diff --git a/.github/ISSUE_TEMPLATE/bug_report.md b/.github/ISSUE_TEMPLATE/bug_report.md
deleted file mode 100644
index dd84ea782..000000000
--- a/.github/ISSUE_TEMPLATE/bug_report.md
+++ /dev/null
@@ -1,38 +0,0 @@
----
-name: Bug report
-about: Create a report to help us improve
-title: ''
-labels: ''
-assignees: ''
-
----
-
-**Describe the bug**
-A clear and concise description of what the bug is.
-
-**To Reproduce**
-Steps to reproduce the behavior:
-1. Go to '...'
-2. Click on '....'
-3. Scroll down to '....'
-4. See error
-
-**Expected behavior**
-A clear and concise description of what you expected to happen.
-
-**Screenshots**
-If applicable, add screenshots to help explain your problem.
-
-**Desktop (please complete the following information):**
- - OS: [e.g. iOS]
- - Browser [e.g. chrome, safari]
- - Version [e.g. 22]
-
-**Smartphone (please complete the following information):**
- - Device: [e.g. iPhone6]
- - OS: [e.g. iOS8.1]
- - Browser [e.g. stock browser, safari]
- - Version [e.g. 22]
-
-**Additional context**
-Add any other context about the problem here.
diff --git a/.github/ISSUE_TEMPLATE/bug_report.yml b/.github/ISSUE_TEMPLATE/bug_report.yml
new file mode 100644
index 000000000..a4245d0a0
--- /dev/null
+++ b/.github/ISSUE_TEMPLATE/bug_report.yml
@@ -0,0 +1,47 @@
+name: Bug Report
+description: 提交 Bug
+labels: ["BUG"]
+body:
+- type: checkboxes
+ attributes:
+ label: "检查项"
+ description: "请检查下列项目,并勾选确认。"
+ options:
+ - label: "我确认此问题在所有分支的最新版本中依旧存在"
+ required: true
+ - label: "我确认在 Issues 列表中并无其他人已经提出过与此问题相同或相似的问题"
+ required: true
+ - label: "我使用了 Docker"
+- type: textarea
+ attributes:
+ label: 遇到的问题
+ validations:
+ required: true
+- type: textarea
+ attributes:
+ label: 报错信息
+ validations:
+ required: true
+- type: textarea
+ attributes:
+ label: 如何重现此问题?
+ placeholder: "若不知道请略过此问题"
+- type: textarea
+ attributes:
+ label: 可能造成问题的原因
+ placeholder: "若不知道请略过此问题"
+- type: textarea
+ attributes:
+ label: 系统环境
+ placeholder: "例如:Windows 11 专业版 64位 24H2 / Debian Bookworm"
+ validations:
+ required: true
+- type: textarea
+ attributes:
+ label: Python 版本
+ placeholder: "例如:Python 3.11"
+ validations:
+ required: true
+- type: textarea
+ attributes:
+ label: 补充信息
diff --git a/.github/ISSUE_TEMPLATE/feature_request.md b/.github/ISSUE_TEMPLATE/feature_request.md
deleted file mode 100644
index bbcbbe7d6..000000000
--- a/.github/ISSUE_TEMPLATE/feature_request.md
+++ /dev/null
@@ -1,20 +0,0 @@
----
-name: Feature request
-about: Suggest an idea for this project
-title: ''
-labels: ''
-assignees: ''
-
----
-
-**Is your feature request related to a problem? Please describe.**
-A clear and concise description of what the problem is. Ex. I'm always frustrated when [...]
-
-**Describe the solution you'd like**
-A clear and concise description of what you want to happen.
-
-**Describe alternatives you've considered**
-A clear and concise description of any alternative solutions or features you've considered.
-
-**Additional context**
-Add any other context or screenshots about the feature request here.
diff --git a/.github/ISSUE_TEMPLATE/feature_request.yml b/.github/ISSUE_TEMPLATE/feature_request.yml
new file mode 100644
index 000000000..659838829
--- /dev/null
+++ b/.github/ISSUE_TEMPLATE/feature_request.yml
@@ -0,0 +1,20 @@
+name: Feature Request
+description: 新功能请求
+labels: ["Feature"]
+body:
+- type: checkboxes
+ attributes:
+ label: "检查项"
+ description: "请检查下列项目,并勾选确认。"
+ options:
+ - label: "我确认在Issues列表中并无其他人已经建议过相似的功能"
+ required: true
+ - label: "这个新功能可以解决目前存在的某个问题或BUG"
+- type: textarea
+ attributes:
+ label: 期望的功能描述
+ validations:
+ required: true
+- type: textarea
+ attributes:
+ label: 补充信息
\ No newline at end of file
diff --git a/README.md b/README.md
index 7bfa465ae..73e1c3094 100644
--- a/README.md
+++ b/README.md
@@ -18,6 +18,8 @@
- 💾 MongoDB 提供数据持久化支持
- 🐧 NapCat 作为QQ协议端支持
+**最新版本: v0.5.7**
+
@@ -31,6 +33,7 @@
> - 文档未完善,有问题可以提交 Issue 或者 Discussion
> - QQ机器人存在被限制风险,请自行了解,谨慎使用
> - 由于持续迭代,可能存在一些已知或未知的bug
+> - 由于开发中,可能消耗较多token
**交流群**: 766798517(仅用于开发和建议相关讨论)不建议在群内询问部署问题,我不一定有空回复,会优先写文档和代码
diff --git a/bot.py b/bot.py
index 50c8cfaa4..8ef087476 100644
--- a/bot.py
+++ b/bot.py
@@ -8,7 +8,7 @@ from loguru import logger
from colorama import init, Fore
init()
-text = "多年以后,面对行刑队,张三将会回想起他2023年在会议上讨论人工智能的那个下午"
+text = "多年以后,面对AI行刑队,张三将会回想起他2023年在会议上讨论人工智能的那个下午"
rainbow_colors = [Fore.RED, Fore.YELLOW, Fore.GREEN, Fore.CYAN, Fore.BLUE, Fore.MAGENTA]
rainbow_text = ""
for i, char in enumerate(text):
diff --git a/requirements.txt b/requirements.txt
index 49c102dc6..1d268ffa6 100644
Binary files a/requirements.txt and b/requirements.txt differ
diff --git a/run_windows.bat b/run_windows.bat
new file mode 100644
index 000000000..920069318
--- /dev/null
+++ b/run_windows.bat
@@ -0,0 +1,67 @@
+@echo off
+setlocal enabledelayedexpansion
+chcp 65001
+
+REM 修正路径获取逻辑
+cd /d "%~dp0" || (
+ echo 错误:切换目录失败
+ exit /b 1
+)
+
+if not exist "venv\" (
+ echo 正在初始化虚拟环境...
+
+ where python >nul 2>&1
+ if %errorlevel% neq 0 (
+ echo 未找到Python解释器
+ exit /b 1
+ )
+
+ for /f "tokens=2" %%a in ('python --version 2^>^&1') do set version=%%a
+ for /f "tokens=1,2 delims=." %%b in ("!version!") do (
+ set major=%%b
+ set minor=%%c
+ )
+
+ if !major! lss 3 (
+ echo 需要Python大于等于3.0,当前版本 !version!
+ exit /b 1
+ )
+
+ if !major! equ 3 if !minor! lss 9 (
+ echo 需要Python大于等于3.9,当前版本 !version!
+ exit /b 1
+ )
+
+ echo 正在安装virtualenv...
+ python -m pip install virtualenv || (
+ echo virtualenv安装失败
+ exit /b 1
+ )
+
+ echo 正在创建虚拟环境...
+ python -m virtualenv venv || (
+ echo 虚拟环境创建失败
+ exit /b 1
+ )
+
+ call venv\Scripts\activate.bat
+
+ echo 正在安装依赖...
+ pip install -r requirements.txt
+) else (
+ call venv\Scripts\activate.bat
+)
+
+echo 当前代理设置:
+echo HTTP_PROXY=%HTTP_PROXY%
+echo HTTPS_PROXY=%HTTPS_PROXY%
+
+set HTTP_PROXY=
+set HTTPS_PROXY=
+echo 代理已取消。
+
+set no_proxy=0.0.0.0/32
+
+call nb run
+pause
\ No newline at end of file
diff --git a/src/plugins/chat/__init__.py b/src/plugins/chat/__init__.py
index ab99f6477..22f3059b5 100644
--- a/src/plugins/chat/__init__.py
+++ b/src/plugins/chat/__init__.py
@@ -15,6 +15,8 @@ from .bot import chat_bot
from .emoji_manager import emoji_manager
import time
+# 添加标志变量
+_message_manager_started = False
# 获取驱动器
driver = get_driver()
@@ -70,18 +72,20 @@ async def init_relationships():
@driver.on_bot_connect
async def _(bot: Bot):
"""Bot连接成功时的处理"""
+ global _message_manager_started
print(f"\033[1;38;5;208m-----------{global_config.BOT_NICKNAME}成功连接!-----------\033[0m")
await willing_manager.ensure_started()
-
message_sender.set_bot(bot)
print("\033[1;38;5;208m-----------消息发送器已启动!-----------\033[0m")
- asyncio.create_task(message_manager.start_processor())
- print("\033[1;38;5;208m-----------消息处理器已启动!-----------\033[0m")
+
+ if not _message_manager_started:
+ asyncio.create_task(message_manager.start_processor())
+ _message_manager_started = True
+ print("\033[1;38;5;208m-----------消息处理器已启动!-----------\033[0m")
asyncio.create_task(emoji_manager._periodic_scan(interval_MINS=global_config.EMOJI_REGISTER_INTERVAL))
print("\033[1;38;5;208m-----------开始偷表情包!-----------\033[0m")
- # 启动消息发送控制任务
@group_msg.handle()
async def _(bot: Bot, event: GroupMessageEvent, state: T_State):
@@ -90,7 +94,7 @@ async def _(bot: Bot, event: GroupMessageEvent, state: T_State):
# 添加build_memory定时任务
@scheduler.scheduled_job("interval", seconds=global_config.build_memory_interval, id="build_memory")
async def build_memory_task():
- """每30秒执行一次记忆构建"""
+ """每build_memory_interval秒执行一次记忆构建"""
print("\033[1;32m[记忆构建]\033[0m -------------------------------------------开始构建记忆-------------------------------------------")
start_time = time.time()
await hippocampus.operation_build_memory(chat_size=20)
diff --git a/src/plugins/chat/bot.py b/src/plugins/chat/bot.py
index dc82cf236..89c15b388 100644
--- a/src/plugins/chat/bot.py
+++ b/src/plugins/chat/bot.py
@@ -132,6 +132,7 @@ class ChatBot:
accu_typing_time = 0
# print(f"\033[1;32m[开始回复]\033[0m 开始将回复1载入发送容器")
+ mark_head = False
for msg in response:
# print(f"\033[1;32m[回复内容]\033[0m {msg}")
#通过时间改变时间戳
@@ -152,6 +153,9 @@ class ChatBot:
thinking_start_time=thinking_start_time, #记录了思考开始的时间
reply_message_id=message.message_id
)
+ if not mark_head:
+ bot_message.is_head = True
+ mark_head = True
message_set.add_message(bot_message)
#message_set 可以直接加入 message_manager
@@ -167,7 +171,7 @@ class ChatBot:
await relationship_manager.update_relationship_value(message.user_id, relationship_value=valuedict[emotion[0]])
if random() < global_config.emoji_chance:
- emoji_path = await emoji_manager.get_emoji_for_emotion(emotion)
+ emoji_path = await emoji_manager.get_emoji_for_text(response)
if emoji_path:
emoji_cq = CQCode.create_emoji_cq(emoji_path)
diff --git a/src/plugins/chat/config.py b/src/plugins/chat/config.py
index d5ee364ce..e044edc5e 100644
--- a/src/plugins/chat/config.py
+++ b/src/plugins/chat/config.py
@@ -30,6 +30,7 @@ class BotConfig:
forget_memory_interval: int = 300 # 记忆遗忘间隔(秒)
EMOJI_CHECK_INTERVAL: int = 120 # 表情包检查间隔(分钟)
EMOJI_REGISTER_INTERVAL: int = 10 # 表情包注册间隔(分钟)
+ EMOJI_CHECK_PROMPT: str = "不要包含违反公序良俗的内容" # 表情包过滤要求
ban_words = set()
@@ -94,6 +95,7 @@ class BotConfig:
emoji_config = toml_dict["emoji"]
config.EMOJI_CHECK_INTERVAL = emoji_config.get("check_interval", config.EMOJI_CHECK_INTERVAL)
config.EMOJI_REGISTER_INTERVAL = emoji_config.get("register_interval", config.EMOJI_REGISTER_INTERVAL)
+ config.EMOJI_CHECK_PROMPT = emoji_config.get('check_prompt',config.EMOJI_CHECK_PROMPT)
if "cq_code" in toml_dict:
cq_code_config = toml_dict["cq_code"]
diff --git a/src/plugins/chat/emoji_manager.py b/src/plugins/chat/emoji_manager.py
index 2311b2459..4b81302b1 100644
--- a/src/plugins/chat/emoji_manager.py
+++ b/src/plugins/chat/emoji_manager.py
@@ -14,10 +14,13 @@ import asyncio
import time
from PIL import Image
import io
+from loguru import logger
+import traceback
from nonebot import get_driver
from ..chat.config import global_config
from ..models.utils_model import LLM_request
+from ..chat.utils import get_embedding
driver = get_driver()
config = driver.config
@@ -26,7 +29,7 @@ config = driver.config
class EmojiManager:
_instance = None
EMOJI_DIR = "data/emoji" # 表情包存储目录
-
+
EMOTION_KEYWORDS = {
'happy': ['开心', '快乐', '高兴', '欢喜', '笑', '喜悦', '兴奋', '愉快', '乐', '好'],
'angry': ['生气', '愤怒', '恼火', '不爽', '火大', '怒', '气愤', '恼怒', '发火', '不满'],
@@ -47,7 +50,8 @@ class EmojiManager:
def __init__(self):
self.db = Database.get_instance()
self._scan_task = None
- self.llm = LLM_request(model=global_config.vlm, temperature=0.3, max_tokens=50)
+ self.llm = LLM_request(model=global_config.vlm, temperature=0.3, max_tokens=1000)
+ self.lm = LLM_request(model=global_config.llm_reasoning_minor, max_tokens=1000)
def _ensure_emoji_dir(self):
"""确保表情存储目录存在"""
@@ -64,7 +68,7 @@ class EmojiManager:
# 启动时执行一次完整性检查
self.check_emoji_file_integrity()
except Exception as e:
- print(f"\033[1;31m[错误]\033[0m 初始化表情管理器失败: {str(e)}")
+ logger.error(f"初始化表情管理器失败: {str(e)}")
def _ensure_db(self):
"""确保数据库已初始化"""
@@ -77,6 +81,7 @@ class EmojiManager:
"""确保emoji集合存在并创建索引"""
if 'emoji' not in self.db.db.list_collection_names():
self.db.db.create_collection('emoji')
+ self.db.db.emoji.create_index([('embedding', '2dsphere')])
self.db.db.emoji.create_index([('tags', 1)])
self.db.db.emoji.create_index([('filename', 1)], unique=True)
@@ -89,79 +94,8 @@ class EmojiManager:
{'$inc': {'usage_count': 1}}
)
except Exception as e:
- print(f"\033[1;31m[错误]\033[0m 记录表情使用失败: {str(e)}")
+ logger.error(f"记录表情使用失败: {str(e)}")
- async def _get_emotion_from_text(self, text: str) -> List[str]:
- """从文本中识别情感关键词
- Args:
- text: 输入文本
- Returns:
- List[str]: 匹配到的情感标签列表
- """
- try:
- prompt = f'分析这段文本:"{text}",从"happy,angry,sad,surprised,disgusted,fearful,neutral"中选出最匹配的1个情感标签。只需要返回标签,不要输出其他任何内容。'
-
- content, _ = await self.llm.generate_response(prompt)
- emotion = content.strip().lower()
-
- if emotion in self.EMOTION_KEYWORDS:
- print(f"\033[1;32m[成功]\033[0m 识别到的情感: {emotion}")
- return [emotion]
-
- return ['neutral']
-
- except Exception as e:
- print(f"\033[1;31m[错误]\033[0m 情感分析失败: {str(e)}")
- return ['neutral']
-
- async def get_emoji_for_emotion(self, emotion_tag: str) -> Optional[str]:
- try:
- self._ensure_db()
-
- # 构建查询条件:标签匹配任一情感
- query = {'tags': {'$in': emotion_tag}}
-
- # print(f"\033[1;34m[调试]\033[0m 表情查询条件: {query}")
-
- try:
- # 随机获取一个匹配的表情
- emoji = self.db.db.emoji.aggregate([
- {'$match': query},
- {'$sample': {'size': 1}}
- ]).next()
- print(f"\033[1;32m[成功]\033[0m 找到匹配的表情")
- if emoji and 'path' in emoji:
- # 更新使用次数
- self.db.db.emoji.update_one(
- {'_id': emoji['_id']},
- {'$inc': {'usage_count': 1}}
- )
- return emoji['path']
- except StopIteration:
- # 如果没有匹配的表情,从所有表情中随机选择一个
- print(f"\033[1;33m[提示]\033[0m 未找到匹配的表情,随机选择一个")
- try:
- emoji = self.db.db.emoji.aggregate([
- {'$sample': {'size': 1}}
- ]).next()
- if emoji and 'path' in emoji:
- # 更新使用次数
- self.db.db.emoji.update_one(
- {'_id': emoji['_id']},
- {'$inc': {'usage_count': 1}}
- )
- return emoji['path']
- except StopIteration:
- print(f"\033[1;31m[错误]\033[0m 数据库中没有任何表情")
- return None
-
- return None
-
- except Exception as e:
- print(f"\033[1;31m[错误]\033[0m 获取表情包失败: {str(e)}")
- return None
-
-
async def get_emoji_for_text(self, text: str) -> Optional[str]:
"""根据文本内容获取相关表情包
Args:
@@ -171,54 +105,69 @@ class EmojiManager:
"""
try:
self._ensure_db()
- # 获取情感标签
- emotions = await self._get_emotion_from_text(text)
- print("为 ‘"+ str(text) + "’ 获取到的情感标签为:" + str(emotions))
- if not emotions:
- return None
-
- # 构建查询条件:标签匹配任一情感
- query = {'tags': {'$in': emotions}}
- print(f"\033[1;34m[调试]\033[0m 表情查询条件: {query}")
- print(f"\033[1;34m[调试]\033[0m 匹配到的情感: {emotions}")
+ # 获取文本的embedding
+ text_for_search= await self._get_kimoji_for_text(text)
+ text_embedding = get_embedding(text_for_search)
+ if not text_embedding:
+ logger.error("无法获取文本的embedding")
+ return None
try:
- # 随机获取一个匹配的表情
- emoji = self.db.db.emoji.aggregate([
- {'$match': query},
- {'$sample': {'size': 1}}
- ]).next()
- print(f"\033[1;32m[成功]\033[0m 找到匹配的表情")
- if emoji and 'path' in emoji:
+ # 获取所有表情包
+ all_emojis = list(self.db.db.emoji.find({}, {'_id': 1, 'path': 1, 'embedding': 1, 'discription': 1}))
+
+ if not all_emojis:
+ logger.warning("数据库中没有任何表情包")
+ return None
+
+ # 计算余弦相似度并排序
+ def cosine_similarity(v1, v2):
+ if not v1 or not v2:
+ return 0
+ dot_product = sum(a * b for a, b in zip(v1, v2))
+ norm_v1 = sum(a * a for a in v1) ** 0.5
+ norm_v2 = sum(b * b for b in v2) ** 0.5
+ if norm_v1 == 0 or norm_v2 == 0:
+ return 0
+ return dot_product / (norm_v1 * norm_v2)
+
+ # 计算所有表情包与输入文本的相似度
+ emoji_similarities = [
+ (emoji, cosine_similarity(text_embedding, emoji.get('embedding', [])))
+ for emoji in all_emojis
+ ]
+
+ # 按相似度降序排序
+ emoji_similarities.sort(key=lambda x: x[1], reverse=True)
+
+ # 获取前3个最相似的表情包
+ top_3_emojis = emoji_similarities[:3]
+
+ if not top_3_emojis:
+ logger.warning("未找到匹配的表情包")
+ return None
+
+ # 从前3个中随机选择一个
+ selected_emoji, similarity = random.choice(top_3_emojis)
+
+ if selected_emoji and 'path' in selected_emoji:
# 更新使用次数
self.db.db.emoji.update_one(
- {'_id': emoji['_id']},
+ {'_id': selected_emoji['_id']},
{'$inc': {'usage_count': 1}}
)
- return emoji['path']
- except StopIteration:
- # 如果没有匹配的表情,从所有表情中随机选择一个
- print(f"\033[1;33m[提示]\033[0m 未找到匹配的表情,随机选择一个")
- try:
- emoji = self.db.db.emoji.aggregate([
- {'$sample': {'size': 1}}
- ]).next()
- if emoji and 'path' in emoji:
- # 更新使用次数
- self.db.db.emoji.update_one(
- {'_id': emoji['_id']},
- {'$inc': {'usage_count': 1}}
- )
- return emoji['path']
- except StopIteration:
- print(f"\033[1;31m[错误]\033[0m 数据库中没有任何表情")
- return None
+ logger.success(f"找到匹配的表情包: {selected_emoji.get('discription', '无描述')} (相似度: {similarity:.4f})")
+ return selected_emoji['path']
+
+ except Exception as search_error:
+ logger.error(f"搜索表情包失败: {str(search_error)}")
+ return None
return None
except Exception as e:
- print(f"\033[1;31m[错误]\033[0m 获取表情包失败: {str(e)}")
+ logger.error(f"获取表情包失败: {str(e)}")
return None
async def _get_emoji_tag(self, image_base64: str) -> str:
@@ -237,11 +186,48 @@ class EmojiManager:
except Exception as e:
print(f"\033[1;31m[错误]\033[0m 获取标签失败: {str(e)}")
- return "skip"
+ return "neutral"
print(f"\033[1;32m[调试信息]\033[0m 使用默认标签: neutral")
- return "skip" # 默认标签
+ return "neutral" # 默认标签
+ async def _get_emoji_discription(self, image_base64: str) -> str:
+ """获取表情包的标签"""
+ try:
+ prompt = '这是一个表情包,使用中文简洁的描述一下表情包的内容和表情包所表达的情感'
+
+ content, _ = await self.llm.generate_response_for_image(prompt, image_base64)
+ logger.debug(f"输出描述: {content}")
+ return content
+
+ except Exception as e:
+ logger.error(f"获取标签失败: {str(e)}")
+ return None
+
+ async def _check_emoji(self, image_base64: str) -> str:
+ try:
+ prompt = f'这是一个表情包,请回答这个表情包是否满足\"{global_config.EMOJI_CHECK_PROMPT}\"的要求,是则回答是,否则回答否,不要出现任何其他内容'
+
+ content, _ = await self.llm.generate_response_for_image(prompt, image_base64)
+ logger.debug(f"输出描述: {content}")
+ return content
+
+ except Exception as e:
+ logger.error(f"获取标签失败: {str(e)}")
+ return None
+
+ async def _get_kimoji_for_text(self, text:str):
+ try:
+ prompt = f'这是{global_config.BOT_NICKNAME}将要发送的消息内容:\n{text}\n若要为其配上表情包,请你输出这个表情包应该表达怎样的情感,应该给人什么样的感觉,不要太简洁也不要太长,注意不要输出任何对内容的分析内容,只输出\"一种什么样的感觉\"中间的形容词部分。'
+
+ content, _ = await self.lm.generate_response_async(prompt)
+ logger.info(f"输出描述: {content}")
+ return content
+
+ except Exception as e:
+ logger.error(f"获取标签失败: {str(e)}")
+ return None
+
async def _compress_image(self, image_path: str, target_size: int = 0.8 * 1024 * 1024) -> Optional[str]:
"""压缩图片并返回base64编码
Args:
@@ -303,12 +289,12 @@ class EmojiManager:
# 获取压缩后的数据并转换为base64
compressed_data = output_buffer.getvalue()
- print(f"\033[1;32m[成功]\033[0m 压缩图片: {os.path.basename(image_path)} ({original_width}x{original_height} -> {new_width}x{new_height})")
+ logger.success(f"压缩图片: {os.path.basename(image_path)} ({original_width}x{original_height} -> {new_width}x{new_height})")
return base64.b64encode(compressed_data).decode('utf-8')
except Exception as e:
- print(f"\033[1;31m[错误]\033[0m 压缩图片失败: {os.path.basename(image_path)}, 错误: {str(e)}")
+ logger.error(f"压缩图片失败: {os.path.basename(image_path)}, 错误: {str(e)}")
return None
async def scan_new_emojis(self):
@@ -334,29 +320,39 @@ class EmojiManager:
os.remove(image_path)
continue
- # 获取表情包的情感标签
+ # 获取表情包的描述
+ discription = await self._get_emoji_discription(image_base64)
+ check = await self._check_emoji(image_base64)
+ if '是' not in check:
+ os.remove(image_path)
+ logger.info(f"描述: {discription}")
+ logger.info(f"其不满足过滤规则,被剔除 {check}")
+ continue
+ logger.info(f"check通过 {check}")
tag = await self._get_emoji_tag(image_base64)
- if not tag == "skip":
+ embedding = get_embedding(discription)
+ if discription is not None:
# 准备数据库记录
emoji_record = {
'filename': filename,
'path': image_path,
- 'tags': [tag],
+ 'embedding':embedding,
+ 'discription': discription,
+ 'tag':tag,
'timestamp': int(time.time())
}
# 保存到数据库
self.db.db['emoji'].insert_one(emoji_record)
- print(f"\033[1;32m[成功]\033[0m 注册新表情包: {filename}")
- print(f"标签: {tag}")
+ logger.success(f"注册新表情包: {filename}")
+ logger.info(f"描述: {discription}")
else:
- print(f"\033[1;33m[警告]\033[0m 跳过表情包: {filename}")
+ logger.warning(f"跳过表情包: {filename}")
except Exception as e:
- print(f"\033[1;31m[错误]\033[0m 扫描表情包失败: {str(e)}")
- import traceback
- print(traceback.format_exc())
-
+ logger.error(f"扫描表情包失败: {str(e)}")
+ logger.error(traceback.format_exc())
+
async def _periodic_scan(self, interval_MINS: int = 10):
"""定期扫描新表情包"""
while True:
@@ -364,6 +360,7 @@ class EmojiManager:
await self.scan_new_emojis()
await asyncio.sleep(interval_MINS * 60) # 每600秒扫描一次
+
def check_emoji_file_integrity(self):
"""检查表情包文件完整性
如果文件已被删除,则从数据库中移除对应记录
@@ -378,44 +375,42 @@ class EmojiManager:
for emoji in all_emojis:
try:
if 'path' not in emoji:
- print(f"\033[1;33m[提示]\033[0m 发现无效记录(缺少path字段),ID: {emoji.get('_id', 'unknown')}")
+ logger.warning(f"发现无效记录(缺少path字段),ID: {emoji.get('_id', 'unknown')}")
+ self.db.db.emoji.delete_one({'_id': emoji['_id']})
+ removed_count += 1
+ continue
+
+ if 'embedding' not in emoji:
+ logger.warning(f"发现过时记录(缺少embedding字段),ID: {emoji.get('_id', 'unknown')}")
self.db.db.emoji.delete_one({'_id': emoji['_id']})
removed_count += 1
continue
# 检查文件是否存在
if not os.path.exists(emoji['path']):
- print(f"\033[1;33m[提示]\033[0m 表情包文件已被删除: {emoji['path']}")
+ logger.warning(f"表情包文件已被删除: {emoji['path']}")
# 从数据库中删除记录
result = self.db.db.emoji.delete_one({'_id': emoji['_id']})
if result.deleted_count > 0:
- print(f"\033[1;32m[成功]\033[0m 成功删除数据库记录: {emoji['_id']}")
+ logger.success(f"成功删除数据库记录: {emoji['_id']}")
removed_count += 1
else:
- print(f"\033[1;31m[错误]\033[0m 删除数据库记录失败: {emoji['_id']}")
+ logger.error(f"删除数据库记录失败: {emoji['_id']}")
except Exception as item_error:
- print(f"\033[1;31m[错误]\033[0m 处理表情包记录时出错: {str(item_error)}")
+ logger.error(f"处理表情包记录时出错: {str(item_error)}")
continue
# 验证清理结果
remaining_count = self.db.db.emoji.count_documents({})
if removed_count > 0:
- print(f"\033[1;32m[成功]\033[0m 已清理 {removed_count} 个失效的表情包记录")
- print(f"\033[1;34m[统计]\033[0m 清理前总数: {total_count} | 清理后总数: {remaining_count}")
- # print(f"\033[1;34m[统计]\033[0m 应删除数量: {removed_count} | 实际删除数量: {total_count - remaining_count}")
- # 执行数据库压缩
- try:
- self.db.db.command({"compact": "emoji"})
- print(f"\033[1;32m[成功]\033[0m 数据库集合压缩完成")
- except Exception as compact_error:
- print(f"\033[1;31m[错误]\033[0m 数据库压缩失败: {str(compact_error)}")
+ logger.success(f"已清理 {removed_count} 个失效的表情包记录")
+ logger.info(f"清理前总数: {total_count} | 清理后总数: {remaining_count}")
else:
- print(f"\033[1;36m[表情包]\033[0m 已检查 {total_count} 个表情包记录")
+ logger.info(f"已检查 {total_count} 个表情包记录")
except Exception as e:
- print(f"\033[1;31m[错误]\033[0m 检查表情包完整性失败: {str(e)}")
- import traceback
- print(f"\033[1;31m[错误追踪]\033[0m\n{traceback.format_exc()}")
+ logger.error(f"检查表情包完整性失败: {str(e)}")
+ logger.error(traceback.format_exc())
async def start_periodic_check(self, interval_MINS: int = 120):
while True:
diff --git a/src/plugins/chat/llm_generator.py b/src/plugins/chat/llm_generator.py
index 004cd0450..a19a222c2 100644
--- a/src/plugins/chat/llm_generator.py
+++ b/src/plugins/chat/llm_generator.py
@@ -24,6 +24,7 @@ class ResponseGenerator:
self.model_r1 = LLM_request(model=global_config.llm_reasoning, temperature=0.7,max_tokens=1000)
self.model_v3 = LLM_request(model=global_config.llm_normal, temperature=0.7,max_tokens=1000)
self.model_r1_distill = LLM_request(model=global_config.llm_reasoning_minor, temperature=0.7,max_tokens=1000)
+ self.model_v25 = LLM_request(model=global_config.llm_normal_minor, temperature=0.7,max_tokens=1000)
self.db = Database.get_instance()
self.current_model_type = 'r1' # 默认使用 R1
@@ -139,7 +140,7 @@ class ResponseGenerator:
内容:{content}
输出:
'''
- content, _ = await self.model_v3.generate_response(prompt)
+ content, _ = await self.model_v25.generate_response(prompt)
content=content.strip()
if content in ['happy','angry','sad','surprised','disgusted','fearful','neutral']:
return [content]
diff --git a/src/plugins/chat/message.py b/src/plugins/chat/message.py
index d6e400e15..539e07989 100644
--- a/src/plugins/chat/message.py
+++ b/src/plugins/chat/message.py
@@ -169,6 +169,8 @@ class Message_Sending(Message):
reply_message_id: int = None # 存储 回复的 源消息ID
+ is_head: bool = False # 是否是头部消息
+
def update_thinking_time(self):
self.thinking_time = round(time.time(), 2) - self.thinking_start_time
return self.thinking_time
diff --git a/src/plugins/chat/message_sender.py b/src/plugins/chat/message_sender.py
index c81dec1bb..3e30b3cbe 100644
--- a/src/plugins/chat/message_sender.py
+++ b/src/plugins/chat/message_sender.py
@@ -166,12 +166,11 @@ class MessageManager:
else:# 如果不是message_thinking就只能是message_sending
print(f"\033[1;34m[调试]\033[0m 消息'{message_earliest.processed_plain_text}'正在发送中")
#直接发,等什么呢
- if message_earliest.update_thinking_time() < 30:
- await message_sender.send_group_message(group_id, message_earliest.processed_plain_text, auto_escape=False)
- else:
+ if message_earliest.is_head and message_earliest.update_thinking_time() >30:
await message_sender.send_group_message(group_id, message_earliest.processed_plain_text, auto_escape=False, reply_message_id=message_earliest.reply_message_id)
-
- #移除消息
+ else:
+ await message_sender.send_group_message(group_id, message_earliest.processed_plain_text, auto_escape=False)
+ #移除消息
if message_earliest.is_emoji:
message_earliest.processed_plain_text = "[表情包]"
await self.storage.store_message(message_earliest, None)
@@ -188,10 +187,11 @@ class MessageManager:
try:
#发送
- if msg.update_thinking_time() < 30:
- await message_sender.send_group_message(group_id, msg.processed_plain_text, auto_escape=False)
- else:
+ if msg.is_head and msg.update_thinking_time() >30:
await message_sender.send_group_message(group_id, msg.processed_plain_text, auto_escape=False, reply_message_id=msg.reply_message_id)
+ else:
+ await message_sender.send_group_message(group_id, msg.processed_plain_text, auto_escape=False)
+
#如果是表情包,则替换为"[表情包]"
if msg.is_emoji:
diff --git a/src/plugins/chat/utils.py b/src/plugins/chat/utils.py
index ddc698bc7..63daf6680 100644
--- a/src/plugins/chat/utils.py
+++ b/src/plugins/chat/utils.py
@@ -395,13 +395,13 @@ def add_typos(text: str) -> str:
def process_llm_response(text: str) -> List[str]:
# processed_response = process_text_with_typos(content)
- if len(text) > 200:
+ if len(text) > 300:
print(f"回复过长 ({len(text)} 字符),返回默认回复")
return ['懒得说']
# 处理长消息
sentences = split_into_sentences_w_remove_punctuation(add_typos(text))
# 检查分割后的消息数量是否过多(超过3条)
- if len(sentences) > 3:
+ if len(sentences) > 4:
print(f"分割后消息数量过多 ({len(sentences)} 条),返回默认回复")
return [f'{global_config.BOT_NICKNAME}不知道哦']
diff --git a/src/plugins/models/utils_model.py b/src/plugins/models/utils_model.py
index 2801a3553..793a89290 100644
--- a/src/plugins/models/utils_model.py
+++ b/src/plugins/models/utils_model.py
@@ -41,7 +41,7 @@ class LLM_request:
# 发送请求到完整的chat/completions端点
api_url = f"{self.base_url.rstrip('/')}/chat/completions"
- logger.info(f"发送请求到URL: {api_url}{self.model_name}") # 记录请求的URL
+ logger.info(f"发送请求到URL: {api_url}/{self.model_name}") # 记录请求的URL
max_retries = 3
base_wait_time = 15
@@ -123,7 +123,7 @@ class LLM_request:
# 发送请求到完整的chat/completions端点
api_url = f"{self.base_url.rstrip('/')}/chat/completions"
- logger.info(f"发送请求到URL: {api_url}{self.model_name}") # 记录请求的URL
+ logger.info(f"发送请求到URL: {api_url}/{self.model_name}") # 记录请求的URL
max_retries = 3
base_wait_time = 15
@@ -273,7 +273,7 @@ class LLM_request:
# 发送请求到完整的chat/completions端点
api_url = f"{self.base_url.rstrip('/')}/chat/completions"
- logger.info(f"发送请求到URL: {api_url}{self.model_name}") # 记录请求的URL
+ logger.info(f"发送请求到URL: {api_url}/{self.model_name}") # 记录请求的URL
max_retries = 2
base_wait_time = 6
@@ -339,7 +339,7 @@ class LLM_request:
}
api_url = f"{self.base_url.rstrip('/')}/embeddings"
- logger.info(f"发送请求到URL: {api_url}{self.model_name}") # 记录请求的URL
+ logger.info(f"发送请求到URL: {api_url}/{self.model_name}") # 记录请求的URL
max_retries = 2
base_wait_time = 6
@@ -396,7 +396,7 @@ class LLM_request:
}
api_url = f"{self.base_url.rstrip('/')}/embeddings"
- logger.info(f"发送请求到URL: {api_url}{self.model_name}") # 记录请求的URL
+ logger.info(f"发送请求到URL: {api_url}/{self.model_name}") # 记录请求的URL
max_retries = 3
base_wait_time = 15