diff --git a/src/chat/normal_chat/normal_chat.py b/src/chat/normal_chat/normal_chat.py index 0cb7f9cc8..5f221eb16 100644 --- a/src/chat/normal_chat/normal_chat.py +++ b/src/chat/normal_chat/normal_chat.py @@ -693,7 +693,6 @@ class NormalChat: f"[{self.stream_name}] 用户 {person_id} 消息次数更新: {self.engaging_persons[person_id]['receive_count']}" ) - async def _check_relation_building_conditions(self): """检查engaging_persons中是否有满足关系构建条件的用户""" current_time = time.time() @@ -701,12 +700,10 @@ class NormalChat: for person_id, stats in list(self.engaging_persons.items()): # 计算时间差和消息数量 time_elapsed = current_time - stats["first_time"] - total_messages = self._get_total_messages_in_timerange( - stats["first_time"], stats["last_time"] - ) - + total_messages = self._get_total_messages_in_timerange(stats["first_time"], stats["last_time"]) + print(f"person_id: {person_id}, total_messages: {total_messages}, time_elapsed: {time_elapsed}") - + # 检查是否满足关系构建条件 should_build_relation = ( total_messages >= 50 # 50条消息必定满足 @@ -724,12 +721,11 @@ class NormalChat: # 计算构建概率并决定是否构建 await self._evaluate_and_build_relation(person_id, stats, total_messages) - + # 评估完成后移除该用户,重新开始统计 del self.engaging_persons[person_id] logger.info(f"[{self.stream_name}] 用户 {person_id} 评估完成,已移除记录,将重新开始统计") - def _get_total_messages_in_timerange(self, start_time: float, end_time: float) -> int: """获取指定时间范围内的总消息数量""" try: @@ -742,7 +738,7 @@ class NormalChat: async def _evaluate_and_build_relation(self, person_id: str, stats: dict, total_messages: int): """评估并执行关系构建""" import math - + receive_count = stats["receive_count"] reply_count = stats["reply_count"] @@ -752,22 +748,30 @@ class NormalChat: # k=7时,0.05比率对应约0.4概率,0.1比率对应约0.6概率,0.2比率对应约0.8概率 k_reply = 7 base_reply_prob = 0.1 # 基础概率10% - reply_build_probability = (math.log(1 + reply_ratio * k_reply) / math.log(1 + k_reply)) * 0.9 + base_reply_prob if reply_ratio > 0 else base_reply_prob - + reply_build_probability = ( + (math.log(1 + reply_ratio * k_reply) / math.log(1 + k_reply)) * 0.9 + base_reply_prob + if reply_ratio > 0 + else base_reply_prob + ) + # 计算接收概率(receive_count的影响) receive_ratio = receive_count / total_messages if total_messages > 0 else 0 # 接收概率使用更温和的对数曲线,最大0.5,基础0.08 k_receive = 6 base_receive_prob = 0.08 # 基础概率8% - receive_build_probability = (math.log(1 + receive_ratio * k_receive) / math.log(1 + k_receive)) * 0.42 + base_receive_prob if receive_ratio > 0 else base_receive_prob - + receive_build_probability = ( + (math.log(1 + receive_ratio * k_receive) / math.log(1 + k_receive)) * 0.42 + base_receive_prob + if receive_ratio > 0 + else base_receive_prob + ) + # 取最高概率 final_probability = max(reply_build_probability, receive_build_probability) logger.info( f"[{self.stream_name}] 用户 {person_id} 关系构建概率评估:" f"回复比例:{reply_ratio:.2f}(对数概率:{reply_build_probability:.2f})" - f",接收比例:{receive_ratio:.2f}(对数概率:{receive_build_probability:.2f})" + f",接收比例:{receive_ratio:.2f}(对数概率:{receive_build_probability:.2f})" f",最终概率:{final_probability:.2f}" )