generator修改与文档

This commit is contained in:
UnCLAS-Prommer
2025-07-27 16:59:33 +08:00
parent 5470f68f4a
commit 96d7ad527a
4 changed files with 243 additions and 366 deletions

View File

@@ -40,7 +40,7 @@ def init_prompt():
Prompt("你正在和{sender_name}聊天,这是你们之前聊的内容:", "chat_target_private1")
Prompt("在群里聊天", "chat_target_group2")
Prompt("{sender_name}聊天", "chat_target_private2")
Prompt(
"""
{expression_habits_block}
@@ -155,18 +155,16 @@ class DefaultReplyer:
extra_info: str = "",
available_actions: Optional[Dict[str, ActionInfo]] = None,
enable_tool: bool = True,
enable_timeout: bool = False,
) -> Tuple[bool, Optional[str], Optional[str]]:
"""
回复器 (Replier): 负责生成回复文本的核心逻辑。
Args:
reply_to: 回复对象,格式为 "发送者:消息内容"
extra_info: 额外信息,用于补充上下文
available_actions: 可用的动作信息字典
enable_tool: 是否启用工具调用
enable_timeout: 是否启用超时处理
Returns:
Tuple[bool, Optional[str], Optional[str]]: (是否成功, 生成的回复内容, 使用的prompt)
"""
@@ -177,43 +175,25 @@ class DefaultReplyer:
# 3. 构建 Prompt
with Timer("构建Prompt", {}): # 内部计时器,可选保留
prompt = await self.build_prompt_reply_context(
reply_to = reply_to,
reply_to=reply_to,
extra_info=extra_info,
available_actions=available_actions,
enable_timeout=enable_timeout,
enable_tool=enable_tool,
)
if not prompt:
logger.warning("构建prompt失败跳过回复生成")
return False, None, None
# 4. 调用 LLM 生成回复
content = None
reasoning_content = None
model_name = "unknown_model"
# TODO: 复活这里
# reasoning_content = None
# model_name = "unknown_model"
try:
with Timer("LLM生成", {}): # 内部计时器,可选保留
# 加权随机选择一个模型配置
selected_model_config = self._select_weighted_model_config()
logger.info(
f"使用模型生成回复: {selected_model_config.get('name', 'N/A')} (选中概率: {selected_model_config.get('weight', 1.0)})"
)
express_model = LLMRequest(
model=selected_model_config,
request_type=self.request_type,
)
if global_config.debug.show_prompt:
logger.info(f"\n{prompt}\n")
else:
logger.debug(f"\n{prompt}\n")
content, (reasoning_content, model_name) = await express_model.generate_response_async(prompt)
logger.debug(f"replyer生成内容: {content}")
content = await self.llm_generate_content(prompt)
logger.debug(f"replyer生成内容: {content}")
except Exception as llm_e:
# 精简报错信息
@@ -232,22 +212,21 @@ class DefaultReplyer:
raw_reply: str = "",
reason: str = "",
reply_to: str = "",
) -> Tuple[bool, Optional[str]]:
return_prompt: bool = False,
) -> Tuple[bool, Optional[str], Optional[str]]:
"""
表达器 (Expressor): 负责重写和优化回复文本。
Args:
raw_reply: 原始回复内容
reason: 回复原因
reply_to: 回复对象,格式为 "发送者:消息内容"
relation_info: 关系信息
Returns:
Tuple[bool, Optional[str]]: (是否成功, 重写后的回复内容)
"""
try:
with Timer("构建Prompt", {}): # 内部计时器,可选保留
prompt = await self.build_prompt_rewrite_context(
raw_reply=raw_reply,
@@ -256,40 +235,28 @@ class DefaultReplyer:
)
content = None
reasoning_content = None
model_name = "unknown_model"
# TODO: 复活这里
# reasoning_content = None
# model_name = "unknown_model"
if not prompt:
logger.error("Prompt 构建失败,无法生成回复。")
return False, None
return False, None, None
try:
with Timer("LLM生成", {}): # 内部计时器,可选保留
# 加权随机选择一个模型配置
selected_model_config = self._select_weighted_model_config()
logger.info(
f"使用模型重写回复: {selected_model_config.get('name', 'N/A')} (选中概率: {selected_model_config.get('weight', 1.0)})"
)
express_model = LLMRequest(
model=selected_model_config,
request_type=self.request_type,
)
content, (reasoning_content, model_name) = await express_model.generate_response_async(prompt)
logger.info(f"想要表达:{raw_reply}||理由:{reason}||生成回复: {content}\n")
content = await self.llm_generate_content(prompt)
logger.info(f"想要表达:{raw_reply}||理由:{reason}||生成回复: {content}\n")
except Exception as llm_e:
# 精简报错信息
logger.error(f"LLM 生成失败: {llm_e}")
return False, None # LLM 调用失败则无法生成回复
return False, None, prompt if return_prompt else None # LLM 调用失败则无法生成回复
return True, content
return True, content, prompt if return_prompt else None
except Exception as e:
logger.error(f"回复生成意外失败: {e}")
traceback.print_exc()
return False, None
return False, None, prompt if return_prompt else None
async def build_relation_info(self, reply_to: str = ""):
if not global_config.relationship.enable_relationship:
@@ -313,11 +280,11 @@ class DefaultReplyer:
async def build_expression_habits(self, chat_history: str, target: str) -> str:
"""构建表达习惯块
Args:
chat_history: 聊天历史记录
target: 目标消息内容
Returns:
str: 表达习惯信息字符串
"""
@@ -366,17 +333,15 @@ class DefaultReplyer:
if style_habits_str.strip() and grammar_habits_str.strip():
expression_habits_title = "你可以参考以下的语言习惯和句法,如果情景合适就使用,不要盲目使用,不要生硬使用,以合理的方式结合到你的回复中:"
expression_habits_block = f"{expression_habits_title}\n{expression_habits_block}"
return expression_habits_block
return f"{expression_habits_title}\n{expression_habits_block}"
async def build_memory_block(self, chat_history: str, target: str) -> str:
"""构建记忆块
Args:
chat_history: 聊天历史记录
target: 目标消息内容
Returns:
str: 记忆信息字符串
"""
@@ -459,10 +424,10 @@ class DefaultReplyer:
def _parse_reply_target(self, target_message: str) -> Tuple[str, str]:
"""解析回复目标消息
Args:
target_message: 目标消息,格式为 "发送者:消息内容""发送者:消息内容"
Returns:
Tuple[str, str]: (发送者名称, 消息内容)
"""
@@ -481,10 +446,10 @@ class DefaultReplyer:
async def build_keywords_reaction_prompt(self, target: Optional[str]) -> str:
"""构建关键词反应提示
Args:
target: 目标消息内容
Returns:
str: 关键词反应提示字符串
"""
@@ -523,11 +488,11 @@ class DefaultReplyer:
async def _time_and_run_task(self, coroutine, name: str) -> Tuple[str, Any, float]:
"""计时并运行异步任务的辅助函数
Args:
coroutine: 要执行的协程
name: 任务名称
Returns:
Tuple[str, Any, float]: (任务名称, 任务结果, 执行耗时)
"""
@@ -537,7 +502,9 @@ class DefaultReplyer:
duration = end_time - start_time
return name, result, duration
def build_s4u_chat_history_prompts(self, message_list_before_now: List[Dict[str, Any]], target_user_id: str) -> Tuple[str, str]:
def build_s4u_chat_history_prompts(
self, message_list_before_now: List[Dict[str, Any]], target_user_id: str
) -> Tuple[str, str]:
"""
构建 s4u 风格的分离对话 prompt
@@ -612,7 +579,7 @@ class DefaultReplyer:
chat_info: str,
) -> Any:
"""构建 mai_think 上下文信息
Args:
chat_id: 聊天ID
memory_block: 记忆块内容
@@ -625,7 +592,7 @@ class DefaultReplyer:
sender: 发送者名称
target: 目标消息内容
chat_info: 聊天信息
Returns:
Any: mai_think 实例
"""
@@ -647,19 +614,17 @@ class DefaultReplyer:
reply_to: str,
extra_info: str = "",
available_actions: Optional[Dict[str, ActionInfo]] = None,
enable_timeout: bool = False,
enable_tool: bool = True,
) -> str: # sourcery skip: merge-else-if-into-elif, remove-redundant-if
"""
构建回复器上下文
Args:
reply_data: 回复数据
replay_data 包含以下字段:
structured_info: 结构化信息,一般是工具调用获得的信息
reply_to: 回复对象
extra_info/extra_info_block: 额外信息
reply_to: 回复对象,格式为 "发送者:消息内容"
extra_info: 额外信息,用于补充上下文
available_actions: 可用动作
enable_timeout: 是否启用超时处理
enable_tool: 是否启用工具调用
Returns:
str: 构建好的上下文
@@ -1011,6 +976,30 @@ class DefaultReplyer:
display_message=display_message,
)
async def llm_generate_content(self, prompt: str) -> str:
with Timer("LLM生成", {}): # 内部计时器,可选保留
# 加权随机选择一个模型配置
selected_model_config = self._select_weighted_model_config()
logger.info(
f"使用模型生成回复: {selected_model_config.get('name', 'N/A')} (选中概率: {selected_model_config.get('weight', 1.0)})"
)
express_model = LLMRequest(
model=selected_model_config,
request_type=self.request_type,
)
if global_config.debug.show_prompt:
logger.info(f"\n{prompt}\n")
else:
logger.debug(f"\n{prompt}\n")
# TODO: 这里的_应该做出替换
content, _ = await express_model.generate_response_async(prompt)
logger.debug(f"replyer生成内容: {content}")
return content
def weighted_sample_no_replacement(items, weights, k) -> list:
"""
@@ -1069,9 +1058,7 @@ async def get_prompt_info(message: str, threshold: float):
logger.debug(f"获取知识库内容耗时: {(end_time - start_time):.3f}")
logger.debug(f"获取知识库内容,相关信息:{related_info[:100]}...,信息长度: {len(related_info)}")
# 格式化知识信息
formatted_prompt_info = f"你有以下这些**知识**\n{related_info}\n请你**记住上面的知识**,之后可能会用到。\n"
return formatted_prompt_info
return f"你有以下这些**知识**\n{related_info}\n请你**记住上面的知识**,之后可能会用到。\n"
else:
logger.debug("从LPMM知识库获取知识失败可能是从未导入过知识返回空知识...")
return ""

View File

@@ -851,7 +851,7 @@ class LLMRequest:
def _default_response_handler(
self, result: dict, user_id: str = "system", request_type: str = None, endpoint: str = "/chat/completions"
) -> Tuple:
):
"""默认响应解析"""
if "choices" in result and result["choices"]:
message = result["choices"][0]["message"]

View File

@@ -84,18 +84,23 @@ async def generate_reply(
enable_chinese_typo: bool = True,
return_prompt: bool = False,
model_configs: Optional[List[Dict[str, Any]]] = None,
request_type: str = "",
enable_timeout: bool = False,
request_type: str = "generator_api",
) -> Tuple[bool, List[Tuple[str, Any]], Optional[str]]:
"""生成回复
Args:
chat_stream: 聊天流对象(优先)
chat_id: 聊天ID备用
action_data: 动作数据
action_data: 动作数据向下兼容包含reply_to和extra_info
reply_to: 回复对象,格式为 "发送者:消息内容"
extra_info: 额外信息,用于补充上下文
available_actions: 可用动作
enable_tool: 是否启用工具调用
enable_splitter: 是否启用消息分割器
enable_chinese_typo: 是否启用错字生成器
return_prompt: 是否返回提示词
model_configs: 模型配置列表
request_type: 请求类型可选记录LLM使用
Returns:
Tuple[bool, List[Tuple[str, Any]], Optional[str]]: (是否成功, 回复集合, 提示词)
"""
@@ -107,7 +112,7 @@ async def generate_reply(
return False, [], None
logger.debug("[GeneratorAPI] 开始生成回复")
if not reply_to and action_data:
reply_to = action_data.get("reply_to", "")
if not extra_info and action_data:
@@ -118,7 +123,6 @@ async def generate_reply(
reply_to=reply_to,
extra_info=extra_info,
available_actions=available_actions,
enable_timeout=enable_timeout,
enable_tool=enable_tool,
)
reply_set = []
@@ -154,12 +158,13 @@ async def rewrite_reply(
raw_reply: str = "",
reason: str = "",
reply_to: str = "",
) -> Tuple[bool, List[Tuple[str, Any]]]:
return_prompt: bool = False,
) -> Tuple[bool, List[Tuple[str, Any]], Optional[str]]:
"""重写回复
Args:
chat_stream: 聊天流对象(优先)
reply_data: 回复数据字典(备用,当其他参数缺失时从此获取)
reply_data: 回复数据字典(向下兼容备用,当其他参数缺失时从此获取)
chat_id: 聊天ID备用
enable_splitter: 是否启用消息分割器
enable_chinese_typo: 是否启用错字生成器
@@ -167,6 +172,7 @@ async def rewrite_reply(
raw_reply: 原始回复内容
reason: 回复原因
reply_to: 回复对象
return_prompt: 是否返回提示词
Returns:
Tuple[bool, List[Tuple[str, Any]]]: (是否成功, 回复集合)
@@ -176,7 +182,7 @@ async def rewrite_reply(
replyer = get_replyer(chat_stream, chat_id, model_configs=model_configs)
if not replyer:
logger.error("[GeneratorAPI] 无法获取回复器")
return False, []
return False, [], None
logger.info("[GeneratorAPI] 开始重写回复")
@@ -187,10 +193,11 @@ async def rewrite_reply(
reply_to = reply_to or reply_data.get("reply_to", "")
# 调用回复器重写回复
success, content = await replyer.rewrite_reply_with_context(
success, content, prompt = await replyer.rewrite_reply_with_context(
raw_reply=raw_reply,
reason=reason,
reply_to=reply_to,
return_prompt=return_prompt,
)
reply_set = []
if content:
@@ -201,14 +208,14 @@ async def rewrite_reply(
else:
logger.warning("[GeneratorAPI] 重写回复失败")
return success, reply_set
return success, reply_set, prompt if return_prompt else None
except ValueError as ve:
raise ve
except Exception as e:
logger.error(f"[GeneratorAPI] 重写回复时出错: {e}")
return False, []
return False, [], None
async def process_human_text(content: str, enable_splitter: bool, enable_chinese_typo: bool) -> List[Tuple[str, Any]]:
@@ -234,3 +241,27 @@ async def process_human_text(content: str, enable_splitter: bool, enable_chinese
except Exception as e:
logger.error(f"[GeneratorAPI] 处理人形文本时出错: {e}")
return []
async def generate_response_custom(
chat_stream: Optional[ChatStream] = None,
chat_id: Optional[str] = None,
model_configs: Optional[List[Dict[str, Any]]] = None,
prompt: str = "",
) -> Optional[str]:
replyer = get_replyer(chat_stream, chat_id, model_configs=model_configs)
if not replyer:
logger.error("[GeneratorAPI] 无法获取回复器")
return None
try:
logger.debug("[GeneratorAPI] 开始生成自定义回复")
response = await replyer.llm_generate_content(prompt)
if response:
logger.debug("[GeneratorAPI] 自定义回复生成成功")
return response
else:
logger.warning("[GeneratorAPI] 自定义回复生成失败")
return None
except Exception as e:
logger.error(f"[GeneratorAPI] 生成自定义回复时出错: {e}")
return None