remove:移除info_catcher

This commit is contained in:
SengokuCola
2025-06-09 16:08:44 +08:00
parent 97ffbe5145
commit 956af05454
13 changed files with 401 additions and 280 deletions

View File

@@ -2,22 +2,106 @@
## 前言
目前插件系统为v0.1版本仅试行并实现简单功能且只能在focus下使用
插件系统目前为v1.0版本支持Focus和Normal两种聊天模式下的动作扩展。
目前插件的形式为给focus模型的决策增加新**动作action**
### 🆕 v1.0 新特性
- **双激活类型系统**Focus模式智能化Normal模式高性能
- **并行动作支持**:支持与回复同时执行的动作
- **四种激活类型**ALWAYS、RANDOM、LLM_JUDGE、KEYWORD
- **智能缓存机制**提升LLM判定性能
- **模式启用控制**:精确控制插件在不同模式下的行为
原有focus的planner有reply和no_reply两种动作
插件以**动作(Action)**的形式扩展MaiBot功能。原有focus模式包含reply和no_reply两种基础动作通过插件系统可以添加更多自定义动作如mute_action、pic_action等。
在麦麦plugin文件夹中的示例插件新增了mute_action动作和pic_action动作你可以参考其中的代码
**⚠️ 重要变更**:旧的`action_activation_type`属性已被移除,必须使用新的双激活类型系统。详见[迁移指南](#迁移指南)。
在**之后的更新**中会兼容normal_chat aciton更多的自定义组件tool和/help式指令
## 动作激活系统 🚀
### 双激活类型架构
MaiBot采用**双激活类型架构**为Focus模式和Normal模式分别提供最优的激活策略
**Focus模式**:智能优先
- 支持复杂的LLM判定
- 提供精确的上下文理解
- 适合需要深度分析的场景
**Normal模式**:性能优先
- 使用快速的关键词匹配
- 采用简单的随机触发
- 确保快速响应用户
### 四种激活类型
#### 1. ALWAYS - 总是激活
```python
focus_activation_type = ActionActivationType.ALWAYS
normal_activation_type = ActionActivationType.ALWAYS
```
**用途**:基础必需动作,如`reply_action``no_reply_action`
#### 2. KEYWORD - 关键词触发
```python
focus_activation_type = ActionActivationType.KEYWORD
normal_activation_type = ActionActivationType.KEYWORD
activation_keywords = ["画", "画图", "生成图片", "draw"]
keyword_case_sensitive = False
```
**用途**:精确命令式触发,如图片生成、搜索等
#### 3. LLM_JUDGE - 智能判定
```python
focus_activation_type = ActionActivationType.LLM_JUDGE
normal_activation_type = ActionActivationType.KEYWORD # 推荐Normal模式使用KEYWORD
```
**用途**:需要上下文理解的复杂判定,如情感分析、意图识别
**优化特性**
- 🚀 并行执行多个LLM判定同时进行
- 💾 智能缓存相同上下文复用结果30秒有效期
- ⚡ 直接判定:减少复杂度,提升性能
#### 4. RANDOM - 随机激活
```python
focus_activation_type = ActionActivationType.RANDOM
normal_activation_type = ActionActivationType.RANDOM
random_activation_probability = 0.1 # 10%概率
```
**用途**:增加不可预测性和趣味性,如随机表情
### 并行动作系统 🆕
支持动作与回复生成同时执行:
```python
# 并行动作:与回复生成同时执行
parallel_action = True # 提升用户体验,适用于辅助性动作
# 串行动作:替代回复生成(传统行为)
parallel_action = False # 默认值,适用于主要内容生成
```
**适用场景**
- **并行动作**情感表达、状态变更、TTS播报
- **串行动作**:图片生成、搜索查询、内容创作
### 模式启用控制
```python
from src.chat.chat_mode import ChatMode
mode_enable = ChatMode.ALL # 在所有模式下启用(默认)
mode_enable = ChatMode.FOCUS # 仅在Focus模式启用
mode_enable = ChatMode.NORMAL # 仅在Normal模式启用
```
## 基本步骤
1.`src/plugins/你的插件名/actions/`目录下创建插件文件
2. 继承`PluginAction`基类
3. 实现`process`方法
4. `src/plugins/你的插件名/__init__.py`中导入你的插件类,确保插件能被正确加载
3. 配置双激活类型和相关属性
4. 实现`process`方法
5.`src/plugins/你的插件名/__init__.py`中导入你的插件类
```python
# src/plugins/你的插件名/__init__.py
@@ -28,9 +112,12 @@ __all__ = ["YourAction"]
## 插件结构示例
### 智能自适应插件(推荐)
```python
from src.common.logger_manager import get_logger
from src.chat.focus_chat.planners.actions.plugin_action import PluginAction, register_action
from src.chat.focus_chat.planners.actions.plugin_action import PluginAction, register_action, ActionActivationType
from src.chat.chat_mode import ChatMode
from typing import Tuple
logger = get_logger("your_action_name")
@@ -39,8 +126,21 @@ logger = get_logger("your_action_name")
class YourAction(PluginAction):
"""你的动作描述"""
action_name = "your_action_name" # 动作名称,必须唯一
action_name = "your_action_name"
action_description = "这个动作的详细描述,会展示给用户"
# 🆕 双激活类型配置(智能自适应模式)
focus_activation_type = ActionActivationType.LLM_JUDGE # Focus模式使用智能判定
normal_activation_type = ActionActivationType.KEYWORD # Normal模式使用关键词
activation_keywords = ["关键词1", "关键词2", "keyword"]
keyword_case_sensitive = False
# 🆕 模式和并行控制
mode_enable = ChatMode.ALL # 支持所有模式
parallel_action = False # 根据需要调整
enable_plugin = True # 是否启用插件
# 传统配置
action_parameters = {
"param1": "参数1的说明可选",
"param2": "参数2的说明可选"
@@ -49,9 +149,9 @@ class YourAction(PluginAction):
"使用场景1",
"使用场景2"
]
default = False # 是否默认启用
default = False
associated_types = ["command", "text"] #该插件会发送的消息类型
associated_types = ["text", "command"]
async def process(self) -> Tuple[bool, str]:
"""插件核心逻辑"""
@@ -59,6 +159,105 @@ class YourAction(PluginAction):
return True, "执行结果"
```
### 关键词触发插件
```python
@register_action
class SearchAction(PluginAction):
action_name = "search_action"
action_description = "智能搜索功能"
# 两个模式都使用关键词触发
focus_activation_type = ActionActivationType.KEYWORD
normal_activation_type = ActionActivationType.KEYWORD
activation_keywords = ["搜索", "查找", "什么是", "search", "find"]
keyword_case_sensitive = False
mode_enable = ChatMode.ALL
parallel_action = False
enable_plugin = True
async def process(self) -> Tuple[bool, str]:
# 搜索逻辑
return True, "搜索完成"
```
### 并行辅助动作
```python
@register_action
class EmotionAction(PluginAction):
action_name = "emotion_action"
action_description = "情感表达动作"
focus_activation_type = ActionActivationType.LLM_JUDGE
normal_activation_type = ActionActivationType.RANDOM
random_activation_probability = 0.05 # 5%概率
mode_enable = ChatMode.ALL
parallel_action = True # 🆕 与回复并行执行
enable_plugin = True
async def process(self) -> Tuple[bool, str]:
# 情感表达逻辑
return True, "" # 并行动作通常不返回文本
```
### Focus专享高级功能
```python
@register_action
class AdvancedAnalysisAction(PluginAction):
action_name = "advanced_analysis"
action_description = "高级分析功能"
focus_activation_type = ActionActivationType.LLM_JUDGE
normal_activation_type = ActionActivationType.ALWAYS # 不会生效
mode_enable = ChatMode.FOCUS # 🆕 仅在Focus模式启用
parallel_action = False
enable_plugin = True
```
## 推荐配置模式
### 模式1智能自适应推荐
```python
# Focus模式智能判定Normal模式快速触发
focus_activation_type = ActionActivationType.LLM_JUDGE
normal_activation_type = ActionActivationType.KEYWORD
activation_keywords = ["相关", "关键词"]
mode_enable = ChatMode.ALL
parallel_action = False # 根据具体需求调整
```
### 模式2统一关键词
```python
# 两个模式都使用关键词,确保行为一致
focus_activation_type = ActionActivationType.KEYWORD
normal_activation_type = ActionActivationType.KEYWORD
activation_keywords = ["画", "图片", "生成"]
mode_enable = ChatMode.ALL
```
### 模式3Focus专享功能
```python
# 仅在Focus模式启用的高级功能
focus_activation_type = ActionActivationType.LLM_JUDGE
mode_enable = ChatMode.FOCUS
parallel_action = False
```
### 模式4随机娱乐功能
```python
# 增加趣味性的随机功能
focus_activation_type = ActionActivationType.RANDOM
normal_activation_type = ActionActivationType.RANDOM
random_activation_probability = 0.08 # 8%概率
mode_enable = ChatMode.ALL
parallel_action = True # 通常与回复并行
```
## 可用的API方法
插件可以使用`PluginAction`基类提供的以下API
@@ -79,19 +278,13 @@ await self.send_message(
display_message=f"我 禁言了 {target} {duration_str}秒",
)
```
会将消息直接以原始文本发送
type指定消息类型
data为发送内容
### 2. 使用表达器发送消息
```python
await self.send_message_by_expressor("你好")
await self.send_message_by_expressor(f"禁言{target} {duration}秒,因为{reason}")
```
将消息通过表达器发送使用LLM组织成符合bot语言风格的内容并发送
只能发送文本
### 3. 获取聊天类型
@@ -159,16 +352,173 @@ return True, "执行成功的消息"
return False, "执行失败的原因"
```
## 性能优化建议
### 1. 激活类型选择
- **ALWAYS**:仅用于基础必需动作
- **KEYWORD**:明确的命令式动作,性能最佳
- **LLM_JUDGE**复杂判断建议仅在Focus模式使用
- **RANDOM**:娱乐功能,低概率触发
### 2. 双模式配置
- **智能自适应**Focus用LLM_JUDGENormal用KEYWORD推荐
- **性能优先**两个模式都用KEYWORD或RANDOM
- **功能分离**高级功能仅在Focus模式启用
### 3. 并行动作使用
- **parallel_action = True**:辅助性、非内容生成类动作
- **parallel_action = False**:主要内容生成、需要完整注意力的动作
### 4. LLM判定优化
- 编写清晰的激活条件描述
- 避免过于复杂的逻辑判断
- 利用智能缓存机制(自动)
- Normal模式避免使用LLM_JUDGE
### 5. 关键词设计
- 包含同义词和英文对应词
- 考虑用户的不同表达习惯
- 避免过于宽泛的关键词
- 根据实际使用调整覆盖率
## 迁移指南 ⚠️
### 重大变更说明
**旧的 `action_activation_type` 属性已被移除**,必须更新为新的双激活类型系统。
### 快速迁移步骤
#### 第一步:更新基本属性
```python
# 旧的配置(已废弃)❌
class OldAction(BaseAction):
action_activation_type = ActionActivationType.LLM_JUDGE
# 新的配置(必须使用)✅
class NewAction(BaseAction):
focus_activation_type = ActionActivationType.LLM_JUDGE
normal_activation_type = ActionActivationType.KEYWORD
activation_keywords = ["相关", "关键词"]
mode_enable = ChatMode.ALL
parallel_action = False
enable_plugin = True
```
#### 第二步:根据原类型选择对应策略
```python
# 原来是 ALWAYS
focus_activation_type = ActionActivationType.ALWAYS
normal_activation_type = ActionActivationType.ALWAYS
# 原来是 LLM_JUDGE
focus_activation_type = ActionActivationType.LLM_JUDGE
normal_activation_type = ActionActivationType.KEYWORD # 添加关键词
activation_keywords = ["需要", "添加", "关键词"]
# 原来是 KEYWORD
focus_activation_type = ActionActivationType.KEYWORD
normal_activation_type = ActionActivationType.KEYWORD
# 保持原有的 activation_keywords
# 原来是 RANDOM
focus_activation_type = ActionActivationType.RANDOM
normal_activation_type = ActionActivationType.RANDOM
# 保持原有的 random_activation_probability
```
#### 第三步:配置新功能
```python
# 添加模式控制
mode_enable = ChatMode.ALL # 或 ChatMode.FOCUS / ChatMode.NORMAL
# 添加并行控制
parallel_action = False # 根据动作特性选择True/False
# 添加插件控制
enable_plugin = True # 是否启用此插件
```
## 最佳实践
1. 使用`action_parameters`清晰定义你的动作需要的参数
2. 使用`action_require`描述何时应该使用你的动作
3. 使用`action_description`准确描述你的动作功能
4. 使用`logger`记录重要信息,方便调试
5. 避免操作底层系统,尽量使用`PluginAction`提供的API
### 1. 代码组织
- 使用清晰的`action_description`描述功能
- 使用`action_parameters`定义所需参数
- 使用`action_require`描述使用场景
- 使用`logger`记录重要信息,方便调试
### 2. 性能考虑
- 优先使用KEYWORD触发性能最佳
- Normal模式避免使用LLM_JUDGE
- 合理设置随机概率0.05-0.3
- 利用智能缓存机制(自动优化)
### 3. 用户体验
- 并行动作提升响应速度
- 关键词覆盖用户常用表达
- 错误处理和友好提示
- 避免操作底层系统
### 4. 兼容性
- 支持中英文关键词
- 考虑不同聊天模式的用户需求
- 提供合理的默认配置
- 向后兼容旧版本用户习惯
## 注册与加载
插件会在系统启动时自动加载,只要放在正确的目录并添加了`@register_action`装饰器。
插件会在系统启动时自动加载,只要
1. 放在正确的目录结构中
2. 添加了`@register_action`装饰器
3.`__init__.py`中正确导入
若设置`default = True`,插件会自动添加到默认动作集并启用,否则默认只加载不启用。
## 调试和测试
### 性能监控
系统会自动记录以下性能指标:
```python
logger.debug(f"激活判定:{before_count} -> {after_count} actions")
logger.debug(f"并行LLM判定完成耗时: {duration:.2f}s")
logger.debug(f"使用缓存结果 {action_name}: {'激活' if result else '未激活'}")
```
### 测试验证
使用测试脚本验证配置:
```bash
python test_action_activation.py
```
该脚本会显示:
- 所有注册动作的双激活类型配置
- 模拟不同模式下的激活结果
- 并行动作系统的工作状态
- 帮助验证配置是否正确
## 系统优势
### 1. 高性能
- **并行判定**多个LLM判定同时进行
- **智能缓存**:避免重复计算
- **双模式优化**Focus智能化Normal快速化
- **预期性能提升**3-5x
### 2. 智能化
- **上下文感知**:基于聊天内容智能激活
- **动态配置**:从动作配置中收集关键词
- **冲突避免**:防止重复激活
- **模式自适应**:根据聊天模式选择最优策略
### 3. 可扩展性
- **插件式**:新的激活类型易于添加
- **配置驱动**:通过配置控制行为
- **模块化**:各组件独立可测试
- **双模式支持**:灵活适应不同使用场景
### 4. 用户体验
- **响应速度**:显著提升机器人反应速度
- **智能决策**:精确理解用户意图
- **交互流畅**:并行动作减少等待时间
- **适应性强**:不同模式满足不同需求
这个升级后的插件系统为MaiBot提供了强大而灵活的扩展能力既保证了性能又提供了智能化的用户体验。

View File

@@ -12,7 +12,6 @@ from src.chat.utils.timer_calculator import Timer # <--- Import Timer
from src.chat.emoji_system.emoji_manager import emoji_manager
from src.chat.focus_chat.heartFC_sender import HeartFCSender
from src.chat.utils.utils import process_llm_response
from src.chat.utils.info_catcher import info_catcher_manager
from src.chat.heart_flow.utils_chat import get_chat_type_and_target_info
from src.chat.message_receive.chat_stream import ChatStream
from src.chat.focus_chat.hfc_utils import parse_thinking_id_to_timestamp
@@ -186,9 +185,6 @@ class DefaultExpressor:
# current_temp = float(global_config.model.normal["temp"]) * arousal_multiplier
# self.express_model.params["temperature"] = current_temp # 动态调整温度
# 2. 获取信息捕捉器
info_catcher = info_catcher_manager.get_info_catcher(thinking_id)
# --- Determine sender_name for private chat ---
sender_name_for_prompt = "某人" # Default for group or if info unavailable
if not self.is_group_chat and self.chat_target_info:
@@ -227,14 +223,10 @@ class DefaultExpressor:
# logger.info(f"{self.log_prefix}[Replier-{thinking_id}]\nPrompt:\n{prompt}\n")
content, (reasoning_content, model_name) = await self.express_model.generate_response_async(prompt)
# logger.info(f"{self.log_prefix}\nPrompt:\n{prompt}\n---------------------------\n")
logger.info(f"想要表达:{in_mind_reply}||理由:{reason}")
logger.info(f"最终回复: {content}\n")
info_catcher.catch_after_llm_generated(
prompt=prompt, response=content, reasoning_content=reasoning_content, model_name=model_name
)
except Exception as llm_e:
# 精简报错信息

View File

@@ -110,7 +110,9 @@ class HeartFCSender:
message.set_reply()
logger.debug(f"[{chat_id}] 应用 set_reply 逻辑: {message.processed_plain_text[:20]}...")
# print(f"message.display_message: {message.display_message}")
await message.process()
# print(f"message.display_message: {message.display_message}")
if typing:
if has_thinking:

View File

@@ -12,7 +12,6 @@ from src.chat.utils.timer_calculator import Timer # <--- Import Timer
from src.chat.emoji_system.emoji_manager import emoji_manager
from src.chat.focus_chat.heartFC_sender import HeartFCSender
from src.chat.utils.utils import process_llm_response
from src.chat.utils.info_catcher import info_catcher_manager
from src.chat.heart_flow.utils_chat import get_chat_type_and_target_info
from src.chat.message_receive.chat_stream import ChatStream
from src.chat.focus_chat.hfc_utils import parse_thinking_id_to_timestamp
@@ -238,8 +237,6 @@ class DefaultReplyer:
# current_temp = float(global_config.model.normal["temp"]) * arousal_multiplier
# self.express_model.params["temperature"] = current_temp # 动态调整温度
# 2. 获取信息捕捉器
info_catcher = info_catcher_manager.get_info_catcher(thinking_id)
reply_to = action_data.get("reply_to", "none")
@@ -286,10 +283,6 @@ class DefaultReplyer:
# logger.info(f"prompt: {prompt}")
logger.info(f"最终回复: {content}")
info_catcher.catch_after_llm_generated(
prompt=prompt, response=content, reasoning_content=reasoning_content, model_name=model_name
)
except Exception as llm_e:
# 精简报错信息
logger.error(f"{self.log_prefix}LLM 生成失败: {llm_e}")

View File

@@ -24,6 +24,7 @@ class MessageStorage:
else:
filtered_processed_plain_text = ""
if isinstance(message, MessageSending):
display_message = message.display_message
if display_message:

View File

@@ -8,7 +8,6 @@ from src.common.logger_manager import get_logger
from src.chat.heart_flow.utils_chat import get_chat_type_and_target_info
from src.manager.mood_manager import mood_manager
from src.chat.message_receive.chat_stream import ChatStream, chat_manager
from src.chat.utils.info_catcher import info_catcher_manager
from src.chat.utils.timer_calculator import Timer
from src.chat.utils.prompt_builder import global_prompt_manager
from .normal_chat_generator import NormalChatGenerator
@@ -277,9 +276,6 @@ class NormalChat:
logger.debug(f"[{self.stream_name}] 创建捕捉器thinking_id:{thinking_id}")
info_catcher = info_catcher_manager.get_info_catcher(thinking_id)
info_catcher.catch_decide_to_response(message)
# 如果启用planner预先修改可用actions避免在并行任务中重复调用
available_actions = None
if self.enable_planner:
@@ -373,8 +369,6 @@ class NormalChat:
if isinstance(response_set, Exception):
logger.error(f"[{self.stream_name}] 回复生成异常: {response_set}")
response_set = None
elif response_set:
info_catcher.catch_after_generate_response(timing_results["并行生成回复和规划"])
# 处理规划结果(可选,不影响回复)
if isinstance(plan_result, Exception):
@@ -414,7 +408,6 @@ class NormalChat:
# 检查 first_bot_msg 是否为 None (例如思考消息已被移除的情况)
if first_bot_msg:
info_catcher.catch_after_response(timing_results["消息发送"], response_set, first_bot_msg)
# 记录回复信息到最近回复列表中
reply_info = {
@@ -447,8 +440,6 @@ class NormalChat:
# await self._check_switch_to_focus()
pass
info_catcher.done_catch()
with Timer("处理表情包", timing_results):
await self._handle_emoji(message, response_set[0])

View File

@@ -133,6 +133,7 @@ class NormalChatExpressor:
thinking_start_time=time.time(),
reply_to=mark_head,
is_emoji=is_emoji,
display_message=display_message,
)
logger.debug(f"{self.log_prefix} 添加{response_type}类型消息: {content}")
@@ -167,6 +168,7 @@ class NormalChatExpressor:
thinking_start_time: float,
reply_to: bool = False,
is_emoji: bool = False,
display_message: str = "",
) -> MessageSending:
"""构建发送消息
@@ -197,6 +199,7 @@ class NormalChatExpressor:
reply=anchor_message if reply_to else None,
thinking_start_time=thinking_start_time,
is_emoji=is_emoji,
display_message=display_message,
)
return message_sending

View File

@@ -6,7 +6,6 @@ from src.chat.message_receive.message import MessageThinking
from src.chat.normal_chat.normal_prompt import prompt_builder
from src.chat.utils.timer_calculator import Timer
from src.common.logger_manager import get_logger
from src.chat.utils.info_catcher import info_catcher_manager
from src.person_info.person_info import person_info_manager
from src.chat.utils.utils import process_llm_response
@@ -69,7 +68,6 @@ class NormalChatGenerator:
enable_planner: bool = False,
available_actions=None,
):
info_catcher = info_catcher_manager.get_info_catcher(thinking_id)
person_id = person_info_manager.get_person_id(
message.chat_stream.user_info.platform, message.chat_stream.user_info.user_id
@@ -105,9 +103,6 @@ class NormalChatGenerator:
logger.info(f"{message.processed_plain_text} 的回复:{content}")
info_catcher.catch_after_llm_generated(
prompt=prompt, response=content, reasoning_content=reasoning_content, model_name=self.current_model_name
)
except Exception:
logger.exception("生成回复时出错")

View File

@@ -150,7 +150,7 @@ class NormalChatPlanner:
try:
content, (reasoning_content, model_name) = await self.planner_llm.generate_response_async(prompt)
logger.info(f"{self.log_prefix}规划器原始提示词: {prompt}")
# logger.info(f"{self.log_prefix}规划器原始提示词: {prompt}")
logger.info(f"{self.log_prefix}规划器原始响应: {content}")
logger.info(f"{self.log_prefix}规划器推理: {reasoning_content}")
logger.info(f"{self.log_prefix}规划器模型: {model_name}")

View File

@@ -1,223 +0,0 @@
from src.config.config import global_config
from src.chat.message_receive.message import MessageRecv, MessageSending, Message
from src.common.database.database_model import Messages, ThinkingLog
import time
import traceback
from typing import List
import json
class InfoCatcher:
def __init__(self):
self.chat_history = [] # 聊天历史,长度为三倍使用的上下文喵~
self.chat_history_in_thinking = [] # 思考期间的聊天内容喵~
self.chat_history_after_response = [] # 回复后的聊天内容,长度为一倍上下文喵~
self.chat_id = ""
self.trigger_response_text = ""
self.response_text = ""
self.trigger_response_time = 0
self.trigger_response_message = None
self.response_time = 0
self.response_messages = []
# 使用字典来存储 heartflow 模式的数据
self.heartflow_data = {
"heart_flow_prompt": "",
"sub_heartflow_before": "",
"sub_heartflow_now": "",
"sub_heartflow_after": "",
"sub_heartflow_model": "",
"prompt": "",
"response": "",
"model": "",
}
# 使用字典来存储 reasoning 模式的数据喵~
self.reasoning_data = {"thinking_log": "", "prompt": "", "response": "", "model": ""}
# 耗时喵~
self.timing_results = {
"interested_rate_time": 0,
"sub_heartflow_observe_time": 0,
"sub_heartflow_step_time": 0,
"make_response_time": 0,
}
def catch_decide_to_response(self, message: MessageRecv):
# 搜集决定回复时的信息
self.trigger_response_message = message
self.trigger_response_text = message.detailed_plain_text
self.trigger_response_time = time.time()
self.chat_id = message.chat_stream.stream_id
self.chat_history = self.get_message_from_db_before_msg(message)
def catch_after_observe(self, obs_duration: float): # 这里可以有更多信息
self.timing_results["sub_heartflow_observe_time"] = obs_duration
def catch_afer_shf_step(self, step_duration: float, past_mind: str, current_mind: str):
self.timing_results["sub_heartflow_step_time"] = step_duration
if len(past_mind) > 1:
self.heartflow_data["sub_heartflow_before"] = past_mind[-1]
self.heartflow_data["sub_heartflow_now"] = current_mind
else:
self.heartflow_data["sub_heartflow_before"] = past_mind[-1]
self.heartflow_data["sub_heartflow_now"] = current_mind
def catch_after_llm_generated(self, prompt: str, response: str, reasoning_content: str = "", model_name: str = ""):
self.reasoning_data["thinking_log"] = reasoning_content
self.reasoning_data["prompt"] = prompt
self.reasoning_data["response"] = response
self.reasoning_data["model"] = model_name
self.response_text = response
def catch_after_generate_response(self, response_duration: float):
self.timing_results["make_response_time"] = response_duration
def catch_after_response(
self, response_duration: float, response_message: List[str], first_bot_msg: MessageSending
):
self.timing_results["make_response_time"] = response_duration
self.response_time = time.time()
self.response_messages = []
for msg in response_message:
self.response_messages.append(msg)
self.chat_history_in_thinking = self.get_message_from_db_between_msgs(
self.trigger_response_message, first_bot_msg
)
@staticmethod
def get_message_from_db_between_msgs(message_start: Message, message_end: Message):
try:
time_start = message_start.message_info.time
time_end = message_end.message_info.time
chat_id = message_start.chat_stream.stream_id
# print(f"查询参数: time_start={time_start}, time_end={time_end}, chat_id={chat_id}")
messages_between_query = (
Messages.select()
.where((Messages.chat_id == chat_id) & (Messages.time > time_start) & (Messages.time < time_end))
.order_by(Messages.time.desc())
)
result = list(messages_between_query)
# print(f"查询结果数量: {len(result)}")
# if result:
# print(f"第一条消息时间: {result[0].time}")
# print(f"最后一条消息时间: {result[-1].time}")
return result
except Exception as e:
print(f"获取消息时出错: {str(e)}")
print(traceback.format_exc())
return []
def get_message_from_db_before_msg(self, message: MessageRecv):
message_id_val = message.message_info.message_id
chat_id_val = message.chat_stream.stream_id
messages_before_query = (
Messages.select()
.where((Messages.chat_id == chat_id_val) & (Messages.message_id < message_id_val))
.order_by(Messages.time.desc())
.limit(global_config.focus_chat.observation_context_size * 3)
)
return list(messages_before_query)
def message_list_to_dict(self, message_list):
result = []
for msg_item in message_list:
processed_msg_item = msg_item
if not isinstance(msg_item, dict):
processed_msg_item = self.message_to_dict(msg_item)
if not processed_msg_item:
continue
lite_message = {
"time": processed_msg_item.get("time"),
"user_nickname": processed_msg_item.get("user_nickname"),
"processed_plain_text": processed_msg_item.get("processed_plain_text"),
}
result.append(lite_message)
return result
@staticmethod
def message_to_dict(msg_obj):
if not msg_obj:
return None
if isinstance(msg_obj, dict):
return msg_obj
if isinstance(msg_obj, Messages):
return {
"time": msg_obj.time,
"user_id": msg_obj.user_id,
"user_nickname": msg_obj.user_nickname,
"processed_plain_text": msg_obj.processed_plain_text,
}
if hasattr(msg_obj, "message_info") and hasattr(msg_obj.message_info, "user_info"):
return {
"time": msg_obj.message_info.time,
"user_id": msg_obj.message_info.user_info.user_id,
"user_nickname": msg_obj.message_info.user_info.user_nickname,
"processed_plain_text": msg_obj.processed_plain_text,
}
print(f"Warning: message_to_dict received an unhandled type: {type(msg_obj)}")
return {}
def done_catch(self):
"""将收集到的信息存储到数据库的 thinking_log 表中喵~"""
try:
trigger_info_dict = self.message_to_dict(self.trigger_response_message)
response_info_dict = {
"time": self.response_time,
"message": self.response_messages,
}
chat_history_list = self.message_list_to_dict(self.chat_history)
chat_history_in_thinking_list = self.message_list_to_dict(self.chat_history_in_thinking)
chat_history_after_response_list = self.message_list_to_dict(self.chat_history_after_response)
log_entry = ThinkingLog(
chat_id=self.chat_id,
trigger_text=self.trigger_response_text,
response_text=self.response_text,
trigger_info_json=json.dumps(trigger_info_dict) if trigger_info_dict else None,
response_info_json=json.dumps(response_info_dict),
timing_results_json=json.dumps(self.timing_results),
chat_history_json=json.dumps(chat_history_list),
chat_history_in_thinking_json=json.dumps(chat_history_in_thinking_list),
chat_history_after_response_json=json.dumps(chat_history_after_response_list),
heartflow_data_json=json.dumps(self.heartflow_data),
reasoning_data_json=json.dumps(self.reasoning_data),
)
log_entry.save()
return True
except Exception as e:
print(f"存储思考日志时出错: {str(e)} 喵~")
print(traceback.format_exc())
return False
class InfoCatcherManager:
def __init__(self):
self.info_catchers = {}
def get_info_catcher(self, thinking_id: str) -> InfoCatcher:
if thinking_id not in self.info_catchers:
self.info_catchers[thinking_id] = InfoCatcher()
return self.info_catchers[thinking_id]
info_catcher_manager = InfoCatcherManager()

View File

@@ -72,7 +72,23 @@ def update_config():
if not value:
target[key] = tomlkit.array()
else:
target[key] = tomlkit.array(value)
# 特殊处理正则表达式数组和包含正则表达式的结构
if key == "ban_msgs_regex":
# 直接使用原始值,不进行额外处理
target[key] = value
elif key == "regex_rules":
# 对于regex_rules需要特殊处理其中的regex字段
target[key] = value
else:
# 检查是否包含正则表达式相关的字典项
contains_regex = False
if value and isinstance(value[0], dict) and "regex" in value[0]:
contains_regex = True
if contains_regex:
target[key] = value
else:
target[key] = tomlkit.array(value)
else:
# 其他类型使用item方法创建新值
target[key] = tomlkit.item(value)

View File

@@ -22,6 +22,7 @@ class MuteAction(PluginAction):
"当有人刷屏时使用",
"当有人发了擦边,或者色情内容时使用",
"当有人要求禁言自己时使用",
"如果某人已经被禁言了,就不要再次禁言了,除非你想追加时间!!"
]
enable_plugin = True # 启用插件
associated_types = ["command", "text"]
@@ -66,7 +67,7 @@ class MuteAction(PluginAction):
mode_enable = ChatMode.ALL
# 并行执行设置 - 禁言动作可以与回复并行执行,不覆盖回复内容
parallel_action = True
parallel_action = False
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)

View File

@@ -1,5 +1,5 @@
[inner]
version = "2.15.1"
version = "2.16.0"
#----以下是给开发人员阅读的,如果你只是部署了麦麦,不需要阅读----
#如果你想要修改配置文件请在修改后将version的值进行变更