feat:动作现在区分focus和normal,并且可选不同的激活策略

This commit is contained in:
SengokuCola
2025-06-09 15:10:38 +08:00
parent 2ce5114b8c
commit 97ffbe5145
25 changed files with 1180 additions and 855 deletions

View File

@@ -39,7 +39,7 @@ async def modify_actions_task():
**处理内容:**
- 传统观察处理(循环历史分析、类型匹配等)
- 激活类型判定(ALWAYS, RANDOM, LLM_JUDGE, KEYWORD
- 激活类型判定(Focus模式和Normal模式分别处理
- 并行LLM判定
- 智能缓存
- 动态关键词收集
@@ -94,41 +94,123 @@ for action_name, action_info in llm_judge_actions.items():
# 检查消息中的关键词匹配
```
## 双激活类型系统 🆕
### 系统设计理念
**Focus模式** 和 **Normal模式** 采用不同的激活策略:
- **Focus模式**: 智能化优先支持复杂的LLM判定
- **Normal模式**: 性能优先,使用快速的关键词和随机触发
### 双激活类型配置
```python
class MyAction(BaseAction):
action_name = "my_action"
action_description = "我的动作"
# Focus模式激活类型支持LLM_JUDGE
focus_activation_type = ActionActivationType.LLM_JUDGE
# Normal模式激活类型建议使用KEYWORD/RANDOM/ALWAYS
normal_activation_type = ActionActivationType.KEYWORD
activation_keywords = ["关键词1", "keyword"]
# 模式启用控制
mode_enable = ChatMode.ALL # 在所有模式下启用
# 并行执行控制
parallel_action = False # 是否与回复并行执行
```
### 模式启用类型 (ChatMode)
```python
from src.chat.chat_mode import ChatMode
# 可选值:
mode_enable = ChatMode.FOCUS # 仅在Focus模式启用
mode_enable = ChatMode.NORMAL # 仅在Normal模式启用
mode_enable = ChatMode.ALL # 在所有模式启用(默认)
```
### 并行动作系统 🆕
```python
# 并行动作:可以与回复生成同时进行
parallel_action = True # 不会阻止回复生成
# 串行动作:会替代回复生成
parallel_action = False # 默认值,传统行为
```
**并行动作的优势:**
- 提升用户体验(同时获得回复和动作执行)
- 减少响应延迟
- 适用于情感表达、状态变更等辅助性动作
## 四种激活类型
### 1. ALWAYS - 始终激活
```python
activation_type = ActionActivationType.ALWAYS
focus_activation_type = ActionActivationType.ALWAYS
normal_activation_type = ActionActivationType.ALWAYS
# 基础动作,如 reply, no_reply
```
### 2. RANDOM - 随机激活
```python
activation_type = ActionActivationType.RANDOM
focus_activation_type = ActionActivationType.RANDOM
normal_activation_type = ActionActivationType.RANDOM
random_probability = 0.3 # 激活概率
# 用于增加惊喜元素,如随机表情
```
### 3. LLM_JUDGE - 智能判定
```python
activation_type = ActionActivationType.LLM_JUDGE
llm_judge_prompt = "自定义判定提示词"
focus_activation_type = ActionActivationType.LLM_JUDGE
# 注意Normal模式不建议使用LLM_JUDGE会发出警告
normal_activation_type = ActionActivationType.KEYWORD
# 需要理解上下文的复杂动作,如情感表达
```
### 4. KEYWORD - 关键词触发
```python
activation_type = ActionActivationType.KEYWORD
focus_activation_type = ActionActivationType.KEYWORD
normal_activation_type = ActionActivationType.KEYWORD
activation_keywords = ["画", "图片", "生成"]
# 明确指令触发的动作,如图片生成
```
## 推荐配置模式
### 模式1智能自适应
```python
# Focus模式使用智能判定Normal模式使用关键词
focus_activation_type = ActionActivationType.LLM_JUDGE
normal_activation_type = ActionActivationType.KEYWORD
activation_keywords = ["相关", "关键词"]
```
### 模式2统一关键词
```python
# 两个模式都使用关键词,确保一致性
focus_activation_type = ActionActivationType.KEYWORD
normal_activation_type = ActionActivationType.KEYWORD
activation_keywords = ["画", "图片", "生成"]
```
### 模式3Focus专享
```python
# 仅在Focus模式启用的智能功能
focus_activation_type = ActionActivationType.LLM_JUDGE
normal_activation_type = ActionActivationType.ALWAYS # 不会生效
mode_enable = ChatMode.FOCUS
```
## 性能提升
### 理论性能改进
- **并行LLM判定**: 1.5-2x 提升
- **智能缓存**: 20-30% 额外提升
- **整体预期**: 2-3x 性能提升
- **双模式优化**: Normal模式额外1.5x提升
- **整体预期**: 3-5x 性能提升
### 缓存策略
- **缓存键**: `{action_name}_{context_hash}`
@@ -137,19 +219,43 @@ activation_keywords = ["画", "图片", "生成"]
## 向后兼容性
### 废弃方法处理
### ⚠️ 重大变更说明
**旧的 `action_activation_type` 属性已被移除**,必须更新为新的双激活类型系统:
#### 迁移指南
```python
async def process_actions_for_planner(...):
"""[已废弃] 此方法现在已被整合到 modify_actions() 中"""
logger.warning("process_actions_for_planner() 已废弃")
# 仍然返回结果以保持兼容性
return current_using_actions
# 旧的配置(已废弃)
class OldAction(BaseAction):
action_activation_type = ActionActivationType.LLM_JUDGE # ❌ 已移除
# 新的配置(必须使用)
class NewAction(BaseAction):
focus_activation_type = ActionActivationType.LLM_JUDGE # ✅ Focus模式
normal_activation_type = ActionActivationType.KEYWORD # ✅ Normal模式
activation_keywords = ["相关", "关键词"]
mode_enable = ChatMode.ALL
parallel_action = False
```
### 迁移指南
1. **主循环**: 使用 `modify_actions(observations, messages, context, extra)`
2. **规划器**: 直接使用 `ActionManager.get_using_actions()`
3. **移除**: 规划器中对 `process_actions_for_planner()` 的调用
#### 快速迁移脚本
对于简单的迁移,可以使用以下模式:
```python
# 如果原来是 ALWAYS
focus_activation_type = ActionActivationType.ALWAYS
normal_activation_type = ActionActivationType.ALWAYS
# 如果原来是 LLM_JUDGE
focus_activation_type = ActionActivationType.LLM_JUDGE
normal_activation_type = ActionActivationType.KEYWORD # 需要添加关键词
# 如果原来是 KEYWORD
focus_activation_type = ActionActivationType.KEYWORD
normal_activation_type = ActionActivationType.KEYWORD
# 如果原来是 RANDOM
focus_activation_type = ActionActivationType.RANDOM
normal_activation_type = ActionActivationType.RANDOM
```
## 测试验证
@@ -159,11 +265,12 @@ python test_corrected_architecture.py
```
### 测试内容
- 架构正确性验证
- 双激活类型系统验证
- 数据一致性检查
- 职责分离确认
- 性能测试
- 向后兼容性验证
- 并行动作功能验证
## 优势总结
@@ -175,15 +282,18 @@ python test_corrected_architecture.py
### 2. 高性能
- **并行处理**: 多个LLM判定同时进行
- **智能缓存**: 避免重复计算
- **双模式优化**: Focus智能化Normal快速化
### 3. 智能化
- **动态配置**: 从动作配置中收集关键词
- **上下文感知**: 基于聊天内容智能激活
- **冲突避免**: 防止重复激活
- **模式自适应**: 根据聊天模式选择最优策略
### 4. 可扩展性
- **插件式**: 新的激活类型易于添加
- **配置驱动**: 通过配置控制行为
- **模块化**: 各组件独立可测试
- **双模式支持**: 灵活适应不同使用场景
这个修正后的架构实现了正确的职责分工,确保了主循环负责动作管理,规划器专注于决策,同时集成了并行判定和智能缓存等优化功能。
这个修正后的架构实现了正确的职责分工,确保了主循环负责动作管理,规划器专注于决策,同时集成了双激活类型、并行判定和智能缓存等优化功能。

View File

@@ -2,44 +2,80 @@
## 概述
MaiBot 的动作激活系统支持四种不同的激活类型,让机器人能够智能地根据上下文选择合适的动作
MaiBot 的动作激活系统采用**双激活类型架构**为Focus模式和Normal模式分别提供最优的激活策略
**系统已集成三大优化策略**
**系统已集成四大核心特性**
- 🎯 **双激活类型**Focus模式智能化Normal模式高性能
- 🚀 **并行判定**多个LLM判定任务并行执行
- 💾 **智能缓存**:相同上下文的判定结果缓存复用
- 🔍 **分层判定**:快速过滤 + 精确判定的两层架构
- **并行动作**:支持与回复同时执行的动作
## 双激活类型系统 🆕
### 系统设计理念
**Focus模式**:智能优先
- 支持复杂的LLM判定
- 提供精确的上下文理解
- 适合需要深度分析的场景
**Normal模式**:性能优先
- 使用快速的关键词匹配
- 采用简单的随机触发
- 确保快速响应用户
### 核心属性配置
```python
from src.chat.focus_chat.planners.actions.base_action import BaseAction, register_action, ActionActivationType
from src.chat.chat_mode import ChatMode
@register_action
class MyAction(BaseAction):
action_name = "my_action"
action_description = "我的动作描述"
# 双激活类型配置
focus_activation_type = ActionActivationType.LLM_JUDGE # Focus模式使用智能判定
normal_activation_type = ActionActivationType.KEYWORD # Normal模式使用关键词
activation_keywords = ["关键词1", "关键词2", "keyword"]
keyword_case_sensitive = False
# 模式启用控制
mode_enable = ChatMode.ALL # 支持的聊天模式
# 并行执行控制
parallel_action = False # 是否与回复并行执行
# 插件系统控制
enable_plugin = True # 是否启用此插件
```
## 激活类型详解
### 1. ALWAYS - 总是激活
**用途**:基础必需动作,始终可用
```python
action_activation_type = ActionActivationType.ALWAYS
focus_activation_type = ActionActivationType.ALWAYS
normal_activation_type = ActionActivationType.ALWAYS
```
**示例**`reply_action`, `no_reply_action`
### 2. RANDOM - 随机激活
**用途**:增加不可预测性和趣味性
```python
action_activation_type = ActionActivationType.RANDOM
focus_activation_type = ActionActivationType.RANDOM
normal_activation_type = ActionActivationType.RANDOM
random_activation_probability = 0.2 # 20%概率激活
```
**示例**`pic_action` (20%概率)
**示例**`vtb_action` (表情动作)
### 3. LLM_JUDGE - LLM智能判定
**用途**:需要上下文理解的复杂判定
```python
action_activation_type = ActionActivationType.LLM_JUDGE
llm_judge_prompt = """
判定条件:
1. 当前聊天涉及情感表达
2. 需要生动的情感回应
3. 场景适合虚拟主播动作
不适用场景:
1. 纯信息查询
2. 技术讨论
"""
focus_activation_type = ActionActivationType.LLM_JUDGE
# 注意Normal模式使用LLM_JUDGE会产生性能警告
normal_activation_type = ActionActivationType.KEYWORD # 推荐在Normal模式使用KEYWORD
```
**优化特性**
-**直接判定**直接进行LLM判定减少复杂度
@@ -49,11 +85,115 @@ llm_judge_prompt = """
### 4. KEYWORD - 关键词触发
**用途**:精确命令式触发
```python
action_activation_type = ActionActivationType.KEYWORD
focus_activation_type = ActionActivationType.KEYWORD
normal_activation_type = ActionActivationType.KEYWORD
activation_keywords = ["画", "画图", "生成图片", "draw"]
keyword_case_sensitive = False # 不区分大小写
```
**示例**`help_action`, `edge_search_action`, `pic_action`
**示例**`pic_action`, `mute_action`
## 模式启用控制 (ChatMode)
### 模式类型
```python
from src.chat.chat_mode import ChatMode
# 在所有模式下启用
mode_enable = ChatMode.ALL # 默认值
# 仅在Focus模式启用
mode_enable = ChatMode.FOCUS
# 仅在Normal模式启用
mode_enable = ChatMode.NORMAL
```
### 使用场景建议
- **ChatMode.ALL**: 通用功能(如回复、图片生成)
- **ChatMode.FOCUS**: 需要深度理解的智能功能
- **ChatMode.NORMAL**: 快速响应的基础功能
## 并行动作系统 🆕
### 概念说明
```python
# 并行动作:与回复生成同时执行
parallel_action = True # 不会阻止回复,提升用户体验
# 串行动作:替代回复生成(传统行为)
parallel_action = False # 默认值,动作执行时不生成回复
```
### 适用场景
**并行动作 (parallel_action = True)**:
- 情感表达(表情、动作)
- 状态变更(禁言、设置)
- 辅助功能TTS播报
**串行动作 (parallel_action = False)**:
- 内容生成(图片、文档)
- 搜索查询
- 需要完整注意力的操作
### 实际案例
```python
@register_action
class MuteAction(PluginAction):
action_name = "mute_action"
focus_activation_type = ActionActivationType.LLM_JUDGE
normal_activation_type = ActionActivationType.KEYWORD
activation_keywords = ["禁言", "mute", "ban", "silence"]
parallel_action = True # 禁言的同时还可以回复确认信息
@register_action
class PicAction(PluginAction):
action_name = "pic_action"
focus_activation_type = ActionActivationType.LLM_JUDGE
normal_activation_type = ActionActivationType.KEYWORD
activation_keywords = ["画", "绘制", "生成图片", "画图", "draw", "paint"]
parallel_action = False # 专注于图片生成,不同时回复
```
## 推荐配置模式
### 模式1智能自适应推荐
```python
# Focus模式智能判定Normal模式快速触发
focus_activation_type = ActionActivationType.LLM_JUDGE
normal_activation_type = ActionActivationType.KEYWORD
activation_keywords = ["相关", "关键词", "英文keyword"]
mode_enable = ChatMode.ALL
parallel_action = False # 根据具体需求调整
```
### 模式2统一关键词
```python
# 两个模式都使用关键词,确保行为一致
focus_activation_type = ActionActivationType.KEYWORD
normal_activation_type = ActionActivationType.KEYWORD
activation_keywords = ["画", "图片", "生成"]
mode_enable = ChatMode.ALL
parallel_action = False
```
### 模式3Focus专享功能
```python
# 仅在Focus模式启用的高级功能
focus_activation_type = ActionActivationType.LLM_JUDGE
normal_activation_type = ActionActivationType.ALWAYS # 不会生效
mode_enable = ChatMode.FOCUS
parallel_action = False
```
### 模式4随机娱乐功能
```python
# 增加趣味性的随机功能
focus_activation_type = ActionActivationType.RANDOM
normal_activation_type = ActionActivationType.RANDOM
random_activation_probability = 0.08 # 8%概率
mode_enable = ChatMode.ALL
parallel_action = True # 通常与回复并行
```
## 性能优化详解
@@ -194,26 +334,22 @@ focus_chat:
```python
from src.chat.focus_chat.planners.actions.plugin_action import PluginAction, register_action, ActionActivationType
from src.chat.chat_mode import ChatMode
@register_action
class MyAction(PluginAction):
action_name = "my_action"
action_description = "我的自定义动作"
# 选择合适的激活类型
action_activation_type = ActionActivationType.LLM_JUDGE
# 激活类型配置
focus_activation_type = ActionActivationType.LLM_JUDGE
normal_activation_type = ActionActivationType.KEYWORD
activation_keywords = ["自定义", "触发", "custom"]
# LLM判定的自定义提示词
llm_judge_prompt = """
判定是否激活my_action的条件
1. 用户明确要求执行特定操作
2. 当前场景适合此动作
3. 没有其他更合适的动作
不应激活的情况:
1. 普通聊天对话
2. 用户只是随便说说
"""
# 模式和并行控制
mode_enable = ChatMode.ALL
parallel_action = False
enable_plugin = True
async def process(self):
# 动作执行逻辑
@@ -225,9 +361,12 @@ class MyAction(PluginAction):
@register_action
class SearchAction(PluginAction):
action_name = "search_action"
action_activation_type = ActionActivationType.KEYWORD
focus_activation_type = ActionActivationType.KEYWORD
normal_activation_type = ActionActivationType.KEYWORD
activation_keywords = ["搜索", "查找", "什么是", "search", "find"]
keyword_case_sensitive = False
mode_enable = ChatMode.ALL
parallel_action = False
```
### 随机触发动作
@@ -235,8 +374,51 @@ class SearchAction(PluginAction):
@register_action
class SurpriseAction(PluginAction):
action_name = "surprise_action"
action_activation_type = ActionActivationType.RANDOM
focus_activation_type = ActionActivationType.RANDOM
normal_activation_type = ActionActivationType.RANDOM
random_activation_probability = 0.1 # 10%概率
mode_enable = ChatMode.ALL
parallel_action = True # 惊喜动作与回复并行
```
### Focus专享智能动作
```python
@register_action
class AdvancedAnalysisAction(PluginAction):
action_name = "advanced_analysis"
focus_activation_type = ActionActivationType.LLM_JUDGE
normal_activation_type = ActionActivationType.ALWAYS # 不会生效
mode_enable = ChatMode.FOCUS # 仅Focus模式
parallel_action = False
```
## 现有插件的配置示例
### MuteAction (禁言动作)
```python
focus_activation_type = ActionActivationType.LLM_JUDGE
normal_activation_type = ActionActivationType.KEYWORD
activation_keywords = ["禁言", "mute", "ban", "silence"]
mode_enable = ChatMode.ALL
parallel_action = True # 可以与回复同时进行
```
### PicAction (图片生成)
```python
focus_activation_type = ActionActivationType.LLM_JUDGE
normal_activation_type = ActionActivationType.KEYWORD
activation_keywords = ["画", "绘制", "生成图片", "画图", "draw", "paint", "图片生成"]
mode_enable = ChatMode.ALL
parallel_action = False # 专注生成,不同时回复
```
### VTBAction (虚拟主播表情)
```python
focus_activation_type = ActionActivationType.LLM_JUDGE
normal_activation_type = ActionActivationType.RANDOM
random_activation_probability = 0.08
mode_enable = ChatMode.ALL
parallel_action = False # 替代文字回复
```
## 性能监控
@@ -257,6 +439,101 @@ logger.debug(f"并行调整动作、回忆和处理完成,耗时: {duration:.2
3. **监控并行效果**:关注 `asyncio.gather` 的执行时间
4. **缓存命中率**:监控缓存使用情况,优化策略
5. **启用流程并行化**:确保 `parallel_processing` 配置为 `true`
6. **激活类型选择**Normal模式优先使用KEYWORD避免LLM_JUDGE
## 迁移指南 ⚠️
### 重大变更说明
**旧的 `action_activation_type` 属性已被移除**,必须更新为新的双激活类型系统。
### 快速迁移步骤
#### 第一步:更新基本属性
```python
# 旧的配置(已废弃)❌
class OldAction(BaseAction):
action_activation_type = ActionActivationType.LLM_JUDGE
# 新的配置(必须使用)✅
class NewAction(BaseAction):
focus_activation_type = ActionActivationType.LLM_JUDGE
normal_activation_type = ActionActivationType.KEYWORD
activation_keywords = ["相关", "关键词"]
mode_enable = ChatMode.ALL
parallel_action = False
enable_plugin = True
```
#### 第二步:根据原类型选择对应策略
```python
# 原来是 ALWAYS
focus_activation_type = ActionActivationType.ALWAYS
normal_activation_type = ActionActivationType.ALWAYS
# 原来是 LLM_JUDGE
focus_activation_type = ActionActivationType.LLM_JUDGE
normal_activation_type = ActionActivationType.KEYWORD # 添加关键词
activation_keywords = ["需要", "添加", "关键词"]
# 原来是 KEYWORD
focus_activation_type = ActionActivationType.KEYWORD
normal_activation_type = ActionActivationType.KEYWORD
# 保持原有的 activation_keywords
# 原来是 RANDOM
focus_activation_type = ActionActivationType.RANDOM
normal_activation_type = ActionActivationType.RANDOM
# 保持原有的 random_activation_probability
```
#### 第三步:配置新功能
```python
# 添加模式控制
mode_enable = ChatMode.ALL # 或 ChatMode.FOCUS / ChatMode.NORMAL
# 添加并行控制
parallel_action = False # 根据动作特性选择True/False
# 添加插件控制
enable_plugin = True # 是否启用此插件
```
### 批量迁移脚本
可以创建以下脚本来帮助批量迁移:
```python
# migrate_actions.py
import os
import re
def migrate_action_file(filepath):
with open(filepath, 'r', encoding='utf-8') as f:
content = f.read()
# 替换 action_activation_type
if 'action_activation_type = ActionActivationType.ALWAYS' in content:
content = content.replace(
'action_activation_type = ActionActivationType.ALWAYS',
'focus_activation_type = ActionActivationType.ALWAYS\n normal_activation_type = ActionActivationType.ALWAYS'
)
elif 'action_activation_type = ActionActivationType.LLM_JUDGE' in content:
content = content.replace(
'action_activation_type = ActionActivationType.LLM_JUDGE',
'focus_activation_type = ActionActivationType.LLM_JUDGE\n normal_activation_type = ActionActivationType.KEYWORD\n activation_keywords = ["需要", "添加", "关键词"] # TODO: 配置合适的关键词'
)
# ... 其他替换逻辑
# 添加新属性
if 'mode_enable' not in content:
# 在class定义后添加新属性
# ...
with open(filepath, 'w', encoding='utf-8') as f:
f.write(content)
# 使用示例
migrate_action_file('src/plugins/your_plugin/actions/your_action.py')
```
## 测试验证
@@ -271,41 +548,54 @@ python test_parallel_optimization.py
```
测试内容包括:
- ✅ 双激活类型功能验证
- ✅ 并行处理功能验证
- ✅ 缓存机制效果测试
- ✅ 分层判定规则验证
- ✅ 性能对比分析
- ✅ HFC流程并行化效果
- ✅ 多循环平均性能测试
- ✅ 并行动作系统验证
- ✅ 迁移兼容性测试
## 最佳实践
### 1. 激活类型选择
- **ALWAYS**reply, no_reply 等基础动作
- **LLM_JUDGE**:需要智能判断的复杂动作
- **KEYWORD**:明确的命令式动作
- **LLM_JUDGE**:需要智能判断的复杂动作建议仅用于Focus模式
- **KEYWORD**:明确的命令式动作推荐在Normal模式使用
- **RANDOM**:增趣动作,低概率触发
### 2. LLM判定提示词编写
### 2. 双模式配置策略
- **智能自适应**Focus用LLM_JUDGENormal用KEYWORD
- **性能优先**两个模式都用KEYWORD或RANDOM
- **功能分离**:某些功能仅在特定模式启用
### 3. 并行动作使用建议
- **parallel_action = True**:辅助性、非内容生成类动作
- **parallel_action = False**:主要内容生成、需要完整注意力的动作
### 4. LLM判定提示词编写
- 明确描述激活条件和排除条件
- 避免模糊的描述
- 考虑边界情况
- 保持简洁明了
### 3. 关键词设置
### 5. 关键词设置
- 包含同义词和英文对应词
- 考虑用户的不同表达习惯
- 避免过于宽泛的关键词
- 根据实际使用调整
### 4. 性能优化
### 6. 性能优化
- 定期监控处理时间
- 根据使用模式调整缓存策略
- 优化激活判定逻辑
- 平衡准确性和性能
- **启用并行处理配置**
- **Normal模式避免使用LLM_JUDGE**
### 5. 并行化最佳实践
### 7. 并行化最佳实践
- 在生产环境启用 `parallel_processing`
- 监控并行阶段的执行时间
- 确保各阶段的独立性
@@ -313,30 +603,48 @@ python test_parallel_optimization.py
## 总结
优化后的动作激活系统通过**层优化策略**,实现了全方位的性能提升:
优化后的动作激活系统通过**层优化策略**,实现了全方位的性能提升:
### 第一层:动作激活内部优化
### 第一层:双激活类型系统
- **Focus模式**智能化优先支持复杂LLM判定
- **Normal模式**:性能优先,使用快速关键词匹配
- **模式自适应**:根据聊天模式选择最优策略
### 第二层:动作激活内部优化
- **并行判定**多个LLM判定任务并行执行
- **智能缓存**:相同上下文的判定结果缓存复用
- **分层判定**:快速过滤 + 精确判定的两层架构
### 第层:HFC流程级并行化
### 第层:并行动作系统
- **并行执行**:支持动作与回复同时进行
- **用户体验**:减少等待时间,提升交互流畅性
- **灵活控制**:每个动作可独立配置并行行为
### 第四层HFC流程级并行化
- **三阶段并行**:调整动作、回忆、处理器同时执行
- **性能提升**2.3x 理论加速比
- **配置控制**:可根据环境灵活开启/关闭
### 第五层:插件系统增强
- **enable_plugin**:精确控制插件启用状态
- **mode_enable**:支持模式级别的功能控制
- **向后兼容**:平滑迁移旧系统配置
### 综合效果
- **响应速度**:显著提升机器人反应速度
- **成本优化**减少不必要的LLM调用
- **智能决策**四种激活类型覆盖所有场景
- **智能决策**激活类型覆盖所有场景
- **用户体验**:更快速、更智能的交互
- **灵活配置**:精细化的功能控制
**总性能提升预估:3-5x**
- 动作激活系统内部优化1.5-2x
**总性能提升预估:4-6x**
- 双激活类型系统1.5x (Normal模式优化)
- 动作激活内部优化1.5-2x
- HFC流程并行化2.3x
- 并行动作系统额外30-50%提升
- 缓存和过滤优化额外20-30%提升
这使得MaiBot能够更快速、更智能地响应用户需求提供卓越的交互体验。
这使得MaiBot能够更快速、更智能地响应用户需求同时提供灵活的配置选项以适应不同的使用场景,实现了卓越的交互体验。
## 如何为Action添加激活类型
@@ -344,17 +652,24 @@ python test_parallel_optimization.py
```python
from src.chat.focus_chat.planners.actions.base_action import BaseAction, register_action, ActionActivationType
from src.chat.chat_mode import ChatMode
@register_action
class YourAction(BaseAction):
action_name = "your_action"
action_description = "你的动作描述"
# 设置激活类型 - 关键词触发示例
action_activation_type = ActionActivationType.KEYWORD
# 激活类型配置
focus_activation_type = ActionActivationType.LLM_JUDGE
normal_activation_type = ActionActivationType.KEYWORD
activation_keywords = ["关键词1", "关键词2", "keyword"]
keyword_case_sensitive = False
# 新增属性
mode_enable = ChatMode.ALL
parallel_action = False
enable_plugin = True
# ... 其他代码
```
@@ -362,48 +677,47 @@ class YourAction(BaseAction):
```python
from src.chat.focus_chat.planners.actions.plugin_action import PluginAction, register_action, ActionActivationType
from src.chat.chat_mode import ChatMode
@register_action
class YourPluginAction(PluginAction):
action_name = "your_plugin_action"
action_description = "你的插件动作描述"
# 设置激活类型 - 关键词触发示例
action_activation_type = ActionActivationType.KEYWORD
# 激活类型配置
focus_activation_type = ActionActivationType.KEYWORD
normal_activation_type = ActionActivationType.KEYWORD
activation_keywords = ["触发词1", "trigger", "启动"]
keyword_case_sensitive = False
# 新增属性
mode_enable = ChatMode.ALL
parallel_action = True # 与回复并行执行
enable_plugin = True
# ... 其他代码
```
## 现有Action的激活类型设置
### 基础动作 (ALWAYS)
- `reply` - 回复动作
- `no_reply` - 不回复动作
### LLM判定动作 (LLM_JUDGE)
- `vtb_action` - 虚拟主播表情
- `mute_action` - 禁言动作
### 关键词触发动作 (KEYWORD) 🆕
- `edge_search_action` - 网络搜索 (搜索、查找、什么是等)
- `pic_action` - 图片生成 (画、画图、生成图片等)
- `help_action` - 帮助功能 (帮助、help、求助等)
## 工作流程
1. **ActionModifier处理**: 在planner运行前ActionModifier会遍历所有注册的动作
2. **类型判断**: 根据每个动作的激活类型决定是否激活
3. **激活决策**:
2. **模式检查**: 根据当前聊天模式Focus/Normal和action的mode_enable进行过滤
3. **激活类型判断**: 根据当前模式选择对应的激活类型focus_activation_type或normal_activation_type
4. **激活决策**:
- ALWAYS: 直接激活
- RANDOM: 根据概率随机决定
- LLM_JUDGE: 调用小模型判定
- LLM_JUDGE: 调用小模型判定Normal模式会警告
- KEYWORD: 检测关键词匹配
4. **结果收集**: 收集所有激活的动作供planner使用
5. **并行性检查**: 根据parallel_action决定是否与回复并行
6. **结果收集**: 收集所有激活的动作供planner使用
## 配置建议
### 双激活类型策略选择
- **智能自适应(推荐)**: Focus用LLM_JUDGENormal用KEYWORD
- **性能优先**: 两个模式都用KEYWORD或RANDOM
- **功能专享**: 某些高级功能仅在Focus模式启用
### LLM判定提示词编写
- 明确指出激活条件和不激活条件
- 使用简单清晰的语言
@@ -423,6 +737,7 @@ class YourPluginAction(PluginAction):
### 性能考虑
- LLM判定会增加响应时间适度使用
- 关键词检测性能最好,推荐优先使用
- Normal模式避免使用LLM_JUDGE
- 建议优先级KEYWORD > ALWAYS > RANDOM > LLM_JUDGE
## 调试和测试
@@ -434,20 +749,25 @@ python test_action_activation.py
```
该脚本会显示:
- 所有注册动作的激活类型
- 模拟不同消息下的激活结果
- 所有注册动作的激活类型配置
- 模拟不同模式下的激活结果
- 并行动作系统的工作状态
- 帮助验证配置是否正确
## 注意事项
1. **向后兼容**: 未设置激活类型的动作默认为ALWAYS
2. **错误处理**: LLM判定失败时默认不激活该动作
3. **日志记录**: 系统会记录激活决策过程,便于调试
4. **性能影响**: LLM判定会略微增加响应时间
1. **重大变更**: `action_activation_type` 已被移除,必须使用双激活类型
2. **向后兼容**: 系统不再兼容旧的单一激活类型配置
3. **错误处理**: LLM判定失败时默认不激活该动作
4. **性能警告**: Normal模式使用LLM_JUDGE会产生警告
5. **日志记录**: 系统会记录激活决策过程,便于调试
6. **性能影响**: LLM判定会略微增加响应时间
## 未来扩展
系统设计支持未来添加更多激活类型,如:
系统设计支持未来添加更多激活类型和功能,如:
- 基于时间的激活
- 基于用户权限的激活
- 基于群组设置的激活
- 基于对话历史的激活
- 基于情感状态的激活

View File

@@ -304,7 +304,7 @@ class ExpressionLearner:
# 如果没选够,随机补充
if len(remove_set) < remove_count:
remaining = set(indices) - remove_set
remove_set.update(random.sample(remaining, remove_count - len(remove_set)))
remove_set.update(random.sample(list(remaining), remove_count - len(remove_set)))
remove_indices = list(remove_set)

View File

@@ -33,8 +33,8 @@ def init_prompt():
</调取记录>
{name_block}
请你阅读聊天记录,查看是否需要调取某个人的信息。
你不同程度上认识群聊里的人,你可以根据聊天记录,回忆起有关他们的信息,帮助你参与聊天
请你阅读聊天记录,查看是否需要调取某个人的信息,这个人可以是出现在聊天记录中的,也可以是记录中提到的人
你不同程度上认识群聊里的人,以及他们谈论到的人,你可以根据聊天记录,回忆起有关他们的信息,帮助你参与聊天
1.你需要提供用户名,以及你想要提取的信息名称类型来进行调取
2.你也可以完全不输出任何信息
3.阅读调取记录,如果已经回忆过某个人的信息,请不要重复调取,除非你忘记了
@@ -205,10 +205,10 @@ class RelationshipProcessor(BaseProcessor):
)
try:
# logger.info(f"{self.log_prefix} 人物信息prompt: \n{prompt}\n")
logger.info(f"{self.log_prefix} 人物信息prompt: \n{prompt}\n")
content, _ = await self.llm_model.generate_response_async(prompt=prompt)
if content:
# print(f"content: {content}")
print(f"content: {content}")
content_json = json.loads(repair_json(content))
for person_name, info_type in content_json.items():

View File

@@ -42,6 +42,9 @@ class ActionManager:
# 初始化时将默认动作加载到使用中的动作
self._using_actions = self._default_actions.copy()
# 添加系统核心动作
self._add_system_core_actions()
def _load_registered_actions(self) -> None:
"""
加载所有通过装饰器注册的动作
@@ -59,15 +62,23 @@ class ActionManager:
action_parameters: dict[str:str] = getattr(action_class, "action_parameters", {})
action_require: list[str] = getattr(action_class, "action_require", [])
associated_types: list[str] = getattr(action_class, "associated_types", [])
is_default: bool = getattr(action_class, "default", False)
is_enabled: bool = getattr(action_class, "enable_plugin", True)
# 获取激活类型相关属性
activation_type: str = getattr(action_class, "action_activation_type", "always")
focus_activation_type: str = getattr(action_class, "focus_activation_type", "always")
normal_activation_type: str = getattr(action_class, "normal_activation_type", "always")
random_probability: float = getattr(action_class, "random_activation_probability", 0.3)
llm_judge_prompt: str = getattr(action_class, "llm_judge_prompt", "")
activation_keywords: list[str] = getattr(action_class, "activation_keywords", [])
keyword_case_sensitive: bool = getattr(action_class, "keyword_case_sensitive", False)
# 获取模式启用属性
mode_enable: str = getattr(action_class, "mode_enable", "all")
# 获取并行执行属性
parallel_action: bool = getattr(action_class, "parallel_action", False)
if action_name and action_description:
# 创建动作信息字典
action_info = {
@@ -75,18 +86,21 @@ class ActionManager:
"parameters": action_parameters,
"require": action_require,
"associated_types": associated_types,
"activation_type": activation_type,
"focus_activation_type": focus_activation_type,
"normal_activation_type": normal_activation_type,
"random_probability": random_probability,
"llm_judge_prompt": llm_judge_prompt,
"activation_keywords": activation_keywords,
"keyword_case_sensitive": keyword_case_sensitive,
"mode_enable": mode_enable,
"parallel_action": parallel_action,
}
# 添加到所有已注册的动作
self._registered_actions[action_name] = action_info
# 添加到默认动作(如果是默认动作
if is_default:
# 添加到默认动作(如果启用插件
if is_enabled:
self._default_actions[action_name] = action_info
# logger.info(f"所有注册动作: {list(self._registered_actions.keys())}")
@@ -212,9 +226,34 @@ class ActionManager:
return self._default_actions.copy()
def get_using_actions(self) -> Dict[str, ActionInfo]:
"""获取当前正在使用的动作集"""
"""获取当前正在使用的动作集"""
return self._using_actions.copy()
def get_using_actions_for_mode(self, mode: str) -> Dict[str, ActionInfo]:
"""
根据聊天模式获取可用的动作集合
Args:
mode: 聊天模式 ("focus", "normal", "all")
Returns:
Dict[str, ActionInfo]: 在指定模式下可用的动作集合
"""
filtered_actions = {}
for action_name, action_info in self._using_actions.items():
action_mode = action_info.get("mode_enable", "all")
# 检查动作是否在当前模式下启用
if action_mode == "all" or action_mode == mode:
filtered_actions[action_name] = action_info
logger.debug(f"动作 {action_name} 在模式 {mode} 下可用 (mode_enable: {action_mode})")
else:
logger.debug(f"动作 {action_name} 在模式 {mode} 下不可用 (mode_enable: {action_mode})")
logger.info(f"模式 {mode} 下可用动作: {list(filtered_actions.keys())}")
return filtered_actions
def add_action_to_using(self, action_name: str) -> bool:
"""
添加已注册的动作到当前使用的动作集
@@ -306,6 +345,36 @@ class ActionManager:
def restore_default_actions(self) -> None:
"""恢复默认动作集到使用集"""
self._using_actions = self._default_actions.copy()
# 添加系统核心动作即使enable_plugin为False的系统动作
self._add_system_core_actions()
def _add_system_core_actions(self) -> None:
"""
添加系统核心动作到使用集
系统核心动作是那些enable_plugin为False但是系统必需的动作
"""
system_core_actions = ["exit_focus_chat"] # 可以根据需要扩展
for action_name in system_core_actions:
if action_name in self._registered_actions and action_name not in self._using_actions:
self._using_actions[action_name] = self._registered_actions[action_name]
logger.info(f"添加系统核心动作到使用集: {action_name}")
def add_system_action_if_needed(self, action_name: str) -> bool:
"""
根据需要添加系统动作到使用集
Args:
action_name: 动作名称
Returns:
bool: 是否成功添加
"""
if action_name in self._registered_actions and action_name not in self._using_actions:
self._using_actions[action_name] = self._registered_actions[action_name]
logger.info(f"临时添加系统动作到使用集: {action_name}")
return True
return False
def get_action(self, action_name: str) -> Optional[Type[BaseAction]]:
"""

View File

@@ -2,5 +2,6 @@
from . import reply_action # noqa
from . import no_reply_action # noqa
from . import exit_focus_chat_action # noqa
from . import emoji_action # noqa
# 在此处添加更多动作模块导入

View File

@@ -15,6 +15,12 @@ class ActionActivationType:
RANDOM = "random" # 随机启用action到planner
KEYWORD = "keyword" # 关键词触发启用action到planner
# 聊天模式枚举
class ChatMode:
FOCUS = "focus" # Focus聊天模式
NORMAL = "normal" # Normal聊天模式
ALL = "all" # 所有聊天模式
def register_action(cls):
"""
动作注册装饰器
@@ -24,7 +30,10 @@ def register_action(cls):
class MyAction(BaseAction):
action_name = "my_action"
action_description = "我的动作"
action_activation_type = ActionActivationType.ALWAYS
focus_activation_type = ActionActivationType.ALWAYS
normal_activation_type = ActionActivationType.ALWAYS
mode_enable = ChatMode.ALL
parallel_action = False
...
"""
# 检查类是否有必要的属性
@@ -34,7 +43,7 @@ def register_action(cls):
action_name = cls.action_name
action_description = cls.action_description
is_default = getattr(cls, "default", False)
is_enabled = getattr(cls, "enable_plugin", True) # 默认启用插件
if not action_name or not action_description:
logger.error(f"动作类 {cls.__name__} 的 action_name 或 action_description 为空")
@@ -43,11 +52,11 @@ def register_action(cls):
# 将动作类注册到全局注册表
_ACTION_REGISTRY[action_name] = cls
# 如果是默认动作,添加到默认动作集
if is_default:
# 如果启用插件,添加到默认动作集
if is_enabled:
_DEFAULT_ACTIONS[action_name] = action_description
logger.info(f"已注册动作: {action_name} -> {cls.__name__}默认: {is_default}")
logger.info(f"已注册动作: {action_name} -> {cls.__name__}插件启用: {is_enabled}")
return cls
@@ -73,20 +82,32 @@ class BaseAction(ABC):
self.action_parameters: dict = {}
self.action_require: list[str] = []
# 动作激活类型默认为always
self.action_activation_type: str = ActionActivationType.ALWAYS
# 随机激活的概率(0.0-1.0)仅当activation_type为random时有效
# 动作激活类型设置
# Focus模式下的激活类型默认为always
self.focus_activation_type: str = ActionActivationType.ALWAYS
# Normal模式下的激活类型默认为always
self.normal_activation_type: str = ActionActivationType.ALWAYS
# 随机激活的概率(0.0-1.0)用于RANDOM激活类型
self.random_activation_probability: float = 0.3
# LLM判定的提示词仅当activation_type为llm_judge时有效
# LLM判定的提示词用于LLM_JUDGE激活类型
self.llm_judge_prompt: str = ""
# 关键词触发列表,仅当activation_type为keyword时有效
# 关键词触发列表,用于KEYWORD激活类型
self.activation_keywords: list[str] = []
# 关键词匹配是否区分大小写
self.keyword_case_sensitive: bool = False
# 模式启用设置:指定在哪些聊天模式下启用此动作
# 可选值: "focus"(仅Focus模式), "normal"(仅Normal模式), "all"(所有模式)
self.mode_enable: str = ChatMode.ALL
# 并行执行设置仅在Normal模式下生效设置为True的动作可以与回复动作并行执行
# 而不是替代回复动作适用于图片生成、TTS、禁言等不需要覆盖回复的动作
self.parallel_action: bool = False
self.associated_types: list[str] = []
self.default: bool = False
self.enable_plugin: bool = True # 是否启用插件,默认启用
self.action_data = action_data
self.reasoning = reasoning

View File

@@ -0,0 +1,150 @@
from src.common.logger_manager import get_logger
from src.chat.focus_chat.planners.actions.base_action import BaseAction, register_action, ActionActivationType, ChatMode
from typing import Tuple, List
from src.chat.heart_flow.observation.observation import Observation
from src.chat.focus_chat.replyer.default_replyer import DefaultReplyer
from src.chat.message_receive.chat_stream import ChatStream
from src.chat.focus_chat.hfc_utils import create_empty_anchor_message
from src.config.config import global_config
logger = get_logger("action_taken")
@register_action
class EmojiAction(BaseAction):
"""表情动作处理类
处理构建和发送消息表情的动作。
"""
action_name: str = "emoji"
action_description: str = "当你想单独发送一个表情包辅助你的回复表达"
action_parameters: dict[str:str] = {
"description": "文字描述你想要发送的表情包内容",
}
action_require: list[str] = [
"表达情绪时可以选择使用",
"重点:不要连续发,如果你已经发过[表情包],就不要选择此动作"]
associated_types: list[str] = ["emoji"]
enable_plugin = True
focus_activation_type = ActionActivationType.LLM_JUDGE
normal_activation_type = ActionActivationType.RANDOM
random_activation_probability = global_config.normal_chat.emoji_chance
parallel_action = True
llm_judge_prompt = """
判定是否需要使用表情动作的条件:
1. 用户明确要求使用表情包
2. 这是一个适合表达强烈情绪的场合
3. 不要发送太多表情包,如果你已经发送过多个表情包
"""
# 模式启用设置 - 表情动作只在Focus模式下使用
mode_enable = ChatMode.ALL
def __init__(
self,
action_data: dict,
reasoning: str,
cycle_timers: dict,
thinking_id: str,
observations: List[Observation],
chat_stream: ChatStream,
log_prefix: str,
replyer: DefaultReplyer,
**kwargs,
):
"""初始化回复动作处理器
Args:
action_name: 动作名称
action_data: 动作数据,包含 message, emojis, target 等
reasoning: 执行该动作的理由
cycle_timers: 计时器字典
thinking_id: 思考ID
observations: 观察列表
replyer: 回复器
chat_stream: 聊天流
log_prefix: 日志前缀
"""
super().__init__(action_data, reasoning, cycle_timers, thinking_id)
self.observations = observations
self.replyer = replyer
self.chat_stream = chat_stream
self.log_prefix = log_prefix
async def handle_action(self) -> Tuple[bool, str]:
"""
处理回复动作
Returns:
Tuple[bool, str]: (是否执行成功, 回复文本)
"""
# 注意: 此处可能会使用不同的expressor实现根据任务类型切换不同的回复策略
return await self._handle_reply(
reasoning=self.reasoning,
reply_data=self.action_data,
cycle_timers=self.cycle_timers,
thinking_id=self.thinking_id,
)
async def _handle_reply(
self, reasoning: str, reply_data: dict, cycle_timers: dict, thinking_id: str
) -> tuple[bool, str]:
"""
处理统一的回复动作 - 可包含文本和表情,顺序任意
reply_data格式:
{
"description": "描述你想要发送的表情"
}
"""
logger.info(f"{self.log_prefix} 决定发送表情")
# 从聊天观察获取锚定消息
# chatting_observation: ChattingObservation = next(
# obs for obs in self.observations if isinstance(obs, ChattingObservation)
# )
# if reply_data.get("target"):
# anchor_message = chatting_observation.search_message_by_text(reply_data["target"])
# else:
# anchor_message = None
# 如果没有找到锚点消息,创建一个占位符
# if not anchor_message:
# logger.info(f"{self.log_prefix} 未找到锚点消息,创建占位符")
# anchor_message = await create_empty_anchor_message(
# self.chat_stream.platform, self.chat_stream.group_info, self.chat_stream
# )
# else:
# anchor_message.update_chat_stream(self.chat_stream)
logger.info(f"{self.log_prefix} 为了表情包创建占位符")
anchor_message = await create_empty_anchor_message(
self.chat_stream.platform, self.chat_stream.group_info, self.chat_stream
)
success, reply_set = await self.replyer.deal_emoji(
cycle_timers=cycle_timers,
action_data=reply_data,
anchor_message=anchor_message,
# reasoning=reasoning,
thinking_id=thinking_id,
)
reply_text = ""
if reply_set:
for reply in reply_set:
type = reply[0]
data = reply[1]
if type == "text":
reply_text += data
elif type == "emoji":
reply_text += data
return success, reply_text

View File

@@ -1,7 +1,7 @@
import asyncio
import traceback
from src.common.logger_manager import get_logger
from src.chat.focus_chat.planners.actions.base_action import BaseAction, register_action
from src.chat.focus_chat.planners.actions.base_action import BaseAction, register_action, ChatMode
from typing import Tuple, List
from src.chat.heart_flow.observation.observation import Observation
from src.chat.message_receive.chat_stream import ChatStream
@@ -25,7 +25,11 @@ class ExitFocusChatAction(BaseAction):
"当前内容不需要持续专注关注,你决定退出专注聊天",
"聊天内容已经完成,你决定退出专注聊天",
]
default = False
# 退出专注聊天是系统核心功能,不是插件,但默认不启用(需要特定条件触发)
enable_plugin = False
# 模式启用设置 - 退出专注聊天动作只在Focus模式下使用
mode_enable = ChatMode.FOCUS
def __init__(
self,

View File

@@ -2,7 +2,7 @@ import asyncio
import traceback
from src.common.logger_manager import get_logger
from src.chat.utils.timer_calculator import Timer
from src.chat.focus_chat.planners.actions.base_action import BaseAction, register_action, ActionActivationType
from src.chat.focus_chat.planners.actions.base_action import BaseAction, register_action, ActionActivationType, ChatMode
from typing import Tuple, List
from src.chat.heart_flow.observation.observation import Observation
from src.chat.heart_flow.observation.chatting_observation import ChattingObservation
@@ -28,10 +28,13 @@ class NoReplyAction(BaseAction):
"你连续发送了太多消息,且无人回复",
"想要休息一下",
]
default = True
enable_plugin = True
# 激活类型设置
action_activation_type = ActionActivationType.ALWAYS
focus_activation_type = ActionActivationType.ALWAYS
# 模式启用设置 - no_reply动作只在Focus模式下使用
mode_enable = ChatMode.FOCUS
def __init__(
self,

View File

@@ -1,6 +1,6 @@
import traceback
from typing import Tuple, Dict, List, Any, Optional, Union, Type
from src.chat.focus_chat.planners.actions.base_action import BaseAction, register_action, ActionActivationType # noqa F401
from src.chat.focus_chat.planners.actions.base_action import BaseAction, register_action, ActionActivationType, ChatMode # noqa F401
from src.chat.heart_flow.observation.chatting_observation import ChattingObservation
from src.chat.focus_chat.hfc_utils import create_empty_anchor_message
from src.common.logger_manager import get_logger
@@ -35,12 +35,16 @@ class PluginAction(BaseAction):
action_config_file_name: Optional[str] = None # 插件可以覆盖此属性来指定配置文件名
# 默认激活类型设置,插件可以覆盖
action_activation_type = ActionActivationType.ALWAYS
focus_activation_type = ActionActivationType.ALWAYS
normal_activation_type = ActionActivationType.ALWAYS
random_activation_probability: float = 0.3
llm_judge_prompt: str = ""
activation_keywords: list[str] = []
keyword_case_sensitive: bool = False
# 默认模式启用设置 - 插件动作默认在所有模式下可用,插件可以覆盖
mode_enable = ChatMode.ALL
def __init__(
self,
action_data: dict,

View File

@@ -1,7 +1,7 @@
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
from src.common.logger_manager import get_logger
from src.chat.focus_chat.planners.actions.base_action import BaseAction, register_action, ActionActivationType
from src.chat.focus_chat.planners.actions.base_action import BaseAction, register_action, ActionActivationType, ChatMode
from typing import Tuple, List
from src.chat.heart_flow.observation.observation import Observation
from src.chat.focus_chat.replyer.default_replyer import DefaultReplyer
@@ -26,21 +26,23 @@ class ReplyAction(BaseAction):
action_name: str = "reply"
action_description: str = "当你想要参与回复或者聊天"
action_parameters: dict[str:str] = {
"reply_to": "如果是明确回复某个人的发言请在reply_to参数中指定格式用户名:发言内容如果不是reply_to的值设为none",
"emoji": "如果你想用表情包辅助你的回答请在emoji参数中用文字描述你想要发送的表情包内容如果没有值设为空",
"reply_to": "如果是明确回复某个人的发言请在reply_to参数中指定格式用户名:发言内容如果不是reply_to的值设为none"
}
action_require: list[str] = [
"你想要闲聊或者随便附和",
"有人提到你",
"如果你刚刚回复,不要对同一个话题重复回应"
"如果你刚刚进行了回复,不要对同一个话题重复回应"
]
associated_types: list[str] = ["text", "emoji"]
associated_types: list[str] = ["text"]
default = True
enable_plugin = True
# 激活类型设置
action_activation_type = ActionActivationType.ALWAYS
focus_activation_type = ActionActivationType.ALWAYS
# 模式启用设置 - 回复动作只在Focus模式下使用
mode_enable = ChatMode.FOCUS
def __init__(
self,
@@ -105,7 +107,6 @@ class ReplyAction(BaseAction):
{
"text": "你好啊" # 文本内容列表(可选)
"target": "锚定消息", # 锚定消息的文本内容
"emojis": "微笑" # 表情关键词列表(可选)
}
"""
logger.info(f"{self.log_prefix} 决定回复: {self.reasoning}")

View File

@@ -6,7 +6,7 @@ from src.chat.heart_flow.observation.chatting_observation import ChattingObserva
from src.chat.message_receive.chat_stream import chat_manager
from src.config.config import global_config
from src.llm_models.utils_model import LLMRequest
from src.chat.focus_chat.planners.actions.base_action import ActionActivationType
from src.chat.focus_chat.planners.actions.base_action import ActionActivationType, ChatMode
import random
import asyncio
import hashlib
@@ -29,7 +29,7 @@ class ActionModifier:
def __init__(self, action_manager: ActionManager):
"""初始化动作处理器"""
self.action_manager = action_manager
self.all_actions = self.action_manager.get_registered_actions()
self.all_actions = self.action_manager.get_using_actions_for_mode(ChatMode.FOCUS)
# 用于LLM判定的小模型
self.llm_judge = LLMRequest(
@@ -78,7 +78,8 @@ class ActionModifier:
# 处理HFCloopObservation - 传统的循环历史分析
if hfc_obs:
obs = hfc_obs
all_actions = self.all_actions
# 获取适用于FOCUS模式的动作
all_actions = self.action_manager.get_using_actions_for_mode(ChatMode.FOCUS)
action_changes = await self.analyze_loop_actions(obs)
if action_changes["add"] or action_changes["remove"]:
# 合并动作变更
@@ -129,9 +130,9 @@ class ActionModifier:
if chat_content is not None:
logger.debug(f"{self.log_prefix}开始激活类型判定阶段")
# 获取当前使用的动作集(经过第一阶段处理)
# 获取当前使用的动作集(经过第一阶段处理且适用于FOCUS模式
current_using_actions = self.action_manager.get_using_actions()
all_registered_actions = self.action_manager.get_registered_actions()
all_registered_actions = self.action_manager.get_using_actions_for_mode(ChatMode.FOCUS)
# 构建完整的动作信息
current_actions_with_info = {}
@@ -157,7 +158,7 @@ class ActionModifier:
# 确定移除原因
if action_name in all_registered_actions:
action_info = all_registered_actions[action_name]
activation_type = action_info.get("activation_type", ActionActivationType.ALWAYS)
activation_type = action_info.get("focus_activation_type", ActionActivationType.ALWAYS)
if activation_type == ActionActivationType.RANDOM:
probability = action_info.get("random_probability", 0.3)
@@ -207,7 +208,7 @@ class ActionModifier:
keyword_actions = {}
for action_name, action_info in actions_with_info.items():
activation_type = action_info.get("activation_type", ActionActivationType.ALWAYS)
activation_type = action_info.get("focus_activation_type", ActionActivationType.ALWAYS)
if activation_type == ActionActivationType.ALWAYS:
always_actions[action_name] = action_info
@@ -433,6 +434,7 @@ class ActionModifier:
action_require = action_info.get("require", [])
custom_prompt = action_info.get("llm_judge_prompt", "")
# 构建基础判定提示词
base_prompt = f"""
你需要判断在当前聊天情况下,是否应该激活名为"{action_name}"的动作。
@@ -462,7 +464,7 @@ class ActionModifier:
# 解析响应
response = response.strip().lower()
print(base_prompt)
# print(base_prompt)
print(f"LLM判定动作 {action_name}:响应='{response}'")

View File

@@ -16,6 +16,7 @@ from src.chat.utils.prompt_builder import Prompt, global_prompt_manager
from src.individuality.individuality import individuality
from src.chat.focus_chat.planners.action_manager import ActionManager
from src.chat.focus_chat.planners.modify_actions import ActionModifier
from src.chat.focus_chat.planners.actions.base_action import ChatMode
from json_repair import repair_json
from src.chat.focus_chat.planners.base_planner import BasePlanner
from datetime import datetime
@@ -144,7 +145,8 @@ class ActionPlanner(BasePlanner):
# 获取经过modify_actions处理后的最终可用动作集
# 注意动作的激活判定现在在主循环的modify_actions中完成
current_available_actions_dict = self.action_manager.get_using_actions()
# 使用Focus模式过滤动作
current_available_actions_dict = self.action_manager.get_using_actions_for_mode(ChatMode.FOCUS)
# 获取完整的动作信息
all_registered_actions = self.action_manager.get_registered_actions()

View File

@@ -150,17 +150,6 @@ class DefaultReplyer:
action_data=action_data,
)
with Timer("选择表情", cycle_timers):
emoji_keyword = action_data.get("emoji", "")
print(f"emoji_keyword: {emoji_keyword}")
if emoji_keyword:
emoji_base64, _description, _emotion = await self._choose_emoji(emoji_keyword)
# print(f"emoji_base64: {emoji_base64}")
# print(f"emoji_description: {_description}")
# print(f"emoji_emotion: {emotion}")
if emoji_base64:
reply.append(("emoji", emoji_base64))
if reply:
with Timer("发送消息", cycle_timers):
sent_msg_list = await self.send_response_messages(

View File

@@ -280,28 +280,26 @@ class NormalChat:
info_catcher = info_catcher_manager.get_info_catcher(thinking_id)
info_catcher.catch_decide_to_response(message)
# 定义并行执行的任务
async def generate_normal_response():
"""生成普通回复"""
try:
# 如果启用planner获取可用actions
enable_planner = self.enable_planner
# 如果启用planner预先修改可用actions避免在并行任务中重复调用
available_actions = None
if enable_planner:
if self.enable_planner:
try:
await self.action_modifier.modify_actions_for_normal_chat(
self.chat_stream, self.recent_replies
self.chat_stream, self.recent_replies, message.processed_plain_text
)
available_actions = self.action_manager.get_using_actions()
except Exception as e:
logger.warning(f"[{self.stream_name}] 获取available_actions失败: {e}")
available_actions = None
# 定义并行执行的任务
async def generate_normal_response():
"""生成普通回复"""
try:
return await self.gpt.generate_response(
message=message,
thinking_id=thinking_id,
enable_planner=enable_planner,
enable_planner=self.enable_planner,
available_actions=available_actions,
)
except Exception as e:
@@ -315,38 +313,37 @@ class NormalChat:
return None
try:
# 并行执行动作修改和规划准备
async def modify_actions():
"""修改可用动作集合"""
return await self.action_modifier.modify_actions_for_normal_chat(
self.chat_stream, self.recent_replies
)
# 获取发送者名称(动作修改已在并行执行前完成)
sender_name = self._get_sender_name(message)
async def prepare_planning():
"""准备规划所需的信息"""
return self._get_sender_name(message)
no_action = {
"action_result": {"action_type": "no_action", "action_data": {}, "reasoning": "规划器初始化默认", "is_parallel": True},
"chat_context": "",
"action_prompt": "",
}
# 并行执行动作修改和准备工作
_, sender_name = await asyncio.gather(modify_actions(), prepare_planning())
# 检查是否应该跳过规划
if self.action_modifier.should_skip_planning():
logger.debug(f"[{self.stream_name}] 没有可用动作,跳过规划")
return None
self.action_type = "no_action"
return no_action
# 执行规划
plan_result = await self.planner.plan(message, sender_name)
action_type = plan_result["action_result"]["action_type"]
action_data = plan_result["action_result"]["action_data"]
reasoning = plan_result["action_result"]["reasoning"]
is_parallel = plan_result["action_result"].get("is_parallel", False)
logger.info(f"[{self.stream_name}] Planner决策: {action_type}, 理由: {reasoning}")
logger.info(f"[{self.stream_name}] Planner决策: {action_type}, 理由: {reasoning}, 并行执行: {is_parallel}")
self.action_type = action_type # 更新实例属性
self.is_parallel_action = is_parallel # 新增:保存并行执行标志
# 如果规划器决定不执行任何动作
if action_type == "no_action":
logger.debug(f"[{self.stream_name}] Planner决定不执行任何额外动作")
return None
return no_action
elif action_type == "change_to_focus_chat":
logger.info(f"[{self.stream_name}] Planner决定切换到focus聊天模式")
return None
@@ -358,14 +355,15 @@ class NormalChat:
else:
logger.warning(f"[{self.stream_name}] 额外动作 {action_type} 执行失败")
return {"action_type": action_type, "action_data": action_data, "reasoning": reasoning}
return {"action_type": action_type, "action_data": action_data, "reasoning": reasoning, "is_parallel": is_parallel}
except Exception as e:
logger.error(f"[{self.stream_name}] Planner执行失败: {e}")
return None
return no_action
# 并行执行回复生成和动作规划
self.action_type = None # 初始化动作类型
self.is_parallel_action = False # 初始化并行动作标志
with Timer("并行生成回复和规划", timing_results):
response_set, plan_result = await asyncio.gather(
generate_normal_response(), plan_and_execute_actions(), return_exceptions=True
@@ -382,15 +380,15 @@ class NormalChat:
if isinstance(plan_result, Exception):
logger.error(f"[{self.stream_name}] 动作规划异常: {plan_result}")
elif plan_result:
logger.debug(f"[{self.stream_name}] 额外动作处理完成: {plan_result['action_type']}")
logger.debug(f"[{self.stream_name}] 额外动作处理完成: {self.action_type}")
if not response_set or (
self.enable_planner and self.action_type not in ["no_action", "change_to_focus_chat"]
self.enable_planner and self.action_type not in ["no_action", "change_to_focus_chat"] and not self.is_parallel_action
):
if not response_set:
logger.info(f"[{self.stream_name}] 模型未生成回复内容")
elif self.enable_planner and self.action_type not in ["no_action", "change_to_focus_chat"]:
logger.info(f"[{self.stream_name}] 模型选择其他动作")
elif self.enable_planner and self.action_type not in ["no_action", "change_to_focus_chat"] and not self.is_parallel_action:
logger.info(f"[{self.stream_name}] 模型选择其他动作(非并行动作)")
# 如果模型未生成回复,移除思考消息
container = await message_manager.get_container(self.stream_id) # 使用 self.stream_id
for msg in container.messages[:]:
@@ -446,7 +444,7 @@ class NormalChat:
logger.warning(f"[{self.stream_name}] 没有设置切换到focus聊天模式的回调函数无法执行切换")
return
else:
await self._check_switch_to_focus()
# await self._check_switch_to_focus()
pass
info_catcher.done_catch()

View File

@@ -1,6 +1,11 @@
from typing import List, Any
from typing import List, Any, Dict
from src.common.logger_manager import get_logger
from src.chat.focus_chat.planners.action_manager import ActionManager
from src.chat.focus_chat.planners.actions.base_action import ActionActivationType, ChatMode
from src.chat.utils.chat_message_builder import build_readable_messages, get_raw_msg_before_timestamp_with_chat
from src.config.config import global_config
import random
import time
logger = get_logger("normal_chat_action_modifier")
@@ -9,6 +14,7 @@ class NormalChatActionModifier:
"""Normal Chat动作修改器
负责根据Normal Chat的上下文和状态动态调整可用的动作集合
实现与Focus Chat类似的动作激活策略但将LLM_JUDGE转换为概率激活以提升性能
"""
def __init__(self, action_manager: ActionManager, stream_id: str, stream_name: str):
@@ -25,34 +31,34 @@ class NormalChatActionModifier:
self,
chat_stream,
recent_replies: List[dict],
message_content: str,
**kwargs: Any,
):
"""为Normal Chat修改可用动作集合
实现动作激活策略:
1. 基于关联类型的动态过滤
2. 基于激活类型的智能判定LLM_JUDGE转为概率激活
Args:
chat_stream: 聊天流对象
recent_replies: 最近的回复记录
**kwargs: 其他参数
"""
# 合并所有动作变更
merged_action_changes = {"add": [], "remove": []}
reasons = []
merged_action_changes = {"add": [], "remove": []}
type_mismatched_actions = [] # 在外层定义避免作用域问题
# 1. 移除Normal Chat不适用的动作
excluded_actions = ["exit_focus_chat_action", "no_reply", "reply"]
for action_name in excluded_actions:
if action_name in self.action_manager.get_using_actions():
merged_action_changes["remove"].append(action_name)
reasons.append(f"移除{action_name}(Normal Chat不适用)")
self.action_manager.restore_default_actions()
# 2. 检查动作的关联类型
# 第一阶段:基于关联类型的动态过滤
if chat_stream:
chat_context = chat_stream.context if hasattr(chat_stream, "context") else None
if chat_context:
type_mismatched_actions = []
current_using_actions = self.action_manager.get_using_actions()
# 获取Normal模式下的可用动作已经过滤了mode_enable
current_using_actions = self.action_manager.get_using_actions_for_mode(ChatMode.NORMAL)
# print(f"current_using_actions: {current_using_actions}")
for action_name in current_using_actions.keys():
if action_name in self.all_actions:
data = self.all_actions[action_name]
@@ -65,26 +71,218 @@ class NormalChatActionModifier:
merged_action_changes["remove"].extend(type_mismatched_actions)
reasons.append(f"移除{type_mismatched_actions}(关联类型不匹配)")
# 应用动作变更
# 第二阶段:应用激活类型判定
# 构建聊天内容 - 使用与planner一致的方式
chat_content = ""
if chat_stream and hasattr(chat_stream, 'stream_id'):
try:
# 获取消息历史使用与normal_chat_planner相同的方法
message_list_before_now = get_raw_msg_before_timestamp_with_chat(
chat_id=chat_stream.stream_id,
timestamp=time.time(),
limit=global_config.focus_chat.observation_context_size, # 使用相同的配置
)
# 构建可读的聊天上下文
chat_content = build_readable_messages(
message_list_before_now,
replace_bot_name=True,
merge_messages=False,
timestamp_mode="relative",
read_mark=0.0,
show_actions=True,
)
logger.debug(f"{self.log_prefix} 成功构建聊天内容,长度: {len(chat_content)}")
except Exception as e:
logger.warning(f"{self.log_prefix} 构建聊天内容失败: {e}")
chat_content = ""
# 获取当前Normal模式下的动作集进行激活判定
current_actions = self.action_manager.get_using_actions_for_mode(ChatMode.NORMAL)
# print(f"current_actions: {current_actions}")
# print(f"chat_content: {chat_content}")
final_activated_actions = await self._apply_normal_activation_filtering(
current_actions,
chat_content,
message_content
)
# print(f"final_activated_actions: {final_activated_actions}")
# 统一处理所有需要移除的动作,避免重复移除
all_actions_to_remove = set() # 使用set避免重复
# 添加关联类型不匹配的动作
if type_mismatched_actions:
all_actions_to_remove.update(type_mismatched_actions)
# 添加激活类型判定未通过的动作
for action_name in current_actions.keys():
if action_name not in final_activated_actions:
all_actions_to_remove.add(action_name)
# 统计移除原因(避免重复)
activation_failed_actions = [name for name in current_actions.keys() if name not in final_activated_actions and name not in type_mismatched_actions]
if activation_failed_actions:
reasons.append(f"移除{activation_failed_actions}(激活类型判定未通过)")
# 统一执行移除操作
for action_name in all_actions_to_remove:
success = self.action_manager.remove_action_from_using(action_name)
if success:
logger.debug(f"{self.log_prefix} 移除动作: {action_name}")
else:
logger.debug(f"{self.log_prefix} 动作 {action_name} 已经不在使用集中,跳过移除")
# 应用动作添加(如果有的话)
for action_name in merged_action_changes["add"]:
if action_name in self.all_actions and action_name not in excluded_actions:
if action_name in self.all_actions:
success = self.action_manager.add_action_to_using(action_name)
if success:
logger.debug(f"{self.log_prefix} 添加动作: {action_name}")
for action_name in merged_action_changes["remove"]:
success = self.action_manager.remove_action_from_using(action_name)
if success:
logger.debug(f"{self.log_prefix} 移除动作: {action_name}")
# 记录变更原因
if merged_action_changes["add"] or merged_action_changes["remove"]:
if reasons:
logger.info(f"{self.log_prefix} 动作调整完成: {' | '.join(reasons)}")
logger.debug(f"{self.log_prefix} 当前可用动作: {list(self.action_manager.get_using_actions().keys())}")
# 获取最终的Normal模式可用动作并记录
final_actions = self.action_manager.get_using_actions_for_mode(ChatMode.NORMAL)
logger.debug(f"{self.log_prefix} 当前Normal模式可用动作: {list(final_actions.keys())}")
async def _apply_normal_activation_filtering(
self,
actions_with_info: Dict[str, Any],
chat_content: str = "",
message_content: str = "",
) -> Dict[str, Any]:
"""
应用Normal模式的激活类型过滤逻辑
与Focus模式的区别
1. LLM_JUDGE类型转换为概率激活避免LLM调用
2. RANDOM类型保持概率激活
3. KEYWORD类型保持关键词匹配
4. ALWAYS类型直接激活
Args:
actions_with_info: 带完整信息的动作字典
chat_content: 聊天内容
Returns:
Dict[str, Any]: 过滤后激活的actions字典
"""
activated_actions = {}
# 分类处理不同激活类型的actions
always_actions = {}
random_actions = {}
keyword_actions = {}
for action_name, action_info in actions_with_info.items():
# 使用normal_activation_type
activation_type = action_info.get("normal_activation_type", ActionActivationType.ALWAYS)
if activation_type == ActionActivationType.ALWAYS:
always_actions[action_name] = action_info
elif activation_type == ActionActivationType.RANDOM or activation_type == ActionActivationType.LLM_JUDGE:
random_actions[action_name] = action_info
elif activation_type == ActionActivationType.KEYWORD:
keyword_actions[action_name] = action_info
else:
logger.warning(f"{self.log_prefix}未知的激活类型: {activation_type},跳过处理")
# 1. 处理ALWAYS类型直接激活
for action_name, action_info in always_actions.items():
activated_actions[action_name] = action_info
logger.debug(f"{self.log_prefix}激活动作: {action_name},原因: ALWAYS类型直接激活")
# 2. 处理RANDOM类型概率激活
for action_name, action_info in random_actions.items():
probability = action_info.get("random_probability", 0.3)
should_activate = random.random() < probability
if should_activate:
activated_actions[action_name] = action_info
logger.info(f"{self.log_prefix}激活动作: {action_name},原因: RANDOM类型触发概率{probability}")
else:
logger.debug(f"{self.log_prefix}未激活动作: {action_name},原因: RANDOM类型未触发概率{probability}")
# 3. 处理KEYWORD类型关键词匹配
for action_name, action_info in keyword_actions.items():
should_activate = self._check_keyword_activation(
action_name,
action_info,
chat_content,
message_content
)
if should_activate:
activated_actions[action_name] = action_info
keywords = action_info.get("activation_keywords", [])
logger.info(f"{self.log_prefix}激活动作: {action_name},原因: KEYWORD类型匹配关键词{keywords}")
else:
keywords = action_info.get("activation_keywords", [])
logger.info(f"{self.log_prefix}未激活动作: {action_name},原因: KEYWORD类型未匹配关键词{keywords}")
# print(f"keywords: {keywords}")
# print(f"chat_content: {chat_content}")
logger.debug(f"{self.log_prefix}Normal模式激活类型过滤完成: {list(activated_actions.keys())}")
return activated_actions
def _check_keyword_activation(
self,
action_name: str,
action_info: Dict[str, Any],
chat_content: str = "",
message_content: str = "",
) -> bool:
"""
检查是否匹配关键词触发条件
Args:
action_name: 动作名称
action_info: 动作信息
chat_content: 聊天内容(已经是格式化后的可读消息)
Returns:
bool: 是否应该激活此action
"""
activation_keywords = action_info.get("activation_keywords", [])
case_sensitive = action_info.get("keyword_case_sensitive", False)
if not activation_keywords:
logger.warning(f"{self.log_prefix}动作 {action_name} 设置为关键词触发但未配置关键词")
return False
# 使用构建好的聊天内容作为检索文本
search_text = chat_content +message_content
# 如果不区分大小写,转换为小写
if not case_sensitive:
search_text = search_text.lower()
# 检查每个关键词
matched_keywords = []
for keyword in activation_keywords:
check_keyword = keyword if case_sensitive else keyword.lower()
if check_keyword in search_text:
matched_keywords.append(keyword)
# print(f"search_text: {search_text}")
# print(f"activation_keywords: {activation_keywords}")
if matched_keywords:
logger.info(f"{self.log_prefix}动作 {action_name} 匹配到关键词: {matched_keywords}")
return True
else:
logger.info(f"{self.log_prefix}动作 {action_name} 未匹配到任何关键词: {activation_keywords}")
return False
def get_available_actions_count(self) -> int:
"""获取当前可用动作数量排除默认的no_action"""
current_actions = self.action_manager.get_using_actions()
current_actions = self.action_manager.get_using_actions_for_mode(ChatMode.NORMAL)
# 排除no_action如果存在
filtered_actions = {k: v for k, v in current_actions.items() if k != "no_action"}
return len(filtered_actions)

View File

@@ -7,6 +7,7 @@ from src.common.logger_manager import get_logger
from src.chat.utils.prompt_builder import Prompt, global_prompt_manager
from src.individuality.individuality import individuality
from src.chat.focus_chat.planners.action_manager import ActionManager
from src.chat.focus_chat.planners.actions.base_action import ChatMode
from src.chat.message_receive.message import MessageThinking
from json_repair import repair_json
from src.chat.utils.chat_message_builder import build_readable_messages, get_raw_msg_before_timestamp_with_chat
@@ -98,16 +99,18 @@ class NormalChatPlanner:
self_info = name_block + personality_block + identity_block
# 获取当前可用的动作
current_available_actions = self.action_manager.get_using_actions()
# 获取当前可用的动作使用Normal模式过滤
current_available_actions = self.action_manager.get_using_actions_for_mode(ChatMode.NORMAL)
# 如果没有可用动作或只有no_action动作直接返回no_action
if not current_available_actions or (
len(current_available_actions) == 1 and "no_action" in current_available_actions
):
logger.debug(f"{self.log_prefix}规划器: 没有可用动作或只有no_action动作返回no_action")
# 注意:动作的激活判定现在在 normal_chat_action_modifier 中完成
# 这里直接使用经过 action_modifier 处理后的最终动作集
# 符合职责分离原则ActionModifier负责动作管理Planner专注于决策
# 如果没有可用动作,直接返回no_action
if not current_available_actions:
logger.debug(f"{self.log_prefix}规划器: 没有可用动作返回no_action")
return {
"action_result": {"action_type": action, "action_data": action_data, "reasoning": reasoning},
"action_result": {"action_type": action, "action_data": action_data, "reasoning": reasoning, "is_parallel": True},
"chat_context": "",
"action_prompt": "",
}
@@ -138,7 +141,7 @@ class NormalChatPlanner:
if not prompt:
logger.warning(f"{self.log_prefix}规划器: 构建提示词失败")
return {
"action_result": {"action_type": action, "action_data": action_data, "reasoning": reasoning},
"action_result": {"action_type": action, "action_data": action_data, "reasoning": reasoning, "is_parallel": False},
"chat_context": chat_context,
"action_prompt": "",
}
@@ -185,13 +188,21 @@ class NormalChatPlanner:
except Exception as outer_e:
logger.error(f"{self.log_prefix}规划器异常: {outer_e}")
chat_context = "无法获取聊天上下文" # 设置默认值
prompt = "" # 设置默认值
# 设置异常时的默认值
current_available_actions = {}
chat_context = "无法获取聊天上下文"
prompt = ""
action = "no_action"
reasoning = "规划器出现异常,使用默认动作"
action_data = {}
logger.debug(f"{self.log_prefix}规划器决策动作:{action}, 动作信息: '{action_data}', 理由: {reasoning}")
# 检查动作是否支持并行执行
is_parallel = False
if action in current_available_actions:
action_info = current_available_actions[action]
is_parallel = action_info.get("parallel_action", False)
logger.debug(f"{self.log_prefix}规划器决策动作:{action}, 动作信息: '{action_data}', 理由: {reasoning}, 并行执行: {is_parallel}")
# 恢复到默认动作集
self.action_manager.restore_actions()
@@ -212,6 +223,7 @@ class NormalChatPlanner:
"action_type": action,
"action_data": action_data,
"reasoning": reasoning,
"is_parallel": is_parallel,
"action_record": json.dumps(action_record, ensure_ascii=False)
}
@@ -304,4 +316,6 @@ class NormalChatPlanner:
return ""
init_prompt()

View File

@@ -531,7 +531,6 @@ class PersonInfoManager:
"know_since": int(datetime.datetime.now().timestamp()),
"last_know": int(datetime.datetime.now().timestamp()),
"impression": None,
"interaction": None,
"points": [],
"forgotten_points": []
}

View File

@@ -125,7 +125,6 @@ class RelationshipManager:
if not person_name or person_name == "none":
return ""
impression = await person_info_manager.get_value(person_id, "impression")
interaction = await person_info_manager.get_value(person_id, "interaction")
points = await person_info_manager.get_value(person_id, "points") or []
if isinstance(points, str):
@@ -141,11 +140,9 @@ class RelationshipManager:
relation_prompt = f"'{person_name}' ta在{platform}上的昵称是{nickname_str}"
if impression:
relation_prompt += f"你对ta的印象是{impression}"
# if impression:
# relation_prompt += f"你对ta的印象是{impression}。"
if interaction:
relation_prompt += f"你与ta的关系是{interaction}"
if random_points:
for point in random_points:

View File

@@ -6,7 +6,7 @@ import base64 # 新增用于Base64编码
import traceback # 新增:用于打印堆栈跟踪
from typing import Tuple
from src.chat.focus_chat.planners.actions.plugin_action import PluginAction, register_action
from src.chat.focus_chat.planners.actions.base_action import ActionActivationType
from src.chat.focus_chat.planners.actions.base_action import ActionActivationType, ChatMode
from src.common.logger_manager import get_logger
from .generate_pic_config import generate_config
@@ -35,11 +35,18 @@ class PicAction(PluginAction):
"当有人要求你生成并发送一张图片时使用",
"当有人让你画一张图时使用",
]
default = True
enable_plugin = True
action_config_file_name = "pic_action_config.toml"
# 激活类型设置 - 使用LLM判定能更好理解用户意图
action_activation_type = ActionActivationType.LLM_JUDGE
# 激活类型设置
focus_activation_type = ActionActivationType.LLM_JUDGE # Focus模式使用LLM判定精确理解需求
normal_activation_type = ActionActivationType.KEYWORD # Normal模式使用关键词激活快速响应
# 关键词设置用于Normal模式
activation_keywords = ["", "绘制", "生成图片", "画图", "draw", "paint", "图片生成"]
keyword_case_sensitive = False
# LLM判定提示词用于Focus模式
llm_judge_prompt = """
判定是否需要使用图片生成动作的条件:
1. 用户明确要求画图、生成图片或创作图像
@@ -61,10 +68,19 @@ class PicAction(PluginAction):
5. 用户明确表示不需要图片时
"""
# Random激活概率备用
random_activation_probability = 0.15 # 适中概率,图片生成比较有趣
# 简单的请求缓存,避免短时间内重复请求
_request_cache = {}
_cache_max_size = 10
# 模式启用设置 - 图片生成在所有模式下可用
mode_enable = ChatMode.ALL
# 并行执行设置 - 图片生成可以与回复并行执行,不覆盖回复内容
parallel_action = False
@classmethod
def _get_cache_key(cls, description: str, model: str, size: str) -> str:
"""生成缓存键"""

View File

@@ -1,5 +1,6 @@
from src.common.logger_manager import get_logger
from src.chat.focus_chat.planners.actions.plugin_action import PluginAction, register_action, ActionActivationType
from src.chat.focus_chat.planners.actions.base_action import ChatMode
from typing import Tuple
logger = get_logger("mute_action")
@@ -22,12 +23,20 @@ class MuteAction(PluginAction):
"当有人发了擦边,或者色情内容时使用",
"当有人要求禁言自己时使用",
]
default = True # 默认动作,是否手动添加到使用集
enable_plugin = True # 启用插件
associated_types = ["command", "text"]
action_config_file_name = "mute_action_config.toml"
# 激活类型设置 - 使用LLM判定因为禁言是严肃的管理动作需要谨慎判断
action_activation_type = ActionActivationType.LLM_JUDGE
# 激活类型设置
focus_activation_type = ActionActivationType.LLM_JUDGE # Focus模式使用LLM判定确保谨慎
normal_activation_type = ActionActivationType.KEYWORD # Normal模式使用关键词激活快速响应
# 关键词设置用于Normal模式
activation_keywords = ["禁言", "mute", "ban", "silence"]
keyword_case_sensitive = False
# LLM判定提示词用于Focus模式
llm_judge_prompt = """
判定是否需要使用禁言动作的严格条件:
@@ -50,6 +59,15 @@ class MuteAction(PluginAction):
宁可保守也不要误判,保护用户的发言权利。
"""
# Random激活概率备用
random_activation_probability = 0.05 # 设置很低的概率作为兜底
# 模式启用设置 - 禁言功能在所有模式下都可用
mode_enable = ChatMode.ALL
# 并行执行设置 - 禁言动作可以与回复并行执行,不覆盖回复内容
parallel_action = True
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
# 生成配置文件(如果不存在)

View File

@@ -1,4 +1,5 @@
from src.common.logger_manager import get_logger
from src.chat.focus_chat.planners.actions.base_action import ActionActivationType
from src.chat.focus_chat.planners.actions.plugin_action import PluginAction, register_action
from typing import Tuple
@@ -20,9 +21,19 @@ class TTSAction(PluginAction):
"当表达内容更适合用语音而不是文字传达时使用",
"当用户想听到语音回答而非阅读文本时使用",
]
default = True # 设为默认动作
enable_plugin = True # 启用插件
associated_types = ["tts_text"]
focus_activation_type = ActionActivationType.LLM_JUDGE
normal_activation_type = ActionActivationType.KEYWORD
# 关键词配置 - Normal模式下使用关键词触发
activation_keywords = ["语音", "tts", "播报", "读出来", "语音播放", "", "朗读"]
keyword_case_sensitive = False
# 并行执行设置 - TTS可以与回复并行执行不覆盖回复内容
parallel_action = False
async def process(self) -> Tuple[bool, str]:
"""处理TTS文本转语音动作"""
logger.info(f"{self.log_prefix} 执行TTS动作: {self.reasoning}")

View File

@@ -20,11 +20,14 @@ class VTBAction(PluginAction):
"当回应内容需要更生动的情感表达时使用",
"当想要通过预设动作增强互动体验时使用",
]
default = True # 设为默认动作
enable_plugin = True # 启用插件
associated_types = ["vtb_text"]
# 激活类型设置 - 使用LLM判定因为需要根据情感表达需求判断
action_activation_type = ActionActivationType.LLM_JUDGE
# 激活类型设置
focus_activation_type = ActionActivationType.LLM_JUDGE # Focus模式使用LLM判定精确识别情感表达需求
normal_activation_type = ActionActivationType.RANDOM # Normal模式使用随机激活增加趣味性
# LLM判定提示词用于Focus模式
llm_judge_prompt = """
判定是否需要使用VTB虚拟主播动作的条件
1. 当前聊天内容涉及明显的情感表达需求
@@ -39,6 +42,9 @@ class VTBAction(PluginAction):
4. 已经有足够的情感表达
"""
# Random激活概率用于Normal模式
random_activation_probability = 0.08 # 较低概率,避免过度使用
async def process(self) -> Tuple[bool, str]:
"""处理VTB虚拟主播动作"""
logger.info(f"{self.log_prefix} 执行VTB动作: {self.reasoning}")

View File

@@ -1,608 +0,0 @@
import os
import sys
import asyncio
import random
import time
import traceback
from typing import List, Dict, Any, Tuple, Optional
from datetime import datetime
# 添加项目根目录到Python路径
current_dir = os.path.dirname(os.path.abspath(__file__))
project_root = os.path.dirname(current_dir)
sys.path.append(project_root)
from src.common.message_repository import find_messages
from src.common.database.database_model import ActionRecords, ChatStreams
from src.config.config import global_config
from src.person_info.person_info import person_info_manager
from src.chat.utils.utils import translate_timestamp_to_human_readable
from src.chat.heart_flow.observation.observation import Observation
from src.llm_models.utils_model import LLMRequest
from src.chat.utils.prompt_builder import Prompt, global_prompt_manager
from src.person_info.relationship_manager import relationship_manager
from src.common.logger_manager import get_logger
from src.chat.focus_chat.info.info_base import InfoBase
from src.chat.focus_chat.info.relation_info import RelationInfo
logger = get_logger("processor")
async def get_person_id_list(messages: List[Dict[str, Any]]) -> List[str]:
"""
从消息列表中提取不重复的 person_id 列表 (忽略机器人自身)。
Args:
messages: 消息字典列表。
Returns:
一个包含唯一 person_id 的列表。
"""
person_ids_set = set() # 使用集合来自动去重
for msg in messages:
platform = msg.get("user_platform")
user_id = msg.get("user_id")
# 检查必要信息是否存在 且 不是机器人自己
if not all([platform, user_id]) or user_id == global_config.bot.qq_account:
continue
person_id = person_info_manager.get_person_id(platform, user_id)
# 只有当获取到有效 person_id 时才添加
if person_id:
person_ids_set.add(person_id)
return list(person_ids_set) # 将集合转换为列表返回
class ChattingObservation(Observation):
def __init__(self, chat_id):
super().__init__(chat_id)
self.chat_id = chat_id
self.platform = "qq"
# 从数据库获取聊天类型和目标信息
chat_info = ChatStreams.select().where(ChatStreams.stream_id == chat_id).first()
self.is_group_chat = True
self.chat_target_info = {
"person_name": chat_info.group_name if chat_info else None,
"user_nickname": chat_info.group_name if chat_info else None
}
# 初始化其他属性
self.talking_message = []
self.talking_message_str = ""
self.talking_message_str_truncate = ""
self.name = global_config.bot.nickname
self.nick_name = global_config.bot.alias_names
self.max_now_obs_len = global_config.focus_chat.observation_context_size
self.overlap_len = global_config.focus_chat.compressed_length
self.mid_memories = []
self.max_mid_memory_len = global_config.focus_chat.compress_length_limit
self.mid_memory_info = ""
self.person_list = []
self.oldest_messages = []
self.oldest_messages_str = ""
self.compressor_prompt = ""
self.last_observe_time = 0
def get_observe_info(self, ids=None):
"""获取观察信息"""
return self.talking_message_str
def init_prompt():
relationship_prompt = """
<聊天记录>
{chat_observe_info}
</聊天记录>
<人物信息>
{relation_prompt}
</人物信息>
请区分聊天记录的内容和你之前对人的了解,聊天记录是现在发生的事情,人物信息是之前对某个人的持久的了解。
{name_block}
现在请你总结提取某人的信息,提取成一串文本
1. 根据聊天记录的需求,如果需要你和某个人的信息,请输出你和这个人之间精简的信息
2. 如果没有特别需要提及的信息,就不用输出这个人的信息
3. 如果有人问你对他的看法或者关系,请输出你和这个人之间的信息
请从这些信息中提取出你对某人的了解信息,信息提取成一串文本:
请严格按照以下输出格式不要输出多余内容person_name可以有多个
{{
"person_name": "信息",
"person_name2": "信息",
"person_name3": "信息",
}}
"""
Prompt(relationship_prompt, "relationship_prompt")
class RelationshipProcessor:
log_prefix = "关系"
def __init__(self, subheartflow_id: str):
self.subheartflow_id = subheartflow_id
self.llm_model = LLMRequest(
model=global_config.model.relation,
request_type="relation",
)
# 直接从数据库获取名称
chat_info = ChatStreams.select().where(ChatStreams.stream_id == subheartflow_id).first()
name = chat_info.group_name if chat_info else "未知"
self.log_prefix = f"[{name}] "
async def process_info(
self, observations: Optional[List[Observation]] = None, running_memorys: Optional[List[Dict]] = None, *infos
) -> List[InfoBase]:
"""处理信息对象
Args:
*infos: 可变数量的InfoBase类型的信息对象
Returns:
List[InfoBase]: 处理后的结构化信息列表
"""
relation_info_str = await self.relation_identify(observations)
if relation_info_str:
relation_info = RelationInfo()
relation_info.set_relation_info(relation_info_str)
else:
relation_info = None
return None
return [relation_info]
async def relation_identify(
self, observations: Optional[List[Observation]] = None,
):
"""
在回复前进行思考,生成内心想法并收集工具调用结果
参数:
observations: 观察信息
返回:
如果return_prompt为False:
tuple: (current_mind, past_mind) 当前想法和过去的想法列表
如果return_prompt为True:
tuple: (current_mind, past_mind, prompt) 当前想法、过去的想法列表和使用的prompt
"""
if observations is None:
observations = []
for observation in observations:
if isinstance(observation, ChattingObservation):
# 获取聊天元信息
is_group_chat = observation.is_group_chat
chat_target_info = observation.chat_target_info
chat_target_name = "对方" # 私聊默认名称
if not is_group_chat and chat_target_info:
# 优先使用person_name其次user_nickname最后回退到默认值
chat_target_name = (
chat_target_info.get("person_name") or chat_target_info.get("user_nickname") or chat_target_name
)
# 获取聊天内容
chat_observe_info = observation.get_observe_info()
person_list = observation.person_list
nickname_str = ""
for nicknames in global_config.bot.alias_names:
nickname_str += f"{nicknames},"
name_block = f"你的名字是{global_config.bot.nickname},你的昵称有{nickname_str},有人也会用这些昵称称呼你。"
if is_group_chat:
relation_prompt_init = "你对群聊里的人的印象是:\n"
else:
relation_prompt_init = "你对对方的印象是:\n"
relation_prompt = ""
for person in person_list:
relation_prompt += f"{await relationship_manager.build_relationship_info(person, is_id=True)}\n"
if relation_prompt:
relation_prompt = relation_prompt_init + relation_prompt
else:
relation_prompt = relation_prompt_init + "没有特别在意的人\n"
prompt = (await global_prompt_manager.get_prompt_async("relationship_prompt")).format(
name_block=name_block,
relation_prompt=relation_prompt,
time_now=time.strftime("%Y-%m-%d %H:%M:%S", time.localtime()),
chat_observe_info=chat_observe_info,
)
# The above code is a Python script that is attempting to print the variable `prompt`.
# However, the code is not complete as the content of the `prompt` variable is missing.
# print(prompt)
content = ""
try:
content, _ = await self.llm_model.generate_response_async(prompt=prompt)
if not content:
logger.warning(f"{self.log_prefix} LLM返回空结果关系识别失败。")
except Exception as e:
# 处理总体异常
logger.error(f"{self.log_prefix} 执行LLM请求或处理响应时出错: {e}")
logger.error(traceback.format_exc())
content = "关系识别过程中出现错误"
if content == "None":
content = ""
# 记录初步思考结果
logger.info(f"{self.log_prefix} 关系识别prompt: \n{prompt}\n")
logger.info(f"{self.log_prefix} 关系识别: {content}")
return content
init_prompt()
# ==== 只复制最小依赖的relationship_manager ====
class SimpleRelationshipManager:
async def build_relationship_info(self, person, is_id: bool = False) -> str:
if is_id:
person_id = person
else:
person_id = person_info_manager.get_person_id(person[0], person[1])
person_name = await person_info_manager.get_value(person_id, "person_name")
if not person_name or person_name == "none":
return ""
impression = await person_info_manager.get_value(person_id, "impression")
interaction = await person_info_manager.get_value(person_id, "interaction")
points = await person_info_manager.get_value(person_id, "points") or []
if isinstance(points, str):
try:
import ast
points = ast.literal_eval(points)
except (SyntaxError, ValueError):
points = []
import random
random_points = random.sample(points, min(3, len(points))) if points else []
nickname_str = await person_info_manager.get_value(person_id, "nickname")
platform = await person_info_manager.get_value(person_id, "platform")
relation_prompt = f"'{person_name}' ta在{platform}上的昵称是{nickname_str}"
if impression:
relation_prompt += f"你对ta的印象是{impression}"
if interaction:
relation_prompt += f"你与ta的关系是{interaction}"
if random_points:
for point in random_points:
point_str = f"时间:{point[2]}。内容:{point[0]}"
relation_prompt += f"你记得{person_name}最近的点是:{point_str}"
return relation_prompt
# 用于替换原有的relationship_manager
relationship_manager = SimpleRelationshipManager()
def get_raw_msg_by_timestamp_random(
timestamp_start: float, timestamp_end: float, limit: int = 0, limit_mode: str = "latest"
) -> List[Dict[str, Any]]:
"""先在范围时间戳内随机选择一条消息取得消息的chat_id然后根据chat_id获取该聊天在指定时间戳范围内的消息"""
# 获取所有消息只取chat_id字段
filter_query = {"time": {"$gt": timestamp_start, "$lt": timestamp_end}}
all_msgs = find_messages(message_filter=filter_query)
if not all_msgs:
return []
# 随机选一条
msg = random.choice(all_msgs)
chat_id = msg["chat_id"]
timestamp_start = msg["time"]
# 用 chat_id 获取该聊天在指定时间戳范围内的消息
filter_query = {"chat_id": chat_id, "time": {"$gt": timestamp_start, "$lt": timestamp_end}}
sort_order = [("time", 1)] if limit == 0 else None
return find_messages(message_filter=filter_query, sort=sort_order, limit=limit, limit_mode="earliest")
def _build_readable_messages_internal(
messages: List[Dict[str, Any]],
replace_bot_name: bool = True,
merge_messages: bool = False,
timestamp_mode: str = "relative",
truncate: bool = False,
) -> Tuple[str, List[Tuple[float, str, str]]]:
"""内部辅助函数,构建可读消息字符串和原始消息详情列表"""
if not messages:
return "", []
message_details_raw: List[Tuple[float, str, str]] = []
# 1 & 2: 获取发送者信息并提取消息组件
for msg in messages:
# 检查是否是动作记录
if msg.get("is_action_record", False):
is_action = True
timestamp = msg.get("time")
content = msg.get("display_message", "")
message_details_raw.append((timestamp, global_config.bot.nickname, content, is_action))
continue
# 检查并修复缺少的user_info字段
if "user_info" not in msg:
msg["user_info"] = {
"platform": msg.get("user_platform", ""),
"user_id": msg.get("user_id", ""),
"user_nickname": msg.get("user_nickname", ""),
"user_cardname": msg.get("user_cardname", ""),
}
user_info = msg.get("user_info", {})
platform = user_info.get("platform")
user_id = user_info.get("user_id")
user_nickname = user_info.get("user_nickname")
user_cardname = user_info.get("user_cardname")
timestamp = msg.get("time")
if msg.get("display_message"):
content = msg.get("display_message")
else:
content = msg.get("processed_plain_text", "")
if "" in content:
content = content.replace("", "")
if "" in content:
content = content.replace("", "")
if not all([platform, user_id, timestamp is not None]):
continue
person_id = person_info_manager.get_person_id(platform, user_id)
if replace_bot_name and user_id == global_config.bot.qq_account:
person_name = f"{global_config.bot.nickname}(你)"
else:
person_name = person_info_manager.get_value_sync(person_id, "person_name")
if not person_name:
if user_cardname:
person_name = f"昵称:{user_cardname}"
elif user_nickname:
person_name = f"{user_nickname}"
else:
person_name = "某人"
if content != "":
message_details_raw.append((timestamp, person_name, content, False))
if not message_details_raw:
return "", []
message_details_raw.sort(key=lambda x: x[0])
# 为每条消息添加一个标记,指示它是否是动作记录
message_details_with_flags = []
for timestamp, name, content, is_action in message_details_raw:
message_details_with_flags.append((timestamp, name, content, is_action))
# 应用截断逻辑
message_details: List[Tuple[float, str, str, bool]] = []
n_messages = len(message_details_with_flags)
if truncate and n_messages > 0:
for i, (timestamp, name, content, is_action) in enumerate(message_details_with_flags):
if is_action:
message_details.append((timestamp, name, content, is_action))
continue
percentile = i / n_messages
original_len = len(content)
limit = -1
if percentile < 0.2:
limit = 50
replace_content = "......(记不清了)"
elif percentile < 0.5:
limit = 100
replace_content = "......(有点记不清了)"
elif percentile < 0.7:
limit = 200
replace_content = "......(内容太长了)"
elif percentile < 1.0:
limit = 300
replace_content = "......(太长了)"
truncated_content = content
if 0 < limit < original_len:
truncated_content = f"{content[:limit]}{replace_content}"
message_details.append((timestamp, name, truncated_content, is_action))
else:
message_details = message_details_with_flags
# 合并连续消息
merged_messages = []
if merge_messages and message_details:
current_merge = {
"name": message_details[0][1],
"start_time": message_details[0][0],
"end_time": message_details[0][0],
"content": [message_details[0][2]],
"is_action": message_details[0][3]
}
for i in range(1, len(message_details)):
timestamp, name, content, is_action = message_details[i]
if is_action or current_merge["is_action"]:
merged_messages.append(current_merge)
current_merge = {
"name": name,
"start_time": timestamp,
"end_time": timestamp,
"content": [content],
"is_action": is_action
}
continue
if name == current_merge["name"] and (timestamp - current_merge["end_time"] <= 60):
current_merge["content"].append(content)
current_merge["end_time"] = timestamp
else:
merged_messages.append(current_merge)
current_merge = {
"name": name,
"start_time": timestamp,
"end_time": timestamp,
"content": [content],
"is_action": is_action
}
merged_messages.append(current_merge)
elif message_details:
for timestamp, name, content, is_action in message_details:
merged_messages.append(
{
"name": name,
"start_time": timestamp,
"end_time": timestamp,
"content": [content],
"is_action": is_action
}
)
# 格式化为字符串
output_lines = []
for merged in merged_messages:
readable_time = translate_timestamp_to_human_readable(merged["start_time"], mode=timestamp_mode)
if merged["is_action"]:
output_lines.append(f"{readable_time}, {merged['content'][0]}")
else:
header = f"{readable_time}, {merged['name']} :"
output_lines.append(header)
for line in merged["content"]:
stripped_line = line.strip()
if stripped_line:
if stripped_line.endswith(""):
stripped_line = stripped_line[:-1]
if not stripped_line.endswith("(内容太长)"):
output_lines.append(f"{stripped_line}")
else:
output_lines.append(stripped_line)
output_lines.append("\n")
formatted_string = "".join(output_lines).strip()
return formatted_string, [(t, n, c) for t, n, c, is_action in message_details if not is_action]
def build_readable_messages(
messages: List[Dict[str, Any]],
replace_bot_name: bool = True,
merge_messages: bool = False,
timestamp_mode: str = "relative",
read_mark: float = 0.0,
truncate: bool = False,
show_actions: bool = False,
) -> str:
"""将消息列表转换为可读的文本格式"""
copy_messages = [msg.copy() for msg in messages]
if show_actions and copy_messages:
min_time = min(msg.get("time", 0) for msg in copy_messages)
max_time = max(msg.get("time", 0) for msg in copy_messages)
chat_id = copy_messages[0].get("chat_id") if copy_messages else None
actions = ActionRecords.select().where(
(ActionRecords.time >= min_time) &
(ActionRecords.time <= max_time) &
(ActionRecords.chat_id == chat_id)
).order_by(ActionRecords.time)
for action in actions:
if action.action_build_into_prompt:
action_msg = {
"time": action.time,
"user_id": global_config.bot.qq_account,
"user_nickname": global_config.bot.nickname,
"user_cardname": "",
"processed_plain_text": f"{action.action_prompt_display}",
"display_message": f"{action.action_prompt_display}",
"chat_info_platform": action.chat_info_platform,
"is_action_record": True,
"action_name": action.action_name,
}
copy_messages.append(action_msg)
copy_messages.sort(key=lambda x: x.get("time", 0))
if read_mark <= 0:
formatted_string, _ = _build_readable_messages_internal(
copy_messages, replace_bot_name, merge_messages, timestamp_mode, truncate
)
return formatted_string
else:
messages_before_mark = [msg for msg in copy_messages if msg.get("time", 0) <= read_mark]
messages_after_mark = [msg for msg in copy_messages if msg.get("time", 0) > read_mark]
formatted_before, _ = _build_readable_messages_internal(
messages_before_mark, replace_bot_name, merge_messages, timestamp_mode, truncate
)
formatted_after, _ = _build_readable_messages_internal(
messages_after_mark,
replace_bot_name,
merge_messages,
timestamp_mode,
)
read_mark_line = "\n--- 以上消息是你已经看过---\n--- 请关注以下未读的新消息---\n"
if formatted_before and formatted_after:
return f"{formatted_before}{read_mark_line}{formatted_after}"
elif formatted_before:
return f"{formatted_before}{read_mark_line}"
elif formatted_after:
return f"{read_mark_line}{formatted_after}"
else:
return read_mark_line.strip()
async def test_relationship_processor():
"""测试关系处理器的功能"""
# 测试10次
for i in range(10):
print(f"\n=== 测试 {i+1} ===")
# 获取随机消息
current_time = time.time()
start_time = current_time - 864000 # 10天前
messages = get_raw_msg_by_timestamp_random(start_time, current_time, limit=25)
if not messages:
print("没有找到消息,跳过此次测试")
continue
chat_id = messages[0]["chat_id"]
# 构建可读消息
chat_observe_info = build_readable_messages(
messages,
replace_bot_name=True,
timestamp_mode="normal_no_YMD",
truncate=True,
show_actions=True,
)
# print(chat_observe_info)
# 创建观察对象
processor = RelationshipProcessor(chat_id)
observation = ChattingObservation(chat_id)
observation.talking_message_str = chat_observe_info
observation.talking_message = messages # 设置消息列表
observation.person_list = await get_person_id_list(messages) # 使用get_person_id_list获取person_list
# 处理关系
result = await processor.process_info([observation])
if result:
print("\n关系识别结果:")
print(result[0].get_processed_info())
else:
print("关系识别失败")
# 等待一下,避免请求过快
await asyncio.sleep(1)
if __name__ == "__main__":
asyncio.run(test_relationship_processor())