Fix: 完美的图片压缩 @sourcery-ai (#54)

* fix: logger三合一

* fix: emoji压缩功能正常使用

* fix: 提高压缩率

* fix: 0.8MB
This commit is contained in:
tcmofashi
2025-03-05 09:26:37 +08:00
committed by GitHub
parent 4bf425521a
commit 9057f972f7
3 changed files with 87 additions and 27 deletions

View File

@@ -16,6 +16,7 @@ from .relationship_manager import relationship_manager
from .willing_manager import willing_manager # 导入意愿管理器
from .utils import is_mentioned_bot_in_txt, calculate_typing_time
from ..memory_system.memory import memory_graph
from loguru import logger
class ChatBot:
def __init__(self):
@@ -61,8 +62,8 @@ class ChatBot:
# 过滤词
for word in global_config.ban_words:
if word in message.detailed_plain_text:
print(f"\033[1;32m[{message.group_name}]{message.user_nickname}:\033[0m {message.processed_plain_text}")
print(f"\033[1;32m[过滤词识别]\033[0m 消息中含有{word}filtered")
logger.info(f"\033[1;32m[{message.group_name}]{message.user_nickname}:\033[0m {message.processed_plain_text}")
logger.info(f"\033[1;32m[过滤词识别]\033[0m 消息中含有{word}filtered")
return
current_time = time.strftime("%Y-%m-%d %H:%M:%S", time.localtime(message.time))
@@ -77,8 +78,7 @@ class ChatBot:
# topic1 = topic_identifier.identify_topic_jieba(message.processed_plain_text)
# topic2 = await topic_identifier.identify_topic_llm(message.processed_plain_text)
# topic3 = topic_identifier.identify_topic_snownlp(message.processed_plain_text)
print(f"\033[1;32m[主题识别]\033[0m 使用{global_config.topic_extract}主题: {topic}")
logger.info(f"\033[1;32m[主题识别]\033[0m 使用{global_config.topic_extract}主题: {topic}")
all_num = 0
interested_num = 0

View File

@@ -1,8 +1,6 @@
from dataclasses import dataclass, field
from typing import Dict, Any, Optional, Set
import os
from nonebot.log import logger, default_format
import logging
import configparser
import tomli
import sys
@@ -85,9 +83,9 @@ class BotConfig:
personality_config=toml_dict['personality']
personality=personality_config.get('prompt_personality')
if len(personality) >= 2:
print(f"载入自定义人格:{personality}")
logger.info(f"载入自定义人格:{personality}")
config.PROMPT_PERSONALITY=personality_config.get('prompt_personality',config.PROMPT_PERSONALITY)
print(f"载入自定义日程prompt:{personality_config.get('prompt_schedule',config.PROMPT_SCHEDULE_GEN)}")
logger.info(f"载入自定义日程prompt:{personality_config.get('prompt_schedule',config.PROMPT_SCHEDULE_GEN)}")
config.PROMPT_SCHEDULE_GEN=personality_config.get('prompt_schedule',config.PROMPT_SCHEDULE_GEN)
if "emoji" in toml_dict:
@@ -141,10 +139,10 @@ class BotConfig:
topic_config=toml_dict['topic']
if 'topic_extract' in topic_config:
config.topic_extract=topic_config.get('topic_extract',config.topic_extract)
print(f"载入自定义主题提取为{config.topic_extract}")
logger.info(f"载入自定义主题提取为{config.topic_extract}")
if config.topic_extract=='llm' and 'llm_topic' in topic_config:
config.llm_topic_extract=topic_config['llm_topic']
print(f"载入自定义主题提取模型为{config.llm_topic_extract['name']}")
logger.info(f"载入自定义主题提取模型为{config.llm_topic_extract['name']}")
# 消息配置
if "message" in toml_dict:

View File

@@ -12,6 +12,8 @@ import base64
import shutil
import asyncio
import time
from PIL import Image
import io
from nonebot import get_driver
from ..chat.config import global_config
@@ -240,36 +242,97 @@ class EmojiManager:
print(f"\033[1;32m[调试信息]\033[0m 使用默认标签: neutral")
return "skip" # 默认标签
async def _compress_image(self, image_path: str, target_size: int = 0.8 * 1024 * 1024) -> Optional[str]:
"""压缩图片并返回base64编码
Args:
image_path: 图片文件路径
target_size: 目标文件大小字节默认0.8MB
Returns:
Optional[str]: 成功返回base64编码的图片数据失败返回None
"""
try:
file_size = os.path.getsize(image_path)
if file_size <= target_size:
# 如果文件已经小于目标大小直接读取并返回base64
with open(image_path, 'rb') as f:
return base64.b64encode(f.read()).decode('utf-8')
# 打开图片
with Image.open(image_path) as img:
# 获取原始尺寸
original_width, original_height = img.size
# 计算缩放比例
scale = min(1.0, (target_size / file_size) ** 0.5)
# 计算新的尺寸
new_width = int(original_width * scale)
new_height = int(original_height * scale)
# 创建内存缓冲区
output_buffer = io.BytesIO()
# 如果是GIF处理所有帧
if getattr(img, "is_animated", False):
frames = []
for frame_idx in range(img.n_frames):
img.seek(frame_idx)
new_frame = img.copy()
new_frame = new_frame.resize((new_width, new_height), Image.Resampling.LANCZOS)
frames.append(new_frame)
# 保存到缓冲区
frames[0].save(
output_buffer,
format='GIF',
save_all=True,
append_images=frames[1:],
optimize=True,
duration=img.info.get('duration', 100),
loop=img.info.get('loop', 0)
)
else:
# 处理静态图片
resized_img = img.resize((new_width, new_height), Image.Resampling.LANCZOS)
# 保存到缓冲区,保持原始格式
if img.format == 'PNG' and img.mode in ('RGBA', 'LA'):
resized_img.save(output_buffer, format='PNG', optimize=True)
else:
resized_img.save(output_buffer, format='JPEG', quality=95, optimize=True)
# 获取压缩后的数据并转换为base64
compressed_data = output_buffer.getvalue()
print(f"\033[1;32m[成功]\033[0m 压缩图片: {os.path.basename(image_path)} ({original_width}x{original_height} -> {new_width}x{new_height})")
return base64.b64encode(compressed_data).decode('utf-8')
except Exception as e:
print(f"\033[1;31m[错误]\033[0m 压缩图片失败: {os.path.basename(image_path)}, 错误: {str(e)}")
return None
async def scan_new_emojis(self):
"""扫描新的表情包"""
try:
emoji_dir = "data/emoji"
os.makedirs(emoji_dir, exist_ok=True)
# 获取所有jpg文件
files_to_process = [f for f in os.listdir(emoji_dir) if f.endswith('.jpg')]
# 获取所有支持的图片文件
files_to_process = [f for f in os.listdir(emoji_dir) if f.lower().endswith(('.jpg', '.jpeg', '.png', '.gif'))]
for filename in files_to_process:
image_path = os.path.join(emoji_dir, filename)
# 检查文件大小
file_size = os.path.getsize(image_path)
if file_size > 5 * 1024 * 1024: # 5MB
print(f"\033[1;33m[警告]\033[0m 表情包文件过大 ({file_size/1024/1024:.2f}MB),删除: {filename}")
os.remove(image_path)
continue
# 检查是否已经注册过
existing_emoji = self.db.db['emoji'].find_one({'filename': filename})
if existing_emoji:
continue
# 读取图片数据
with open(image_path, 'rb') as f:
image_data = f.read()
# 将图片转换为base64
image_base64 = base64.b64encode(image_data).decode('utf-8')
# 压缩图片并获取base64编码
image_base64 = await self._compress_image(image_path)
if image_base64 is None:
os.remove(image_path)
continue
# 获取表情包的情感标签
tag = await self._get_emoji_tag(image_base64)
@@ -289,7 +352,6 @@ class EmojiManager:
else:
print(f"\033[1;33m[警告]\033[0m 跳过表情包: {filename}")
except Exception as e:
print(f"\033[1;31m[错误]\033[0m 扫描表情包失败: {str(e)}")
import traceback