refactor(chat): 重构HeartFChatting为模块化架构

将原本超长的heartFC_chat.py拆分为6个功能内聚的子模块:
- hfc_context:上下文数据容器
- cycle_tracker:循环状态记录
- energy_manager:能量值独立管理
- proactive_thinker:主动思考逻辑抽离
- cycle_processor:单次循环处理器
- response_handler / normal_mode_handler:响应策略

删除冗余常量、错误样板及旧逻辑;大幅减少类体积;降低耦合度,提升可维护性。
This commit is contained in:
minecraft1024a
2025-08-21 14:27:12 +08:00
parent 43563925e8
commit 9c3b750328
9 changed files with 927 additions and 1199 deletions

View File

@@ -0,0 +1,152 @@
import time
import random
import traceback
from typing import Optional, Dict, Any, List, Tuple
from src.common.logger import get_logger
from src.config.config import global_config
from src.plugin_system.apis import generator_api, send_api, message_api, database_api
from src.person_info.person_info import get_person_info_manager
from .hfc_context import HfcContext
logger = get_logger("hfc.response")
class ResponseHandler:
def __init__(self, context: HfcContext):
self.context = context
async def generate_and_send_reply(
self,
response_set,
reply_to_str,
loop_start_time,
action_message,
cycle_timers: Dict[str, float],
thinking_id,
plan_result,
) -> Tuple[Dict[str, Any], str, Dict[str, float]]:
reply_text = await self._send_response(response_set, reply_to_str, loop_start_time, action_message)
person_info_manager = get_person_info_manager()
platform = "default"
if self.context.chat_stream:
platform = (
action_message.get("chat_info_platform") or action_message.get("user_platform") or self.context.chat_stream.platform
)
user_id = action_message.get("user_id", "")
person_id = person_info_manager.get_person_id(platform, user_id)
person_name = await person_info_manager.get_value(person_id, "person_name")
action_prompt_display = f"你对{person_name}进行了回复:{reply_text}"
await database_api.store_action_info(
chat_stream=self.context.chat_stream,
action_build_into_prompt=False,
action_prompt_display=action_prompt_display,
action_done=True,
thinking_id=thinking_id,
action_data={"reply_text": reply_text, "reply_to": reply_to_str},
action_name="reply",
)
loop_info: Dict[str, Any] = {
"loop_plan_info": {
"action_result": plan_result.get("action_result", {}),
},
"loop_action_info": {
"action_taken": True,
"reply_text": reply_text,
"command": "",
"taken_time": time.time(),
},
}
return loop_info, reply_text, cycle_timers
async def _send_response(self, reply_set, reply_to, thinking_start_time, message_data) -> str:
current_time = time.time()
new_message_count = message_api.count_new_messages(
chat_id=self.context.stream_id, start_time=thinking_start_time, end_time=current_time
)
platform = message_data.get("user_platform", "")
user_id = message_data.get("user_id", "")
reply_to_platform_id = f"{platform}:{user_id}"
need_reply = new_message_count >= random.randint(2, 4)
reply_text = ""
is_proactive_thinking = message_data.get("message_type") == "proactive_thinking"
first_replied = False
for reply_seg in reply_set:
# 调试日志验证reply_seg的格式
logger.debug(f"Processing reply_seg type: {type(reply_seg)}, content: {reply_seg}")
# 修正:正确处理元组格式 (格式为: (type, content))
if isinstance(reply_seg, tuple) and len(reply_seg) >= 2:
reply_type, data = reply_seg
else:
# 向下兼容:如果已经是字符串,则直接使用
data = str(reply_seg)
reply_type = "text"
reply_text += data
if is_proactive_thinking and data.strip() == "沉默":
logger.info(f"{self.context.log_prefix} 主动思考决定保持沉默,不发送消息")
continue
if not first_replied:
if need_reply:
await send_api.text_to_stream(
text=data,
stream_id=self.context.stream_id,
reply_to=reply_to,
reply_to_platform_id=reply_to_platform_id,
typing=False,
)
else:
await send_api.text_to_stream(
text=data,
stream_id=self.context.stream_id,
reply_to_platform_id=reply_to_platform_id,
typing=False,
)
first_replied = True
else:
await send_api.text_to_stream(
text=data,
stream_id=self.context.stream_id,
reply_to_platform_id=reply_to_platform_id,
typing=True,
)
return reply_text
async def generate_response(
self,
message_data: dict,
available_actions: Optional[Dict[str, Any]],
reply_to: str,
request_type: str = "chat.replyer.normal",
) -> Optional[list]:
try:
success, reply_set, _ = await generator_api.generate_reply(
chat_stream=self.context.chat_stream,
reply_to=reply_to,
available_actions=available_actions,
enable_tool=global_config.tool.enable_tool,
request_type=request_type,
from_plugin=False,
)
if not success or not reply_set:
logger.info(f"{message_data.get('processed_plain_text')} 的回复生成失败")
return None
return reply_set
except Exception as e:
logger.error(f"{self.context.log_prefix}回复生成出现错误:{str(e)} {traceback.format_exc()}")
return None