须同步更新** `config_version` -- 建议使用语义化版本号 (例如:`1.0.0`, `1.1.0`, `2.0.0`) -- 配置结构的重大变更应该增加主版本号 +- 请使用语义化版本号 (例如:`1.0.0`, `1.1.0`, `2.0.0`) #### 2. 迁移策略 - **保留原值优先**: 迁移时优先保留用户的原有配置值 @@ -207,45 +164,7 @@ min_duration = 120 - **不保留备份**: 迁移后直接覆盖原配置文件,不保留备份 - **失败安全**: 如果迁移过程中出现错误,会回退到原配置 ---- - -## 配置定义:Schema驱动的配置系统 - -### 核心理念:Schema驱动的配置 - -在新版插件系统中,我们引入了一套 **配置Schema(模式)驱动** 的机制。**你不需要也不应该手动创建和维护 `config.toml` 文件**,而是通过在插件代码中 **声明配置的结构**,系统将为你完成剩下的工作。 - -> **⚠️ 绝对不要手动创建 config.toml 文件!** -> -> - ❌ **错误做法**:手动在插件目录下创建 `config.toml` 文件 -> - ✅ **正确做法**:在插件代码中定义 `config_schema`,让系统自动生成配置文件 - -**核心优势:** - -- **自动化 (Automation)**: 如果配置文件不存在,系统会根据你的声明 **自动生成** 一份包含默认值和详细注释的 `config.toml` 文件。 -- **规范化 (Standardization)**: 所有插件的配置都遵循统一的结构,提升了可维护性。 -- **自带文档 (Self-documenting)**: 配置文件中的每一项都包含详细的注释、类型说明、可选值和示例,极大地降低了用户的使用门槛。 -- **健壮性 (Robustness)**: 在代码中直接定义配置的类型和默认值,减少了因配置错误导致的运行时问题。 -- **易于管理 (Easy Management)**: 生成的配置文件可以方便地加入 `.gitignore`,避免将个人配置(如API Key)提交到版本库。 - -### 配置生成工作流程 - -```mermaid -graph TD - A[编写插件代码] --> B[定义 config_schema] - B --> C[首次加载插件] - C --> D{config.toml 是否存在?} - D -->|不存在| E[系统自动生成 config.toml] - D -->|存在| F[加载现有配置文件] - E --> G[配置完成,插件可用] - F --> G - - style E fill:#90EE90 - style B fill:#87CEEB - style G fill:#DDA0DD -``` - -### 如何定义配置 +## 配置定义 配置的定义在你的插件主类(继承自 `BasePlugin`)中完成,主要通过两个类属性: @@ -257,6 +176,7 @@ graph TD 每个配置项都通过一个 `ConfigField` 对象来定义。 ```python +from dataclasses import dataclass from src.plugin_system.base.config_types import ConfigField @dataclass @@ -270,28 +190,21 @@ class ConfigField: choices: Optional[List[Any]] = None # 可选值列表 (可选) ``` -### 配置定义示例 +### 配置示例 让我们以一个功能丰富的 `MutePlugin` 为例,看看如何定义它的配置。 ```python # src/plugins/built_in/mute_plugin/plugin.py -from src.plugin_system import BasePlugin, register_plugin -from src.plugin_system.base.config_types import ConfigField +from src.plugin_system import BasePlugin, register_plugin, ConfigField from typing import List, Tuple, Type @register_plugin class MutePlugin(BasePlugin): """禁言插件""" - # 插件基本信息 - plugin_name = "mute_plugin" - plugin_description = "群聊禁言管理插件,提供智能禁言功能" - plugin_version = "2.0.0" - plugin_author = "MaiBot开发团队" - enable_plugin = True - config_file_name = "config.toml" + # 这里是插件基本信息,略去 # 步骤1: 定义配置节的描述 config_section_descriptions = { @@ -339,22 +252,9 @@ class MutePlugin(BasePlugin): } } - def get_plugin_components(self) -> List[Tuple[ComponentInfo, Type]]: - # 在这里可以通过 self.get_config() 来获取配置值 - enable_smart_mute = self.get_config("components.enable_smart_mute", True) - enable_mute_command = self.get_config("components.enable_mute_command", False) - - components = [] - if enable_smart_mute: - components.append((SmartMuteAction.get_action_info(), SmartMuteAction)) - if enable_mute_command: - components.append((MuteCommand.get_command_info(), MuteCommand)) - - return components + # 这里是插件方法,略去 ``` -### 自动生成的配置文件 - 当 `mute_plugin` 首次加载且其目录中不存在 `config.toml` 时,系统会自动创建以下文件: ```toml @@ -413,317 +313,24 @@ prefix = "[MutePlugin]" --- -## 配置访问:在Action和Command中使用配置 +## 配置访问 -### 问题描述 +如果你想要在你的组件中访问配置,可以通过组件内置的 `get_config()` 方法访问配置。 -在插件开发中,你可能遇到这样的问题: -- 想要在Action或Command中访问插件配置 - -### ✅ 解决方案 - -**直接使用 `self.get_config()` 方法!** - -系统已经自动为你处理了配置传递,你只需要通过组件内置的 `get_config` 方法访问配置即可。 - -### 📖 快速示例 - -#### 在Action中访问配置 +其参数为一个命名空间化的字符串。以上面的 `MutePlugin` 为例,你可以这样访问配置: ```python -from src.plugin_system import BaseAction - -class MyAction(BaseAction): - async def execute(self): - # 方法1: 获取配置值(带默认值) - api_key = self.get_config("api.key", "default_key") - timeout = self.get_config("api.timeout", 30) - - # 方法2: 支持嵌套键访问 - log_level = self.get_config("advanced.logging.level", "INFO") - - # 方法3: 直接访问顶层配置 - enable_feature = self.get_config("features.enable_smart", False) - - # 使用配置值 - if enable_feature: - await self.send_text(f"API密钥: {api_key}") - - return True, "配置访问成功" +enable_smart_mute = self.get_config("components.enable_smart_mute", True) ``` -#### 在Command中访问配置 - -```python -from src.plugin_system import BaseCommand - -class MyCommand(BaseCommand): - async def execute(self): - # 使用方式与Action完全相同 - welcome_msg = self.get_config("messages.welcome", "欢迎!") - max_results = self.get_config("search.max_results", 10) - - # 根据配置执行不同逻辑 - if self.get_config("features.debug_mode", False): - await self.send_text(f"调试模式已启用,最大结果数: {max_results}") - - await self.send_text(welcome_msg) - return True, "命令执行完成" -``` - -### 🔧 API方法详解 - -#### 1. `get_config(key, default=None)` - -获取配置值,支持嵌套键访问: - -```python -# 简单键 -value = self.get_config("timeout", 30) - -# 嵌套键(用点号分隔) -value = self.get_config("database.connection.host", "localhost") -value = self.get_config("features.ai.model", "gpt-3.5-turbo") -``` - -#### 2. 类型安全的配置访问 - -```python -# 确保正确的类型 -max_retries = self.get_config("api.max_retries", 3) -if not isinstance(max_retries, int): - max_retries = 3 # 使用安全的默认值 - -# 布尔值配置 -debug_mode = self.get_config("features.debug_mode", False) -if debug_mode: - # 调试功能逻辑 - pass -``` - -#### 3. 配置驱动的组件行为 - -```python -class ConfigDrivenAction(BaseAction): - async def execute(self): - # 根据配置决定激活行为 - activation_config = { - "use_keywords": self.get_config("activation.use_keywords", True), - "use_llm": self.get_config("activation.use_llm", False), - "keywords": self.get_config("activation.keywords", []), - } - - # 根据配置调整功能 - features = { - "enable_emoji": self.get_config("features.enable_emoji", True), - "enable_llm_reply": self.get_config("features.enable_llm_reply", False), - "max_length": self.get_config("output.max_length", 200), - } - - # 使用配置执行逻辑 - if features["enable_llm_reply"]: - # 使用LLM生成回复 - pass - else: - # 使用模板回复 - pass - - return True, "配置驱动执行完成" -``` - -### 🔄 配置传递机制 - -系统自动处理配置传递,无需手动操作: - -1. **插件初始化** → `BasePlugin`加载`config.toml`到`self.config` -2. **组件注册** → 系统记录插件配置 -3. **组件实例化** → 自动传递`plugin_config`参数给Action/Command -4. **配置访问** → 组件通过`self.get_config()`直接访问配置 - ---- - -## 完整示例:从定义到使用 - -### 插件定义 - -```python -from src.plugin_system.base.config_types import ConfigField - -@register_plugin -class GreetingPlugin(BasePlugin): - """问候插件完整示例""" - - plugin_name = "greeting_plugin" - plugin_description = "智能问候插件,展示配置定义和访问的完整流程" - plugin_version = "1.0.0" - config_file_name = "config.toml" - - # 配置节描述 - config_section_descriptions = { - "plugin": "插件启用配置", - "greeting": "问候功能配置", - "features": "功能开关配置", - "messages": "消息模板配置" - } - - # 配置Schema定义 - config_schema = { - "plugin": { - "enabled": ConfigField(type=bool, default=True, description="是否启用插件") - }, - "greeting": { - "template": ConfigField( - type=str, - default="你好,{username}!欢迎使用问候插件!", - description="问候消息模板" - ), - "enable_emoji": ConfigField(type=bool, default=True, description="是否启用表情符号"), - "enable_llm": ConfigField(type=bool, default=False, description="是否使用LLM生成个性化问候") - }, - "features": { - "smart_detection": ConfigField(type=bool, default=True, description="是否启用智能检测"), - "random_greeting": ConfigField(type=bool, default=False, description="是否使用随机问候语"), - "max_greetings_per_hour": ConfigField(type=int, default=5, description="每小时最大问候次数") - }, - "messages": { - "custom_greetings": ConfigField( - type=list, - default=["你好!", "嗨!", "欢迎!"], - description="自定义问候语列表" - ), - "error_message": ConfigField( - type=str, - default="问候功能暂时不可用", - description="错误时显示的消息" - ) - } - } - - def get_plugin_components(self) -> List[Tuple[ComponentInfo, Type]]: - """根据配置动态注册组件""" - components = [] - - # 根据配置决定是否注册组件 - if self.get_config("plugin.enabled", True): - components.append((SmartGreetingAction.get_action_info(), SmartGreetingAction)) - components.append((GreetingCommand.get_command_info(), GreetingCommand)) - - return components -``` - -### Action组件使用配置 - -```python -class SmartGreetingAction(BaseAction): - """智能问候Action - 展示配置访问""" - - focus_activation_type = ActionActivationType.KEYWORD - normal_activation_type = ActionActivationType.KEYWORD - activation_keywords = ["你好", "hello", "hi"] - - async def execute(self) -> Tuple[bool, str]: - """执行智能问候,大量使用配置""" - try: - # 检查插件是否启用 - if not self.get_config("plugin.enabled", True): - return False, "插件已禁用" - - # 获取问候配置 - template = self.get_config("greeting.template", "你好,{username}!") - enable_emoji = self.get_config("greeting.enable_emoji", True) - enable_llm = self.get_config("greeting.enable_llm", False) - - # 获取功能配置 - smart_detection = self.get_config("features.smart_detection", True) - random_greeting = self.get_config("features.random_greeting", False) - max_per_hour = self.get_config("features.max_greetings_per_hour", 5) - - # 获取消息配置 - custom_greetings = self.get_config("messages.custom_greetings", []) - error_message = self.get_config("messages.error_message", "问候功能不可用") - - # 根据配置执行不同逻辑 - username = self.action_data.get("username", "用户") - - if random_greeting and custom_greetings: - # 使用随机自定义问候语 - import random - greeting_msg = random.choice(custom_greetings) - elif enable_llm: - # 使用LLM生成个性化问候 - greeting_msg = await self._generate_llm_greeting(username) - else: - # 使用模板问候 - greeting_msg = template.format(username=username) - - # 发送问候消息 - await self.send_text(greeting_msg) - - # 根据配置发送表情 - if enable_emoji: - await self.send_emoji("😊") - - return True, f"向{username}发送了问候" - - except Exception as e: - # 使用配置的错误消息 - await self.send_text(self.get_config("messages.error_message", "出错了")) - return False, f"问候失败: {str(e)}" - - async def _generate_llm_greeting(self, username: str) -> str: - """根据配置使用LLM生成问候语""" - # 这里可以进一步使用配置来定制LLM行为 - llm_style = self.get_config("greeting.llm_style", "friendly") - # ... LLM调用逻辑 - return f"你好 {username}!很高兴见到你!" -``` - -### Command组件使用配置 - -```python -class GreetingCommand(BaseCommand): - """问候命令 - 展示配置访问""" - - command_pattern = r"^/greet(?:\s+(?P\w+))?$" - command_help = "发送问候消息" - command_examples = ["/greet", "/greet Alice"] - - async def execute(self) -> Tuple[bool, Optional[str]]: - """执行问候命令""" - # 检查功能是否启用 - if not self.get_config("plugin.enabled", True): - await self.send_text("问候功能已禁用") - return False, "功能禁用" - - # 获取用户名 - username = self.matched_groups.get("username", "用户") - - # 根据配置选择问候方式 - if self.get_config("features.random_greeting", False): - custom_greetings = self.get_config("messages.custom_greetings", ["你好!"]) - import random - greeting = random.choice(custom_greetings) - else: - template = self.get_config("greeting.template", "你好,{username}!") - greeting = template.format(username=username) - - # 发送问候 - await self.send_text(greeting) - - # 根据配置发送表情 - if self.get_config("greeting.enable_emoji", True): - await self.send_text("😊") - - return True, "问候发送成功" -``` +如果尝试访问了一个不存在的配置项,系统会自动返回默认值(你传递的)或者 `None`。 --- ## 最佳实践与注意事项 -### 配置定义最佳实践 -> **🚨 核心原则:永远不要手动创建 config.toml 文件!** +**🚨 核心原则:永远不要手动创建 config.toml 文件!** 1. **🔥 绝不手动创建配置文件**: **任何时候都不要手动创建 `config.toml` 文件**!必须通过在 `plugin.py` 中定义 `config_schema` 让系统自动生成。 - ❌ **禁止**:`touch config.toml`、手动编写配置文件 @@ -737,76 +344,4 @@ class GreetingCommand(BaseCommand): 5. **gitignore**: 将 `plugins/*/config.toml` 或 `src/plugins/built_in/*/config.toml` 加入 `.gitignore`,以避免提交个人敏感信息。 -6. **配置文件只供修改**: 自动生成的 `config.toml` 文件只应该被用户**修改**,而不是从零创建。 - -### 配置访问最佳实践 - -#### 1. 总是提供默认值 - -```python -# ✅ 好的做法 -timeout = self.get_config("api.timeout", 30) - -# ❌ 避免这样做 -timeout = self.get_config("api.timeout") # 可能返回None -``` - -#### 2. 验证配置类型 - -```python -# 获取配置后验证类型 -max_items = self.get_config("list.max_items", 10) -if not isinstance(max_items, int) or max_items <= 0: - max_items = 10 # 使用安全的默认值 -``` - -#### 3. 缓存复杂配置解析 - -```python -class MyAction(BaseAction): - def __init__(self, *args, **kwargs): - super().__init__(*args, **kwargs) - # 在初始化时解析复杂配置,避免重复解析 - self._api_config = self._parse_api_config() - - def _parse_api_config(self): - return { - 'key': self.get_config("api.key", ""), - 'timeout': self.get_config("api.timeout", 30), - 'retries': self.get_config("api.max_retries", 3) - } -``` - -#### 4. 配置驱动的组件注册 - -```python -def get_plugin_components(self) -> List[Tuple[ComponentInfo, Type]]: - """根据配置动态注册组件""" - components = [] - - # 从配置获取组件启用状态 - enable_action = self.get_config("components.enable_action", True) - enable_command = self.get_config("components.enable_command", True) - - if enable_action: - components.append((MyAction.get_action_info(), MyAction)) - if enable_command: - components.append((MyCommand.get_command_info(), MyCommand)) - - return components -``` - -### 🎉 总结 - -现在你掌握了插件配置的完整流程: - -1. **定义配置**: 在插件中使用 `config_schema` 定义配置结构 -2. **访问配置**: 在组件中使用 `self.get_config("key", default_value)` 访问配置 -3. **自动生成**: 系统自动生成带注释的配置文件 -4. **动态行为**: 根据配置动态调整插件行为 - -> **🚨 最后强调:任何时候都不要手动创建 config.toml 文件!** -> -> 让系统根据你的 `config_schema` 自动生成配置文件,这是插件系统的核心设计原则。 - -不需要继承`BasePlugin`,不需要复杂的配置传递,不需要手动创建配置文件,组件内置的`get_config`方法和自动化的配置生成机制已经为你准备好了一切! \ No newline at end of file +6. **配置文件只供修改**: 自动生成的 `config.toml` 文件只应该被用户**修改**,而不是从零创建。 \ No newline at end of file diff --git a/docs/plugins/index.md b/docs/plugins/index.md index 2e025fd62..b8e29e67d 100644 --- a/docs/plugins/index.md +++ b/docs/plugins/index.md @@ -4,15 +4,34 @@ ## 新手入门 -- [📖 快速开始指南](quick-start.md) - 5分钟创建你的第一个插件 +- [📖 快速开始指南](quick-start.md) - 快速创建你的第一个插件 ## 组件功能详解 - [🧱 Action组件详解](action-components.md) - 掌握最核心的Action组件 - [💻 Command组件详解](command-components.md) - 学习直接响应命令的组件 -- [⚙️ 配置管理指南](configuration-guide.md) - 学会使用自动生成的插件配置文件 +- [⚙️ 配置文件系统指南](configuration-guide.md) - 学会使用自动生成的插件配置文件 - [📄 Manifest系统指南](manifest-guide.md) - 了解插件元数据管理和配置架构 +Command vs Action 选择指南 + +1. 使用Command的场景 + +- ✅ 用户需要明确调用特定功能 +- ✅ 需要精确的参数控制 +- ✅ 管理和配置操作 +- ✅ 查询和信息显示 +- ✅ 系统维护命令 + +2. 使用Action的场景 + +- ✅ 增强麦麦的智能行为 +- ✅ 根据上下文自动触发 +- ✅ 情绪和表情表达 +- ✅ 智能建议和帮助 +- ✅ 随机化的互动 + + ## API浏览 ### 消息发送与处理API diff --git a/docs/plugins/quick-start.md b/docs/plugins/quick-start.md index 509438308..dda37ab84 100644 --- a/docs/plugins/quick-start.md +++ b/docs/plugins/quick-start.md @@ -1,20 +1,14 @@ # 🚀 快速开始指南 -本指南将带你用5分钟时间,从零开始创建一个功能完整的MaiCore插件。 +本指南将带你从零开始创建一个功能完整的MaiCore插件。 ## 📖 概述 -这个指南将带你快速创建你的第一个MaiCore插件。我们将创建一个简单的问候插件,展示插件系统的基本概念。无需阅读其他文档,跟着本指南就能完成! +这个指南将带你快速创建你的第一个MaiCore插件。我们将创建一个简单的问候插件,展示插件系统的基本概念。 -## 🎯 学习目标 +以下代码都在我们的`plugins/hello_world_plugin/`目录下。 -- 理解插件的基本结构 -- 从最简单的插件开始,循序渐进 -- 学会创建Action组件(智能动作) -- 学会创建Command组件(命令响应) -- 掌握配置Schema定义和配置文件自动生成(可选) - -## 📂 准备工作 +### 📂 准备工作 确保你已经: @@ -26,16 +20,29 @@ ### 1. 创建插件目录 -在项目根目录的 `plugins/` 文件夹下创建你的插件目录,目录名与插件名保持一致: +在项目根目录的 `plugins/` 文件夹下创建你的插件目录 -可以用以下命令快速创建: +这里我们创建一个名为 `hello_world_plugin` 的目录 -```bash -mkdir plugins/hello_world_plugin -cd plugins/hello_world_plugin +### 2. 创建`_manifest.json`文件 + +在插件目录下面创建一个 `_manifest.json` 文件,内容如下: + +```json +{ + "manifest_version": 1, + "name": "Hello World 插件", + "version": "1.0.0", + "description": "一个简单的 Hello World 插件", + "author": { + "name": "你的名字" + } +} ``` -### 2. 创建最简单的插件 +有关 `_manifest.json` 的详细说明,请参考 [Manifest文件指南](./manifest-guide.md)。 + +### 3. 创建最简单的插件 让我们从最基础的开始!创建 `plugin.py` 文件: @@ -43,34 +50,33 @@ cd plugins/hello_world_plugin from typing import List, Tuple, Type from src.plugin_system import BasePlugin, register_plugin, ComponentInfo -# ===== 插件注册 ===== - -@register_plugin +@register_plugin # 注册插件 class HelloWorldPlugin(BasePlugin): """Hello World插件 - 你的第一个MaiCore插件""" - # 插件基本信息(必须填写) + # 以下是插件基本信息和方法(必须填写) plugin_name = "hello_world_plugin" - plugin_description = "我的第一个MaiCore插件" - plugin_version = "1.0.0" - plugin_author = "你的名字" enable_plugin = True # 启用插件 + dependencies = [] # 插件依赖列表(目前为空) + python_dependencies = [] # Python依赖列表(目前为空) + config_file_name = "config.toml" # 配置文件名 + config_schema = {} # 配置文件模式(目前为空) - def get_plugin_components(self) -> List[Tuple[ComponentInfo, Type]]: + def get_plugin_components(self) -> List[Tuple[ComponentInfo, Type]]: # 获取插件组件 """返回插件包含的组件列表(目前是空的)""" return [] ``` -🎉 **恭喜!你刚刚创建了一个最简单但完整的MaiCore插件!** +🎉 恭喜!你刚刚创建了一个最简单但完整的MaiCore插件! **解释一下这些代码:** -- 首先,我们在plugin.py中定义了一个HelloWorldPulgin插件类,继承自 `BasePlugin` ,提供基本功能。 +- 首先,我们在`plugin.py`中定义了一个HelloWorldPlugin插件类,继承自 `BasePlugin` ,提供基本功能。 - 通过给类加上,`@register_plugin` 装饰器,我们告诉系统"这是一个插件" -- `plugin_name` 等是插件的基本信息,必须填写,**此部分必须与目录名称相同,否则插件无法使用** -- `get_plugin_components()` 返回插件的功能组件,现在我们没有定义任何action(动作)或者command(指令),是空的 +- `plugin_name` 等是插件的基本信息,必须填写 +- `get_plugin_components()` 返回插件的功能组件,现在我们没有定义任何 Action, Command 或者 EventHandler,所以返回空列表。 -### 3. 测试基础插件 +### 4. 测试基础插件 现在就可以测试这个插件了!启动MaiCore: @@ -80,7 +86,7 @@ class HelloWorldPlugin(BasePlugin): ![1750326700269](image/quick-start/1750326700269.png) -### 4. 添加第一个功能:问候Action +### 5. 添加第一个功能:问候Action 现在我们要给插件加入一个有用的功能,我们从最好玩的Action做起 @@ -107,40 +113,34 @@ class HelloAction(BaseAction): # === 基本信息(必须填写)=== action_name = "hello_greeting" action_description = "向用户发送问候消息" + activation_type = ActionActivationType.ALWAYS # 始终激活 # === 功能描述(必须填写)=== - action_parameters = { - "greeting_message": "要发送的问候消息" - } - action_require = [ - "需要发送友好问候时使用", - "当有人向你问好时使用", - "当你遇见没有见过的人时使用" - ] + action_parameters = {"greeting_message": "要发送的问候消息"} + action_require = ["需要发送友好问候时使用", "当有人向你问好时使用", "当你遇见没有见过的人时使用"] associated_types = ["text"] async def execute(self) -> Tuple[bool, str]: """执行问候动作 - 这是核心功能""" # 发送问候消息 - greeting_message = self.action_data.get("greeting_message","") - - message = "嗨!很开心见到你!😊" + greeting_message + greeting_message = self.action_data.get("greeting_message", "") + base_message = self.get_config("greeting.message", "嗨!很开心见到你!😊") + message = base_message + greeting_message await self.send_text(message) return True, "发送了问候消息" -# ===== 插件注册 ===== - @register_plugin class HelloWorldPlugin(BasePlugin): """Hello World插件 - 你的第一个MaiCore插件""" # 插件基本信息 plugin_name = "hello_world_plugin" - plugin_description = "我的第一个MaiCore插件,包含问候功能" - plugin_version = "1.0.0" - plugin_author = "你的名字" enable_plugin = True + dependencies = [] + python_dependencies = [] + config_file_name = "config.toml" + config_schema = {} def get_plugin_components(self) -> List[Tuple[ComponentInfo, Type]]: """返回插件包含的组件列表""" @@ -150,13 +150,17 @@ class HelloWorldPlugin(BasePlugin): ] ``` -**新增内容解释:** +**解释一下这些代码:** -- `HelloAction` 是一个Action组件,MaiCore可能会选择使用它 +- `HelloAction` 是我们定义的问候动作类,继承自 `BaseAction`,并实现了核心功能。 +- 在 `HelloWorldPlugin` 中,我们通过 `get_plugin_components()` 方法,通过调用`get_action_info()`这个内置方法将 `HelloAction` 注册为插件的一个组件。 +- 这样一来,当插件被加载时,问候动作也会被一并加载,并可以在MaiCore中使用。 - `execute()` 函数是Action的核心,定义了当Action被MaiCore选择后,具体要做什么 - `self.send_text()` 是发送文本消息的便捷方法 -### 5. 测试问候功能 +Action 组件中有关`activation_type`、`action_parameters`、`action_require`、`associated_types` 等的详细说明请参考 [Action组件指南](./action-components.md)。 + +### 6. 测试问候Action 重启MaiCore,然后在聊天中发送任意消息,比如: @@ -174,96 +178,17 @@ MaiCore可能会选择使用你的问候Action,发送回复: > **💡 小提示**:MaiCore会智能地决定什么时候使用它。如果没有立即看到效果,多试几次不同的消息。 -🎉 **太棒了!你的插件已经有实际功能了!** +🎉 太棒了!你的插件已经有实际功能了! -### 5.5. 了解激活系统(重要概念) - -Action固然好用简单,但是现在有个问题,当用户加载了非常多的插件,添加了很多自定义Action,LLM需要选择的Action也会变多 - -而不断增多的Action会加大LLM的消耗和负担,降低Action使用的精准度。而且我们并不需要LLM在所有时候都考虑所有Action - -例如,当群友只是在进行正常的聊天,就没有必要每次都考虑是否要选择“禁言”动作,这不仅影响决策速度,还会增加消耗。 - -那有什么办法,能够让Action有选择的加入MaiCore的决策池呢? - -**什么是激活系统?** -激活系统决定了什么时候你的Action会被MaiCore"考虑"使用: - -- **`ActionActivationType.ALWAYS`** - 总是可用(默认值) -- **`ActionActivationType.KEYWORD`** - 只有消息包含特定关键词时才可用 -- **`ActionActivationType.PROBABILITY`** - 根据概率随机可用 -- **`ActionActivationType.NEVER`** - 永不可用(用于调试) - -> **💡 使用提示**: -> -> - 推荐使用枚举类型(如 `ActionActivationType.ALWAYS`),有代码提示和类型检查 -> - 也可以直接使用字符串(如 `"always"`),系统都支持 - -### 5.6. 进阶:尝试关键词激活(可选) - -现在让我们尝试一个更精确的激活方式!添加一个只在用户说特定关键词时才激活的Action: - -```python -# 在HelloAction后面添加这个新Action -class ByeAction(BaseAction): - """告别Action - 只在用户说再见时激活""" - - action_name = "bye_greeting" - action_description = "向用户发送告别消息" - - # 使用关键词激活 - focus_activation_type = ActionActivationType.KEYWORD - normal_activation_type = ActionActivationType.KEYWORD - - # 关键词设置 - activation_keywords = ["再见", "bye", "88", "拜拜"] - keyword_case_sensitive = False - - action_parameters = {"bye_message": "要发送的告别消息"} - action_require = [ - "用户要告别时使用", - "当有人要离开时使用", - "当有人和你说再见时使用", - ] - associated_types = ["text"] - - async def execute(self) -> Tuple[bool, str]: - bye_message = self.action_data.get("bye_message","") - - message = "再见!期待下次聊天!👋" + bye_message - await self.send_text(message) - return True, "发送了告别消息" -``` - -然后在插件注册中添加这个Action: - -```python -def get_plugin_components(self) -> List[Tuple[ComponentInfo, Type]]: - return [ - (HelloAction.get_action_info(), HelloAction), - (ByeAction.get_action_info(), ByeAction), # 添加告别Action - ] -``` - -现在测试:发送"再见",应该会触发告别Action! - -**关键词激活的特点:** - -- 更精确:只在包含特定关键词时才会被考虑 -- 更可预测:用户知道说什么会触发什么功能 -- 更适合:特定场景或命令式的功能 - -### 6. 添加第二个功能:时间查询Command +### 7. 添加第二个功能:时间查询Command 现在让我们添加一个Command组件。Command和Action不同,它是直接响应用户命令的: -Command是最简单,最直接的相应,不由LLM判断选择使用 +Command是最简单,最直接的响应,不由LLM判断选择使用 ```python # 在现有代码基础上,添加Command组件 - -# ===== Command组件 ===== - +import datetime from src.plugin_system import BaseCommand #导入Command基类 @@ -275,53 +200,49 @@ class TimeCommand(BaseCommand): # === 命令设置(必须填写)=== command_pattern = r"^/time$" # 精确匹配 "/time" 命令 - command_help = "查询当前时间" - command_examples = ["/time"] - intercept_message = True # 拦截消息,不让其他组件处理 - async def execute(self) -> Tuple[bool, str]: + async def execute(self) -> Tuple[bool, Optional[str], bool]: """执行时间查询""" - import datetime - # 获取当前时间 - time_format = self.get_config("time.format", "%Y-%m-%d %H:%M:%S") + time_format: str = "%Y-%m-%d %H:%M:%S" now = datetime.datetime.now() time_str = now.strftime(time_format) - + # 发送时间信息 message = f"⏰ 当前时间:{time_str}" await self.send_text(message) - - return True, f"显示了当前时间: {time_str}" -# ===== 插件注册 ===== + return True, f"显示了当前时间: {time_str}", True @register_plugin class HelloWorldPlugin(BasePlugin): """Hello World插件 - 你的第一个MaiCore插件""" + # 插件基本信息 plugin_name = "hello_world_plugin" - plugin_description = "我的第一个MaiCore插件,包含问候和时间查询功能" - plugin_version = "1.0.0" - plugin_author = "你的名字" enable_plugin = True + dependencies = [] + python_dependencies = [] + config_file_name = "config.toml" + config_schema = {} def get_plugin_components(self) -> List[Tuple[ComponentInfo, Type]]: return [ (HelloAction.get_action_info(), HelloAction), - (ByeAction.get_action_info(), ByeAction), (TimeCommand.get_command_info(), TimeCommand), ] ``` +同样的,我们通过 `get_plugin_components()` 方法,通过调用`get_action_info()`这个内置方法将 `TimeCommand` 注册为插件的一个组件。 + **Command组件解释:** -- Command是直接响应用户命令的组件 - `command_pattern` 使用正则表达式匹配用户输入 - `^/time$` 表示精确匹配 "/time" -- `intercept_message = True` 表示处理完命令后不再让其他组件处理 -### 7. 测试时间查询功能 +有关 Command 组件的更多信息,请参考 [Command组件指南](./command-components.md)。 + +### 8. 测试时间查询Command 重启MaiCore,发送命令: @@ -332,106 +253,147 @@ class HelloWorldPlugin(BasePlugin): 你应该会收到回复: ``` -⏰ 当前时间:2024-01-01 12:30:45 +⏰ 当前时间:2024-01-01 12:00:00 ``` -🎉 **太棒了!现在你的插件有3个功能了!** +🎉 太棒了!现在你已经了解了基本的 Action 和 Command 组件的使用方法。你可以根据自己的需求,继续扩展插件的功能,添加更多的 Action 和 Command 组件,让你的插件更加丰富和强大! -### 8. 添加配置文件(可选进阶) +--- -如果你想让插件更加灵活,可以添加配置支持。 +## 进阶教程 + +如果你想让插件更加灵活和强大,可以参考接下来的进阶教程。 + +### 1. 添加配置文件 + +想要为插件添加配置文件吗?让我们一起来配置`config_schema`属性! > **🚨 重要:不要手动创建config.toml文件!** > > 我们需要在插件代码中定义配置Schema,让系统自动生成配置文件。 -#### 📄 配置架构说明 - -在新的插件系统中,我们采用了**职责分离**的设计: - -- **`_manifest.json`** - 插件元数据(名称、版本、描述、作者等) -- **`config.toml`** - 运行时配置(启用状态、功能参数等) - -这样避免了信息重复,提高了维护性。 - 首先,在插件类中定义配置Schema: ```python -from src.plugin_system.base.config_types import ConfigField +from src.plugin_system import ConfigField @register_plugin class HelloWorldPlugin(BasePlugin): """Hello World插件 - 你的第一个MaiCore插件""" - plugin_name = "hello_world_plugin" - plugin_description = "我的第一个MaiCore插件,包含问候和时间查询功能" - plugin_version = "1.0.0" - plugin_author = "你的名字" - enable_plugin = True - config_file_name = "config.toml" # 配置文件名 - - # 配置节描述 - config_section_descriptions = { - "plugin": "插件启用配置", - "greeting": "问候功能配置", - "time": "时间查询配置" - } + # 插件基本信息 + plugin_name: str = "hello_world_plugin" # 内部标识符 + enable_plugin: bool = True + dependencies: List[str] = [] # 插件依赖列表 + python_dependencies: List[str] = [] # Python包依赖列表 + config_file_name: str = "config.toml" # 配置文件名 # 配置Schema定义 - config_schema = { + config_schema: dict = { "plugin": { - "enabled": ConfigField(type=bool, default=True, description="是否启用插件") + "name": ConfigField(type=str, default="hello_world_plugin", description="插件名称"), + "version": ConfigField(type=str, default="1.0.0", description="插件版本"), + "enabled": ConfigField(type=bool, default=False, description="是否启用插件"), }, "greeting": { - "message": ConfigField( - type=str, - default="嗨!很开心见到你!😊", - description="默认问候消息" - ), - "enable_emoji": ConfigField(type=bool, default=True, description="是否启用表情符号") + "message": ConfigField(type=str, default="嗨!很开心见到你!😊", description="默认问候消息"), + "enable_emoji": ConfigField(type=bool, default=True, description="是否启用表情符号"), }, - "time": { - "format": ConfigField( - type=str, - default="%Y-%m-%d %H:%M:%S", - description="时间显示格式" - ) - } + "time": {"format": ConfigField(type=str, default="%Y-%m-%d %H:%M:%S", description="时间显示格式")}, } def get_plugin_components(self) -> List[Tuple[ComponentInfo, Type]]: return [ (HelloAction.get_action_info(), HelloAction), - (ByeAction.get_action_info(), ByeAction), (TimeCommand.get_command_info(), TimeCommand), ] ``` -然后修改Action和Command代码,让它们读取配置: +这会生成一个如下的 `config.toml` 文件: + +```toml +# hello_world_plugin - 自动生成的配置文件 +# 我的第一个MaiCore插件,包含问候功能和时间查询等基础示例 + +# 插件基本信息 +[plugin] + +# 插件名称 +name = "hello_world_plugin" + +# 插件版本 +version = "1.0.0" + +# 是否启用插件 +enabled = false + + +# 问候功能配置 +[greeting] + +# 默认问候消息 +message = "嗨!很开心见到你!😊" + +# 是否启用表情符号 +enable_emoji = true + + +# 时间查询配置 +[time] + +# 时间显示格式 +format = "%Y-%m-%d %H:%M:%S" +``` + +然后修改Action和Command代码,通过 `get_config()` 方法让它们读取配置(配置的键是命名空间式的): ```python -# 在HelloAction的execute方法中: -async def execute(self) -> Tuple[bool, str]: - # 从配置文件读取问候消息 - greeting_message = self.action_data.get("greeting_message", "") - base_message = self.get_config("greeting.message", "嗨!很开心见到你!😊") - - message = base_message + greeting_message - await self.send_text(message) - return True, "发送了问候消息" +class HelloAction(BaseAction): + """问候Action - 简单的问候动作""" -# 在TimeCommand的execute方法中: -async def execute(self) -> Tuple[bool, str]: - import datetime - - # 从配置文件读取时间格式 - time_format = self.get_config("time.format", "%Y-%m-%d %H:%M:%S") - now = datetime.datetime.now() - time_str = now.strftime(time_format) - - message = f"⏰ 当前时间:{time_str}" - await self.send_text(message) - return True, f"显示了当前时间: {time_str}" + # === 基本信息(必须填写)=== + action_name = "hello_greeting" + action_description = "向用户发送问候消息" + activation_type = ActionActivationType.ALWAYS # 始终激活 + + # === 功能描述(必须填写)=== + action_parameters = {"greeting_message": "要发送的问候消息"} + action_require = ["需要发送友好问候时使用", "当有人向你问好时使用", "当你遇见没有见过的人时使用"] + associated_types = ["text"] + + async def execute(self) -> Tuple[bool, str]: + """执行问候动作 - 这是核心功能""" + # 发送问候消息 + greeting_message = self.action_data.get("greeting_message", "") + base_message = self.get_config("greeting.message", "嗨!很开心见到你!😊") + message = base_message + greeting_message + await self.send_text(message) + + return True, "发送了问候消息" + +class TimeCommand(BaseCommand): + """时间查询Command - 响应/time命令""" + + command_name = "time" + command_description = "查询当前时间" + + # === 命令设置(必须填写)=== + command_pattern = r"^/time$" # 精确匹配 "/time" 命令 + + async def execute(self) -> Tuple[bool, str, bool]: + """执行时间查询""" + import datetime + + # 获取当前时间 + time_format: str = self.get_config("time.format", "%Y-%m-%d %H:%M:%S") # type: ignore + now = datetime.datetime.now() + time_str = now.strftime(time_format) + + # 发送时间信息 + message = f"⏰ 当前时间:{time_str}" + await self.send_text(message) + + return True, f"显示了当前时间: {time_str}", True ``` **配置系统工作流程:** @@ -441,47 +403,20 @@ async def execute(self) -> Tuple[bool, str]: 3. **用户修改**: 用户可以修改生成的配置文件 4. **代码读取**: 使用 `self.get_config()` 读取配置值 -**配置功能解释:** +**绝对不要手动创建 `config.toml` 文件!** -- `self.get_config()` 可以读取配置文件中的值 -- 第一个参数是配置路径(用点分隔),第二个参数是默认值 -- 配置文件会包含详细的注释和说明,用户可以轻松理解和修改 -- **绝不要手动创建配置文件**,让系统自动生成 +更详细的配置系统介绍请参考 [配置指南](./configuration-guide.md)。 -### 9. 创建说明文档(可选) +### 2. 创建说明文档 -创建 `README.md` 文件来说明你的插件: +你可以创建一个 `README.md` 文件,描述插件的功能和使用方法。 -```markdown -# Hello World 插件 +### 3. 发布到插件市场 -## 概述 -我的第一个MaiCore插件,包含问候和时间查询功能。 +如果你想让更多人使用你的插件,可以将它发布到MaiCore的插件市场。 -## 功能 -- **问候功能**: 当用户说"你好"、"hello"、"hi"时自动回复 -- **时间查询**: 发送 `/time` 命令查询当前时间 +这部分请参考 [plugin-repo](https://github.com/Maim-with-u/plugin-repo) 的文档。 -## 使用方法 -### 问候功能 -发送包含以下关键词的消息: -- "你好" -- "hello" -- "hi" +--- -### 时间查询 -发送命令:`/time` - -## 配置文件 -插件会自动生成 `config.toml` 配置文件,用户可以修改: -- 问候消息内容 -- 时间显示格式 -- 插件启用状态 - -注意:配置文件是自动生成的,不要手动创建! -``` - - -``` - -``` +🎉 恭喜你!你已经成功的创建了自己的插件了! diff --git a/scripts/text_length_analysis.py b/scripts/text_length_analysis.py new file mode 100644 index 000000000..2ca596e2f --- /dev/null +++ b/scripts/text_length_analysis.py @@ -0,0 +1,394 @@ +import time +import sys +import os +import re +from typing import Dict, List, Tuple, Optional +from datetime import datetime +# Add project root to Python path +project_root = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) +sys.path.insert(0, project_root) +from src.common.database.database_model import Messages, ChatStreams #noqa + + +def contains_emoji_or_image_tags(text: str) -> bool: + """Check if text contains [表情包xxxxx] or [图片xxxxx] tags""" + if not text: + return False + + # 检查是否包含 [表情包] 或 [图片] 标记 + emoji_pattern = r'\[表情包[^\]]*\]' + image_pattern = r'\[图片[^\]]*\]' + + return bool(re.search(emoji_pattern, text) or re.search(image_pattern, text)) + + +def clean_reply_text(text: str) -> str: + """Remove reply references like [回复 xxxx...] from text""" + if not text: + return text + + # 匹配 [回复 xxxx...] 格式的内容 + # 使用非贪婪匹配,匹配到第一个 ] 就停止 + cleaned_text = re.sub(r'\[回复[^\]]*\]', '', text) + + # 去除多余的空白字符 + cleaned_text = cleaned_text.strip() + + return cleaned_text + + +def get_chat_name(chat_id: str) -> str: + """Get chat name from chat_id by querying ChatStreams table directly""" + try: + chat_stream = ChatStreams.get_or_none(ChatStreams.stream_id == chat_id) + if chat_stream is None: + return f"未知聊天 ({chat_id})" + + if chat_stream.group_name: + return f"{chat_stream.group_name} ({chat_id})" + elif chat_stream.user_nickname: + return f"{chat_stream.user_nickname}的私聊 ({chat_id})" + else: + return f"未知聊天 ({chat_id})" + except Exception: + return f"查询失败 ({chat_id})" + + +def format_timestamp(timestamp: float) -> str: + """Format timestamp to readable date string""" + try: + return datetime.fromtimestamp(timestamp).strftime("%Y-%m-%d %H:%M:%S") + except (ValueError, OSError): + return "未知时间" + + +def calculate_text_length_distribution(messages) -> Dict[str, int]: + """Calculate distribution of processed_plain_text length""" + distribution = { + '0': 0, # 空文本 + '1-5': 0, # 极短文本 + '6-10': 0, # 很短文本 + '11-20': 0, # 短文本 + '21-30': 0, # 较短文本 + '31-50': 0, # 中短文本 + '51-70': 0, # 中等文本 + '71-100': 0, # 较长文本 + '101-150': 0, # 长文本 + '151-200': 0, # 很长文本 + '201-300': 0, # 超长文本 + '301-500': 0, # 极长文本 + '501-1000': 0, # 巨长文本 + '1000+': 0 # 超巨长文本 + } + + for msg in messages: + if msg.processed_plain_text is None: + continue + + # 排除包含表情包或图片标记的消息 + if contains_emoji_or_image_tags(msg.processed_plain_text): + continue + + # 清理文本中的回复引用 + cleaned_text = clean_reply_text(msg.processed_plain_text) + length = len(cleaned_text) + + if length == 0: + distribution['0'] += 1 + elif length <= 5: + distribution['1-5'] += 1 + elif length <= 10: + distribution['6-10'] += 1 + elif length <= 20: + distribution['11-20'] += 1 + elif length <= 30: + distribution['21-30'] += 1 + elif length <= 50: + distribution['31-50'] += 1 + elif length <= 70: + distribution['51-70'] += 1 + elif length <= 100: + distribution['71-100'] += 1 + elif length <= 150: + distribution['101-150'] += 1 + elif length <= 200: + distribution['151-200'] += 1 + elif length <= 300: + distribution['201-300'] += 1 + elif length <= 500: + distribution['301-500'] += 1 + elif length <= 1000: + distribution['501-1000'] += 1 + else: + distribution['1000+'] += 1 + + return distribution + + +def get_text_length_stats(messages) -> Dict[str, float]: + """Calculate basic statistics for processed_plain_text length""" + lengths = [] + null_count = 0 + excluded_count = 0 # 被排除的消息数量 + + for msg in messages: + if msg.processed_plain_text is None: + null_count += 1 + elif contains_emoji_or_image_tags(msg.processed_plain_text): + # 排除包含表情包或图片标记的消息 + excluded_count += 1 + else: + # 清理文本中的回复引用 + cleaned_text = clean_reply_text(msg.processed_plain_text) + lengths.append(len(cleaned_text)) + + if not lengths: + return { + 'count': 0, + 'null_count': null_count, + 'excluded_count': excluded_count, + 'min': 0, + 'max': 0, + 'avg': 0, + 'median': 0 + } + + lengths.sort() + count = len(lengths) + + return { + 'count': count, + 'null_count': null_count, + 'excluded_count': excluded_count, + 'min': min(lengths), + 'max': max(lengths), + 'avg': sum(lengths) / count, + 'median': lengths[count // 2] if count % 2 == 1 else (lengths[count // 2 - 1] + lengths[count // 2]) / 2 + } + + +def get_available_chats() -> List[Tuple[str, str, int]]: + """Get all available chats with message counts""" + try: + # 获取所有有消息的chat_id,排除特殊类型消息 + chat_counts = {} + for msg in Messages.select(Messages.chat_id).distinct(): + chat_id = msg.chat_id + count = Messages.select().where( + (Messages.chat_id == chat_id) & + (Messages.is_emoji != 1) & + (Messages.is_picid != 1) & + (Messages.is_command != 1) + ).count() + if count > 0: + chat_counts[chat_id] = count + + # 获取聊天名称 + result = [] + for chat_id, count in chat_counts.items(): + chat_name = get_chat_name(chat_id) + result.append((chat_id, chat_name, count)) + + # 按消息数量排序 + result.sort(key=lambda x: x[2], reverse=True) + return result + except Exception as e: + print(f"获取聊天列表失败: {e}") + return [] + + +def get_time_range_input() -> Tuple[Optional[float], Optional[float]]: + """Get time range input from user""" + print("\n时间范围选择:") + print("1. 最近1天") + print("2. 最近3天") + print("3. 最近7天") + print("4. 最近30天") + print("5. 自定义时间范围") + print("6. 不限制时间") + + choice = input("请选择时间范围 (1-6): ").strip() + + now = time.time() + + if choice == "1": + return now - 24*3600, now + elif choice == "2": + return now - 3*24*3600, now + elif choice == "3": + return now - 7*24*3600, now + elif choice == "4": + return now - 30*24*3600, now + elif choice == "5": + print("请输入开始时间 (格式: YYYY-MM-DD HH:MM:SS):") + start_str = input().strip() + print("请输入结束时间 (格式: YYYY-MM-DD HH:MM:SS):") + end_str = input().strip() + + try: + start_time = datetime.strptime(start_str, "%Y-%m-%d %H:%M:%S").timestamp() + end_time = datetime.strptime(end_str, "%Y-%m-%d %H:%M:%S").timestamp() + return start_time, end_time + except ValueError: + print("时间格式错误,将不限制时间范围") + return None, None + else: + return None, None + + +def get_top_longest_messages(messages, top_n: int = 10) -> List[Tuple[str, int, str, str]]: + """Get top N longest messages""" + message_lengths = [] + + for msg in messages: + if msg.processed_plain_text is not None: + # 排除包含表情包或图片标记的消息 + if contains_emoji_or_image_tags(msg.processed_plain_text): + continue + + # 清理文本中的回复引用 + cleaned_text = clean_reply_text(msg.processed_plain_text) + length = len(cleaned_text) + chat_name = get_chat_name(msg.chat_id) + time_str = format_timestamp(msg.time) + # 截取前100个字符作为预览 + preview = cleaned_text[:100] + "..." if len(cleaned_text) > 100 else cleaned_text + message_lengths.append((chat_name, length, time_str, preview)) + + # 按长度排序,取前N个 + message_lengths.sort(key=lambda x: x[1], reverse=True) + return message_lengths[:top_n] + + +def analyze_text_lengths(chat_id: Optional[str] = None, start_time: Optional[float] = None, end_time: Optional[float] = None) -> None: + """Analyze processed_plain_text lengths with optional filters""" + + # 构建查询条件,排除特殊类型的消息 + query = Messages.select().where( + (Messages.is_emoji != 1) & + (Messages.is_picid != 1) & + (Messages.is_command != 1) + ) + + if chat_id: + query = query.where(Messages.chat_id == chat_id) + + if start_time: + query = query.where(Messages.time >= start_time) + + if end_time: + query = query.where(Messages.time <= end_time) + + messages = list(query) + + if not messages: + print("没有找到符合条件的消息") + return + + # 计算统计信息 + distribution = calculate_text_length_distribution(messages) + stats = get_text_length_stats(messages) + top_longest = get_top_longest_messages(messages, 10) + + # 显示结果 + print("\n=== Processed Plain Text 长度分析结果 ===") + print("(已排除表情、图片ID、命令类型消息,已排除[表情包]和[图片]标记消息,已清理回复引用)") + if chat_id: + print(f"聊天: {get_chat_name(chat_id)}") + else: + print("聊天: 全部聊天") + + if start_time and end_time: + print(f"时间范围: {format_timestamp(start_time)} 到 {format_timestamp(end_time)}") + elif start_time: + print(f"时间范围: {format_timestamp(start_time)} 之后") + elif end_time: + print(f"时间范围: {format_timestamp(end_time)} 之前") + else: + print("时间范围: 不限制") + + print("\n基本统计:") + print(f"总消息数量: {len(messages)}") + print(f"有文本消息数量: {stats['count']}") + print(f"空文本消息数量: {stats['null_count']}") + print(f"被排除的消息数量: {stats['excluded_count']}") + if stats['count'] > 0: + print(f"最短长度: {stats['min']} 字符") + print(f"最长长度: {stats['max']} 字符") + print(f"平均长度: {stats['avg']:.2f} 字符") + print(f"中位数长度: {stats['median']:.2f} 字符") + + print("\n文本长度分布:") + total = stats['count'] + if total > 0: + for range_name, count in distribution.items(): + if count > 0: + percentage = count / total * 100 + print(f"{range_name} 字符: {count} ({percentage:.2f}%)") + + # 显示最长的消息 + if top_longest: + print(f"\n最长的 {len(top_longest)} 条消息:") + for i, (chat_name, length, time_str, preview) in enumerate(top_longest, 1): + print(f"{i}. [{chat_name}] {time_str}") + print(f" 长度: {length} 字符") + print(f" 预览: {preview}") + print() + + +def interactive_menu() -> None: + """Interactive menu for text length analysis""" + + while True: + print("\n" + "="*50) + print("Processed Plain Text 长度分析工具") + print("="*50) + print("1. 分析全部聊天") + print("2. 选择特定聊天分析") + print("q. 退出") + + choice = input("\n请选择分析模式 (1-2, q): ").strip() + + if choice.lower() == 'q': + print("再见!") + break + + chat_id = None + + if choice == "2": + # 显示可用的聊天列表 + chats = get_available_chats() + if not chats: + print("没有找到聊天数据") + continue + + print(f"\n可用的聊天 (共{len(chats)}个):") + for i, (_cid, name, count) in enumerate(chats, 1): + print(f"{i}. {name} ({count}条消息)") + + try: + chat_choice = int(input(f"\n请选择聊天 (1-{len(chats)}): ").strip()) + if 1 <= chat_choice <= len(chats): + chat_id = chats[chat_choice - 1][0] + else: + print("无效选择") + continue + except ValueError: + print("请输入有效数字") + continue + + elif choice != "1": + print("无效选择") + continue + + # 获取时间范围 + start_time, end_time = get_time_range_input() + + # 执行分析 + analyze_text_lengths(chat_id, start_time, end_time) + + input("\n按回车键继续...") + + +if __name__ == "__main__": + interactive_menu() \ No newline at end of file diff --git a/src/chat/chat_loop/heartFC_chat.py b/src/chat/chat_loop/heartFC_chat.py index 41101b2dd..2db7ca42a 100644 --- a/src/chat/chat_loop/heartFC_chat.py +++ b/src/chat/chat_loop/heartFC_chat.py @@ -88,11 +88,6 @@ class HeartFChatting: self.loop_mode = ChatMode.NORMAL # 初始循环模式为普通模式 - # 新增:消息计数器和疲惫阈值 - self._message_count = 0 # 发送的消息计数 - self._message_threshold = max(10, int(30 * global_config.chat.focus_value)) - self._fatigue_triggered = False # 是否已触发疲惫退出 - self.action_manager = ActionManager() self.action_planner = ActionPlanner(chat_id=self.stream_id, action_manager=self.action_manager) self.action_modifier = ActionModifier(action_manager=self.action_manager, chat_id=self.stream_id) @@ -112,7 +107,6 @@ class HeartFChatting: self.last_read_time = time.time() - 1 - self.willing_amplifier = 1 self.willing_manager = get_willing_manager() logger.info(f"{self.log_prefix} HeartFChatting 初始化完成") @@ -182,6 +176,9 @@ class HeartFChatting: if self.loop_mode == ChatMode.NORMAL: self.energy_value -= 0.3 self.energy_value = max(self.energy_value, 0.3) + if self.loop_mode == ChatMode.FOCUS: + self.energy_value -= 0.6 + self.energy_value = max(self.energy_value, 0.3) def print_cycle_info(self, cycle_timers): # 记录循环信息和计时器结果 @@ -200,9 +197,9 @@ class HeartFChatting: async def _loopbody(self): if self.loop_mode == ChatMode.FOCUS: if await self._observe(): - self.energy_value -= 1 * global_config.chat.focus_value + self.energy_value -= 1 / global_config.chat.focus_value else: - self.energy_value -= 3 * global_config.chat.focus_value + self.energy_value -= 3 / global_config.chat.focus_value if self.energy_value <= 1: self.energy_value = 1 self.loop_mode = ChatMode.NORMAL @@ -218,15 +215,15 @@ class HeartFChatting: limit_mode="earliest", filter_bot=True, ) + if global_config.chat.focus_value != 0: + if len(new_messages_data) > 3 / pow(global_config.chat.focus_value,0.5): + self.loop_mode = ChatMode.FOCUS + self.energy_value = 10 + (len(new_messages_data) / (3 / pow(global_config.chat.focus_value,0.5))) * 10 + return True - if len(new_messages_data) > 3 * global_config.chat.focus_value: - self.loop_mode = ChatMode.FOCUS - self.energy_value = 10 + (len(new_messages_data) / (3 * global_config.chat.focus_value)) * 10 - return True - - if self.energy_value >= 30 * global_config.chat.focus_value: - self.loop_mode = ChatMode.FOCUS - return True + if self.energy_value >= 30: + self.loop_mode = ChatMode.FOCUS + return True if new_messages_data: earliest_messages_data = new_messages_data[0] @@ -235,10 +232,10 @@ class HeartFChatting: if_think = await self.normal_response(earliest_messages_data) if if_think: factor = max(global_config.chat.focus_value, 0.1) - self.energy_value *= 1.1 / factor + self.energy_value *= 1.1 * factor logger.info(f"{self.log_prefix} 进行了思考,能量值按倍数增加,当前能量值:{self.energy_value:.1f}") else: - self.energy_value += 0.1 / global_config.chat.focus_value + self.energy_value += 0.1 * global_config.chat.focus_value logger.debug(f"{self.log_prefix} 没有进行思考,能量值线性增加,当前能量值:{self.energy_value:.1f}") logger.debug(f"{self.log_prefix} 当前能量值:{self.energy_value:.1f}") @@ -330,13 +327,13 @@ class HeartFChatting: if self.loop_mode == ChatMode.NORMAL: if action_type == "no_action": - logger.info(f"[{self.log_prefix}] {global_config.bot.nickname} 决定进行回复") + logger.info(f"{self.log_prefix}{global_config.bot.nickname} 决定进行回复") elif is_parallel: logger.info( - f"[{self.log_prefix}] {global_config.bot.nickname} 决定进行回复, 同时执行{action_type}动作" + f"{self.log_prefix}{global_config.bot.nickname} 决定进行回复, 同时执行{action_type}动作" ) else: - logger.info(f"[{self.log_prefix}] {global_config.bot.nickname} 决定执行{action_type}动作") + logger.info(f"{self.log_prefix}{global_config.bot.nickname} 决定执行{action_type}动作") if action_type == "no_action": # 等待回复生成完毕 @@ -351,15 +348,15 @@ class HeartFChatting: # 模型炸了,没有回复内容生成 if not response_set: - logger.warning(f"[{self.log_prefix}] 模型未生成回复内容") + logger.warning(f"{self.log_prefix}模型未生成回复内容") return False elif action_type not in ["no_action"] and not is_parallel: logger.info( - f"[{self.log_prefix}] {global_config.bot.nickname} 原本想要回复:{content},但选择执行{action_type},不发表回复" + f"{self.log_prefix}{global_config.bot.nickname} 原本想要回复:{content},但选择执行{action_type},不发表回复" ) return False - logger.info(f"[{self.log_prefix}] {global_config.bot.nickname} 决定的回复内容: {content}") + logger.info(f"{self.log_prefix}{global_config.bot.nickname} 决定的回复内容: {content}") # 发送回复 (不再需要传入 chat) reply_text = await self._send_response(response_set, reply_to_str, loop_start_time,message_data) @@ -406,8 +403,18 @@ class HeartFChatting: if self.loop_mode == ChatMode.NORMAL: await self.willing_manager.after_generate_reply_handle(message_data.get("message_id", "")) + # 管理no_reply计数器:当执行了非no_reply动作时,重置计数器 if action_type != "no_reply" and action_type != "no_action": + # 导入NoReplyAction并重置计数器 + from src.plugins.built_in.core_actions.no_reply import NoReplyAction + NoReplyAction.reset_consecutive_count() + logger.info(f"{self.log_prefix} 执行了{action_type}动作,重置no_reply计数器") return True + elif action_type == "no_action": + # 当执行回复动作时,也重置no_reply计数器 + from src.plugins.built_in.core_actions.no_reply import NoReplyAction + NoReplyAction.reset_consecutive_count() + logger.info(f"{self.log_prefix} 执行了回复动作,重置no_reply计数器") return True @@ -501,7 +508,7 @@ class HeartFChatting: 在"兴趣"模式下,判断是否回复并生成内容。 """ - interested_rate = (message_data.get("interest_value") or 0.0) * self.willing_amplifier + interested_rate = (message_data.get("interest_value") or 0.0) * global_config.chat.willing_amplifier self.willing_manager.setup(message_data, self.chat_stream) @@ -515,8 +522,8 @@ class HeartFChatting: reply_probability += additional_config["maimcore_reply_probability_gain"] reply_probability = min(max(reply_probability, 0), 1) # 确保概率在 0-1 之间 - talk_frequency = global_config.chat.get_current_talk_frequency(self.stream_id) - reply_probability = talk_frequency * reply_probability + talk_frequency = global_config.chat.get_current_talk_frequency(self.stream_id) + reply_probability = talk_frequency * reply_probability # 处理表情包 if message_data.get("is_emoji") or message_data.get("is_picid"): @@ -563,7 +570,7 @@ class HeartFChatting: return reply_set except Exception as e: - logger.error(f"[{self.log_prefix}] 回复生成出现错误:{str(e)} {traceback.format_exc()}") + logger.error(f"{self.log_prefix}回复生成出现错误:{str(e)} {traceback.format_exc()}") return None async def _send_response(self, reply_set, reply_to, thinking_start_time, message_data): diff --git a/src/chat/emoji_system/emoji_manager.py b/src/chat/emoji_system/emoji_manager.py index b3c2493d3..918b83969 100644 --- a/src/chat/emoji_system/emoji_manager.py +++ b/src/chat/emoji_system/emoji_manager.py @@ -525,9 +525,9 @@ class EmojiManager: 如果文件已被删除,则执行对象的删除方法并从列表中移除 """ try: - if not self.emoji_objects: - logger.warning("[检查] emoji_objects为空,跳过完整性检查") - return + # if not self.emoji_objects: + # logger.warning("[检查] emoji_objects为空,跳过完整性检查") + # return total_count = len(self.emoji_objects) self.emoji_num = total_count @@ -707,6 +707,38 @@ class EmojiManager: return emoji return None # 如果循环结束还没找到,则返回 None + async def get_emoji_description_by_hash(self, emoji_hash: str) -> Optional[str]: + """根据哈希值获取已注册表情包的描述 + + Args: + emoji_hash: 表情包的哈希值 + + Returns: + Optional[str]: 表情包描述,如果未找到则返回None + """ + try: + # 先从内存中查找 + emoji = await self.get_emoji_from_manager(emoji_hash) + if emoji and emoji.description: + logger.info(f"[缓存命中] 从内存获取表情包描述: {emoji.description[:50]}...") + return emoji.description + + # 如果内存中没有,从数据库查找 + self._ensure_db() + try: + emoji_record = Emoji.get_or_none(Emoji.emoji_hash == emoji_hash) + if emoji_record and emoji_record.description: + logger.info(f"[缓存命中] 从数据库获取表情包描述: {emoji_record.description[:50]}...") + return emoji_record.description + except Exception as e: + logger.error(f"从数据库查询表情包描述时出错: {e}") + + return None + + except Exception as e: + logger.error(f"获取表情包描述失败 (Hash: {emoji_hash}): {str(e)}") + return None + async def delete_emoji(self, emoji_hash: str) -> bool: """根据哈希值删除表情包 diff --git a/src/chat/express/expression_learner.py b/src/chat/express/expression_learner.py index ac41b12a3..4ee2f2cbb 100644 --- a/src/chat/express/expression_learner.py +++ b/src/chat/express/expression_learner.py @@ -330,48 +330,8 @@ class ExpressionLearner: """ current_time = time.time() - # 全局衰减所有已存储的表达方式 - for type in ["style", "grammar"]: - base_dir = os.path.join("data", "expression", f"learnt_{type}") - if not os.path.exists(base_dir): - logger.debug(f"目录不存在,跳过衰减: {base_dir}") - continue - - try: - chat_ids = os.listdir(base_dir) - logger.debug(f"在 {base_dir} 中找到 {len(chat_ids)} 个聊天ID目录进行衰减") - except Exception as e: - logger.error(f"读取目录失败 {base_dir}: {e}") - continue - - for chat_id in chat_ids: - file_path = os.path.join(base_dir, chat_id, "expressions.json") - if not os.path.exists(file_path): - continue - - try: - with open(file_path, "r", encoding="utf-8") as f: - expressions = json.load(f) - - if not isinstance(expressions, list): - logger.warning(f"表达方式文件格式错误,跳过衰减: {file_path}") - continue - - # 应用全局衰减 - decayed_expressions = self.apply_decay_to_expressions(expressions, current_time) - - # 保存衰减后的结果 - with open(file_path, "w", encoding="utf-8") as f: - json.dump(decayed_expressions, f, ensure_ascii=False, indent=2) - - logger.debug(f"已对 {file_path} 应用衰减,剩余 {len(decayed_expressions)} 个表达方式") - except json.JSONDecodeError as e: - logger.error(f"JSON解析失败,跳过衰减 {file_path}: {e}") - except PermissionError as e: - logger.error(f"权限不足,无法更新 {file_path}: {e}") - except Exception as e: - logger.error(f"全局衰减{type}表达方式失败 {file_path}: {e}") - continue + # 全局衰减所有已存储的表达方式(直接操作数据库) + self._apply_global_decay_to_database(current_time) learnt_style: Optional[List[Tuple[str, str, str]]] = [] learnt_grammar: Optional[List[Tuple[str, str, str]]] = [] @@ -388,6 +348,42 @@ class ExpressionLearner: return learnt_style, learnt_grammar + def _apply_global_decay_to_database(self, current_time: float) -> None: + """ + 对数据库中的所有表达方式应用全局衰减 + """ + try: + # 获取所有表达方式 + all_expressions = Expression.select() + + updated_count = 0 + deleted_count = 0 + + for expr in all_expressions: + # 计算时间差 + last_active = expr.last_active_time + time_diff_days = (current_time - last_active) / (24 * 3600) # 转换为天 + + # 计算衰减值 + decay_value = self.calculate_decay_factor(time_diff_days) + new_count = max(0.01, expr.count - decay_value) + + if new_count <= 0.01: + # 如果count太小,删除这个表达方式 + expr.delete_instance() + deleted_count += 1 + else: + # 更新count + expr.count = new_count + expr.save() + updated_count += 1 + + if updated_count > 0 or deleted_count > 0: + logger.info(f"全局衰减完成:更新了 {updated_count} 个表达方式,删除了 {deleted_count} 个表达方式") + + except Exception as e: + logger.error(f"数据库全局衰减失败: {e}") + def calculate_decay_factor(self, time_diff_days: float) -> float: """ 计算衰减值 @@ -410,30 +406,6 @@ class ExpressionLearner: return min(0.01, decay) - def apply_decay_to_expressions( - self, expressions: List[Dict[str, Any]], current_time: float - ) -> List[Dict[str, Any]]: - """ - 对表达式列表应用衰减 - 返回衰减后的表达式列表,移除count小于0的项 - """ - result = [] - for expr in expressions: - # 确保last_active_time存在,如果不存在则使用current_time - if "last_active_time" not in expr: - expr["last_active_time"] = current_time - - last_active = expr["last_active_time"] - time_diff_days = (current_time - last_active) / (24 * 3600) # 转换为天 - - decay_value = self.calculate_decay_factor(time_diff_days) - expr["count"] = max(0.01, expr.get("count", 1) - decay_value) - - if expr["count"] > 0: - result.append(expr) - - return result - async def learn_and_store(self, type: str, num: int = 10) -> List[Tuple[str, str, str]]: # sourcery skip: use-join """ diff --git a/src/chat/express/expression_selector.py b/src/chat/express/expression_selector.py index d83d3a472..8358c7a2f 100644 --- a/src/chat/express/expression_selector.py +++ b/src/chat/express/expression_selector.py @@ -2,7 +2,7 @@ import json import time import random -from typing import List, Dict, Tuple, Optional +from typing import List, Dict, Tuple, Optional, Any from json_repair import repair_json from src.llm_models.utils_model import LLMRequest @@ -117,36 +117,42 @@ class ExpressionSelector: def get_random_expressions( self, chat_id: str, total_num: int, style_percentage: float, grammar_percentage: float - ) -> Tuple[List[Dict[str, str]], List[Dict[str, str]]]: + ) -> Tuple[List[Dict[str, Any]], List[Dict[str, Any]]]: # 支持多chat_id合并抽选 related_chat_ids = self.get_related_chat_ids(chat_id) - style_exprs = [] - grammar_exprs = [] - for cid in related_chat_ids: - style_query = Expression.select().where((Expression.chat_id == cid) & (Expression.type == "style")) - grammar_query = Expression.select().where((Expression.chat_id == cid) & (Expression.type == "grammar")) - style_exprs.extend([ - { - "situation": expr.situation, - "style": expr.style, - "count": expr.count, - "last_active_time": expr.last_active_time, - "source_id": cid, - "type": "style", - "create_date": expr.create_date if expr.create_date is not None else expr.last_active_time, - } for expr in style_query - ]) - grammar_exprs.extend([ - { - "situation": expr.situation, - "style": expr.style, - "count": expr.count, - "last_active_time": expr.last_active_time, - "source_id": cid, - "type": "grammar", - "create_date": expr.create_date if expr.create_date is not None else expr.last_active_time, - } for expr in grammar_query - ]) + + # 优化:一次性查询所有相关chat_id的表达方式 + style_query = Expression.select().where( + (Expression.chat_id.in_(related_chat_ids)) & (Expression.type == "style") + ) + grammar_query = Expression.select().where( + (Expression.chat_id.in_(related_chat_ids)) & (Expression.type == "grammar") + ) + + style_exprs = [ + { + "situation": expr.situation, + "style": expr.style, + "count": expr.count, + "last_active_time": expr.last_active_time, + "source_id": expr.chat_id, + "type": "style", + "create_date": expr.create_date if expr.create_date is not None else expr.last_active_time, + } for expr in style_query + ] + + grammar_exprs = [ + { + "situation": expr.situation, + "style": expr.style, + "count": expr.count, + "last_active_time": expr.last_active_time, + "source_id": expr.chat_id, + "type": "grammar", + "create_date": expr.create_date if expr.create_date is not None else expr.last_active_time, + } for expr in grammar_query + ] + style_num = int(total_num * style_percentage) grammar_num = int(total_num * grammar_percentage) # 按权重抽样(使用count作为权重) @@ -162,7 +168,7 @@ class ExpressionSelector: selected_grammar = [] return selected_style, selected_grammar - def update_expressions_count_batch(self, expressions_to_update: List[Dict[str, str]], increment: float = 0.1): + def update_expressions_count_batch(self, expressions_to_update: List[Dict[str, Any]], increment: float = 0.1): """对一批表达方式更新count值,按chat_id+type分组后一次性写入数据库""" if not expressions_to_update: return @@ -203,7 +209,7 @@ class ExpressionSelector: max_num: int = 10, min_num: int = 5, target_message: Optional[str] = None, - ) -> List[Dict[str, str]]: + ) -> List[Dict[str, Any]]: # sourcery skip: inline-variable, list-comprehension """使用LLM选择适合的表达方式""" diff --git a/src/chat/heart_flow/heartflow_message_processor.py b/src/chat/heart_flow/heartflow_message_processor.py index 32a365688..406d0e6d0 100644 --- a/src/chat/heart_flow/heartflow_message_processor.py +++ b/src/chat/heart_flow/heartflow_message_processor.py @@ -12,6 +12,7 @@ from src.chat.message_receive.storage import MessageStorage from src.chat.heart_flow.heartflow import heartflow from src.chat.utils.utils import is_mentioned_bot_in_message from src.chat.utils.timer_calculator import Timer +from src.chat.utils.chat_message_builder import replace_user_references_sync from src.common.logger import get_logger from src.person_info.relationship_manager import get_relationship_manager from src.mood.mood_manager import mood_manager @@ -56,16 +57,41 @@ async def _calculate_interest(message: MessageRecv) -> Tuple[float, bool]: with Timer("记忆激活"): interested_rate = await hippocampus_manager.get_activate_from_text( message.processed_plain_text, + max_depth= 5, fast_retrieval=False, ) logger.debug(f"记忆激活率: {interested_rate:.2f}") text_len = len(message.processed_plain_text) - # 根据文本长度调整兴趣度,长度越大兴趣度越高,但增长率递减,最低0.01,最高0.05 - # 采用对数函数实现递减增长 - - base_interest = 0.01 + (0.05 - 0.01) * (math.log10(text_len + 1) / math.log10(1000 + 1)) - base_interest = min(max(base_interest, 0.01), 0.05) + # 根据文本长度分布调整兴趣度,采用分段函数实现更精确的兴趣度计算 + # 基于实际分布:0-5字符(26.57%), 6-10字符(27.18%), 11-20字符(22.76%), 21-30字符(10.33%), 31+字符(13.86%) + + if text_len == 0: + base_interest = 0.01 # 空消息最低兴趣度 + elif text_len <= 5: + # 1-5字符:线性增长 0.01 -> 0.03 + base_interest = 0.01 + (text_len - 1) * (0.03 - 0.01) / 4 + elif text_len <= 10: + # 6-10字符:线性增长 0.03 -> 0.06 + base_interest = 0.03 + (text_len - 5) * (0.06 - 0.03) / 5 + elif text_len <= 20: + # 11-20字符:线性增长 0.06 -> 0.12 + base_interest = 0.06 + (text_len - 10) * (0.12 - 0.06) / 10 + elif text_len <= 30: + # 21-30字符:线性增长 0.12 -> 0.18 + base_interest = 0.12 + (text_len - 20) * (0.18 - 0.12) / 10 + elif text_len <= 50: + # 31-50字符:线性增长 0.18 -> 0.22 + base_interest = 0.18 + (text_len - 30) * (0.22 - 0.18) / 20 + elif text_len <= 100: + # 51-100字符:线性增长 0.22 -> 0.26 + base_interest = 0.22 + (text_len - 50) * (0.26 - 0.22) / 50 + else: + # 100+字符:对数增长 0.26 -> 0.3,增长率递减 + base_interest = 0.26 + (0.3 - 0.26) * (math.log10(text_len - 99) / math.log10(901)) # 1000-99=901 + + # 确保在范围内 + base_interest = min(max(base_interest, 0.01), 0.3) interested_rate += base_interest @@ -123,6 +149,13 @@ class HeartFCMessageReceiver: # 如果消息中包含图片标识,则将 [picid:...] 替换为 [图片] picid_pattern = r"\[picid:([^\]]+)\]" processed_plain_text = re.sub(picid_pattern, "[图片]", message.processed_plain_text) + + # 应用用户引用格式替换,将回复和@格式转换为可读格式 + processed_plain_text = replace_user_references_sync( + processed_plain_text, + message.message_info.platform, # type: ignore + replace_bot_name=True + ) logger.info(f"[{mes_name}]{userinfo.user_nickname}:{processed_plain_text}[兴趣度:{interested_rate:.2f}]") # type: ignore diff --git a/src/chat/memory_system/Hippocampus.py b/src/chat/memory_system/Hippocampus.py index ad0384160..26660e5c3 100644 --- a/src/chat/memory_system/Hippocampus.py +++ b/src/chat/memory_system/Hippocampus.py @@ -224,10 +224,16 @@ class Hippocampus: return hash((source, target)) @staticmethod - def find_topic_llm(text, topic_num): + def find_topic_llm(text: str, topic_num: int | list[int]): # sourcery skip: inline-immediately-returned-variable + topic_num_str = "" + if isinstance(topic_num, list): + topic_num_str = f"{topic_num[0]}-{topic_num[1]}" + else: + topic_num_str = topic_num + prompt = ( - f"这是一段文字:\n{text}\n\n请你从这段话中总结出最多{topic_num}个关键的概念,可以是名词,动词,或者特定人物,帮我列出来," + f"这是一段文字:\n{text}\n\n请你从这段话中总结出最多{topic_num_str}个关键的概念,可以是名词,动词,或者特定人物,帮我列出来," f"将主题用逗号隔开,并加上<>,例如<主题1>,<主题2>......尽可能精简。只需要列举最多{topic_num}个话题就好,不要有序号,不要告诉我其他内容。" f"如果确定找不出主题或者没有明显主题,返回。" ) @@ -300,6 +306,60 @@ class Hippocampus: memories.sort(key=lambda x: x[2], reverse=True) return memories + async def get_keywords_from_text(self, text: str) -> list: + """从文本中提取关键词。 + + Args: + text (str): 输入文本 + fast_retrieval (bool, optional): 是否使用快速检索。默认为False。 + 如果为True,使用jieba分词提取关键词,速度更快但可能不够准确。 + 如果为False,使用LLM提取关键词,速度较慢但更准确。 + """ + if not text: + return [] + + # 使用LLM提取关键词 - 根据详细文本长度分布优化topic_num计算 + text_length = len(text) + topic_num: int | list[int] = 0 + if text_length <= 5: + words = jieba.cut(text) + keywords = [word for word in words if len(word) > 1] + keywords = list(set(keywords))[:3] # 限制最多3个关键词 + if keywords: + logger.info(f"提取关键词: {keywords}") + return keywords + elif text_length <= 10: + topic_num = [1, 3] # 6-10字符: 1个关键词 (27.18%的文本) + elif text_length <= 20: + topic_num = [2, 4] # 11-20字符: 2个关键词 (22.76%的文本) + elif text_length <= 30: + topic_num = [3, 5] # 21-30字符: 3个关键词 (10.33%的文本) + elif text_length <= 50: + topic_num = [4, 5] # 31-50字符: 4个关键词 (9.79%的文本) + else: + topic_num = 5 # 51+字符: 5个关键词 (其余长文本) + + topics_response, (reasoning_content, model_name) = await self.model_summary.generate_response_async( + self.find_topic_llm(text, topic_num) + ) + + # 提取关键词 + keywords = re.findall(r"<([^>]+)>", topics_response) + if not keywords: + keywords = [] + else: + keywords = [ + keyword.strip() + for keyword in ",".join(keywords).replace(",", ",").replace("、", ",").replace(" ", ",").split(",") + if keyword.strip() + ] + + if keywords: + logger.info(f"提取关键词: {keywords}") + + return keywords + + async def get_memory_from_text( self, text: str, @@ -325,39 +385,7 @@ class Hippocampus: - memory_items: list, 该主题下的记忆项列表 - similarity: float, 与文本的相似度 """ - if not text: - return [] - - if fast_retrieval: - # 使用jieba分词提取关键词 - words = jieba.cut(text) - # 过滤掉停用词和单字词 - keywords = [word for word in words if len(word) > 1] - # 去重 - keywords = list(set(keywords)) - # 限制关键词数量 - logger.debug(f"提取关键词: {keywords}") - - else: - # 使用LLM提取关键词 - topic_num = min(5, max(1, int(len(text) * 0.1))) # 根据文本长度动态调整关键词数量 - # logger.info(f"提取关键词数量: {topic_num}") - topics_response, (reasoning_content, model_name) = await self.model_summary.generate_response_async( - self.find_topic_llm(text, topic_num) - ) - - # 提取关键词 - keywords = re.findall(r"<([^>]+)>", topics_response) - if not keywords: - keywords = [] - else: - keywords = [ - keyword.strip() - for keyword in ",".join(keywords).replace(",", ",").replace("、", ",").replace(" ", ",").split(",") - if keyword.strip() - ] - - # logger.info(f"提取的关键词: {', '.join(keywords)}") + keywords = await self.get_keywords_from_text(text) # 过滤掉不存在于记忆图中的关键词 valid_keywords = [keyword for keyword in keywords if keyword in self.memory_graph.G] @@ -679,38 +707,7 @@ class Hippocampus: Returns: float: 激活节点数与总节点数的比值 """ - if not text: - return 0 - - if fast_retrieval: - # 使用jieba分词提取关键词 - words = jieba.cut(text) - # 过滤掉停用词和单字词 - keywords = [word for word in words if len(word) > 1] - # 去重 - keywords = list(set(keywords)) - # 限制关键词数量 - keywords = keywords[:5] - else: - # 使用LLM提取关键词 - topic_num = min(5, max(1, int(len(text) * 0.1))) # 根据文本长度动态调整关键词数量 - # logger.info(f"提取关键词数量: {topic_num}") - topics_response, (reasoning_content, model_name) = await self.model_summary.generate_response_async( - self.find_topic_llm(text, topic_num) - ) - - # 提取关键词 - keywords = re.findall(r"<([^>]+)>", topics_response) - if not keywords: - keywords = [] - else: - keywords = [ - keyword.strip() - for keyword in ",".join(keywords).replace(",", ",").replace("、", ",").replace(" ", ",").split(",") - if keyword.strip() - ] - - # logger.info(f"提取的关键词: {', '.join(keywords)}") + keywords = await self.get_keywords_from_text(text) # 过滤掉不存在于记忆图中的关键词 valid_keywords = [keyword for keyword in keywords if keyword in self.memory_graph.G] @@ -727,7 +724,7 @@ class Hippocampus: for keyword in valid_keywords: logger.debug(f"开始以关键词 '{keyword}' 为中心进行扩散检索 (最大深度: {max_depth}):") # 初始化激活值 - activation_values = {keyword: 1.0} + activation_values = {keyword: 1.5} # 记录已访问的节点 visited_nodes = {keyword} # 待处理的节点队列,每个元素是(节点, 激活值, 当前深度) @@ -1315,6 +1312,7 @@ class ParahippocampalGyrus: return compressed_memory, similar_topics_dict async def operation_build_memory(self): + # sourcery skip: merge-list-appends-into-extend logger.info("------------------------------------开始构建记忆--------------------------------------") start_time = time.time() memory_samples = self.hippocampus.entorhinal_cortex.get_memory_sample() diff --git a/src/chat/replyer/default_generator.py b/src/chat/replyer/default_generator.py index 6b1475ee7..24ee95e35 100644 --- a/src/chat/replyer/default_generator.py +++ b/src/chat/replyer/default_generator.py @@ -17,7 +17,11 @@ from src.chat.message_receive.uni_message_sender import HeartFCSender from src.chat.utils.timer_calculator import Timer # <--- Import Timer from src.chat.utils.utils import get_chat_type_and_target_info from src.chat.utils.prompt_builder import Prompt, global_prompt_manager -from src.chat.utils.chat_message_builder import build_readable_messages, get_raw_msg_before_timestamp_with_chat +from src.chat.utils.chat_message_builder import ( + build_readable_messages, + get_raw_msg_before_timestamp_with_chat, + replace_user_references_sync, +) from src.chat.express.expression_selector import expression_selector from src.chat.knowledge.knowledge_lib import qa_manager from src.chat.memory_system.memory_activator import MemoryActivator @@ -30,6 +34,7 @@ from src.plugin_system.base.component_types import ActionInfo logger = get_logger("replyer") + def init_prompt(): Prompt("你正在qq群里聊天,下面是群里在聊的内容:", "chat_target_group1") Prompt("你正在和{sender_name}聊天,这是你们之前聊的内容:", "chat_target_private1") @@ -356,17 +361,20 @@ class DefaultReplyer: expression_habits_block = "" expression_habits_title = "" if style_habits_str.strip(): - expression_habits_title = "你可以参考以下的语言习惯,当情景合适就使用,但不要生硬使用,以合理的方式结合到你的回复中:" + expression_habits_title = ( + "你可以参考以下的语言习惯,当情景合适就使用,但不要生硬使用,以合理的方式结合到你的回复中:" + ) expression_habits_block += f"{style_habits_str}\n" if grammar_habits_str.strip(): - expression_habits_title = "你可以选择下面的句法进行回复,如果情景合适就使用,不要盲目使用,不要生硬使用,以合理的方式使用:" + expression_habits_title = ( + "你可以选择下面的句法进行回复,如果情景合适就使用,不要盲目使用,不要生硬使用,以合理的方式使用:" + ) expression_habits_block += f"{grammar_habits_str}\n" - + if style_habits_str.strip() and grammar_habits_str.strip(): expression_habits_title = "你可以参考以下的语言习惯和句法,如果情景合适就使用,不要盲目使用,不要生硬使用,以合理的方式结合到你的回复中:" - + expression_habits_block = f"{expression_habits_title}\n{expression_habits_block}" - return expression_habits_block @@ -375,27 +383,27 @@ class DefaultReplyer: return "" instant_memory = None - + running_memories = await self.memory_activator.activate_memory_with_chat_history( target_message=target, chat_history_prompt=chat_history ) - + if global_config.memory.enable_instant_memory: asyncio.create_task(self.instant_memory.create_and_store_memory(chat_history)) instant_memory = await self.instant_memory.get_memory(target) logger.info(f"即时记忆:{instant_memory}") - + if not running_memories: return "" memory_str = "以下是当前在聊天中,你回忆起的记忆:\n" for running_memory in running_memories: memory_str += f"- {running_memory['content']}\n" - + if instant_memory: memory_str += f"- {instant_memory}\n" - + return memory_str async def build_tool_info(self, chat_history, reply_data: Optional[Dict], enable_tool: bool = True): @@ -438,7 +446,7 @@ class DefaultReplyer: tool_info_str += "以上是你获取到的实时信息,请在回复时参考这些信息。" logger.info(f"获取到 {len(tool_results)} 个工具结果") - + return tool_info_str else: logger.debug("未获取到任何工具结果") @@ -469,7 +477,7 @@ class DefaultReplyer: # 添加None检查,防止NoneType错误 if target is None: return keywords_reaction_prompt - + # 处理关键词规则 for rule in global_config.keyword_reaction.keyword_rules: if any(keyword in target for keyword in rule.keywords): @@ -621,7 +629,7 @@ class DefaultReplyer: is_group_chat = bool(chat_stream.group_info) reply_to = reply_data.get("reply_to", "none") extra_info_block = reply_data.get("extra_info", "") or reply_data.get("extra_info_block", "") - + if global_config.mood.enable_mood: chat_mood = mood_manager.get_mood_by_chat_id(chat_id) mood_prompt = chat_mood.mood_state @@ -630,6 +638,8 @@ class DefaultReplyer: sender, target = self._parse_reply_target(reply_to) + target = replace_user_references_sync(target, chat_stream.platform, replace_bot_name=True) + # 构建action描述 (如果启用planner) action_descriptions = "" if available_actions: @@ -679,25 +689,21 @@ class DefaultReplyer: self._time_and_run_task( self.build_expression_habits(chat_talking_prompt_short, target), "expression_habits" ), - self._time_and_run_task( - self.build_relation_info(reply_data), "relation_info" - ), + self._time_and_run_task(self.build_relation_info(reply_data), "relation_info"), self._time_and_run_task(self.build_memory_block(chat_talking_prompt_short, target), "memory_block"), self._time_and_run_task( self.build_tool_info(chat_talking_prompt_short, reply_data, enable_tool=enable_tool), "tool_info" ), - self._time_and_run_task( - get_prompt_info(target, threshold=0.38), "prompt_info" - ), + self._time_and_run_task(get_prompt_info(target, threshold=0.38), "prompt_info"), ) # 任务名称中英文映射 task_name_mapping = { "expression_habits": "选取表达方式", - "relation_info": "感受关系", + "relation_info": "感受关系", "memory_block": "回忆", "tool_info": "使用工具", - "prompt_info": "获取知识" + "prompt_info": "获取知识", } # 处理结果 @@ -790,7 +796,7 @@ class DefaultReplyer: core_dialogue_prompt, background_dialogue_prompt = self.build_s4u_chat_history_prompts( message_list_before_now_long, target_user_id ) - + self.build_mai_think_context( chat_id=chat_id, memory_block=memory_block, @@ -807,9 +813,8 @@ class DefaultReplyer: -------------------------------- {time_block} 这是你和{sender}的对话,你们正在交流中: -{core_dialogue_prompt}""" +{core_dialogue_prompt}""", ) - # 使用 s4u 风格的模板 template_name = "s4u_style_prompt" @@ -847,9 +852,9 @@ class DefaultReplyer: identity_block=identity_block, sender=sender, target=target, - chat_info=chat_talking_prompt + chat_info=chat_talking_prompt, ) - + # 使用原有的模式 return await global_prompt_manager.format_prompt( template_name, @@ -1071,9 +1076,11 @@ async def get_prompt_info(message: str, threshold: float): related_info += found_knowledge_from_lpmm logger.debug(f"获取知识库内容耗时: {(end_time - start_time):.3f}秒") logger.debug(f"获取知识库内容,相关信息:{related_info[:100]}...,信息长度: {len(related_info)}") - + # 格式化知识信息 - formatted_prompt_info = await global_prompt_manager.format_prompt("knowledge_prompt", prompt_info=related_info) + formatted_prompt_info = await global_prompt_manager.format_prompt( + "knowledge_prompt", prompt_info=related_info + ) return formatted_prompt_info else: logger.debug("从LPMM知识库获取知识失败,可能是从未导入过知识,返回空知识...") diff --git a/src/chat/utils/chat_message_builder.py b/src/chat/utils/chat_message_builder.py index 3a08ca72b..a4edf33d3 100644 --- a/src/chat/utils/chat_message_builder.py +++ b/src/chat/utils/chat_message_builder.py @@ -2,7 +2,7 @@ import time # 导入 time 模块以获取当前时间 import random import re -from typing import List, Dict, Any, Tuple, Optional +from typing import List, Dict, Any, Tuple, Optional, Callable from rich.traceback import install from src.config.config import global_config @@ -10,11 +10,161 @@ from src.common.message_repository import find_messages, count_messages from src.common.database.database_model import ActionRecords from src.common.database.database_model import Images from src.person_info.person_info import PersonInfoManager, get_person_info_manager -from src.chat.utils.utils import translate_timestamp_to_human_readable,assign_message_ids +from src.chat.utils.utils import translate_timestamp_to_human_readable, assign_message_ids install(extra_lines=3) +def replace_user_references_sync( + content: str, + platform: str, + name_resolver: Optional[Callable[[str, str], str]] = None, + replace_bot_name: bool = True, +) -> str: + """ + 替换内容中的用户引用格式,包括回复和@格式 + + Args: + content: 要处理的内容字符串 + platform: 平台标识 + name_resolver: 名称解析函数,接收(platform, user_id)参数,返回用户名称 + 如果为None,则使用默认的person_info_manager + replace_bot_name: 是否将机器人的user_id替换为"机器人昵称(你)" + + Returns: + str: 处理后的内容字符串 + """ + if name_resolver is None: + person_info_manager = get_person_info_manager() + + def default_resolver(platform: str, user_id: str) -> str: + # 检查是否是机器人自己 + if replace_bot_name and user_id == global_config.bot.qq_account: + return f"{global_config.bot.nickname}(你)" + person_id = PersonInfoManager.get_person_id(platform, user_id) + return person_info_manager.get_value_sync(person_id, "person_name") or user_id # type: ignore + + name_resolver = default_resolver + + # 处理回复格式 + reply_pattern = r"回复<([^:<>]+):([^:<>]+)>" + match = re.search(reply_pattern, content) + if match: + aaa = match[1] + bbb = match[2] + try: + # 检查是否是机器人自己 + if replace_bot_name and bbb == global_config.bot.qq_account: + reply_person_name = f"{global_config.bot.nickname}(你)" + else: + reply_person_name = name_resolver(platform, bbb) or aaa + content = re.sub(reply_pattern, f"回复 {reply_person_name}", content, count=1) + except Exception: + # 如果解析失败,使用原始昵称 + content = re.sub(reply_pattern, f"回复 {aaa}", content, count=1) + + # 处理@格式 + at_pattern = r"@<([^:<>]+):([^:<>]+)>" + at_matches = list(re.finditer(at_pattern, content)) + if at_matches: + new_content = "" + last_end = 0 + for m in at_matches: + new_content += content[last_end : m.start()] + aaa = m.group(1) + bbb = m.group(2) + try: + # 检查是否是机器人自己 + if replace_bot_name and bbb == global_config.bot.qq_account: + at_person_name = f"{global_config.bot.nickname}(你)" + else: + at_person_name = name_resolver(platform, bbb) or aaa + new_content += f"@{at_person_name}" + except Exception: + # 如果解析失败,使用原始昵称 + new_content += f"@{aaa}" + last_end = m.end() + new_content += content[last_end:] + content = new_content + + return content + + +async def replace_user_references_async( + content: str, + platform: str, + name_resolver: Optional[Callable[[str, str], Any]] = None, + replace_bot_name: bool = True, +) -> str: + """ + 替换内容中的用户引用格式,包括回复和@格式 + + Args: + content: 要处理的内容字符串 + platform: 平台标识 + name_resolver: 名称解析函数,接收(platform, user_id)参数,返回用户名称 + 如果为None,则使用默认的person_info_manager + replace_bot_name: 是否将机器人的user_id替换为"机器人昵称(你)" + + Returns: + str: 处理后的内容字符串 + """ + if name_resolver is None: + person_info_manager = get_person_info_manager() + + async def default_resolver(platform: str, user_id: str) -> str: + # 检查是否是机器人自己 + if replace_bot_name and user_id == global_config.bot.qq_account: + return f"{global_config.bot.nickname}(你)" + person_id = PersonInfoManager.get_person_id(platform, user_id) + return await person_info_manager.get_value(person_id, "person_name") or user_id # type: ignore + + name_resolver = default_resolver + + # 处理回复格式 + reply_pattern = r"回复<([^:<>]+):([^:<>]+)>" + match = re.search(reply_pattern, content) + if match: + aaa = match.group(1) + bbb = match.group(2) + try: + # 检查是否是机器人自己 + if replace_bot_name and bbb == global_config.bot.qq_account: + reply_person_name = f"{global_config.bot.nickname}(你)" + else: + reply_person_name = await name_resolver(platform, bbb) or aaa + content = re.sub(reply_pattern, f"回复 {reply_person_name}", content, count=1) + except Exception: + # 如果解析失败,使用原始昵称 + content = re.sub(reply_pattern, f"回复 {aaa}", content, count=1) + + # 处理@格式 + at_pattern = r"@<([^:<>]+):([^:<>]+)>" + at_matches = list(re.finditer(at_pattern, content)) + if at_matches: + new_content = "" + last_end = 0 + for m in at_matches: + new_content += content[last_end : m.start()] + aaa = m.group(1) + bbb = m.group(2) + try: + # 检查是否是机器人自己 + if replace_bot_name and bbb == global_config.bot.qq_account: + at_person_name = f"{global_config.bot.nickname}(你)" + else: + at_person_name = await name_resolver(platform, bbb) or aaa + new_content += f"@{at_person_name}" + except Exception: + # 如果解析失败,使用原始昵称 + new_content += f"@{aaa}" + last_end = m.end() + new_content += content[last_end:] + content = new_content + + return content + + def get_raw_msg_by_timestamp( timestamp_start: float, timestamp_end: float, limit: int = 0, limit_mode: str = "latest" ) -> List[Dict[str, Any]]: @@ -374,33 +524,8 @@ def _build_readable_messages_internal( else: person_name = "某人" - # 检查是否有 回复 字段 - reply_pattern = r"回复<([^:<>]+):([^:<>]+)>" - match = re.search(reply_pattern, content) - if match: - aaa: str = match[1] - bbb: str = match[2] - reply_person_id = PersonInfoManager.get_person_id(platform, bbb) - reply_person_name = person_info_manager.get_value_sync(reply_person_id, "person_name") or aaa - # 在内容前加上回复信息 - content = re.sub(reply_pattern, lambda m, name=reply_person_name: f"回复 {name}", content, count=1) - - # 检查是否有 @ 字段 @<{member_info.get('nickname')}:{member_info.get('user_id')}> - at_pattern = r"@<([^:<>]+):([^:<>]+)>" - at_matches = list(re.finditer(at_pattern, content)) - if at_matches: - new_content = "" - last_end = 0 - for m in at_matches: - new_content += content[last_end : m.start()] - aaa = m.group(1) - bbb = m.group(2) - at_person_id = PersonInfoManager.get_person_id(platform, bbb) - at_person_name = person_info_manager.get_value_sync(at_person_id, "person_name") or aaa - new_content += f"@{at_person_name}" - last_end = m.end() - new_content += content[last_end:] - content = new_content + # 使用独立函数处理用户引用格式 + content = replace_user_references_sync(content, platform, replace_bot_name=replace_bot_name) target_str = "这是QQ的一个功能,用于提及某人,但没那么明显" if target_str in content and random.random() < 0.6: @@ -654,6 +779,7 @@ async def build_readable_messages_with_list( return formatted_string, details_list + def build_readable_messages_with_id( messages: List[Dict[str, Any]], replace_bot_name: bool = True, @@ -669,9 +795,9 @@ def build_readable_messages_with_id( 允许通过参数控制格式化行为。 """ message_id_list = assign_message_ids(messages) - + formatted_string = build_readable_messages( - messages = messages, + messages=messages, replace_bot_name=replace_bot_name, merge_messages=merge_messages, timestamp_mode=timestamp_mode, @@ -682,10 +808,7 @@ def build_readable_messages_with_id( message_id_list=message_id_list, ) - - - - return formatted_string , message_id_list + return formatted_string, message_id_list def build_readable_messages( @@ -770,7 +893,13 @@ def build_readable_messages( if read_mark <= 0: # 没有有效的 read_mark,直接格式化所有消息 formatted_string, _, pic_id_mapping, _ = _build_readable_messages_internal( - copy_messages, replace_bot_name, merge_messages, timestamp_mode, truncate, show_pic=show_pic, message_id_list=message_id_list + copy_messages, + replace_bot_name, + merge_messages, + timestamp_mode, + truncate, + show_pic=show_pic, + message_id_list=message_id_list, ) # 生成图片映射信息并添加到最前面 @@ -893,7 +1022,7 @@ async def build_anonymous_messages(messages: List[Dict[str, Any]]) -> str: for msg in messages: try: - platform = msg.get("chat_info_platform") + platform: str = msg.get("chat_info_platform") # type: ignore user_id = msg.get("user_id") _timestamp = msg.get("time") content: str = "" @@ -916,38 +1045,14 @@ async def build_anonymous_messages(messages: List[Dict[str, Any]]) -> str: anon_name = get_anon_name(platform, user_id) # print(f"anon_name:{anon_name}") - # 处理 回复 - reply_pattern = r"回复<([^:<>]+):([^:<>]+)>" - match = re.search(reply_pattern, content) - if match: - # print(f"发现回复match:{match}") - bbb = match.group(2) + # 使用独立函数处理用户引用格式,传入自定义的匿名名称解析器 + def anon_name_resolver(platform: str, user_id: str) -> str: try: - anon_reply = get_anon_name(platform, bbb) - # print(f"anon_reply:{anon_reply}") + return get_anon_name(platform, user_id) except Exception: - anon_reply = "?" - content = re.sub(reply_pattern, f"回复 {anon_reply}", content, count=1) + return "?" - # 处理 @,无嵌套def - at_pattern = r"@<([^:<>]+):([^:<>]+)>" - at_matches = list(re.finditer(at_pattern, content)) - if at_matches: - # print(f"发现@match:{at_matches}") - new_content = "" - last_end = 0 - for m in at_matches: - new_content += content[last_end : m.start()] - bbb = m.group(2) - try: - anon_at = get_anon_name(platform, bbb) - # print(f"anon_at:{anon_at}") - except Exception: - anon_at = "?" - new_content += f"@{anon_at}" - last_end = m.end() - new_content += content[last_end:] - content = new_content + content = replace_user_references_sync(content, platform, anon_name_resolver, replace_bot_name=False) header = f"{anon_name}说 " output_lines.append(header) diff --git a/src/chat/utils/utils_image.py b/src/chat/utils/utils_image.py index 858d95aa3..7f14aa6d4 100644 --- a/src/chat/utils/utils_image.py +++ b/src/chat/utils/utils_image.py @@ -37,7 +37,7 @@ class ImageManager: self._ensure_image_dir() self._initialized = True - self._llm = LLMRequest(model=global_config.model.vlm, temperature=0.4, max_tokens=300, request_type="image") + self.vlm = LLMRequest(model=global_config.model.vlm, temperature=0.4, max_tokens=300, request_type="image") try: db.connect(reuse_if_open=True) @@ -94,7 +94,7 @@ class ImageManager: logger.error(f"保存描述到数据库失败 (Peewee): {str(e)}") async def get_emoji_description(self, image_base64: str) -> str: - """获取表情包描述,使用二步走识别并带缓存优化""" + """获取表情包描述,优先使用Emoji表中的缓存数据""" try: # 计算图片哈希 # 确保base64字符串只包含ASCII字符 @@ -104,9 +104,21 @@ class ImageManager: image_hash = hashlib.md5(image_bytes).hexdigest() image_format = Image.open(io.BytesIO(image_bytes)).format.lower() # type: ignore - # 查询缓存的描述 + # 优先使用EmojiManager查询已注册表情包的描述 + try: + from src.chat.emoji_system.emoji_manager import get_emoji_manager + emoji_manager = get_emoji_manager() + cached_emoji_description = await emoji_manager.get_emoji_description_by_hash(image_hash) + if cached_emoji_description: + logger.info(f"[缓存命中] 使用已注册表情包描述: {cached_emoji_description[:50]}...") + return cached_emoji_description + except Exception as e: + logger.debug(f"查询EmojiManager时出错: {e}") + + # 查询ImageDescriptions表的缓存描述 cached_description = self._get_description_from_db(image_hash, "emoji") if cached_description: + logger.info(f"[缓存命中] 使用ImageDescriptions表中的描述: {cached_description[:50]}...") return f"[表情包:{cached_description}]" # === 二步走识别流程 === @@ -118,10 +130,10 @@ class ImageManager: logger.warning("GIF转换失败,无法获取描述") return "[表情包(GIF处理失败)]" vlm_prompt = "这是一个动态图表情包,每一张图代表了动态图的某一帧,黑色背景代表透明,描述一下表情包表达的情感和内容,描述细节,从互联网梗,meme的角度去分析" - detailed_description, _ = await self._llm.generate_response_for_image(vlm_prompt, image_base64_processed, "jpg") + detailed_description, _ = await self.vlm.generate_response_for_image(vlm_prompt, image_base64_processed, "jpg") else: vlm_prompt = "这是一个表情包,请详细描述一下表情包所表达的情感和内容,描述细节,从互联网梗,meme的角度去分析" - detailed_description, _ = await self._llm.generate_response_for_image(vlm_prompt, image_base64, image_format) + detailed_description, _ = await self.vlm.generate_response_for_image(vlm_prompt, image_base64, image_format) if detailed_description is None: logger.warning("VLM未能生成表情包详细描述") @@ -158,7 +170,7 @@ class ImageManager: if len(emotions) > 1 and emotions[1] != emotions[0]: final_emotion = f"{emotions[0]},{emotions[1]}" - logger.info(f"[二步走识别] 详细描述: {detailed_description[:50]}... -> 情感标签: {final_emotion}") + logger.info(f"[emoji识别] 详细描述: {detailed_description[:50]}... -> 情感标签: {final_emotion}") # 再次检查缓存,防止并发写入时重复生成 cached_description = self._get_description_from_db(image_hash, "emoji") @@ -201,13 +213,13 @@ class ImageManager: self._save_description_to_db(image_hash, final_emotion, "emoji") return f"[表情包:{final_emotion}]" - + except Exception as e: logger.error(f"获取表情包描述失败: {str(e)}") - return "[表情包]" + return "[表情包(处理失败)]" async def get_image_description(self, image_base64: str) -> str: - """获取普通图片描述,带查重和保存功能""" + """获取普通图片描述,优先使用Images表中的缓存数据""" try: # 计算图片哈希 if isinstance(image_base64, str): @@ -215,7 +227,7 @@ class ImageManager: image_bytes = base64.b64decode(image_base64) image_hash = hashlib.md5(image_bytes).hexdigest() - # 检查图片是否已存在 + # 优先检查Images表中是否已有完整的描述 existing_image = Images.get_or_none(Images.emoji_hash == image_hash) if existing_image: # 更新计数 @@ -227,18 +239,20 @@ class ImageManager: # 如果已有描述,直接返回 if existing_image.description: + logger.debug(f"[缓存命中] 使用Images表中的图片描述: {existing_image.description[:50]}...") return f"[图片:{existing_image.description}]" - # 查询缓存的描述 + # 查询ImageDescriptions表的缓存描述 cached_description = self._get_description_from_db(image_hash, "image") if cached_description: - logger.debug(f"图片描述缓存中 {cached_description}") + logger.debug(f"[缓存命中] 使用ImageDescriptions表中的描述: {cached_description[:50]}...") return f"[图片:{cached_description}]" # 调用AI获取描述 image_format = Image.open(io.BytesIO(image_bytes)).format.lower() # type: ignore prompt = global_config.custom_prompt.image_prompt - description, _ = await self._llm.generate_response_for_image(prompt, image_base64, image_format) + logger.info(f"[VLM调用] 为图片生成新描述 (Hash: {image_hash[:8]}...)") + description, _ = await self.vlm.generate_response_for_image(prompt, image_base64, image_format) if description is None: logger.warning("AI未能生成图片描述") @@ -266,6 +280,7 @@ class ImageManager: if not hasattr(existing_image, "vlm_processed") or existing_image.vlm_processed is None: existing_image.vlm_processed = True existing_image.save() + logger.debug(f"[数据库] 更新已有图片记录: {image_hash[:8]}...") else: Images.create( image_id=str(uuid.uuid4()), @@ -277,16 +292,18 @@ class ImageManager: vlm_processed=True, count=1, ) + logger.debug(f"[数据库] 创建新图片记录: {image_hash[:8]}...") except Exception as e: logger.error(f"保存图片文件或元数据失败: {str(e)}") - # 保存描述到ImageDescriptions表 + # 保存描述到ImageDescriptions表作为备用缓存 self._save_description_to_db(image_hash, description, "image") + logger.info(f"[VLM完成] 图片描述生成: {description[:50]}...") return f"[图片:{description}]" except Exception as e: logger.error(f"获取图片描述失败: {str(e)}") - return "[图片]" + return "[图片(处理失败)]" @staticmethod def transform_gif(gif_base64: str, similarity_threshold: float = 1000.0, max_frames: int = 15) -> Optional[str]: @@ -502,12 +519,28 @@ class ImageManager: image_bytes = base64.b64decode(image_base64) image_hash = hashlib.md5(image_bytes).hexdigest() - # 先检查缓存的描述 + # 获取当前图片记录 + image = Images.get(Images.image_id == image_id) + + # 优先检查是否已有其他相同哈希的图片记录包含描述 + existing_with_description = Images.get_or_none( + (Images.emoji_hash == image_hash) & + (Images.description.is_null(False)) & + (Images.description != "") + ) + if existing_with_description and existing_with_description.id != image.id: + logger.debug(f"[缓存复用] 从其他相同图片记录复用描述: {existing_with_description.description[:50]}...") + image.description = existing_with_description.description + image.vlm_processed = True + image.save() + # 同时保存到ImageDescriptions表作为备用缓存 + self._save_description_to_db(image_hash, existing_with_description.description, "image") + return + + # 检查ImageDescriptions表的缓存描述 cached_description = self._get_description_from_db(image_hash, "image") if cached_description: - logger.debug(f"VLM处理时发现缓存描述: {cached_description}") - # 更新数据库 - image = Images.get(Images.image_id == image_id) + logger.debug(f"[缓存复用] 从ImageDescriptions表复用描述: {cached_description[:50]}...") image.description = cached_description image.vlm_processed = True image.save() @@ -520,7 +553,8 @@ class ImageManager: prompt = global_config.custom_prompt.image_prompt # 获取VLM描述 - description, _ = await self._llm.generate_response_for_image(prompt, image_base64, image_format) + logger.info(f"[VLM异步调用] 为图片生成描述 (ID: {image_id}, Hash: {image_hash[:8]}...)") + description, _ = await self.vlm.generate_response_for_image(prompt, image_base64, image_format) if description is None: logger.warning("VLM未能生成图片描述") @@ -533,14 +567,15 @@ class ImageManager: description = cached_description # 更新数据库 - image = Images.get(Images.image_id == image_id) image.description = description image.vlm_processed = True image.save() - # 保存描述到ImageDescriptions表 + # 保存描述到ImageDescriptions表作为备用缓存 self._save_description_to_db(image_hash, description, "image") + logger.info(f"[VLM异步完成] 图片描述生成: {description[:50]}...") + except Exception as e: logger.error(f"VLM处理图片失败: {str(e)}") diff --git a/src/chat/willing/mode_classical.py b/src/chat/willing/mode_classical.py index 57400c44d..4ffbbcea8 100644 --- a/src/chat/willing/mode_classical.py +++ b/src/chat/willing/mode_classical.py @@ -28,7 +28,7 @@ class ClassicalWillingManager(BaseWillingManager): # print(f"[{chat_id}] 回复意愿: {current_willing}") - interested_rate = willing_info.interested_rate * global_config.normal_chat.response_interested_rate_amplifier + interested_rate = willing_info.interested_rate # print(f"[{chat_id}] 兴趣值: {interested_rate}") @@ -36,20 +36,18 @@ class ClassicalWillingManager(BaseWillingManager): current_willing += interested_rate - 0.2 if willing_info.is_mentioned_bot and global_config.chat.mentioned_bot_inevitable_reply and current_willing < 2: - current_willing += 1 if current_willing < 1.0 else 0.05 + current_willing += 1 if current_willing < 1.0 else 0.2 self.chat_reply_willing[chat_id] = min(current_willing, 1.0) - reply_probability = min(max((current_willing - 0.5), 0.01) * 2, 1) + reply_probability = min(max((current_willing - 0.5), 0.01) * 2, 1.5) # print(f"[{chat_id}] 回复概率: {reply_probability}") return reply_probability async def before_generate_reply_handle(self, message_id): - chat_id = self.ongoing_messages[message_id].chat_id - current_willing = self.chat_reply_willing.get(chat_id, 0) - self.chat_reply_willing[chat_id] = max(0.0, current_willing - 1.8) + pass async def after_generate_reply_handle(self, message_id): if message_id not in self.ongoing_messages: @@ -58,7 +56,7 @@ class ClassicalWillingManager(BaseWillingManager): chat_id = self.ongoing_messages[message_id].chat_id current_willing = self.chat_reply_willing.get(chat_id, 0) if current_willing < 1: - self.chat_reply_willing[chat_id] = min(1.0, current_willing + 0.4) + self.chat_reply_willing[chat_id] = min(1.0, current_willing + 0.3) async def not_reply_handle(self, message_id): return await super().not_reply_handle(message_id) diff --git a/src/config/auto_update.py b/src/config/auto_update.py index 8d097ec49..e6471e808 100644 --- a/src/config/auto_update.py +++ b/src/config/auto_update.py @@ -36,7 +36,7 @@ def compare_dicts(new, old, path=None, new_comments=None, old_comments=None, log continue if key not in old: comment = get_key_comment(new, key) - logs.append(f"新增: {'.'.join(path + [str(key)])} 注释: {comment if comment else '无'}") + logs.append(f"新增: {'.'.join(path + [str(key)])} 注释: {comment or '无'}") elif isinstance(new[key], (dict, Table)) and isinstance(old.get(key), (dict, Table)): compare_dicts(new[key], old[key], path + [str(key)], new_comments, old_comments, logs) # 删减项 @@ -45,7 +45,7 @@ def compare_dicts(new, old, path=None, new_comments=None, old_comments=None, log continue if key not in new: comment = get_key_comment(old, key) - logs.append(f"删减: {'.'.join(path + [str(key)])} 注释: {comment if comment else '无'}") + logs.append(f"删减: {'.'.join(path + [str(key)])} 注释: {comment or '无'}") return logs diff --git a/src/config/official_configs.py b/src/config/official_configs.py index 82284d9b3..73310f769 100644 --- a/src/config/official_configs.py +++ b/src/config/official_configs.py @@ -68,6 +68,8 @@ class ChatConfig(ConfigBase): max_context_size: int = 18 """上下文长度""" + + willing_amplifier: float = 1.0 replyer_random_probability: float = 0.5 """ @@ -273,12 +275,6 @@ class NormalChatConfig(ConfigBase): willing_mode: str = "classical" """意愿模式""" - response_interested_rate_amplifier: float = 1.0 - """回复兴趣度放大系数""" - - - - @dataclass class ExpressionConfig(ConfigBase): """表达配置类""" diff --git a/src/individuality/individuality.py b/src/individuality/individuality.py index fc7156e14..4c8fcac50 100644 --- a/src/individuality/individuality.py +++ b/src/individuality/individuality.py @@ -273,15 +273,19 @@ class Individuality: prompt=prompt, ) - if response.strip(): + if response and response.strip(): personality_parts.append(response.strip()) logger.info(f"精简人格侧面: {response.strip()}") else: logger.error(f"使用LLM压缩人设时出错: {response}") + # 压缩失败时使用原始内容 + if personality_side: + personality_parts.append(personality_side) + if personality_parts: personality_result = "。".join(personality_parts) else: - personality_result = personality_core + personality_result = personality_core or "友好活泼" else: personality_result = personality_core if personality_side: @@ -308,13 +312,14 @@ class Individuality: prompt=prompt, ) - if response.strip(): + if response and response.strip(): identity_result = response.strip() logger.info(f"精简身份: {identity_result}") else: logger.error(f"使用LLM压缩身份时出错: {response}") + identity_result = identity else: - identity_result = "。".join(identity) + identity_result = identity return identity_result diff --git a/src/mais4u/mais4u_chat/s4u_msg_processor.py b/src/mais4u/mais4u_chat/s4u_msg_processor.py index cbc7d3fac..c5ad9ca1f 100644 --- a/src/mais4u/mais4u_chat/s4u_msg_processor.py +++ b/src/mais4u/mais4u_chat/s4u_msg_processor.py @@ -47,11 +47,35 @@ async def _calculate_interest(message: MessageRecv) -> Tuple[float, bool]: logger.debug(f"记忆激活率: {interested_rate:.2f}") text_len = len(message.processed_plain_text) - # 根据文本长度调整兴趣度,长度越大兴趣度越高,但增长率递减,最低0.01,最高0.05 - # 采用对数函数实现递减增长 - - base_interest = 0.01 + (0.05 - 0.01) * (math.log10(text_len + 1) / math.log10(1000 + 1)) - base_interest = min(max(base_interest, 0.01), 0.05) + # 根据文本长度分布调整兴趣度,采用分段函数实现更精确的兴趣度计算 + # 基于实际分布:0-5字符(26.57%), 6-10字符(27.18%), 11-20字符(22.76%), 21-30字符(10.33%), 31+字符(13.86%) + + if text_len == 0: + base_interest = 0.01 # 空消息最低兴趣度 + elif text_len <= 5: + # 1-5字符:线性增长 0.01 -> 0.03 + base_interest = 0.01 + (text_len - 1) * (0.03 - 0.01) / 4 + elif text_len <= 10: + # 6-10字符:线性增长 0.03 -> 0.06 + base_interest = 0.03 + (text_len - 5) * (0.06 - 0.03) / 5 + elif text_len <= 20: + # 11-20字符:线性增长 0.06 -> 0.12 + base_interest = 0.06 + (text_len - 10) * (0.12 - 0.06) / 10 + elif text_len <= 30: + # 21-30字符:线性增长 0.12 -> 0.18 + base_interest = 0.12 + (text_len - 20) * (0.18 - 0.12) / 10 + elif text_len <= 50: + # 31-50字符:线性增长 0.18 -> 0.22 + base_interest = 0.18 + (text_len - 30) * (0.22 - 0.18) / 20 + elif text_len <= 100: + # 51-100字符:线性增长 0.22 -> 0.26 + base_interest = 0.22 + (text_len - 50) * (0.26 - 0.22) / 50 + else: + # 100+字符:对数增长 0.26 -> 0.3,增长率递减 + base_interest = 0.26 + (0.3 - 0.26) * (math.log10(text_len - 99) / math.log10(901)) # 1000-99=901 + + # 确保在范围内 + base_interest = min(max(base_interest, 0.01), 0.3) interested_rate += base_interest diff --git a/src/mood/mood_manager.py b/src/mood/mood_manager.py index 38ed39bcc..eae0ea713 100644 --- a/src/mood/mood_manager.py +++ b/src/mood/mood_manager.py @@ -78,7 +78,7 @@ class ChatMood: if interested_rate <= 0: interest_multiplier = 0 else: - interest_multiplier = 3 * math.pow(interested_rate, 0.25) + interest_multiplier = 2 * math.pow(interested_rate, 0.25) logger.debug( f"base_probability: {base_probability}, time_multiplier: {time_multiplier}, interest_multiplier: {interest_multiplier}" diff --git a/src/person_info/relationship_manager.py b/src/person_info/relationship_manager.py index 01cc89e9a..6c2693572 100644 --- a/src/person_info/relationship_manager.py +++ b/src/person_info/relationship_manager.py @@ -139,7 +139,7 @@ class RelationshipManager: 请用json格式输出,引起了你的兴趣,或者有什么需要你记忆的点。 并为每个点赋予1-10的权重,权重越高,表示越重要。 格式如下: -{{ +[ {{ "point": "{person_name}想让我记住他的生日,我回答确认了,他的生日是11月23日", "weight": 10 @@ -156,13 +156,10 @@ class RelationshipManager: "point": "{person_name}喜欢吃辣,具体来说,没有辣的食物ta都不喜欢吃,可能是因为ta是湖南人。", "weight": 7 }} -}} +] -如果没有,就输出none,或points为空: -{{ - "point": "none", - "weight": 0 -}} +如果没有,就输出none,或返回空数组: +[] """ # 调用LLM生成印象 @@ -184,17 +181,25 @@ class RelationshipManager: try: points = repair_json(points) points_data = json.loads(points) - if points_data == "none" or not points_data or points_data.get("point") == "none": + + # 只处理正确的格式,错误格式直接跳过 + if points_data == "none" or not points_data: points_list = [] + elif isinstance(points_data, str) and points_data.lower() == "none": + points_list = [] + elif isinstance(points_data, list): + # 正确格式:数组格式 [{"point": "...", "weight": 10}, ...] + if not points_data: # 空数组 + points_list = [] + else: + points_list = [(item["point"], float(item["weight"]), current_time) for item in points_data] else: - # logger.info(f"points_data: {points_data}") - if isinstance(points_data, dict) and "points" in points_data: - points_data = points_data["points"] - if not isinstance(points_data, list): - points_data = [points_data] - # 添加可读时间到每个point - points_list = [(item["point"], float(item["weight"]), current_time) for item in points_data] + # 错误格式,直接跳过不解析 + logger.warning(f"LLM返回了错误的JSON格式,跳过解析: {type(points_data)}, 内容: {points_data}") + points_list = [] + # 权重过滤逻辑 + if points_list: original_points_list = list(points_list) points_list.clear() discarded_count = 0 diff --git a/src/plugin_system/apis/send_api.py b/src/plugin_system/apis/send_api.py index 352ccdb45..f7af02591 100644 --- a/src/plugin_system/apis/send_api.py +++ b/src/plugin_system/apis/send_api.py @@ -22,7 +22,6 @@ import traceback import time import difflib -import re from typing import Optional, Union from src.common.logger import get_logger @@ -30,7 +29,7 @@ from src.common.logger import get_logger from src.chat.message_receive.chat_stream import get_chat_manager from src.chat.message_receive.uni_message_sender import HeartFCSender from src.chat.message_receive.message import MessageSending, MessageRecv -from src.chat.utils.chat_message_builder import get_raw_msg_before_timestamp_with_chat +from src.chat.utils.chat_message_builder import get_raw_msg_before_timestamp_with_chat, replace_user_references_async from src.person_info.person_info import get_person_info_manager from maim_message import Seg, UserInfo from src.config.config import global_config @@ -183,32 +182,8 @@ async def _find_reply_message(target_stream, reply_to: str) -> Optional[MessageR if person_name == sender: translate_text = message["processed_plain_text"] - # 检查是否有 回复 字段 - reply_pattern = r"回复<([^:<>]+):([^:<>]+)>" - if match := re.search(reply_pattern, translate_text): - aaa = match.group(1) - bbb = match.group(2) - reply_person_id = get_person_info_manager().get_person_id(platform, bbb) - reply_person_name = await get_person_info_manager().get_value(reply_person_id, "person_name") or aaa - # 在内容前加上回复信息 - translate_text = re.sub(reply_pattern, f"回复 {reply_person_name}", translate_text, count=1) - - # 检查是否有 @ 字段 - at_pattern = r"@<([^:<>]+):([^:<>]+)>" - at_matches = list(re.finditer(at_pattern, translate_text)) - if at_matches: - new_content = "" - last_end = 0 - for m in at_matches: - new_content += translate_text[last_end : m.start()] - aaa = m.group(1) - bbb = m.group(2) - at_person_id = get_person_info_manager().get_person_id(platform, bbb) - at_person_name = await get_person_info_manager().get_value(at_person_id, "person_name") or aaa - new_content += f"@{at_person_name}" - last_end = m.end() - new_content += translate_text[last_end:] - translate_text = new_content + # 使用独立函数处理用户引用格式 + translate_text = await replace_user_references_async(translate_text, platform) similarity = difflib.SequenceMatcher(None, text, translate_text).ratio() if similarity >= 0.9: diff --git a/src/plugins/built_in/core_actions/emoji.py b/src/plugins/built_in/core_actions/emoji.py index 4563b47f8..1c6b9c267 100644 --- a/src/plugins/built_in/core_actions/emoji.py +++ b/src/plugins/built_in/core_actions/emoji.py @@ -9,7 +9,8 @@ from src.common.logger import get_logger # 导入API模块 - 标准Python包方式 from src.plugin_system.apis import emoji_api, llm_api, message_api -from src.plugins.built_in.core_actions.no_reply import NoReplyAction +# 注释:不再需要导入NoReplyAction,因为计数器管理已移至heartFC_chat.py +# from src.plugins.built_in.core_actions.no_reply import NoReplyAction from src.config.config import global_config @@ -143,8 +144,8 @@ class EmojiAction(BaseAction): logger.error(f"{self.log_prefix} 表情包发送失败") return False, "表情包发送失败" - # 重置NoReplyAction的连续计数器 - NoReplyAction.reset_consecutive_count() + # 注释:重置NoReplyAction的连续计数器现在由heartFC_chat.py统一管理 + # NoReplyAction.reset_consecutive_count() return True, f"发送表情包: {emoji_description}" diff --git a/src/plugins/built_in/core_actions/no_reply.py b/src/plugins/built_in/core_actions/no_reply.py index e9fad9107..eb584a23a 100644 --- a/src/plugins/built_in/core_actions/no_reply.py +++ b/src/plugins/built_in/core_actions/no_reply.py @@ -1,6 +1,7 @@ import random import time -from typing import Tuple +from typing import Tuple, List +from collections import deque # 导入新插件系统 from src.plugin_system import BaseAction, ActionActivationType, ChatMode @@ -17,11 +18,15 @@ logger = get_logger("no_reply_action") class NoReplyAction(BaseAction): - """不回复动作,根据新消息的兴趣值或数量决定何时结束等待. + """不回复动作,支持waiting和breaking两种形式. - 新的等待逻辑: - 1. 新消息累计兴趣值超过阈值 (默认10) 则结束等待 - 2. 累计新消息数量达到随机阈值 (默认5-10条) 则结束等待 + waiting形式: + - 只要有新消息就结束动作 + - 记录新消息的兴趣度到列表(最多保留最近三项) + - 如果最近三次动作都是no_reply,且最近新消息列表兴趣度之和小于阈值,就进入breaking形式 + + breaking形式: + - 和原有逻辑一致,需要消息满足一定数量或累计一定兴趣值才结束动作 """ focus_activation_type = ActionActivationType.NEVER @@ -35,18 +40,21 @@ class NoReplyAction(BaseAction): # 连续no_reply计数器 _consecutive_count = 0 + + # 最近三次no_reply的新消息兴趣度记录 + _recent_interest_records: deque = deque(maxlen=3) - # 新增:兴趣值退出阈值 + # 兴趣值退出阈值 _interest_exit_threshold = 3.0 - # 新增:消息数量退出阈值 - _min_exit_message_count = 5 - _max_exit_message_count = 10 + # 消息数量退出阈值 + _min_exit_message_count = 3 + _max_exit_message_count = 6 # 动作参数定义 action_parameters = {} # 动作使用场景 - action_require = ["你发送了消息,目前无人回复"] + action_require = [""] # 关联类型 associated_types = [] @@ -56,91 +64,22 @@ class NoReplyAction(BaseAction): import asyncio try: - # 增加连续计数 - NoReplyAction._consecutive_count += 1 - count = NoReplyAction._consecutive_count - reason = self.action_data.get("reason", "") start_time = self.action_data.get("loop_start_time", time.time()) - check_interval = 0.6 # 每秒检查一次 + check_interval = 0.6 - # 随机生成本次等待需要的新消息数量阈值 - exit_message_count_threshold = random.randint(self._min_exit_message_count, self._max_exit_message_count) - logger.info( - f"{self.log_prefix} 本次no_reply需要 {exit_message_count_threshold} 条新消息或累计兴趣值超过 {self._interest_exit_threshold} 才能打断" - ) + # 判断使用哪种形式 + form_type = self._determine_form_type() + + logger.info(f"{self.log_prefix} 选择不回复(第{NoReplyAction._consecutive_count + 1}次),使用{form_type}形式,原因: {reason}") - logger.info(f"{self.log_prefix} 选择不回复(第{count}次),开始摸鱼,原因: {reason}") + # 增加连续计数(在确定要执行no_reply时才增加) + NoReplyAction._consecutive_count += 1 - # 进入等待状态 - while True: - current_time = time.time() - elapsed_time = current_time - start_time - - # 1. 检查新消息 - recent_messages_dict = message_api.get_messages_by_time_in_chat( - chat_id=self.chat_id, - start_time=start_time, - end_time=current_time, - filter_mai=True, - filter_command=True, - ) - new_message_count = len(recent_messages_dict) - - # 2. 检查消息数量是否达到阈值 - talk_frequency = global_config.chat.get_current_talk_frequency(self.chat_id) - if new_message_count >= exit_message_count_threshold / talk_frequency: - logger.info( - f"{self.log_prefix} 累计消息数量达到{new_message_count}条(>{exit_message_count_threshold / talk_frequency}),结束等待" - ) - exit_reason = f"{global_config.bot.nickname}(你)看到了{new_message_count}条新消息,可以考虑一下是否要进行回复" - await self.store_action_info( - action_build_into_prompt=False, - action_prompt_display=exit_reason, - action_done=True, - ) - return True, f"累计消息数量达到{new_message_count}条,结束等待 (等待时间: {elapsed_time:.1f}秒)" - - # 3. 检查累计兴趣值 - if new_message_count > 0: - accumulated_interest = 0.0 - for msg_dict in recent_messages_dict: - text = msg_dict.get("processed_plain_text", "") - interest_value = msg_dict.get("interest_value", 0.0) - if text: - accumulated_interest += interest_value - - talk_frequency = global_config.chat.get_current_talk_frequency(self.chat_id) - # 只在兴趣值变化时输出log - if not hasattr(self, "_last_accumulated_interest") or accumulated_interest != self._last_accumulated_interest: - logger.info(f"{self.log_prefix} 当前累计兴趣值: {accumulated_interest:.2f}, 当前聊天频率: {talk_frequency:.2f}") - self._last_accumulated_interest = accumulated_interest - - if accumulated_interest >= self._interest_exit_threshold / talk_frequency: - logger.info( - f"{self.log_prefix} 累计兴趣值达到{accumulated_interest:.2f}(>{self._interest_exit_threshold / talk_frequency}),结束等待" - ) - exit_reason = f"{global_config.bot.nickname}(你)感觉到了大家浓厚的兴趣(兴趣值{accumulated_interest:.1f}),决定重新加入讨论" - await self.store_action_info( - action_build_into_prompt=False, - action_prompt_display=exit_reason, - action_done=True, - ) - return ( - True, - f"累计兴趣值达到{accumulated_interest:.2f},结束等待 (等待时间: {elapsed_time:.1f}秒)", - ) - - # 每10秒输出一次等待状态 - if int(elapsed_time) > 0 and int(elapsed_time) % 10 == 0: - logger.debug( - f"{self.log_prefix} 已等待{elapsed_time:.0f}秒,累计{new_message_count}条消息,继续等待..." - ) - # 使用 asyncio.sleep(1) 来避免在同一秒内重复打印日志 - await asyncio.sleep(1) - - # 短暂等待后继续检查 - await asyncio.sleep(check_interval) + if form_type == "waiting": + return await self._execute_waiting_form(start_time, check_interval) + else: + return await self._execute_breaking_form(start_time, check_interval) except Exception as e: logger.error(f"{self.log_prefix} 不回复动作执行失败: {e}") @@ -153,8 +92,191 @@ class NoReplyAction(BaseAction): ) return False, f"不回复动作执行失败: {e}" + def _determine_form_type(self) -> str: + """判断使用哪种形式的no_reply""" + # 如果连续no_reply次数少于3次,使用waiting形式 + if NoReplyAction._consecutive_count < 3: + return "waiting" + + # 如果最近三次记录不足,使用waiting形式 + if len(NoReplyAction._recent_interest_records) < 3: + return "waiting" + + # 计算最近三次记录的兴趣度总和 + total_recent_interest = sum(NoReplyAction._recent_interest_records) + + # 获取当前聊天频率和意愿系数 + talk_frequency = global_config.chat.get_current_talk_frequency(self.chat_id) + willing_amplifier = global_config.chat.willing_amplifier + + # 计算调整后的阈值 + adjusted_threshold = self._interest_exit_threshold / talk_frequency / willing_amplifier + + logger.info(f"{self.log_prefix} 最近三次兴趣度总和: {total_recent_interest:.2f}, 调整后阈值: {adjusted_threshold:.2f}") + + # 如果兴趣度总和小于阈值,进入breaking形式 + if total_recent_interest < adjusted_threshold: + logger.info(f"{self.log_prefix} 兴趣度不足,进入breaking形式") + return "breaking" + else: + logger.info(f"{self.log_prefix} 兴趣度充足,继续使用waiting形式") + return "waiting" + + async def _execute_waiting_form(self, start_time: float, check_interval: float) -> Tuple[bool, str]: + """执行waiting形式的no_reply""" + import asyncio + + logger.info(f"{self.log_prefix} 进入waiting形式,等待任何新消息") + + while True: + current_time = time.time() + elapsed_time = current_time - start_time + + # 检查新消息 + recent_messages_dict = message_api.get_messages_by_time_in_chat( + chat_id=self.chat_id, + start_time=start_time, + end_time=current_time, + filter_mai=True, + filter_command=True, + ) + new_message_count = len(recent_messages_dict) + + # waiting形式:只要有新消息就结束 + if new_message_count > 0: + # 计算新消息的总兴趣度 + total_interest = 0.0 + for msg_dict in recent_messages_dict: + interest_value = msg_dict.get("interest_value", 0.0) + if msg_dict.get("processed_plain_text", ""): + total_interest += interest_value * global_config.chat.willing_amplifier + + # 记录到最近兴趣度列表 + NoReplyAction._recent_interest_records.append(total_interest) + + logger.info( + f"{self.log_prefix} waiting形式检测到{new_message_count}条新消息,总兴趣度: {total_interest:.2f},结束等待" + ) + + exit_reason = f"{global_config.bot.nickname}(你)看到了{new_message_count}条新消息,可以考虑一下是否要进行回复" + await self.store_action_info( + action_build_into_prompt=False, + action_prompt_display=exit_reason, + action_done=True, + ) + return True, f"waiting形式检测到{new_message_count}条新消息,结束等待 (等待时间: {elapsed_time:.1f}秒)" + + # 每10秒输出一次等待状态 + if int(elapsed_time) > 0 and int(elapsed_time) % 10 == 0: + logger.debug(f"{self.log_prefix} waiting形式已等待{elapsed_time:.0f}秒,继续等待新消息...") + await asyncio.sleep(1) + + # 短暂等待后继续检查 + await asyncio.sleep(check_interval) + + async def _execute_breaking_form(self, start_time: float, check_interval: float) -> Tuple[bool, str]: + """执行breaking形式的no_reply(原有逻辑)""" + import asyncio + + # 随机生成本次等待需要的新消息数量阈值 + exit_message_count_threshold = random.randint(self._min_exit_message_count, self._max_exit_message_count) + + logger.info(f"{self.log_prefix} 进入breaking形式,需要{exit_message_count_threshold}条消息或足够兴趣度") + + while True: + current_time = time.time() + elapsed_time = current_time - start_time + + # 检查新消息 + recent_messages_dict = message_api.get_messages_by_time_in_chat( + chat_id=self.chat_id, + start_time=start_time, + end_time=current_time, + filter_mai=True, + filter_command=True, + ) + new_message_count = len(recent_messages_dict) + + # 检查消息数量是否达到阈值 + talk_frequency = global_config.chat.get_current_talk_frequency(self.chat_id) + modified_exit_count_threshold = (exit_message_count_threshold / talk_frequency) / global_config.chat.willing_amplifier + + if new_message_count >= modified_exit_count_threshold: + # 记录兴趣度到列表 + total_interest = 0.0 + for msg_dict in recent_messages_dict: + interest_value = msg_dict.get("interest_value", 0.0) + if msg_dict.get("processed_plain_text", ""): + total_interest += interest_value * global_config.chat.willing_amplifier + + NoReplyAction._recent_interest_records.append(total_interest) + + logger.info( + f"{self.log_prefix} breaking形式累计消息数量达到{new_message_count}条(>{modified_exit_count_threshold}),结束等待" + ) + exit_reason = f"{global_config.bot.nickname}(你)看到了{new_message_count}条新消息,可以考虑一下是否要进行回复" + await self.store_action_info( + action_build_into_prompt=False, + action_prompt_display=exit_reason, + action_done=True, + ) + return True, f"breaking形式累计消息数量达到{new_message_count}条,结束等待 (等待时间: {elapsed_time:.1f}秒)" + + # 检查累计兴趣值 + if new_message_count > 0: + accumulated_interest = 0.0 + for msg_dict in recent_messages_dict: + text = msg_dict.get("processed_plain_text", "") + interest_value = msg_dict.get("interest_value", 0.0) + if text: + accumulated_interest += interest_value * global_config.chat.willing_amplifier + + # 只在兴趣值变化时输出log + if not hasattr(self, "_last_accumulated_interest") or accumulated_interest != self._last_accumulated_interest: + logger.info(f"{self.log_prefix} breaking形式当前累计兴趣值: {accumulated_interest:.2f}, 当前聊天频率: {talk_frequency:.2f}") + self._last_accumulated_interest = accumulated_interest + + if accumulated_interest >= self._interest_exit_threshold / talk_frequency: + # 记录兴趣度到列表 + NoReplyAction._recent_interest_records.append(accumulated_interest) + + logger.info( + f"{self.log_prefix} breaking形式累计兴趣值达到{accumulated_interest:.2f}(>{self._interest_exit_threshold / talk_frequency}),结束等待" + ) + exit_reason = f"{global_config.bot.nickname}(你)感觉到了大家浓厚的兴趣(兴趣值{accumulated_interest:.1f}),决定重新加入讨论" + await self.store_action_info( + action_build_into_prompt=False, + action_prompt_display=exit_reason, + action_done=True, + ) + return ( + True, + f"breaking形式累计兴趣值达到{accumulated_interest:.2f},结束等待 (等待时间: {elapsed_time:.1f}秒)", + ) + + # 每10秒输出一次等待状态 + if int(elapsed_time) > 0 and int(elapsed_time) % 10 == 0: + logger.debug( + f"{self.log_prefix} breaking形式已等待{elapsed_time:.0f}秒,累计{new_message_count}条消息,继续等待..." + ) + await asyncio.sleep(1) + + # 短暂等待后继续检查 + await asyncio.sleep(check_interval) + @classmethod def reset_consecutive_count(cls): - """重置连续计数器""" + """重置连续计数器和兴趣度记录""" cls._consecutive_count = 0 - logger.debug("NoReplyAction连续计数器已重置") + cls._recent_interest_records.clear() + logger.debug("NoReplyAction连续计数器和兴趣度记录已重置") + + @classmethod + def get_recent_interest_records(cls) -> List[float]: + """获取最近的兴趣度记录""" + return list(cls._recent_interest_records) + + @classmethod + def get_consecutive_count(cls) -> int: + """获取连续计数""" + return cls._consecutive_count diff --git a/src/plugins/built_in/core_actions/plugin.py b/src/plugins/built_in/core_actions/plugin.py index 99bff18aa..c34f5a871 100644 --- a/src/plugins/built_in/core_actions/plugin.py +++ b/src/plugins/built_in/core_actions/plugin.py @@ -66,13 +66,12 @@ class CoreActionsPlugin(BasePlugin): if global_config.emoji.emoji_activate_type == "llm": EmojiAction.random_activation_probability = 0.0 - EmojiAction.focus_activation_type = ActionActivationType.LLM_JUDGE - EmojiAction.normal_activation_type = ActionActivationType.LLM_JUDGE + EmojiAction.activation_type = ActionActivationType.LLM_JUDGE elif global_config.emoji.emoji_activate_type == "random": EmojiAction.random_activation_probability = global_config.emoji.emoji_chance - EmojiAction.focus_activation_type = ActionActivationType.RANDOM - EmojiAction.normal_activation_type = ActionActivationType.RANDOM + EmojiAction.activation_type = ActionActivationType.RANDOM + # --- 根据配置注册组件 --- components = [] if self.get_config("components.enable_reply", True): diff --git a/src/plugins/built_in/core_actions/reply.py b/src/plugins/built_in/core_actions/reply.py index d73337b29..887879066 100644 --- a/src/plugins/built_in/core_actions/reply.py +++ b/src/plugins/built_in/core_actions/reply.py @@ -13,7 +13,8 @@ from src.common.logger import get_logger # 导入API模块 - 标准Python包方式 from src.plugin_system.apis import generator_api, message_api -from src.plugins.built_in.core_actions.no_reply import NoReplyAction +# 注释:不再需要导入NoReplyAction,因为计数器管理已移至heartFC_chat.py +# from src.plugins.built_in.core_actions.no_reply import NoReplyAction from src.person_info.person_info import get_person_info_manager from src.mais4u.mai_think import mai_thinking_manager from src.mais4u.constant_s4u import ENABLE_S4U @@ -138,8 +139,8 @@ class ReplyAction(BaseAction): action_done=True, ) - # 重置NoReplyAction的连续计数器 - NoReplyAction.reset_consecutive_count() + # 注释:重置NoReplyAction的连续计数器现在由heartFC_chat.py统一管理 + # NoReplyAction.reset_consecutive_count() return success, reply_text diff --git a/src/plugins/built_in/plugin_management/_manifest.json b/src/plugins/built_in/plugin_management/_manifest.json index 41b3cd9ce..f394b8677 100644 --- a/src/plugins/built_in/plugin_management/_manifest.json +++ b/src/plugins/built_in/plugin_management/_manifest.json @@ -9,7 +9,7 @@ }, "license": "GPL-v3.0-or-later", "host_application": { - "min_version": "0.9.0" + "min_version": "0.9.1" }, "homepage_url": "https://github.com/MaiM-with-u/maibot", "repository_url": "https://github.com/MaiM-with-u/maibot", diff --git a/src/plugins/built_in/plugin_management/plugin.py b/src/plugins/built_in/plugin_management/plugin.py index cbdf567ac..f150d8017 100644 --- a/src/plugins/built_in/plugin_management/plugin.py +++ b/src/plugins/built_in/plugin_management/plugin.py @@ -422,13 +422,14 @@ class ManagementCommand(BaseCommand): @register_plugin class PluginManagementPlugin(BasePlugin): plugin_name: str = "plugin_management_plugin" - enable_plugin: bool = True + enable_plugin: bool = False dependencies: list[str] = [] python_dependencies: list[str] = [] config_file_name: str = "config.toml" config_schema: dict = { "plugin": { - "enable": ConfigField(bool, default=True, description="是否启用插件"), + "enable": ConfigField(bool, default=False, description="是否启用插件"), + "config_version": ConfigField(type=str, default="1.0.0", description="配置文件版本"), "permission": ConfigField(list, default=[], description="有权限使用插件管理命令的用户列表"), }, } diff --git a/template/bot_config_template.toml b/template/bot_config_template.toml index ff8a79e73..34b91b35e 100644 --- a/template/bot_config_template.toml +++ b/template/bot_config_template.toml @@ -1,5 +1,5 @@ [inner] -version = "4.4.8" +version = "4.4.9" #----以下是给开发人员阅读的,如果你只是部署了麦麦,不需要阅读---- #如果你想要修改配置文件,请在修改后将version的值进行变更 @@ -52,9 +52,11 @@ relation_frequency = 1 # 关系频率,麦麦构建关系的频率 [chat] #麦麦的聊天通用设置 focus_value = 1 -# 麦麦的专注思考能力,越低越容易专注,消耗token也越多 +# 麦麦的专注思考能力,越高越容易专注,可能消耗更多token # 专注时能更好把握发言时机,能够进行持久的连续对话 +willing_amplifier = 1 # 麦麦回复意愿 + max_context_size = 25 # 上下文长度 thinking_timeout = 20 # 麦麦一次回复最长思考规划时间,超过这个时间的思考会放弃(往往是api反应太慢) replyer_random_probability = 0.5 # 首要replyer模型被选择的概率 @@ -67,11 +69,11 @@ use_s4u_prompt_mode = true # 是否使用 s4u 对话构建模式,该模式会 talk_frequency = 1 # 麦麦回复频率,越高,麦麦回复越频繁 -time_based_talk_frequency = ["8:00,1", "12:00,1.5", "18:00,2", "01:00,0.5"] +time_based_talk_frequency = ["8:00,1", "12:00,1.2", "18:00,1.5", "01:00,0.6"] # 基于时段的回复频率配置(可选) # 格式:time_based_talk_frequency = ["HH:MM,frequency", ...] # 示例: -# time_based_talk_frequency = ["8:00,1", "12:00,2", "18:00,1.5", "00:00,0.5"] +# time_based_talk_frequency = ["8:00,1", "12:00,1.2", "18:00,1.5", "00:00,0.6"] # 说明:表示从该时间开始使用该频率,直到下一个时间点 # 注意:如果没有配置,则使用上面的默认 talk_frequency 值 @@ -105,7 +107,6 @@ ban_msgs_regex = [ [normal_chat] #普通聊天 willing_mode = "classical" # 回复意愿模式 —— 经典模式:classical,mxp模式:mxp,自定义模式:custom(需要你自己实现) -response_interested_rate_amplifier = 1 # 麦麦回复兴趣度放大系数 [tool] enable_in_normal_chat = false # 是否在普通聊天中启用工具